


simultaneously occurs in response to the full ecology of other
organisms and abiotic factors. Studying the genetic variation
associated with local adaptation in both coevolving hosts and
parasites across a geographic range can reveal evolutionary
mechanisms that promote stable coexistence of locally adapted
populations in dynamic biotic and abiotic conditions.

The balance between host and parasite coevolution is driven
by differences in each species’ population and quantitative
genetic characteristics. In common host–parasite local adaptation
models, each may evolve local adaptation to the other, yielding
lower infection rates in coevolved populations if hosts are locally
adapted, or higher infection rates in coevolved populations if
parasites are locally adapted (Buckling & Rainey, 2002; Gandon
& Michalakis, 2002; Greischar & Koskella, 2007). Parasites are
expected to adapt more rapidly, given typically shorter generation
times (Gandon & Michalakis, 2002). However, migration rates,
clonality, and strength of selection play an essential role in deter-
mining whether the host or parasite locally adapts (Greischar &
Koskella, 2007). Moderate migration in a parasite population
can introduce new alleles and speed local adaptation (Gan-
don, 2002), although high migration rates decrease population
barriers and lessen local differentiation (Kawecki & Ebert, 2004).
Clonal reproduction in parasite populations reduces the effective
population size and may therefore slow the pace of local adapta-
tion (Gandon & Michalakis, 2002). Finally, the relative strength
of selection plays an essential role. Host–parasite theory often
focuses on parasites that prevent host reproduction (e.g. anther
smuts in Silene), imposing high selection for host resistance that
can result in parasite maladaptation (Kaltz et al., 1999). Given
the many factors that can influence coevolution in host–parasite
pairs, measuring local adaptation requires detailed knowledge of
host and parasite ecology, as well as a robust experimental design.

The traditional test for local adaptation is a reciprocal trans-
plant experiment (Kawecki & Ebert, 2004; Hereford, 2009; Van-
Wallendael et al., 2022b; Wadgymar et al., 2022) in which
individuals from each environment are transplanted to common
gardens both in their local environment and foreign environ-
ments. Metapopulations, sets of populations connected by the
movement of individuals, are considered locally adapted when
the fitness of populations transplanted to a local environment is
higher than fitness of foreign populations transplanted to that
environment (local–foreign comparison; Kawecki &
Ebert, 2004). When testing for local adaptation in parasites,
researchers often replace the ‘environment’ with ‘host popula-
tion’, and transplant parasites to different host populations in
controlled settings (Kawecki & Ebert, 2004). An alternate
method using a similar logic may be used to test for parasite local
adaptation in natural settings, for which we propose the term
‘host reciprocal transplant’. A host reciprocal transplant involves
moving host genotypes between regions with endemic parasite
populations, avoiding common pitfalls of parasite local adapta-
tion research and retaining essential biotic and abiotic context.
Although this method has received less attention in local adapta-
tion theory, it has been used in multiple experiments (Davelos
et al., 1996; Laine, 2007; Busby et al., 2014; Cassetta
et al., 2023). However, there are challenges to this method as

well: Parasite populations must be both genetically differentiated
and consistently present, and the interpretation must consider
variable environmental effects on the both host and parasite
(further details in the Materials and Methods section).

Local adaptation studies in parasites often use plant fungal
pathogens, especially Puccineaceae rusts, owing to their narrow
host range and high economic importance (Savary et al., 2019; Li
et al., 2020). The population growth of rusts can depend on their
both biotic and abiotic interactions. Rusts often have macrocyclic
life cycles, with multiple hosts and five spore-producing forms
(Kolmer et al., 2009). The contribution of abiotic conditions to
the success of rust infections varies somewhat between species,
but generally freezing temperatures, low air turbulence, and dry
conditions are less conducive to spread and infection (Hel-
fer, 2014; Prank et al., 2019). Since all of these conditions are
expected to shift with climate change, rust disease may pose
greater challenges in the future (Dudney et al., 2021).

Wheat stem and leaf rusts have been widely researched, offering
a model for host adaptation to multiple rust strains (Feuillet
et al., 1995; McIntosh et al., 1995; Lillemo et al., 2008; Yu et al.,
2014). Host plant resistance to fungal pathogens can take multiple
forms ranging from resistance through a few immune-related loci
(Asnaghi et al., 2001; Salcedo et al., 2017) to polygenic resistance
that includes structural or life-history traits (Yu et al., 2019).
Single-gene resistance can be conferred by R-genes such as Sr35, a
wheat leucine-rich repeat receptor (LRR) from Triticum monococ-
cum that confers resistance to the Ug99 stem rust strain (Salcedo
et al., 2017) by binding pathogen effectors to trigger the immuno-
logical hypersensitive response (HR; Förderer et al., 2022). Bree-
ders distinguish seedling resistance from adult plant resistance. The
latter describes resistance that may not be effective until later
growth stages and does not involve HR, but typically provides resis-
tance to more pathogen strains. Adult plant resistance is typically
polygenic, consisting of multiple genes contributing smaller
amounts to resistance (Aktar-Uz-Zaman et al., 2017). Despite rapid
advances in understanding mechanisms of wheat rust resistance,
knowledge of the degree to which these conclusions are transferable
to other rust-infected plants is lacking.

