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is how nonlocality affects absorption in the quantum regime, specifically whether the presence of

a single photon at a point r1 can influence the absorption of a second photon at another point

r2. Additionally, the “reverse LD”, or luminescence of metallic structures, warrants further

investigation, particularly regarding the spatial and angular distribution of emitted photons and

polaritons. It is hoped that future research will uncover more phenomena with potential practical

applications.
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Overview

There has been a renewed interest in the role of nonlocal phenomena in optical response of

metal-dielectric structures [14,64,108]. Landau damping (LD) of localized surface plasmons

(LSP) is one of the earliest manifestations of nonlocal effects observed as broadening of the LSP

resonance in optical spectra of small metal nanoparticles (NP) [103]. The optically excited LSP

decays into single-particle excitations while momentum matching is provided by the electron

scattering off the confining potential. For small NPs, this momentum relaxation mechanism can

be incorporated, along with the bulk phonon and impurity scattering, into Drude’s dielectric

function of the metal ε(ω) = ε∞ −ω2
p/ω(ω + iγ), where ωp is the plasma frequency, and γ is the

scattering rate. The latter is presented as the sum γ = γ0 + γs of bulk scattering rate γ0 and of

surface-induced rate

γs = A
vF

L
, (18)

where vF is the electron Fermi velocity, L is NP’s characteristic size, and A is a phenomenological

constant in the range 0.3–1.5 accounting for surface-related effects [103].

Current status

The scattering rate γs was initially associated with electron’s classical scattering (CS) time

τcs = L/vF across the NP [109,110], but later it was recognized as intrinsically nonlocal effect.

An alternating electric field excites an electron-hole (e-h) pair with energy ℏω across the Fermi

level EF. For typical LSP energies ℏω ≪ EF, such a process requires momentum transfer

q = ℏω/vF , facilitated by surface scattering, which defines nonlocal length scale ξ = ℏ/q = vF/ω

[64]. For common plasmonic metals such as gold (Au) and silver (Ag), this scale is below 1 nm

(e.g., for Au, ξ ≈ 0.5 nm at wavelength λ = 700 nm), implying that e-h pair excitation takes

place in the close proximity ξ to the metal surface (see Fig. 7). For a NP with characteristic

size L, the probability of such process occurring during the optical cycle is ∼ ωξ/L, leading to

Eq. (18). Despite subnanometer scale of ξ, the broadening of optical spectra associated with γs

has been observed for NPs of various shapes with sizes up to ∼ 10 nm. In the presence of surface

scattering, the LSP resonance quality factor is Q = ω/γ ≈ Q0/[1 + (ξ/L)Q0], where Q0 = ω/γ0,

implying that nonlocal effects in plasmonics persist at much larger scale L ∼ ξQ0 ≫ ξ.

For spherical NPs in the size range transitioning from metal clusters to several nm, calculations

within jellium model using time-dependent local-density approximation (TDLDA) highlighted

the important role of electron confining potential and electron density spillover beyond the NP

classical boundary [111,112]. At the same time, for larger NPs in the size range above several

nanometers, TDLDA calculations revealed that the precise shape of confining potential is largely

unimportant and the overall magnitude of γs, defined by the coefficient A, is determined by the

electron spillover and dielectric environment effects [113,114]. The reasonable accuracy of

Eq. (18) even for relatively large NPs indicates that, for L ≫ ξ, the LD rate γs can be obtained as
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Fig. 7. Schematics for surface-assisted excitation of an e-h pair with energy ℏω. (a) An

external optical field incident on a metal nanostructure of characteristic size L, (b) excites

LSP that decays into an e-h pair, (c) with momentum matching provided by carrier surface

scattering in a region of size vF/ω.

a correction to the Drude dielectric function within a standard analytical approach such as the

random-phase approximation (RPA) and the Lindhard dielectric function [9].

RPA calculations of γs have been carried out in the course of several decades [100–102,

115–119]. While in earlier studies, the scattering rate for spherical NPs with radius a was derived

as γsp = 3vF/4a, the subsequent works focused on obtaining γs for NPs of more complex shapes.

