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is how nonlocality affects absorption in the quantum regime, specifically whether the presence of
a single photon at a point r; can influence the absorption of a second photon at another point
rp. Additionally, the “reverse LD”, or luminescence of metallic structures, warrants further
investigation, particularly regarding the spatial and angular distribution of emitted photons and
polaritons. It is hoped that future research will uncover more phenomena with potential practical
applications.

5. Landau damping of surface plasmons in metal nanoparticles: the RPA
approach

TIGRAN V. SHAHBAZYAN

Overview

There has been a renewed interest in the role of nonlocal phenomena in optical response of
metal-dielectric structures [14,64,108]. Landau damping (LD) of localized surface plasmons
(LSP) is one of the earliest manifestations of nonlocal effects observed as broadening of the LSP
resonance in optical spectra of small metal nanoparticles (NP) [103]. The optically excited LSP
decays into single-particle excitations while momentum matching is provided by the electron
scattering off the confining potential. For small NPs, this momentum relaxation mechanism can
be incorporated, along with the bulk phonon and impurity scattering, into Drude’s dielectric
function of the metal e(w) = &c — a)g /w(w + iy), where w, is the plasma frequency, and v is the
scattering rate. The latter is presented as the sum y = yg + y; of bulk scattering rate yo and of
surface-induced rate -

Ys=AT (18)

where v is the electron Fermi velocity, L is NP’s characteristic size, and A is a phenomenological
constant in the range 0.3—1.5 accounting for surface-related effects [103].

Current status

The scattering rate vy, was initially associated with electron’s classical scattering (CS) time
Tes = L/vp across the NP [109,110], but later it was recognized as intrinsically nonlocal effect.
An alternating electric field excites an electron-hole (e-h) pair with energy Aw across the Fermi
level Er. For typical LSP energies iw < EF, such a process requires momentum transfer
q = hw/vp, facilitated by surface scattering, which defines nonlocal length scale ¢ = i/q = vp/w
[64]. For common plasmonic metals such as gold (Au) and silver (Ag), this scale is below 1 nm
(e.g., for Au, & = 0.5nm at wavelength 4 = 700 nm), implying that e-h pair excitation takes
place in the close proximity & to the metal surface (see Fig. 7). For a NP with characteristic
size L, the probability of such process occurring during the optical cycle is ~ wé&/L, leading to
Eq. (18). Despite subnanometer scale of &, the broadening of optical spectra associated with 7y,
has been observed for NPs of various shapes with sizes up to ~ 10 nm. In the presence of surface
scattering, the LSP resonance quality factor is Q = w/y =~ Qo/[1 + (¢£/L)Qo], where Qp = w/vo,
implying that nonlocal effects in plasmonics persist at much larger scale L ~ £Qg > &.

For spherical NPs in the size range transitioning from metal clusters to several nm, calculations
within jellium model using time-dependent local-density approximation (TDLDA) highlighted
the important role of electron confining potential and electron density spillover beyond the NP
classical boundary [111,112]. At the same time, for larger NPs in the size range above several
nanometers, TDLDA calculations revealed that the precise shape of confining potential is largely
unimportant and the overall magnitude of y;, defined by the coefficient A, is determined by the
electron spillover and dielectric environment effects [113,114]. The reasonable accuracy of
Eq. (18) even for relatively large NPs indicates that, for L > &, the LD rate y, can be obtained as
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Fig. 7. Schematics for surface-assisted excitation of an e-h pair with energy iw. (a) An
external optical field incident on a metal nanostructure of characteristic size L, (b) excites
LSP that decays into an e-h pair, (¢c) with momentum matching provided by carrier surface
scattering in a region of size vg/w.

a correction to the Drude dielectric function within a standard analytical approach such as the
random-phase approximation (RPA) and the Lindhard dielectric function [9].

RPA calculations of y, have been carried out in the course of several decades [100-102,
115-119]. While in earlier studies, the scattering rate for spherical NPs with radius a was derived
as ysp = 3vp/4a, the subsequent works focused on obtaining y, for NPs of more complex shapes.
The major challenge was to obtain the LD rate for NPs of arbitrary shape, even irregular one,
for which no numerical calculations are feasible. The condition L > ¢ implies that the length
scales for electronic and LSP excitations are well separated. For hard-wall confining potential,
the electronic contribution to y, can be effectively “integrated out” and the LD rate is obtained as
a nonlocal correction to the Drude decay rate as y = yg + 5, where y, has the form 18 with the
characteristic size L depending on the field distribution in the metal [100-102]:
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Here, E is the electric field inside a NP of volume V, E,, is the field component normal to the
NP surface S, and A = 3/4. Importantly, vy, is sensitive to polarization of the LSP field that
drives the electrons towards the interface. Such form of L (and ;) is valid for NPs in the size
range ¢ < L < A, where A is the optical wavelength, which includes most plasmonic systems
used in the applications.