Switchgrass (Panicum virgatum L.) is a locally adapted perennial
plant that is conducive to pathogen local adaptation studies, since it
is consistently infected with several fungal pathogens, including a
leaf rust (Puccinia novopanici Demers; Kenaley et al., 2019).
Switchgrass genetic diversity is divided into three major genetic
populations that mostly correspond with three ecotypes that are
locally adapted to different ecoregions and habitats (Fig. 1). The
Midwest population is adapted to the north-central region of
North America, the Atlantic population along the east coast, and
the Gulf population in Texas and along the Gulf of Mexico (Kol-
mer & Liu, 2000). These populations differ greatly in phenotypic
traits and stress resilience. Fitness trade-offs that underlie local
adaptation can be caused by genomic effects such as linkage, pleio-
tropy, or opposing conditionally neutral loci (Wadgymar
et al., 2017), resulting in genotypes with variable stress tolerance
across environments. The Gulf and Atlantic switchgrass popula-
tions are more susceptible to winter kill, due to lower freezing toler-
ance (Lovell et al., 2021; Willick & Lowry, 2022). Both typically
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have higher overall resistance to leaf fungi, although this can vary
between years (VanWallendael et al., 2020). Previous research in a
switchgrass quantitative trait locus (QTL) mapping common gar-
den revealed that rust resistance patterns differ greatly between the
northern and southern United States, although there was no differ-
ence in rust species composition across space (VanWallendael
et al., 2020). Previously, we found large-effect QTL for rust resis-
tance on chromosomes 3N and 9N, but the outbred mapping
population did not have sufficient resolution to narrow these to
specific candidate genes.

In this study, we sought to understand regional differences in
resistance and to more closely pinpoint genetic loci associated
with rust infection severity using a genome-wide association
study (GWAS). Given large climatic differences as well as histori-
cal dominance of different ecotypes, we expected to find patho-
gen population genetic differentiation between northern and
southern regions. Since previous research suggested that the
upland ecotype is typically more susceptible overall to fungal
pathogens (Uppalapati et al., 2013), we expected all pathogen
populations would have the highest infection rates on the Mid-
west population rather than reciprocal local adaptation to differ-
ent host populations. We also aimed to recapitulate previous
results that rust severity was associated with two large-effect loci
in the north and several smaller effect loci in the south and to
identify candidate genes involved in rust resistance. Finally, we
aimed to identify potential pleiotropic loci by comparing GWAS
results from rust severity with results for other vegetative and
phenological traits.

Materials and Methods

Experimental design

This study used a replicated diversity panel experimental
design described in Lovell et al. (2021). Briefly, switchgrass
(Panicum virgatum L.) rhizomes were collected from numerous

locations in the United States (Fig. 1). These rhizomes were clon-
ally propagated at a facility in Austin, Texas, then transplanted to
field sites in 2018, where we planted them in a honeycomb grid
covered by weed-cloth. Three sites, Austin, TX (PKLE), Colum-
bia, MO (CLMB), and Kellogg Biological Station, MI (KBSM),
were planted with all surviving 773 genotypes, and an additional
seven sites were planted with a core subset of 630 tetraploid geno-
types. The remaining octoploid and hexaploid genotypes were
measured for rust (Puccinia novopanici Demers.) and other traits,
but not used in the mapping population (Napier et al., 2022).

Rust population genetics

In 2019, we collected rust-infected leaves from nine of our sites (all
except Overton, TX) to assess pathogen population structure.
These samples were taken from adjacent (< 500m) switchgrass
experimental plots used for a previous mapping study (VanWallen-
dael et al., 2020) that served as the presumptive source for rust pro-
pagules. At the Fermilab site (FRMI), we sampled from the main
switchgrass diversity panel, since we did not have a previous experi-
mental plot. We haphazardly collected 20 samples showing clear
sori from each site. We dried the samples on silica gel and stored
them at room temperature before processing. We scraped spores
from sori, then extracted genomic DNA from each sample using a
DNeasy Plant Mini Kit (Qiagen), following the manufacturer’s
protocol with modifications described in Kenaley et al. (2016).
After DNA quality and quantity filtering, 88 samples remained
with at least five samples from each site. We shipped samples to the
Texas A&M Genomics and Bioinformatics Service for library pre-
paration and sequencing on an Illumina NovaSeq 6000 (Illumina,
San Diego, CA, USA). We sequenced the 99.9-Mb genome to
c. 50× coverage per sample using 150-bp paired-end reads.

Since P. novopanici does not grow in culture, we could not
sequence single-spore isolates. Samples from an individual plant
were therefore assumed to contain a pool of multiple genotypes
of the fungus. We aligned samples to the draft P. novopanici

25
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−120 −110 −100 −90 −80 −70
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Atlantic
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Midwest

Fig. 1 Collection locations (circles), and planting sites (squares) for the replicated switchgrass diversity panel. Coloring for circles indicates switchgrass
population membership based on shared single-nucleotide polymorphisms, and coloring for squares indicates the geographic region used for this
manuscript. From north to south, the sites are Brookings, SD; Kellogg Biological Station, MI; Fermilab, IL; Lincoln, NE; Columbia, MO; Stillwater, OK;
Overton, TX; Temple, TX; J.J. Pickle Research Campus, TX; and Kingsville, TX.
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genome (Gill et al., 2019) using Burrows-Wheeler Aligner (BWA)
and deduplicated alignments with SAMBAMBA (Li & Dur-
bin, 2010; Tarasov et al., 2015). Since the draft genome is highly
fragmented (11 088 contigs; N50= 13 091 bp), we performed a
cleanup step by aligning contigs to a better-quality Puccinia triti-
cina reference genome (Wu et al., 2021). We used relaxed align-
ment parameters in BLAST (�e value 1e-5), and then discarded
1254 contigs that failed to map. Although a full revision of the
P. novopanici genome is beyond the scope of this study, we used
approximate contig positions in the P. triticina genome for visua-
lizations. For single-nucleotide polymorphisms (SNP)-calling, we
used BCFTOOLS to generate an invariant-sites Variant Call For-
mat (VCF) file, and then filtered to biallelic sites with a mini-
mum minor allele frequency (MAF) of 0.05 that were genotyped
in all of our 88 samples using PLINK2 (Li et al., 2009; Chang
et al., 2015; Purcell & Chang, 2025). We used POPOOLATION

