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Abstract— In this work, we propose a novel method to
supervise 3D Gaussian Splatting (3DGS) scenes using optical
tactile sensors. Optical tactile sensors have become widespread
in their use in robotics for manipulation and object represen-
tation; however, raw optical tactile sensor data is unsuitable to
directly supervise a 3DGS scene. Our representation leverages
a Gaussian Process Implicit Surface to implicitly represent the
object, combining many touches into a unified representation
with uncertainty. We merge this model with a monocular depth
estimation network, which is aligned in a two stage process,
coarsely aligning with a depth camera and then finely adjusting
to match our touch data. For every training image, our
method produces a corresponding fused depth and uncertainty
map. Utilizing this additional information, we propose a new
loss function, variance weighted depth supervised loss, for
training the 3DGS scene model. We leverage the DenseTact
optical tactile sensor and RealSense RGB-D camera to show
that combining touch and vision in this manner leads to
quantitatively and qualitatively better results than vision or
touch alone in a few-view scene syntheses on opaque as well
as on reflective and transparent objects. Please see our project
page at armlabstanford.github.io/touch-gs.

I. INTRODUCTION

Accurate 3D scene and object representations are an
essential aspect of robotic interactions with an environment.
Neural Radiance Fields (NeRF) [1] have gained prominence
as an effective 3D representation. NeRFs have been applied
to a number of robotics challenges, including path planning
[2] and manipulation [3]. The method of 3D Gaussian
Splatting (3DGS) [4] has recently advanced the field by pro-
viding high-quality and high-speed training along with real-
time rendering. Precise representations and real-time visual
reconstruction are important aspects for robots to interact
with their environments. However, in most cases, visual-only
information is not sufficient to interact with complex objects.
Situations as common as reaching into a cluttered drawer or
grasping something in the dark necessitate a sense of touch.

Recent advances in gel-based optical tactile sensors like
DenseTact and GelSight [5], [6] have enabled robots to have
a sense of touch. Many works have addressed the use of
tactile sensors in robotic applications including topics such
as manipulation [7], [8] and shape reconstruction [9], [10].
In this work, we enhance 3DGS by using the fusion of
visual-tactile data. Just as humans seamlessly integrate both
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Fig. 1: Touch-GS combines monocular depth estimation
priors with tactile data-informed implicit surfaces to generate
high-quality 3DGS scenes from few training images. Adding
touch data significantly enhances 3DGS quality (right) com-
pared with RGB-D alone (left).

touch and vision to achieve a unified understanding of their
environment, robots can leverage this essential integration
between touch and vision for interaction with the world. In
a robotic environment, it is not feasible to collect hundreds
of images to train a 3DGS. In this approach, we utilize both
monocular depth priors and tactile data to generate high-
quality few-shot and challenging scenes, such as few-view
object-centric scenes, mirrors, and transparent objects.

Depth Supervision for NeRFs. NeRF visual and geo-
metric quality can be improved through depth supervision.
Several works have utilized Structure from Motion (SfM)
keypoints, and monocular depth estimation to train few-view
NeRFs [11], [12], [13]. These prior works demonstrate en-
hanced scene quality, but still require many views to estimate
camera poses and sparse keypoints. This was addressed in
[14], which does not use COLMAP. However, none of these
works utilize touch data, which can provide more accurate
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depth information.
Tactile Sensing for Robotic Tasks. Recent research has

shown that the high resolution of vision-based tactile sensors
allows for rich tactile information and increased sensing
capabilities [6], [5]. They can be used for object manipulation
tasks [15], [7], localization [10], shape reconstruction, and
even classification of unknown objects [16], [17].

Gaussian Process Implicit Surface (GPIS) Usage for
Robot Manipulation. Signed Distance Field (SDF)s are a
common implicit approach to represent a 3D object as a 0-
level-set of an SDF function. Typically, SDFs are represented
as learned functions [18], [9]. GPISs, use a Gaussian Process
(GP) to represent an SDF [19] with applications to both
robotic manipulation and object representations [20], [21].
The advantage of a GPIS is the ability to leverage a con-
tinuous object representation derived from discrete touches
along with the variance associated with the GP model.