RPA approach to Landau damping in small metal nanoparticles. Here we briefly outline
the RPA approach to LD of LSP in metal NPs following Refs. [101,102]. An external field excites
an LSP in a NP which subsequently decays into an e-h pair by promoting, with its alternating
field Ee~!,| a conduction band electron across the Fermi level, while the momentum matching
is provided by carriers’ surface scattering (see Fig. 7). The full dissipated power Q in a metal NP
is given by

0= %Im/dVE* P, (20)
where P(r) is the electric polarization vector (the star stands for complex conjugation). The bulk

contribution to Q is obtained by relating, in the local limit, the polarization vector to the electric
field as P(r) = E(r)[e(w) — 1]/4n, yielding the standard expression

02 [avier. e

where £”’(w) is the imaginary part of metal dielectric function due to bulk relaxation processes.
For small NPs, there is also a surface contribution Q; to the dissipated power arising from
momentum relaxation due to surface scattering. The general expression for O is obtained by
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relating P(r) to nonlocal electron polarization operator IT(w;r,r’) via the induced charge density
p(r) as
V-P@r)=—p(r) = —e/dV’ H(w;r,r)OF). (22)

Here, the potential ®(r) is defined as eE(r) = —V®(r), where e is the electron charge. Using
Eq. (22), after integrating Eq. (20) by parts, the dissipated power takes the form

0, = %Im / AVdV' & () (w; r,r)OF), (23)

where I1(w;r,r’) includes only the electronic contribution. Within RPA, IT(w;r,r’) is replaced
by the polarization operator for noninteracting electrons, yielding

05 = 71w ) Magl” [f(€a) ~ f(€p)] 6(ex — € + i), (24)
af

where Myp = / dVy Oy is the transition matrix element of potential ®(r) calculated from
the wave functions v, (r) and yg(r) of electron states with energies €, and eg separated by fww,
f(€) is the Fermi distribution function, and spin degeneracy is included. For NPs of arbitrary
shape, a direct numerical evaluation of Mg is not possible due to complexity of the electron
wave functions. However, for NPs with characteristic size L > &, this issue can be bypassed by
extracting the surface contribution to the matrix element as [101]
5 —eh?* .
M= 5o [ dSIT o) Ex(s) 7,565, 25)
ap

where Vi, (s) is wave function’s derivative normal to the surface, E,(s) is the corresponding
normal field component, €, = €, — €3 is the e-h pair excitation energy, and m is the electron mass.
The integration in Eq. (25) takes place over the NP surface S, while the volume contribution to the
matrix element is negligibly small due to near-vanishing overlap of the electron wave-functions
in the presence of slowly varying potential ®. Using this expression for the matrix element, the
surface contribution to the dissipated power (24) can be recast as

0, = / / dSAS’ En(s)E'())F(s.5), 26)

where F(s,s’) is the e-h correlation function, which is expressed via normal derivatives of the
electron and hole Green functions in a hard-wall cavity (see Ref. [101]).

Evaluation of Q; hinges on the observation that excitation of an e-h pair with energy hw
takes place in a region of size ~ £ < L. Then it can be shown that F(s,s”) peaks in the region
|s —s’| ~ & and rapidly oscillates outside of it. Since the electric field is relatively smooth on the
scale L, the e-h correlation function can be approximated by F(s,s”) = Fo 6(s — s’), where the
coeflicient Fy is evaluated using single-scattering approximation for the electron Green function
as Fy = (3vFa)]27 / 327ra)2) [101]. The final expression for the surface-induced dissipated power
has the form
_ 3V1: 0-)12;

Qs - @J

Comparing Q; with the bulk expression (21), one observes that both contributions can be

combined together by adding an imaginary nonlocal correction d&;, where

w}%ys B 3VF /dS |En|2
o T TaviEr
to the Drude bulk dielectric function. The above form for &, implies that the scattering rate in

the Drude dielectric function &(w) should be modified as y = yg + y5. A similar expression for
s was obtained in Ref. [100] using a different approach.

dS |E,|*. 27)

Sey =i (28)
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Although v, is independent of the electric field’s overall amplitude, it is highly sensitive to
field’s polarization that defines the electrons motion relative to the metal-dielectric interface. In
the case of asymmetric NPs, such polarization dependence implies that the LD rate can vary
significantly for different LSP modes excited in the same system. This point is illustrated in Fig. 8
for longitudinal (L) and transverse (T) modes in nanorods and nanodisks, modeled by the prolate
(P) and oblate (O) spheroids, respectively. For such systems, explicit analytic expressions for the
LD rate has been obtained in the form [101] ys = ypf7.7, where
3 [ 2a
~ 2tan%(a) |sin(2a)

3 [ - 2a
4sin®(@) tan(2a) |

Here, for a prolate spheroid (nanorod), a@ = arccos(b/a), where a and b are semi-major and
semi-minor axis respectively, while for an oblate spheroid (nanodisk), the LD rates have the same
form 29 but with a = iarccosh(b/a). For comparison, the CS model rate y.s = vpS/4V, which
is independent of mode polarization, is also plotted in Fig. 8. For visual convenience, all rates
are normalized by the LD rate ys, = 3vp/4a for a spherical NP of radius a. At the sphere point
a = b, the normalized rates continuously transition into each other (e.g., PL to OL and PT to
OT), but away from it, the rates for different modes exhibit dramatic difference in magnitude
depending on the mode polarization.
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1}, Jr= (29)