(Kofler et al., 2011) to assess diversity between regional pools. To
group reads, we used SAMTOOLS MPILEUP (Li et al., 2009). We
then used Variance-sliding.pl in POPOOLATION to assess allelic
diversity (π) using a sliding-window approach. We used 1000-bp
windows with a 100-bp step size. We filtered out reads with
< 4× or > 70× coverage depth or an average PHRED quality score
< 20. We tested for differences in π between regions using the
studentized bootstrap method suggested by Efron & Tibshir-
ani (1994). We calculated the mean π values across windows for
each contig to compare between regions, and then counted the
number of contigs with π> 0.05 to assess the number of distinct
outlier loci in each pool. We estimated FST between regions using
the GRENEDALF package (Czech et al., 2023). Here, we used iden-
tical filtering steps but used individual contigs as windows, then
computed the mean FST per window adjusted by the number of
SNPs on each contig. We performed principal component analy-
sis (PCA) on SNPs using singular value decomposition through
the big_SVD function in the R package BIGSNPR (Privé
et al., 2018).

Rust phenotyping and distribution

For rust severity, we followed a similar phenotyping protocol to
that previously described in VanWallendael et al. (2020). Briefly,
technicians checked experimental plants at each site daily for rust
presence following spring green-up. After the first instance of
rust was detected, technicians scored plants four times over 8 wk,
which was typically sufficient to capture the exponential growth
phase of rust infection increase. We used a 0–10 scale, with each
point corresponding to c. 10% of the total plant leaf area covered
in rust sori. We calculated the area under the disease progression
curve (AUDPC) for each plant for the 8-wk period centered on
the inflection point of rust increase at each site. The AUDPC is a
commonly used metric that accounts for differences in rates of
disease progression to produce a single measurement that can be
thought of as ‘disease severity’. Additional phenotypic measure-
ments were taken for switchgrass plants as described in Lovell
et al. (2021), including height, tiller number, flowering time, and
biomass. We visualized phenotypic clustering in switchgrass
populations using rust severity and other phenotypes via PCA.

We examined three focal sites (KBSM, CLMB, and PKLE) that
had the greatest number of shared host genotypes (n= 1070).
We used the mean value of each trait for each genotype across
sites and years in the PCA. We removed 94 genotypes with miss-
ing data, and then computed the PCA using the centered and
scaled values in the prcomp function in R.

We assessed rust distribution across host genotype, space, and
time using linear mixed models (LMMs) in the R package SOM-

MER (Covarrubias-Pazaran, 2016). Since a model including all
sites failed to converge, we split sites into northern (BRKG,
KBSM, FRMI, and LINC) and southern (CLMB, OVTN,
TMPL, PKLE, and KING) regions, reflecting the approximate
distribution of the Gulf and Midwest populations (Fig. 1). We
used the mmer function to solve the following model with a com-
pound symmetry variance–covariance matrix separately for each
region, with AUDPC as the response variable and random effects
for site, year, genotype, and the genotype-by-environment (site–
year combinations) interaction. We evaluated the importance of
model components by sequentially dropping each term and test-
ing for fit differences using a likelihood ratio test via the anova
function in SOMMER.

AUDPC � 1þ 1 j siteþ 1 j yearþ 1 j genotypeþ 1
j genotype : environment

The host reciprocal transplant for rust local adaptation We
used a modified version of the classic local adaptation test to
assess parasite local adaptation, which we have termed a host reci-
procal transplant (Fig. 2). While the host transplant is similar in
concept to traditional reciprocal transplants, it differs in what is
considered the transplant ‘habitat’ when defining what is local
and foreign. When assessing host–parasite local adaptation, each
coevolutionary partner can be considered the essential ‘habitat’
for the other (Kawecki & Ebert, 2004). The host reciprocal trans-
plant can therefore be considered a reciprocal transplant in which
the biotic environment (host) is transplanted, rather than the
adapting population. Fewer regulatory and ethical issues sur-
round transplant of hosts than their parasites, and unculturable
parasites may be particularly challenging to transplant. A host
reciprocal transplant overcomes some of the challenges of trans-
lating controlled common garden experiments to the field.
Growth chambers and other mesocosms typically remove much
of the environmental context of the host–parasite interaction,
and both susceptibility and infectivity can be context-dependent.
Similarly, controlled experiments select for, and are biased by
genotypes that are simply better-adapted to laboratory or glass-
house conditions (Kawecki & Ebert, 2004). However, environ-
mental context is quite different between parasite and host
reciprocal transplants. Is local context more important for the
parasite infectivity or the host susceptibility? If we make a general
assumption that both host and parasite are well-adapted to their
native biotic and abiotic environment, transplanting each outside
their adapted range should tend to weaken populations, making
hosts more susceptible and parasites less infective. Therefore, in a
host transplant experiment, we would tend to underestimate the
strength of parasite local adaptation, since foreign parasite
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populations infect hosts that have lowered susceptibility. By con-
trast, parasite reciprocal transplants may overestimate parasite
local adaptation, since foreign parasites may have reduced infec-
tivity in novel environments. A reversed pattern may be possible
in systems in which organisms are maladapted to their local
environment, or if interactions with other organisms such as
hyperparasites make foreign transplant advantageous.