Fusing Vision and Touch for Robotics. In addition to
the GPIS capability with tactile information from the sensor,
using multi-modal input including vision, depth, or touch has
been addressed widely in multiple tasks including creating
a shared multimodal space [22], [23]. Among the current
works, it is important to reconstruct an accurate real-world
object mesh to solve the manipulation task [24], [3]. Unlike
tactile-only or many-view vision-based shape reconstruction
[25], [26], this work aims to reconstruct the object from a
small number of RGB images with touch input to estimate
an accurate object mesh out of RGB, depth, and touch.

A. Key Contributions

We propose Touch-GS, the first approach that combines
both tactile and visual data to train 3DGS. Our main contri-
butions in Touch-GS are as follows:

• We introduce a Gaussian Process Implicit Surface
(GPIS) to synthesize tactile data in a representation
suitable for supervising 3DGS training.

• We optimally fuse the touch GPIS and monocular
depth estimation through Bayesian Inference to create
depth and uncertainty images for additional training
supervision for the 3DGS beyond the RGB images.

• We show qualitative and quantitative improvements
across a variety of scenes in few-view scene synthesis,
including scenes with mirrored and transparent objects.

• Our method can supply touch supervision to improve
any other Neural Radiance Field representation beyond
3DGS, e.g., Nerfacto [27] or the original NeRF [1].

The remainder of the paper is outlined as follows. Section
II first covers mathematical preliminaries and Section III
introduces our method. Section IV showcases our results, and
finally, Section V discusses these results and future avenues
of research.

II. PRELIMINARIES
A. Point-based NeRF and 3DGS

3DGS and other point-based NeRF methods utilize a
slightly different representation than standard NeRFs. Rather
than represent space as a continuous function where empty

Fig. 2: The GPIS is created by finding the 0-level-set of our
GP-based SDF. We utilize the uncertainty at the 0-level-set
to enhance the accuracy of our model. A z-axis slice of both
SDF and uncertainty is shown above the bunnies.

space is defined implicitly, in these point based methods,
free space as truly empty and image formation is done by
blending ordered points with overlapping pixels. We define
a ray with camera origin o and orientation d as follows:

r(t) = o+ td, t ≥ 0, (1)

The color C(r) and depth D(r) along the ray are computed
by blending the set of N ordered points intersecting the ray:

Ĉ =
∑
i∈N

ciαi

i−1∏
j=1

(1−αj), D̂ =
∑
i∈N

diαi

i−1∏
j=1

(1−αj), (2)

where αi = 1 − exp(−σiδi), and d is the distance of a
particular point along a ray. The following L2 loss between
the ground truth (GT) image and volumetric rendered image
can be used to optimize the NeRF.

Lc =
∑
r∈R

∥∥∥Ĉ(r)− C(r)
∥∥∥2
2

(3)

Regardless of the representation, either volume-based or
point-based, these loss functions will work with our method.
We can then perform depth supervision in a similar manner
to color supervision.

B. Gaussian Process Implicit Surface

An implicit surface is a surface defined by the 0-level set
of a function f(x).

S0 ≜ {x ∈ Rd | f(x) = 0}. (4)

In our case, f(x) is a SDF, which maps every point in
3D space to the minimum distance between that point and
a given surface. We opt for a GPIS because it not only
encodes distance information but also captures variance



Fig. 3: Overview of our method, Touch-GS: 1. We utilize a monocular depth estimation algorithm, which is metrically aligned
in a two phase process with RealSense depth and the GPIS output. 2. We condition a GP on the point cloud generated
by DenseTact, rendering this into a series of depth and uncertainty images. 3. Monocular depth and tactile information are
combined to produce a single set of training images that combine touch and vision.

information. GPs are an extremely versatile non-parametric
machine learning method. We postulate that our SDF f(x)
follows a GP with a given mean and covariance [19]

f(x) ∼ GP(m(x), k(x, x′)) (5)

The SDF, GP uncertainty, and corresponding 0-level set are
shown in Fig. 2. After making a series of observations, we
condition and inference on the GP using a CUDA accelerated
library called GPytorch [28].