The major challenge was to obtain the LD rate for NPs of arbitrary shape, even irregular one,

for which no numerical calculations are feasible. The condition L ≫ ξ implies that the length

scales for electronic and LSP excitations are well separated. For hard-wall confining potential,

the electronic contribution to γs can be effectively “integrated out” and the LD rate is obtained as

a nonlocal correction to the Drude decay rate as γ = γ0 + γs, where γs has the form 18 with the

characteristic size L depending on the field distribution in the metal [100–102]:

L =

∫

dV |E|2
∫

dS |En |2
. (19)

Here, E is the electric field inside a NP of volume V , En is the field component normal to the

NP surface S, and A = 3/4. Importantly, γs is sensitive to polarization of the LSP field that

drives the electrons towards the interface. Such form of L (and γs) is valid for NPs in the size

range ξ ≪ L ≪ λ, where λ is the optical wavelength, which includes most plasmonic systems

used in the applications.

RPA approach to Landau damping in small metal nanoparticles. Here we briefly outline

the RPA approach to LD of LSP in metal NPs following Refs. [101,102]. An external field excites

an LSP in a NP which subsequently decays into an e-h pair by promoting, with its alternating

field Ee−iωt, a conduction band electron across the Fermi level, while the momentum matching

is provided by carriers’ surface scattering (see Fig. 7). The full dissipated power Q in a metal NP

is given by

Q =
ω

2
Im

∫

dV E
∗ · P, (20)

where P(r) is the electric polarization vector (the star stands for complex conjugation). The bulk

contribution to Q is obtained by relating, in the local limit, the polarization vector to the electric

field as P(r) = E(r)[ε(ω) − 1]/4π, yielding the standard expression

Q =
ωε′′(ω)

8π

∫

dV |E|2, (21)

where ε′′(ω) is the imaginary part of metal dielectric function due to bulk relaxation processes.

For small NPs, there is also a surface contribution Qs to the dissipated power arising from

momentum relaxation due to surface scattering. The general expression for Qs is obtained by
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relating P(r) to nonlocal electron polarization operator Π(ω; r, r′) via the induced charge density

ρ(r) as

∇ · P(r) = −ρ(r) = −e

∫

dV ′
Π(ω; r, r′)Φ(r′). (22)

Here, the potential Φ(r) is defined as eE(r) = −∇Φ(r), where e is the electron charge. Using

Eq. (22), after integrating Eq. (20) by parts, the dissipated power takes the form

Qs =
ω

2
Im

∫

dVdV ′
Φ

∗(r)Π(ω; r, r′)Φ(r′), (23)

where Π(ω; r, r′) includes only the electronic contribution. Within RPA, Π(ω; r, r′) is replaced

by the polarization operator for noninteracting electrons, yielding

Qs = πω
∑

αβ

|Mαβ |
2
[

f (ϵα) − f (ϵβ)
]

δ(ϵα − ϵβ + ℏω), (24)

where Mαβ =

∫

dVψ∗
αΦψβ is the transition matrix element of potential Φ(r) calculated from

the wave functions ψα(r) and ψβ(r) of electron states with energies ϵα and ϵβ separated by ℏω,

f (ϵ) is the Fermi distribution function, and spin degeneracy is included. For NPs of arbitrary

shape, a direct numerical evaluation of Mαβ is not possible due to complexity of the electron

wave functions. However, for NPs with characteristic size L ≫ ξ, this issue can be bypassed by

extracting the surface contribution to the matrix element as [101]

Ms
αβ =

−eℏ4

2m2ϵ2
αβ

∫

dS [∇nψα(s)]
∗En(s)∇nψβ(s), (25)

where ∇nψα(s) is wave function’s derivative normal to the surface, En(s) is the corresponding

normal field component, ϵαβ = ϵα− ϵβ is the e-h pair excitation energy, and m is the electron mass.