To specifically test the hypothesis that rust is locally adapted to
switchgrass, we assessed whether rust susceptibility was higher in
switchgrass genotypes challenged with coevolved pathogens.
Since rust pathogen pressure can be variable across years and dif-
ferent technicians rated rust severity across sites using a relatively
subjective metric, finding the true genetic basis of rust resistance
required minimizing other sources of variation. When combining
data across environments, genetic mapping studies often calculate
best linear unbiased predictions (BLUPs) for each genotype, and
then use these as a phenotype for GWAS (Wallace et al., 2016;
Kumar et al., 2018; Cui et al., 2021). We used the
above-described LMM to calculate rust severity BLUPs for north-
ern and southern regions. BLUPs correlate well with the mean of
centered and scaled AUDPC genotype scores for both northern
and southern sites (r= 0.87 and r= 0.94, respectively). Using a
kinship matrix instead of genotype identity in the model pro-
duced highly similar BLUPs (r= 0.99 both regions), so we only
used genotype identity. Some recommendations suggest using

best linear unbiased estimators (BLUEs) instead of BLUPs in
two-stage GWAS models (Holland & Piepho, 2024). We esti-
mated BLUEs by including genotype as a fixed rather than ran-
dom effect but found a very close correlation between BLUPs
and BLUEs (r= 0.99) and no difference in top SNP outliers, so
used BLUPs for the remainder of the study. Since BLUPs were
not normally distributed (Shapiro–Wilk P< 0.0001), we used a
nonparametric Dunn’s test to assess differences in means between
groups when testing local adaptation, with a Bonferroni correc-
tion for multiple testing.

GWAS: the genetic basis of switchgrass rust resistance

In our analyses, we used a set of switchgrass SNPs first generated
by Lovell et al. (2021). This set comprised 10.8million SNPs after
quality filters and a MAF cutoff of 0.05. We performed a PCA
using the big_SVD command in the R package BIGSTATSR (Privé
et al., 2018). We computed GWAS using BLUPs from northern
and southern sites through the pvdiv_gwas function in the SWITCH-

GRASSGWAS R package (Lovell et al., 2021). This function runs lin-
ear regression on file-backed big matrices, with 10 principal
components as covariates to correct for population structure. As an
additional correction for population structure, we repeated GWAS
runs in each switchgrass subpopulation by subsetting the data into
three population groups using PC1 from the PCA.
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Fig. 2 Comparing two methods for testing parasite local adaptation, a parasite reciprocal transplant (AC) and a host reciprocal transplant (BD; this study).
In this example scenario, two host populations (switchgrass plant icons) and two parasite populations (circular leaf rust icons) are differentiated between
two sites, North and South. (a) Traditional parasite reciprocal transplant would introduce northern and southern rust into switchgrass populations at each
site. (b) A host reciprocal transplant would introduce northern and southern switchgrass in a common garden to endemic rust populations at each site. (c)
Proof of parasite local adaptation via the local–foreign comparison would require greater fitness for southern rust over northern rust on southern
switchgrass, and greater fitness for northern rust over southern rust on northern switchgrass. This is indicated by greater rust severity from southern rust
(red boxes) in the south site, but greater rust severity from northern rust (blue boxes) in the north site. (d) Proof of parasite local adaptation would require
the same fitness advantage as in a parasite transplant: northern rust over southern rust on northern switchgrass, and greater fitness for southern rust over
northern rust on southern switchgrass. However, this test would be within host populations rather than within sites, as indicated by swapping the
transplant site to the legend from the x-axis. Boxplots shown in (c, d) are shown for demonstration and do not include real data; they are drawn to depict
outliers as points, 1.5 × the interquartile range as whiskers, the 25th and 75th percentiles as upper and lower box limits, and the median as the center line.
This figure was created in BioRender (BioRender.com/8nb3jl8).
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We assessed the top genes linked to GWAS outliers using JGI
JBROWSE (Skinner et al., 2009), NCBI BLAST, and NCBI Genbank.
We considered genes < 10 kb from a lead SNP as linked to the
SNP, since this is the typical distance of linkage decay in the
switchgrass genome (Supporting Information Fig. S1). We assessed
which gene functions were overrepresented in our dataset using a
bootstrapping method focused on the 20 gene functional annota-
tions with the greatest difference in frequency between the sample
and total dataset. We randomly permuted genes from the total
genome-wide list for 100 000 iterations, and then assessed whether
each function was more common than the permuted set.

To assess in situ expression of candidate genes, we used data
from a previously described RNA-sequencing experiment (Van-
Wallendael et al., 2022a). Briefly, RNA was assayed from leaf tissue
that was (1) excised at the ligule, (2) 2 cm of the proximal portion
of the excised leaf were separated from the midrib, (3) placed in a
2-ml Eppendorf tube loaded with three stainless steel beads, (4)
immediately frozen in liquid nitrogen, and (5) transported on dry
ice to the laboratory. Tissue was homogenized with a GenoGrinder
2000. RNA was extracted with the standard Trizol protocol and
treated with DNase I to remove DNA contamination, then
sequenced on an Illumina HiSeq 2500. We examined four geno-
types: two that are typically rust-susceptible (DAC6 and VS16)
from the upland ecotype and two that are more resistant (AP13
and WBC3) from the lowland ecotype. We assessed differential
expression (DE) using the DESEQ2 package in R (Love
et al., 2014). We filtered out genes that had counts lower than 10
for three or more samples, according to best practices (Love
et al., 2014). To test for enrichment of GWAS hits linked to DE
genes, we followed the permutation method of Lasky et al. (2014),
in which linkage between the top 5% of SNPs and DE genes are
compared with the distribution of 10 000 random draws of the
same number of genes from all possible switchgrass genes.