III. METHOD

Our core method is divided into 3 main modules as shown
in Fig. 3: 1. Monocular depth estimation on the few-input
view RGB data, 2. GPIS conditioning and rendering on the
tactile sensor data, and 3. Visual-tactile fusion. These three
steps output a single set of depth and variance images. These
fused images are then used to train a 3DGS model with
a slightly modified training and initialization procedure. It
is important to note that our approach is modular between
different methods of NeRF, point-based or volumetric.

A. GPIS Conditioning and Rendering

We combine an array of optical tactile sensor measure-
ments, in this case DenseTact, into a single GPIS represen-
tation of the object. This fusion of points into a surface
is essential for performing supervision on a NeRF. When
we touch an object with DenseTact, many areas will be left
uncovered, while others will produce conflicting information
due primarily to sub-millimeter noise in the manipulator’s
estimated pose. The GPIS seamlessly combines this informa-
tion into a 3D estimate of the surface along with uncertainty
at every point.

1) GPIS Conditioning: In order to produce an accurate
SDF, we need to define both the 0-level set and the gradient
with respect to it. We leverage the orientation of the touch to
compute the gradient of the surface at each of these points.
Following [19], we can enforce this during conditioning by
generating artificial points both inside and outside the object
with negative and positive values respectively:

xin = x0 − δn̂, f(xin) = −δ

xout = x0 + δn̂, f(xout) = +δ,
(6)

where n̂ is the normal vector of a given tactile reading which
we use as an estimate of the true normal vector n, and x0 is
the set of contact points on the surface of the target object
measured by DenseTact, and δ is a small positive scalar value
representing the offset from the surface. In addition, we add
several points near the center of the object with negative
values. These are computed by taking the average position
along successive Z-slices of the model.

ci =
1

|Xi|
∑
x∈Xi

x, xint,i = ci, f(xint,i) = −ϵ (7)

Where Xi is the set of points in the i-th Z-slice, ci is the
centroid of the i-th Z-slice, and ϵ is a small positive value
used for the SDF value of the interior. We now condition our
GPIS on the following set of points.

X = {x0,xin,xout,xint,i}, Y = {0,−δ,+δ,−ϵ} (8)

While this approximation is not a perfect representation
of the true value of the SDF, we find it works well for
reasonably shaped objects as shown in Sec. IV. For our GP



Fig. 4: We show our optimized SDF rendering process. α =
.5, thus each step halves the distance to the surface.

covariance function, we use the Matérn kernel with ν = 3/2.

C3/2(d) = σ2

(
1 +

√
3d

ρ

)
exp

(
−
√
3d

ρ

)
(9)

Here, d is the distance between two points and ρ and σ are
parameters optimizing over during training.

2) GPIS Rendering: We leverage the SDF nature of our
conditioned GP to render depth and variance images in the
poses of each RGB image. The SDF provides a crucial
advantage by indicating the shortest distance to the surface,
allowing for an optimized ray-marching that skips empty
space. Consider the ray defined in (1). The ray advances by
increments of ∆t determined by the SDF at the current ray
position, until the surface is reached or a maximum number
of steps is exceeded, as shown in

∆t = max(αSDF(r(t)),∆tmin) (10)

Where ∆tmin is the minimum allowable step size and α is a
tunable parameter. This variable step size marching is shown
in Fig. 4.