The integration in Eq. (25) takes place over the NP surface S, while the volume contribution to the

matrix element is negligibly small due to near-vanishing overlap of the electron wave-functions

in the presence of slowly varying potential Φ. Using this expression for the matrix element, the

surface contribution to the dissipated power (24) can be recast as

Qs =

∫ ∫

dSdS′ En(s)E
∗
n′(s

′)F(s, s′), (26)

where F(s, s
′) is the e-h correlation function, which is expressed via normal derivatives of the

electron and hole Green functions in a hard-wall cavity (see Ref. [101]).

Evaluation of Qs hinges on the observation that excitation of an e-h pair with energy ℏω

takes place in a region of size ∼ ξ ≪ L. Then it can be shown that F(s, s
′) peaks in the region

|s − s
′ | ∼ ξ and rapidly oscillates outside of it. Since the electric field is relatively smooth on the

scale L, the e-h correlation function can be approximated by F(s, s
′) = F0 δ(s − s

′), where the

coefficient F0 is evaluated using single-scattering approximation for the electron Green function

as F0 = (3vFω
2
p/32πω2) [101]. The final expression for the surface-induced dissipated power

has the form

Qs =
3vF

32π

ω2
p

ω2

∫

dS |En |
2. (27)

Comparing Qs with the bulk expression (21), one observes that both contributions can be

combined together by adding an imaginary nonlocal correction δεs, where

δεs = i
ω2

pγs

ω3
, γs =

3vF

4

∫

dS |En |
2

∫

dV |E|2
, (28)

to the Drude bulk dielectric function. The above form for δεs implies that the scattering rate in

the Drude dielectric function ε(ω) should be modified as γ = γ0 + γs. A similar expression for

γs was obtained in Ref. [100] using a different approach.



Roadmap Vol. 15, No. 7 / 1 Jul 2025 / Optical Materials Express 1569

Although γs is independent of the electric field’s overall amplitude, it is highly sensitive to

field’s polarization that defines the electrons motion relative to the metal–dielectric interface. In

the case of asymmetric NPs, such polarization dependence implies that the LD rate can vary

significantly for different LSP modes excited in the same system. This point is illustrated in Fig. 8

for longitudinal (L) and transverse (T) modes in nanorods and nanodisks, modeled by the prolate

(P) and oblate (O) spheroids, respectively. For such systems, explicit analytic expressions for the

LD rate has been obtained in the form [101] γs = γspfL,T , where

fL =
3

2 tan2(α)

[

2α

sin(2α)
− 1

]

, fT =
3

4 sin2(α)

[

1 −
2α

tan(2α)

]

. (29)

Here, for a prolate spheroid (nanorod), α = arccos(b/a), where a and b are semi-major and

semi-minor axis respectively, while for an oblate spheroid (nanodisk), the LD rates have the same

form 29 but with α = iarccosh(b/a). For comparison, the CS model rate γcs = vFS/4V , which

is independent of mode polarization, is also plotted in Fig. 8. For visual convenience, all rates

are normalized by the LD rate γsp = 3vF/4a for a spherical NP of radius a. At the sphere point

a = b, the normalized rates continuously transition into each other (e.g., PL to OL and PT to

OT), but away from it, the rates for different modes exhibit dramatic difference in magnitude

depending on the mode polarization.

Discussion and further developments

The surface scattering rate Eq. (28) quantifies LD in “simple” NPs characterized by a single

metal surface. Further developments involved more complex plasmonic systems such as thin

films [120], core-shell hybrid structures [121–123] and NP dimers [106,124]. In thin films or

metal nanoshells with dielectric core, the surface scattering that accompanies e-h pair excitation

can take place from both the inner and outer metal boundaries. The interference between

these processes can lead to coherent oscillations (quantum beats) of γs with changing metal

thickness d. Such oscillations were reported in TDLDA studies of thin Ag films [120] and

later in RPA calculations of γs for spherical metal nanoshells [121,122]. Specifically, for

metal nanoshells with thickness d, the LD rate acquires an interference-induced contribution

γint
s ≈ B sin(d/ξ) where the coefficient B depends on the nanoshell’s thickness and overall size

[122].