Finally, we assessed the genetic correlation of rust to other
switchgrass phenotypes using LMMs in R. We fit three models
for biomass, flowering time, and tiller count that included envir-
onment (site–year combination) and a kinship matrix with the
formula:

AUDPC, trait2ð Þ � 1þ 1 j site_yearþ 1 j kinship

Biomass and tiller count were taken at the end of the season
and represent the dry mass of aboveground leaf tissue and the
number of tillers (stems), respectively (Lovell et al., 2021). Flow-
ering time was assessed as the day of year when half the crown
had flowered. In order to identify potential pleiotropic loci, we
repeated GWAS mapping with each of the three traits, and exam-
ined overlap with rust GWAS.

Results

Rust populations differ between Northern and Southern US

To understand the genetic structure of rust populations, we used
whole-genome resequencing on samples from rust populations at
nine sites. Across 88 samples, this resulted in a set of 2.4 million

SNPs with a minimum MAF of 0.05 that were called in all sam-
ples. Genetic PCA revealed that samples from northern and
southern sites were mostly distinct (Fig. S2A) and that PC1 was
correlated with latitude of collection (Fig. 3a).

To uncover differences in genetic diversity between rust popu-
lations, we scanned the genome for regions of increased diversity
using pooled sequencing analyses. In this analysis, individual and
site differences are combined to highlight large-scale differentia-
tion across the genome. Since rust dispersal within a season
occurs mostly through asexual urediniospores, we expected to
find mostly low-diversity clones. However, high-diversity win-
dows may indicate the emergence of clones with novel mutations
in fitness-related genes. We examined northern and southern
regional pools (Fig. 3c) for loci with increased diversity that may
indicate selection. One large outlier locus with π> 0.75 on chro-
mosome 9B was linked to the Internal Transcribed Spacer (ITS)
region. Since ITS regions often exist as large tandem repeats, the
very high diversity at this locus is likely spurious, so we excluded
this region from further analysis. Overall genome-wide π was
4.7% higher in the North (northern π= 7.97 × 10�4, southern
π= 7.61 × 10�4, bootstrap P= 0.0006). Additionally, northern
populations contained 15 unique outlier loci (π> 0.05; Fig. 3c),
whereas the southern populations contained just three outliers.
Genome-wide average FST between regions was moderately high
at 0.141 but did not show clear regions of differentiation, possi-
bly owing to poor genome quality in this species (Fig. S2B).
While gene annotation exists for some Puccinia species, func-
tional annotation is limited to a few well-conserved genes, so we
were not able to confidently link outliers to known rust genes.

Rust is locally adapted in northern and southern
switchgrass populations

We used the diverse source material planted at multiple locations
to measure both variation in the genotypic component (source
genotype), and environmental component (year and planting
site) of the expression of susceptibility to rust. To compare the
relative amounts of variation attributable to genotype, site, year,
and genotype × environment interaction (G×E), we fit an LMM
for AUDPC across sites and years in northern and southern
regions. For both regions, the highest variance components were
genotype (northern= 0.244, southern= 0.297; Table 1) and
G×E (northern= 0.264, southern= 0.109). Overall, the model
explains 63.2% of the variation in AUDPC in northern sites
(AIC= 3788), and 55.5% of variation in southern sites (Akaike
information criterion (AIC)= 2550). Dropping each of the
terms from models resulted in significantly poorer model fit
(Likelihood Ratio Test; Table 1).

Different technicians rated rust severity at each site, so the var-
iance explained by site may be partially attributable to subjective
rating differences (Fig. 4a). Some sites had consistently high rust
ratings, such as CLMB (Columbia, MO), and others varied
between years such as in BRKG (Brookings, SD), which had no
rust in 2020 or 2021. To reduce this bias when summarizing
across genotypes, we centered and scaled rust severity scores
before comparing populations (Fig. 4b). Rust varied greatly
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between genetic subpopulations (Fig. 4b) and covaried with sev-
eral other traits, particularly time of plant green-up and biomass
(Fig. 4c). The Gulf switchgrass population was split between gen-
otypes originating from the Gulf coast and those from more
inland, mostly in Texas, so these subgroups are separated in most
analyses. Octoploid genotypes, which can be found across the
switchgrass range, had the greatest overall variation. In a trait
PCA (Fig. 4c), biomass was negatively correlated with rust scores,
with higher biomass present in the central Texas population, and
higher rust scores in the Midwest. Green-up date was more clo-
sely correlated with rust score, and traded off with tiller count.

To test the hypothesis that rust pathogens are locally adapted
to switchgrass genotypes, we examined differences in rust severity
for genotypes across locations using BLUPs from LMMs. BLUPs
estimate switchgrass genotypic contribution to rust severity, with
higher values indicating genotypes with greater susceptibility to
rust across sites and years. Individuals from the Midwest popula-
tion were commonly susceptible to rust present in northern sites
(positive BLUP; Fig. 5a), whereas those in the Gulf inland sub-
population were more susceptible when infected with rust in
southern sites (Fig. 5b). Northern and Southern populations of
rust therefore conformed to expectations of local adaptation,
resulting in higher rust severity on Midwest and Gulf switchgrass

populations, respectively (Fig. 5c; Dunn’s test: Bonferroni-
adjusted P< 0.0001 for both populations). By contrast, rust
severity was not differentiated in genotypes from the Atlantic
population, which did not coevolve with pathogens at any of our
transplant sites (Fig. 5c; Dunn’s test: Bonferroni-adjusted
P> 0.999).