3) Depth and Variance Image Generation: To render
the GPIS from various viewpoints, we incorporate a stan-
dard pinhole camera model which maps from 3D world
coordinates into pixel coordinates. For each pixel in the
RGB image, we compute a corresponding depth value by
determining the intersection point of the ray with the ob-
ject’s surface. This ray marching is done by stepping along
each rij in a given camera image following (10) until the
SDF value is within a specified tolerance of 0. Additional
optimizations are done to accelerate the rendering process.
Prior to ray marching, we intersect every ray analytically
with the minimum volume sphere, which covers a coarse 0-
level set. This eliminates rays which will not intersect the
surface. The variance image is generated by evaluating the
uncertainty in the GPIS at these intersection points. GPIS
surfaces along with uncertainties are shown in Fig. 5 and
Fig. 6.

B. Monocular Depth Estimation and Alignment
While the GPIS representation produces high-quality

depth information around the target object, it lacks coverage

Fig. 5: (a) shows the input point clouds and (b) shows the
rendered 0-level-set colored by uncertainty. The method is
able to fill in the gaps in the point cloud while showing
more uncertainty in the interpolated areas. The last column
is a real-world dataset.

on the background of the scene. We posit that improving
full scene coverage will improve the overall quality of a
NeRF reconstruction and geometry of a scene, and even
localize the target object in the scene. To supplement this
background coverage, we utilize a monocular depth estima-
tion and alignment procedure, as shown in Fig. 3, which
outputs an estimated absolute scale depth map of the scene.
While this closely follows the primary method in [11], our
method produces absolute world frame estimates that can be
deployed onto a real-world robotic system, where we rely on
a robot’s kinematics and off-the-shelf depth sensors to align
model depth estimations.

1) ZoeDepth Estimation and Alignment: We utilize
the state-of-the-art monocular depth estimation network
ZoeDepth [29], but our approach can be applied to any
metric or relative monocular depth estimator. Using the
raw output of ZoeDepth is not enough; in order to train
a NeRF, it is necessary to align the output of ZoeDepth
with real-world sparse depth data and touch depth data. To
best align the output of ZoeDepth to the scene, we perform
a straightforward two-step alignment procedure to construct
the most accurate depth map to train a NeRF.

a). Sparse Depth Scene Alignment. With an off-the-shelf
depth sensor (e.g., the Intel RealSense), we can perform a
depth alignment to jointly learn a scale factor and offset to
compute an aligned depth map D∗

ZOE. Concretely, for each
image, we formulate the first alignment stage as a least
squares problem shown below:

s∗, t∗ = argmin
s,t

∑
p∈Dsparse

||Dsparse(p)−DZOE(p; s, t)||2 (11)

where s∗ is the scene scale factor, t∗ is the offset, and p is
a sparse depth keypoint from sparse depth image Dsparse.

Our approach also works for SfM algorithms such as
COLMAP, which estimate camera poses and outputs a set



Fig. 6: The snapshots of various parts of the method on
the real dataset: (a) RGB image, (b) Monocular depth,
(c) Monocular uncertainty, (d) Fused touch and monocular
depth, (e) DenseTact point cloud, (f) GPIS depth, (g) GPIS
uncertainty, (h) Fused touch and monocular uncertainty.

of sparse keypoints per image. These sparse points are tradi-
tionally used as direct supervision or aligning a monocular
depth map; however, a successful COLMAP run requires at
least 30 images with meaningful visual features to output a
list of sparse keypoints. Instead, our method relies on the
estimation of camera poses via a robot’s kinematics.

b). Object Alignment. While alignment from sparse depth
data grounds the overall scale and offset of ZoeDepth,
depth data from the GPIS is still useful to further align
our vision depth maps. Because the touch data is from
one object, we only learn an offset tGPIS for each depth
image. This is implemented as simply reapplying the same
linear alignment but constraining the scale to be 1, and only
updating the depth of the object in the ZoeDepth output.
This step reshifts the object but does not update meaningful
background depths.