Fig. 8. Normalized surface scattering rates for prolate and oblate spheroids along with the

CS rate are plotted against aspect ratio b/a. Insets: Schematics of LSP modes.
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In plasmonic dimers, LD has been shown to play a critical role in limiting the field enhancement

in the gap between closely spaced NPs [106,124]. Numerical calculations of the field intensity

performed within RPA using the Lindhard dielectric function [106] and within the generalized

nonlocal optical response (GNOR) model [124] revealed a significant increase in the LD rate that

reduced the field enhancement factor in the gap by nearly two orders of magnitude. Qualitatively,

the LD rate increase for narrow gaps can be inferred from the characteristic size L, given by

Eq. (19), which depends on the field distribution inside the metal. Note that, in the absence

of electron wave-function overlap between two NPs, excitation of an e-h pair can take place

in either NP, so that the LD rate for a dimer is the sum of individual NP LD rates. In dimers,

the field intensity is highest in the gap between the NPs and is much weaker in the metal,

where it is concentrated in a relatively small volume around the gap. More precisely, the

integrated LSP density of states (DOS) ρ(ω) can be split into contributions from the regions

inside the metal and outside of it as ρ(ω) = ρin(ω) + ρout(ω), with their relative magnitude

ρout(ω)/ρin(ω) = |ε′(ω)| ≫ 1, where ε′(ω) is the real part of metal dielectric function [125].

With decreasing NP separation, as the LSP resonance redshifts [106,124], this ratio increases

with |ε′(ω)| implying that the electric field is further pushed out from the metal into the gap. As

a result, the volume-integrated field intensity in the numerator of Eq. (19) decreases relative to

the surface-integrated intensity in the denominator, leading to a reduced L and, hence, enhanced

LD rate for narrow gaps.

The overall magnitude of the LD rate 18 is defined by the coefficient A that depends on the

electron confining potential and charge density profile, which, in turn, determine the electric

fields near the interface. Recent TDLDA calculations for relatively large (up to 10 nm) NPs

[113,114] indicate that the main impact on the LSP resonance width comes from the electron

density spillover and dielectric environment, rather than the electronic states in the cavity. Since

the electron spillover is not sensitive to the overall NP shape, the TDLDA value A ≈ 0.32 for a

nanosphere [113,114] is likely shape independent. Note, however, that substantially larger values

in the range 0.3–1.5 were reported in the experiment depending on the surrounding dielectric

medium [103]. On the other hand, the presence of d-band electrons with a nearly step-like density

profile in noble-metals gives rise to a thin surface layer, in which the conduction electrons with

extended density tail are no longer screened by the d-band electrons, which leads to the field

enhancement near the interface [126]. In Ag NPs, this effect has been shown to cause a blueshift

of the LSP resonance which, in fact, overcompensates the resonance redshift due to the electron

density spillover [127]. One can expect that a similar competition between these two nonlocal

mechanisms will take place for the LD rate as well and bring the coefficient A closer to the

experiment. A related effect has been recently studied for Ag NPs coated with a thin dielectric

shell [123]. In this case, the electron spillover into a medium with a much weaker field screening

results in a noticeable LD rate enhancement.

Concluding remarks

In this contribution, we tried to present a brief outlook on the Landau damping (LD) of surface

plasmons in metal nanoparticles (NPs). This phenomenon has attracted a constant interest for

over 50 years due to its prominent role in the optical spectra of small NPs. There is a very

extensive literature on LD in NPs, and several theoretical and numerical approaches have been

developed during this time span. We have focused on recent advances within the RPA approach

which resolved a long-standing problem of describing, by means of a relatively simple analytical

model, the LD of surface plasmons in metal NPs of arbitrary shape. On the applications side, LD

is an efficient source of hot electrons widely used in photochemistry and light harvesting; there

are excellent reviews on this topic the readers are referred to.
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