The polygenic genetic basis for resistance differs across
regions

We conducted switchgrass GWAS separately for the northern and
southern regions, using rust severity BLUPs as predicted traits in a
linear GWAS model. We found numerous loci associated with rust
severity, indicating a largely polygenic response (Fig. 6). In both
northern and southern regions, P-values showed signs of inflation,
despite a conservative correction with 10 PCs (North
lambda= 1.042, South lambda= 1.092; Fig. S3). When we ran
GWAS within subpopulations, we found the reverse; smaller sam-
ple sizes yielded fewer significant SNPs. For all significant SNPs
shared between regions, there was only a weak positive correlation
between �log10 P-values (r= 0.354; P< 0.0001), indicating few
shared mechanisms. Indeed, the correlation disappears when exam-
ining only the top SNPs in each region.
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Fig. 3 Puccinia novopanici leaf rust population genetics across nine sites. (a) The y-axis indicates the latitude of the collection site, and the x-axis is the first
principal component of a principal component analysis of 2.4million single-nucleotide polymorphisms, indicating genetic similarity. Site codes correspond to:
B – Brookings, SD; C – Columbia, MO; F – Fermilab, IL; K – Kingsville, TX; L – Lincoln, NE; M – Kellogg Biological Station, MI; P – J.J. Pickle Research Campus,
TX; S – Stillwater, OK; T – Temple, TX. (b) Puccinia novopanici sori under field conditions in Kingsville, TX. Photograph by Acer VanWallendael. (c) Mean
nucleotide diversity (Pi) across 10-kb windows in the P. novopanici genome. Positions are shown by mapping location in the Puccinia triticina genome.
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We examined genes linked to the top 100 lead SNPs in the
northern and southern sites, as well as genes linked to SNPs that
were outliers in both the subpopulation-specific and overall ana-
lyses. There were no overlaps between top SNPs or the genes
linked to them between regions. We used enrichment analysis to
determine which annotations were overrepresented. While most of
the enriched annotations did not have a clear link to disease resis-
tance, there were some exceptions. In the north, four gene annota-
tions were overrepresented in our top SNPs (Fig. S4). Terpenoid
cyclases, which allow formation of specialized metabolite defenses
such as antifungal leaf saponins, were common (P< 0.001). In the
south, the most notable of the five overrepresented annotations
were EF-TU receptors, LRRs that typically recognize bacterial
pathogens (Schoonbeek et al., 2015). Outliers on chromosomes
2N (North), 3K (South), 4K (South), and 6K (South) were closely
linked to LRRs. A multidrug and toxin extrusion transporter is
linked to a lead SNP on chromosome 1K in the south. These genes
can function in pathogen responses by moving hormones such as
salicylic acid in response to infection (Serrano et al., 2013).
Although fewer outlier SNPs overall were identified in the South,
more loci matched between subpopulation-specific and overall
GWAS analyses. However, none of the nearby genes had clear
functions related to pathogen resistance.

Previous research identified several loci associated with
switchgrass–fungal interactions (Milano et al., 2016; VanWallen-
dael et al., 2020, 2022a). The strongest candidate gene we identi-
fied within the chromosome 3N Prr1 QTL region was

Pavir.3NG168388 (Fig. S5). This gene is an oligopeptide trans-
porter similar to YELLOW STRIPE-LIKE, which not only func-
tions in metal ion distribution in plants (Sheng et al., 2021) but
also confers pathogen susceptibility when mutated (Chen
et al., 2014). A nearby Acyl CoA acyltransferase (Pavir.
3NG162000) was also within the 3N Prr1 QTL region and was
identified as the only subpopulation-specific outlier for the
Northern region. Acyltransferases have diverse roles in stress
response and other cellular functions (Lou et al., 2016), so the
presence of this gene does not suggest its specific role in immu-
nity. The Prr2 QTL region on 9N contained relatively weaker
GWAS hits, but one of these was linked to the highly conserved
CCR4-NOT complex (Pavir.9NG474500), which acts as a mul-
tifunctional gene expression regulator (Collart & Pana-
senko, 2017). A large outlier on chromosome 2N is near a
previously discovered cluster of cysteine-rich receptor-like kinases
associated with variation in the leaf microbiome (VanWallendael
et al., 2022a). This outlier is linked more closely, however, to a
cluster of four genes with predicted functions in drug and disease
resistance (Fig. S5).

To test the hypothesis that these candidate genes underlie
divergent switchgrass responses to northern and southern rust
genotypes, we analyzed differences in their transcription in
switchgrass leaves at three of our sites, KBSM, CLMB, and PKLE
in four genotypes, two from the northern upland ecotype, and
two from the southern lowland ecotype. Overall, 12 151 of
52 849 genes were DE between ecotypes, and these were enriched

Table 1 Variance proportions for linear mixed models in northern and southern regions for rust severity on switchgrass.

Northern

Prop. variance Z ratio LRT ChiSq LRT P value

Site 0.0772 1.21 432.8 < 0.001
Year 0.0472 0.99 220.6 < 0.001
Genotype 0.2439 12.75 621.4 < 0.001
G×E 0.2635 6.67 16.2 < 0.001
Residual 0.3682 9.62

LogLik AIC BIC

�1893 3788 3794

Southern

Prop. variance Z ratio LRT ChiSq LRT P value

Site 0.107 0.99 327.9 < 0.001
Year 0.042 0.99 172.2 < 0.001
Genotype 0.297 12.93 891.0 < 0.001
G×E 0.109 2.49 5.7 0.017
Residual 0.445 10.17

LogLik AIC BIC

�1274 2550 2572

LRT columns show the results of a likelihood ratio test that compares a full model and a model without each term. The G×E term represents a genotype-
by-environment interaction, with each site-year combination as a separate environment. LogLik, AIC, and BIC refer to the log-likelihood, Akaike
information criterion, and Bayesian information criterion for each model, respectively.
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for rust-associated GWAS SNPs (P= 0.0116 North, P= 0.0120
South). Of the 107 genes closely linked to top GWAS hits in the
North, 82 were DE between resistant and susceptible varieties
(top 20 in Table S1). A gene with unknown function
(Pavir.7NG105945) was most clearly differentiated, followed by
a gene on 1N in the RING/U-box superfamily
(Pavir.1NG505000). The oligopeptide transporter underlying
the Prr1 QTL had very low expression in the leaf for the four
genotypes in this study, but the gene cluster on chromosome 2N
was DE. Three terpenoid cyclases with putative roles in antifun-
gal metabolite production on chromosome 1K were more
strongly expressed in northern upland genotypes. Strikingly, they
showed much higher expression in the northernmost site,

suggesting that these three genes may be upregulated in response
to either infection by particular strains of fungi or other
environment-specific stimuli (Fig. 7). For southern outliers, 96
of 130 genes linked to top GWAS hits were DE. The strongest
differentiation was seen in a small ribonucleoprotein F gene on
chromosome 5N (Pavir.5NG167600; Table S1), but an LRR
detected on chromosome 3K (Pavir.3KG551700) was clearly dif-
ferentiated as well.