2) Vision Uncertainty Estimation: We compute a simple
visual uncertainty map as the original depth multiplied by a
simple scalar value. Contrary to [13], our monocular depth
estimator does not provide us with a corresponding estima-
tion of depth uncertainty. To this end, we rely on a simple
heuristic for uncertainty: farther away depth values should
be given more uncertainty, which is reasonable given that
the ZoeDepth model is less accurate as distance increases.
We also add a simple constant to the result to give touch
more priority when fusing the two. Along with a depth map
µZOE , we now have uncertainty map σ2

ZOE .

C. Depth and Touch Fusion

The output of the parallel pathways of our method are two
sets of depth images, both in the same frame, along with
corresponding variance information. We combine these two
data sources into a single depth and variance supervision pair.
This ensures that during training, we weight the touch and
monocular depth data relative to their respective uncertainty.

1) Bayesian Update: We treat the problem of fusing the
two depth images as a Bayesian update with the dense depth
as our prior and the tactile data as our measurement. We
assume that the distributions are normally distributed and

that each measurement is independent.

σ2
fuse =

(
1

σ2
ZOE

+
1

σ2
GPIS

)−1

µfuse = σ2
fuse

(
µZOE

σ2
ZOE

+
µGPIS

σ2
GPIS

) (12)

This update rule is applied pixelwise to the outputs of monoc-
ular depth estimation and GPIS conditioning / rendering. An
example set of input and fused images is shown in Fig. 6.

D. Model Training

In training our NeRFs, certain depth values should be
valued more than others; a depth from touching an object
should present a tighter constraint on depth supervision than
the estimated depth of an object a few meters away. Addi-
tionally, few-input view NeRFs require a good initialization
to avoid local minima. Accordingly, we propose a new loss
function and novel improvement to the 3DGS initialization.

1) Uncertainty Weighted Depth Supervision: With our
new variance and depth images, we not only have mean
information but also uncertainty; we propose a new cost
function, called uncertainty weighted depth supervision,

L(i)
d = α(i)

∥∥∥d̃(i) − d(i)
∥∥∥2
2

,where α(i) ∝ e−wσ(i)

, (13)

where σ is the uncertainty given by the variance image and
w is a tunable weight parameter. The total combined loss
can be expressed as L = Lcolor + λLd. This loss function
is weighted based on the uncertainty of our GPIS mean.
We also add an optional depth loss weight decay shown
as λi+1 = βλi, where β is a value between 0 and 1. We
recommend this to get a NeRF out of local minima if the
depth weight is too high.

2) Model Initialization: We propose a modified point
initialization performed in 3DGS. 3D point initialization
becomes a much higher influence on training in the few-input
view case, and as such, requires an accurate initialization to
guide the GS into a geometrically precise and photorealistic
scene. We do not have COLMAP data to initalize the 3DGS
and cannot rely on a potentially noisy depth sensor for
initialization, especially in environments where vision is not
sufficient, such as reflective surfaces. Thus, for each image
Ik in our few input view list, we backproject the depth
of each GPIS depth image µGPIS,k into the world frame
with the robot camera poses, and use the combined point
cloud to initialize a 3DGS. We also initialize on only touch
to highlight its usefulness for an entire scene. Finally, we
observe that in the case of 3DGS, convergence is reached
quickly, and thus train all 3DGS models in our ablations and
real-world experiments for 15000 steps for a fair comparison.

IV. RESULTS

A. Experimental Setup

Touch-GS is implemented in both simulated and real-
world experimental setups. The simulated evaluation assesses
the performance of various ablations in Blender. We obtain
our camera poses from Blender and use a point cloud