Discussion and further developments

The surface scattering rate Eq. (28) quantifies LD in “simple” NPs characterized by a single
metal surface. Further developments involved more complex plasmonic systems such as thin
films [120], core-shell hybrid structures [121-123] and NP dimers [106,124]. In thin films or
metal nanoshells with dielectric core, the surface scattering that accompanies e-4 pair excitation
can take place from both the inner and outer metal boundaries. The interference between
these processes can lead to coherent oscillations (quantum beats) of y,; with changing metal
thickness d. Such oscillations were reported in TDLDA studies of thin Ag films [120] and
later in RPA calculations of y; for spherical metal nanoshells [121,122]. Specifically, for
metal nanoshells with thickness d, the LD rate acquires an interference-induced contribution

yint ~ Bsin(d/€£) where the coefficient B depends on the nanoshell’s thickness and overall size
[122].
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Fig. 8. Normalized surface scattering rates for prolate and oblate spheroids along with the
CS rate are plotted against aspect ratio b/a. Insets: Schematics of LSP modes.
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In plasmonic dimers, LD has been shown to play a critical role in limiting the field enhancement
in the gap between closely spaced NPs [106,124]. Numerical calculations of the field intensity
performed within RPA using the Lindhard dielectric function [106] and within the generalized
nonlocal optical response (GNOR) model [124] revealed a significant increase in the LD rate that
reduced the field enhancement factor in the gap by nearly two orders of magnitude. Qualitatively,
the LD rate increase for narrow gaps can be inferred from the characteristic size L, given by
Eq. (19), which depends on the field distribution inside the metal. Note that, in the absence
of electron wave-function overlap between two NPs, excitation of an e-h pair can take place
in either NP, so that the LD rate for a dimer is the sum of individual NP LD rates. In dimers,
the field intensity is highest in the gap between the NPs and is much weaker in the metal,
where it is concentrated in a relatively small volume around the gap. More precisely, the
integrated LSP density of states (DOS) p(w) can be split into contributions from the regions
inside the metal and outside of it as p(w) = pin(w) + pPout(w), with their relative magnitude
Pout(w)/ pin(w) = |&’(w)| > 1, where &’(w) is the real part of metal dielectric function [125].
With decreasing NP separation, as the LSP resonance redshifts [106,124], this ratio increases
with |&’(w)| implying that the electric field is further pushed out from the metal into the gap. As
a result, the volume-integrated field intensity in the numerator of Eq. (19) decreases relative to
the surface-integrated intensity in the denominator, leading to a reduced L and, hence, enhanced
LD rate for narrow gaps.

The overall magnitude of the LD rate 18 is defined by the coefficient A that depends on the
electron confining potential and charge density profile, which, in turn, determine the electric
fields near the interface. Recent TDLDA calculations for relatively large (up to 10 nm) NPs
[113,114] indicate that the main impact on the LSP resonance width comes from the electron
density spillover and dielectric environment, rather than the electronic states in the cavity. Since
the electron spillover is not sensitive to the overall NP shape, the TDLDA value A = 0.32 for a
nanosphere [113,114] is likely shape independent. Note, however, that substantially larger values
in the range 0.3—1.5 were reported in the experiment depending on the surrounding dielectric
medium [103]. On the other hand, the presence of d-band electrons with a nearly step-like density
profile in noble-metals gives rise to a thin surface layer, in which the conduction electrons with
extended density tail are no longer screened by the d-band electrons, which leads to the field
enhancement near the interface [126]. In Ag NPs, this effect has been shown to cause a blueshift
of the LSP resonance which, in fact, overcompensates the resonance redshift due to the electron
density spillover [127]. One can expect that a similar competition between these two nonlocal
mechanisms will take place for the LD rate as well and bring the coefficient A closer to the
experiment. A related effect has been recently studied for Ag NPs coated with a thin dielectric
shell [123]. In this case, the electron spillover into a medium with a much weaker field screening
results in a noticeable LD rate enhancement.

Concluding remarks

In this contribution, we tried to present a brief outlook on the Landau damping (LD) of surface
plasmons in metal nanoparticles (NPs). This phenomenon has attracted a constant interest for
over 50 years due to its prominent role in the optical spectra of small NPs. There is a very
extensive literature on LD in NPs, and several theoretical and numerical approaches have been
developed during this time span. We have focused on recent advances within the RPA approach
which resolved a long-standing problem of describing, by means of a relatively simple analytical
model, the LD of surface plasmons in metal NPs of arbitrary shape. On the applications side, LD
is an efficient source of hot electrons widely used in photochemistry and light harvesting; there
are excellent reviews on this topic the readers are referred to.
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