Outlier loci are rust-specific

To determine the extent to which variation in rust severity is
linked to other switchgrass phenotypes, we assessed genetic

Fig. 4 Rust score variation across switchgrass populations, space, and time. (a) Site and year variation in rust infection on switchgrass. Points shown indicate the
area under the disease progression score across 8wk for each plant in each year. Sites are shown on the x-axis; from north to south, the sites are BRKG
(Brookings, SD), KBSM (Kellogg Biological Station, MI), FRMI (Fermilab, IL), LINC (Lincoln, NE), CLMB (Columbia, MO), OVTN (Overton, TX), TMPL (Temple,
TX), PKLE (J.J. Pickle Research Campus, TX), and KING (Kingsville, TX). 2019–2020 data could not be collected at OVTN (Overton, TX) and rust was not found
in BRKG in 2020–2021. (b) Genetic subpopulations vary in rust severity. Points indicate mean scaled rust severity (area under the disease progress curve
(AUDPC)) across sites and years. The Gulf genetic population has a subdivision between genotypes originating inland and those by the coast. Boxplots show
outliers as points, 1.5× the interquartile range as whiskers, the 25th and 75th percentiles as upper and lower box limits, and the median as the center line. (c)
Phenotypic principal component analysis biplot for major traits across all sites and years. Points are colored by subpopulation.
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correlations with biomass, flowering time, and tiller count using
LMMs. As was suggested in a trait PCA (Fig. 4c), all three traits
had negative genetic correlations with rust severity. Flowering
time had the strongest correlation (�0.410) followed by tiller
count (�0.342) and biomass (�0.254). To predict whether genes
associated with rust have pleiotropic effects on other switchgrass
traits, we additionally performed GWAS on four additional
traits: biomass, tiller number, flowering date, and green-up date.
Of these, only biomass yielded outlier loci above the Bonferroni
cutoff, but none were shared with rust. The recommended
method for evaluating concordance between GWAS tests is a cir-
cular permutation, which permutes P-values across chromosomes
while keeping loci order constant (Cabrera et al., 2012). How-
ever, this test requires at least one shared significant P-value to be
meaningful, so we were not able to test this concordance directly.

Discussion

In common theoretical models of host–parasite coevolution, either
hosts or parasites may evolve local adaptation to each other. While
theory predicts that parasites with short generation times will locally
adapt across the geographic range of the host more quickly than the
host can evolve defenses (Gandon &Michalakis, 2002), the pattern
has only rarely been observed in natural populations. In ecosystems,
host–parasite coevolution occurs in the context of a multitude of
additional biotic and abiotic effects that can influence the results of
a coevolutionary arms-race. Our results indicate a less-explored
intermediate result that both host and parasite evolve local adapta-
tion: the host to regional environmental conditions and the parasite
to specific host populations. Previous research supports local adap-
tation of our host, switchgrass, to northern and southern regions of

North America (McMillan, 1965; Casler et al., 2004, 2007). How-
ever, we found that the rust pathogen is also locally adapted to host
populations derived from the same regions, indicating that
host and parasite local adaptation are not mutually exclusive in this
system. In an earlier QTL study, we found that two large-effect loci
were primarily responsible for variation in rust susceptibility in
northern field sites (VanWallendael et al., 2020). Here, using
GWAS, we instead found a highly polygenic architecture underly-
ing rust susceptibility in both northern and southern regions.
Below, we address several explanations for these two main findings.

In the northern and southern United States, we found that rust
is locally adapted to switchgrass, which is itself locally adapted to
distinct ecoregions in North America. This outcome may be
attributed to a low inverse correlation between host and parasite
fitness (Salvaudon et al., 2005, 2007), in this case relatively low
damage imposed on switchgrass from rust. In a similar study that
also found local adaptation in both a rust and grass plant, Holcus
plants experienced the greatest rust infection later in their life
cycle, allowing parasites to gain fitness without imposing a strong
cost on their host (Crémieux et al., 2008). Consistent with that
explanation, rust infections often reach high loads in switchgrass
populations, but rarely cause mortality or full loss of fitness (Van-
Wallendael et al., 2020). By contrast, freezing temperatures in
the northern Midwest region of the United States are thought to
act as a major force driving local adaptation in switchgrass (Lovell
et al., 2021). Proportionally greater impacts from freezing on
switchgrass fitness than rust may prevent switchgrass from being
locally maladapted overall in regions where rust is also locally
adapted.