Method PSNR↑ SSIM↑ LPIPS↓ D-MSE↓ D-MSE-O ↓

3DGS w/o Depth 15.78 0.53 0.52 23.04 8.40
Sparse-Depth [12] 18.00 0.54 0.47 13.79 0.92
Dense-Depth [11] 18.21 0.55 0.46 5.77 0.82
Raw Dense-Depth 17.37 0.55 0.45 9.38 7.48
Touch-Aligned Vision 17.99 0.56 0.46 6.39 0.20
Ours Touch Only 14.32 0.54 0.57 31.07 0.46
Touch w/o Initialization 17.02 0.54 0.48 21.70 0.16
Ours w/o Initialization, Uncertainty 18.11 0.56 0.46 6.57 0.14
Ours w/o Uncertainty 19.19 0.60 0.42 5.25 0.016
Ours 19.20 0.60 0.42 5.29 0.016
3DGS w/ GT Depth 20.57 0.63 0.37 3.29 0.008

TABLE I: Blender simulated scene ablations with 3DGS
Method PSNR↑ SSIM↑ LPIPS↓ D-MSE-O↓

Nerfacto 12.57 0.310 0.77 0.85
DS-NeRF 17.16 0.58 0.46 99.17
Dense Depth 18.06 0.56 0.46 1.68
Our Method 18.37 0.56 0.44 0.60

TABLE II: Nerfacto Results

Object Method PSNR↑ SSIM↑ LPIPS↓

3DGS 10.30 0.41 0.61
Real-world Dense-Depth 11.40 0.45 0.55
Bunny No Uncertainty 11.71 0.47 0.53

Our Method 11.75 0.47 0.52
3DGS 15.39 0.65 0.42

Mirror Dense-Depth 15.75 0.66 0.42
Our Method 15.51 0.66 0.42

3DGS 14.43 0.55 0.42
Prism Dense-Depth 14.85 0.57 0.41

Our Method 14.71 0.57 0.41

TABLE III: Real-world experiment with multiple objects

sampled from the GT geometry. To generate sparse points
for alignment, we take a small percent (under 1%) of the
GT depth data and perturb it with noise that quadratically
increases with distance. We train our scene on 5 equally
spaced views around the bunny.

The real-world evaluation assesses the use of Touch-GS
and uncertainty in real-world conditions. Touch-GS requires
accurate poses for the camera, depth camera, and touch
sensor. We utilized the RGB and depth cameras installed
in the Kinova™ Gen 3 and attached the DenseTact 2.0 [5]
at the end-effector of the robot arm as shown in Fig. 1. We
collect between 8-151 RGB-D images and between 150-500
touches per object. From the reconstructed depth image of
the sensor, we determined the contact point by thresholding
the estimated point cloud. The final touch data includes
between 5,000 to 20,000 points per touch.

B. Simulation Evaluation

We perform an extensive ablation of our method, which
includes ablations with GS and a method called Nerfacto,
which is the default NeRF method used in Nerfstudio [27].
Our first set of ablations builds up our method from 3DGS.
Our second set of ablations performs an analysis of our
method on Nerfacto, which is Nerfstudio’s default, volu-
metric method. Our ablations in GS are listed in Table I
for brevity. We reimplement [12] and [11] to the best of
our ability; the former method’s code was not written for

3DGS, and the latter method’s code has not been released.
We also tune both methods’ depth loss weight to best assess
their performance. Finally, we train 3DGS with ground truth
depth provided by Blender (and initializing from ground truth
bunny points), providing a strong upper bound for the quality
of a model trained with perfect depth. Each method is run 10
times and we report the mean of the standard NeRF metrics
(PSNR, SSIM, LPIPs) and ground truth depth and object
depth mean square error (MSE), which we call D-MSE and
D-MSE-O respectively.

In Table I, 3DGS performs the worst (besides D-MSE),
as a lack of depth leads to unrecognizable depths and the
inability to localize the bunny. Using sparse depth alone
significantly improves visual and depth metrics; indicating
how even some form of depth priors improves NeRF gener-
alization. [11] outperforms sparse depth in all metrics, most
notably the scene ground truth depth MSE, shown in Fig. 7.
Aligning vision to touch leads to slightly worse depth loss
but better object depth loss.

The need for alignment is shown in Raw Dense-Depth,
where the NeRF performs better than pure GS, but the lack
of scale and offset is most noticeable in the poor object
ground truth depth MSE. Using only touch improves visual
quality without initialization and has an even higher D-
MSE-O than when GPIS initialization is performed for just
touch. This is due to the model correctly learning the 3D
geometry of the bunny but being unable to localize it without
background depth. When we fuse both vision and touch
without initialization, the visual quality is comparable to [11]
but with a higher depth loss and lower object ground truth
depth loss. Once the GPIS point initialization is included, the
visual and geometric quality improves dramatically. This is
seen clearly in the first column of Fig. 7 in our method, where
the bunny geometry is extremely sharp. It is apparent that
touch and vision complement each other: vision improves
the background which localizes a touched object, and touch
improves the background rendering. In Table II, our method
is the best in all metrics for Nerfacto, demonstrating the value
of touch.

C. Real world Evaluation

For the real-world evaluation, we leave all tunable parame-
ters of the GPIS fixed with the exception of ρ in (9), which is
adjusted due to the differing length scales of our four scenes.
In the vision depth and uncertainty maps, we only update the



Fig. 7: Here we show comparisons of our method to the baselines and ground truth across 1 synthetic and 3 real scenes.

constant added to vision uncertainty, and we also filter out
differences between ZoeDepth and the GPIS larger than 3
meters when we compute the touch-aligned vision map. In
training the NeRF, we update the depth and/or uncertainty
weight for each scene. We report mean PSNR, SSIM, and
LPIPs with 3 trials for each method.

In the real-world bunny example, we train a NeRF on 8
input views and test on 40. Without any depth priors, 3DGS
struggles, failing to properly render the ears of the bunny and
background. The baseline from [11] outperforms 3DGS in all
visual qualities with noticeably better geometries; however,
it fails to completely render the bunny. Our method with

uncertainty is able to both render the background and bunny
with clear geometries; rendering the tail of the bunny which
was seen in touch and never predicted by vision.

Method Chamfer ↓ Hausdorff↓

3DGS 0.037 0.12
Dense-Depth 0.027 0.14
Our Method 0.023 0.094

TABLE IV: Real-world Bunny Object Geometric Recon-
struction Quality.

We report the average shape dissimilarity (Chamfer dis-
tance) and maximal shape dissimilarity (Hausdorff distance)



between the sensed real-world bunny and a ground truth
bunny mesh in Table IV. We compute a transformation,
which we refine with Chamfer distance, to best align each
method’s point cloud to ground truth for a most fair com-
parison. While Depth-3DGS has better overall shape recon-
struction than 3DGS, it suffers from larger outliers, which is
due to ZoeDepth incorrectly localizing the bunny. Across all
metrics, our approach significantly outperforms 3DGS and
Depth-3DGS, highlighting the importance of touch.

The mirror and prism examples serve as a challenging
scene for vision. Even with many input views (151 for the
mirror and 58 for the prism), the rendered depths from
both 3DGS and vision-depth-supervised 3DGS are full of
holes. The features shown in the mirror present a challenge
for 3DGS and depth GS, which view the reflected features
as objects with depth. In the other methods, the prism is
transparent. Our method renders a flat, geometry respecting,
surfaces on the mirror and prism, and while the visual metrics
of [11] are better than our method, it is because the high
depth weights given to touch make it harder to render the
reflections and see-through objects, which we plan to address
in future work. But the accurate geometries of these objects
in our method present an important first step for robotic
manipulators to operate in these environments.

V. CONCLUSION

In this work, we have shown how Touch-GS fuses visual-
tactile data to produce 3DGS scenes. We demonstrate qual-
itative and quantitative improvements over our baselines of
standard and depth-supervised 3DGS. Robotic systems of the
future need to be able to fuse touch and vision to interact
with their environment. Our work addresses the fundamental
balance between coarse RGB data fused with fine tactile
data. In the future, we hope to expand this representation
to be dynamic, including both deformability and frictional
properties of the object in question to create a true digital
twin.
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