The pattern of local adaptation in both species has implica-
tions for understanding the genetic structure of switchgrass’
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Fig. 5 Evidence for rust local adaptation to
switchgrass across two regions. Switchgrass
genomic principal component analysis showing
susceptibility to endemic rust in northern (a) and
southern (b) sites. Rust severity best linear
unbiased predictor (BLUP) was measured in
northern and southern sites. Negative scores
indicating genotype resistance are shown as
black, positive scores indicating genotype
susceptibility are colored. (c) Rust BLUPs by host
population and region. Blue boxes indicate
samples planted in northern common gardens,
red boxes indicate samples planted in the
southern gardens. Asterisks indicate regional
differences; Dunn’s test P< 0.0001 for both.
Boxplots show outliers as points, 1.5 × the
interquartile range as whiskers, the 25th and 75th

percentiles as upper and lower box limits, and the
median as the center line.
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response to rust. While disease resistance loci often show large
effect sizes from just one or a few candidate genes, as is the case
for wheat resistance to rust, the nature of pathogen selective pres-
sure can influence resistance genetic architecture (Lemoine
et al., 2012). Since pathogen selection pressure is low, a rust resis-
tance locus linked to a freezing tolerance locus (for instance)
would be ineffectively selected, remaining at intermediate allele
frequencies in a classic Hill–Robertson effect (Charles-
worth, 2012; Lotterhos et al., 2018). In an association study, this
phenomenon tends to result in lowered association scores for
linked loci, potentially obscuring causal variants. The highly
polygenic association between switchgrass and rust in northern
and southern populations may also be partially an artifact of high
population structure in switchgrass. While QTL mapping elimi-
nates population structure through controlled crossing, GWAS
must contend with loci that are correlated with population struc-
ture when populations show mean differences in the trait of inter-
est (Vilhjálmsson & Nordborg, 2013). We minimized this effect
in our study by using a strong correction for structure in the
inclusion of 10 PCs in our model, comparing results to the inclu-
sion of a kinship matrix, and recalculating GWAS in each

subpopulation. If population structure is not adequately con-
trolled, GWAS for multiple traits with mean differences across
populations will show spurious loci that are correlated across
GWASs (Veller & Coop, 2024). The fact that other switchgrass
phenotypic traits had a distinct genetic architecture from rust is
an indication that structure did not unduly bias our results.

Alternatively, a highly polygenic response may be indicative of
a particular type of resistance (or susceptibility). While relatively
few studies have mapped the genetic basis of susceptibility to a
locally adapted plant parasite, polygenic resistance has been
found in previous cases (Bellis et al., 2020). Plant quantitative
resistance often comes from the combined action of numerous
genes, especially in cases of structural resistance (González
et al., 2012). More generalized pathogen resistance through pro-
tective specialized metabolites could be selectively favored when
pathogen populations evolve rapidly, since strain-specific R-genes
would be quickly defeated (Hulse et al., 2023). Our results sug-
gest a polygenic basis of adaptation, and we found several genes
related to the production of specialized metabolites. This
included terpenoid cyclase genes related to the mevalonate or
MEP synthesis pathway, which were overrepresented in our
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Fig. 6 Genome-wide association study (GWAS) of disease severity best linear unbiased predictors in northern (a) and southern (b) regions. Vertical lines
indicate the positions of candidate loci found in previous experiments (VanWallendael et al., 2020, 2022a). The green line on chromosome 2N indicates a
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results. Recent research on switchgrass has shown that steroidal
saponins produced by this pathway are essential to the species’
resistance to fungal pathogens (Li et al., 2023). Thus, the many
genes associated with rust we uncovered through GWAS may
reflect different aspects of the production, distribution, and sto-
rage of these chemicals.

Mechanisms underlying host–parasite dynamics in natural
populations are more complex than what is seen in simulations
or in controlled conditions. Variable selection from both the bio-
tic and abiotic environment results in patterns of local adaptation
that may not be predictable from just 1 yr of data (Kawecki &
Ebert, 2004; Dittmar & Schemske, 2023). Our use of a ‘host
reciprocal transplant’ allowed us to test for local adaptation
among parasite populations using an experimental design that
lacks many of the drawbacks of other study designs. By recipro-
cally transplanting hosts rather than parasites, we incorporated
natural variation in pathogen strains, along with the native envir-
onment of pathogens. In the correct conditions, future studies
can benefit from similar designs for examining host–parasite coe-
volution.

Some challenges with experimental design may have influ-
enced our results. In particular, evaluating infection status consis-
tently across multiple years and thousands of kilometers may
have resulted in greater noise in trait data than would be ideal.
Advances in aerial imaging have been used in other studies to
more clearly quantify infection data, and may be useful in similar

future experiments (Shakoor et al., 2017). Furthermore, we were
only able to capture 1 yr of variation in rust population genetics.
It is likely that the border between northern and southern rust
populations varies from year to year, so we might expect local
adaptation to be less clear in transplant sites from intermediate
latitudes. Assessments of the overall leaf microbial community in
switchgrass common gardens have indicated that the latitudinal
cline in rust diversity is mirrored by a distinction in the overall
leaf microbiome between northern and southern sites, although
whether this is a correlate, cause or effect of rust strain variation
is unclear (VanWallendael et al., 2022a). Another attempt to
quantify switchgrass rust strain diversity focused on the southeast
region but does indicate a distinct haplotype present in their sin-
gle Midwest population (Bahri et al., 2025).

This study reinforces the importance of studying host–parasite
interactions in natural systems, to uncover the extensive variation
and surprising results that can be revealed with long-term experi-
ments that include environmental context (Cocciardi
et al., 2024). Understanding the host and environmental factors
that drive parasite ranges will be critical in predicting parasite
shifts under climate change. The host reciprocal transplant is an
underutilized tool for this critical study. Here, it has revealed that
one common portrayal of a zero-sum outcome from a host–
parasite arms race is not an inevitable outcome of coevolution,
but that the relatively weak selection imposed by the rust patho-
gen allows local adaptation in the same geographic regions. In
such a system, field experimentation can provide clear insights
into the delicate balance of natural selection in large coevolving
metapopulations, and illustrate how both hosts and parasites
respond to changing selection.
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