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Abstract

We derive a class of space homogeneous Landau-like equations from stochastic interacting particles.
Through the use of relative entropy, we obtain quantitative bounds on the distance between the solu-
tion of the N-particle Liouville equation and the tensorised solution of the limiting Landau-like equation.
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1. Introduction

We consider Landau-like equations on the torus Td that

∂tf = ∇ ·
[
(a ∗ f)∇f − (b ∗ f)f

]
, (1.1)

where the matrix-valued function a is symmetric and uniformly bounded from above and below in the
sense of bilinear form as

λ1 Id ≤ a ≤ λ2 Id, 0 < λ1 ≤ λ2.

Here Id is the identity matrix; and the vector field b = ∇ · a as well as its divergence ∇ · b is bounded.
We also assume the initial data of (1.1) satisfies f0 ∈W 2,∞(Td).

Equation (1.1) can be written in non-divergence form as

∂tf = (a ∗ f) : ∇2f −∇ · (b ∗ f)f.

From the classical theory of advection-diffusion equations, we can assume the solution of (1.1) belongs to
f ∈ L∞([0, T ],W 2,∞(Td)) with

∫
Td f = 1 and infv∈Td f(v) > 0 for all t ∈ [0, T ].

The Landau equation [15, 19] plays an important role in kinetic theory, and in particular to model
a plasma of charged particles. It can be formally derived from Boltzmann equation, in which grazing
collision prevails. The true space homogeneous Landau equation on Rd has the same structure as (1.1)
but with matrix-valued function a and vector-valued function b as

a(z) = |z|γ
(
Id |z|2 − z ⊗ z

)
and b(z) = ∇ · a(z) = −2|z|γz,

where γ ≥ −d. The solution f(t, v) corresponds to the probability of finding a particle in the plasma at
time t with velocity v. In the case d = 3, one usually speaks of hard potentials when γ ∈ (0, 1], Maxwellian
potential when γ = 0, moderately soft potentials when γ ∈ [−2, 0), very soft potential when γ ∈ [−3,−2),
and the special case of Coulomb potential corresponding to γ = −3. Our assumptions for Landau-like
equation on a and b avoid the possible degeneracy and singularity at the origin, but keep the structure
b = ∇ · a.

In terms of the properties of the Landau equation, for hard potentials, well-posedness, regularity
and large-time behavior have been studied by Desvillettes–Villani [2, 3] and Fournier-Heydecker [8]; for
Maxwellian case, these are given by Villani [17]; for moderately soft potentials, a global well-posedness
result is obtained in [9]; for very soft potentials, [18] defines the H-solution and proves its existence, but
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the regularity and uniqueness of H-solutions remain open. Recently, Guillen and Silvestre showed that
the classical solution of Landau equation will not blow up for all γ ∈ [−3, 1] [10].

The rigorous derivation of the Landau equation directly from many-particle systems is still a challenge.
Using Newtonian dynamics, Kac proposed to derive the Boltzmann equation from stochastic particle
system in sense of mean field limit, and he gave the mathematical definition of molecular chaos [14]. For a
detailed discussion about mean field limit and propagation of (molecular) chaos, one can see [16, 12]. We
will adopt this idea to derive space homogeneous Landau-like equations from coupled systems of SDEs
for the particles, while proving the propagation of chaos.

In the case of Maxwellian potential, Fontbona, Guérin and Méléard [4] obtained a quantitative prop-
agation of chaos for Landau-like equations, and Fournier [5] improved the rate of convergence. Later,
Carrapatoso was able to prove a uniform in time quantitative propagation of chaos in [1]. When γ ∈ [0, 1],
Fournier and Guillin also derived a quantitative result [6]. For soft potential, Fournier and Hauray deal
with both γ ∈ (−1, 0) and γ ∈ (−2,−1] in [7], for the former case, they obtain a rate of convergence; for
the latter case, they also prove the propagation of chaos but without an explicit rate. All these results
are proven by using coupling techniques.

Inspired by the work of Jabin and Wang [11, 13], we prove a quantitative propagation of chaos by
controlling the relative entropy, which yields the derivation of Landau-like equations from stochastic
particle systems. This work is organised as follows. Section 2 is dedicated to introduce our particle
systems and state main results; and the proof of Theorem 2.2 is given in Section 3.

2. Main result

We consider the following stochastic N -particle systems on Td:

dV i
t =

2

N

N∑
j=1

b(V i
t − V j

t )dt+
√
2
( 1

N

N∑
j=1

a(V i
t − V j

t )
) 1

2
dBi

t,

where (Bi
t)i≥1 are i.i.d. d-dimensional Brownian motions and the diffusion coefficient matrix is a unique

square root of the nonnegative symmetric matrix. We use the convention that a(0) = 0 and b(0) = 0 to
omit the notation i ̸= j. We notice that, under our assumptions on the particle system, the particles are
exchangeable, thus we assume that the initial joint distribution of (V 1

0 , . . . , V
N
0 ) is a symmetric probability

measure fN (0).
The existence and uniqueness of strong solution to the particle systems (SDEs) have been proved in

[5]. Applying Itô’s formula and the relation ∇ · a = b, we can derive the evolution (Liouville equation) of
N -particles joint distribution fN (t, V ), V = (v1, . . . , vN ) on TdN as

∂tfN =
N∑
i=1

∇vi ·
[ 1

N

N∑
j=1

a(vi − vj)∇vifN − 1

N

N∑
j=1

b(vi − vj)fN

]
, (2.1)

where the initial value is fN (0). There exists at least one entropy solution of (2.1) defined as follows [13].

Definition 2.1 (Entropy solution). For t ∈ [0, T ], a density function fN ∈ TdN , with fN ≥ 0 and∫
TdN fN = 1, is called an entropy solution of (2.1) if and only if

∫
Td

fN (t) log fN (t)dV +

N∑
i=1

∫ t

0

∫
Td

fN
1

N

N∑
j=1

a(vi − vj) : ∇vi log fN ⊗∇vi log fNdV

+
N∑
i=1

∫ t

0

∫
Td

fN
1

N

N∑
j=1

∇ · b(vi − vj)dV ≤
∫
Td

fN (0) log fN (0)dV.
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To prove the propagation of chaos, we aim to estimate the distance between the solution of Liouville
equation fN and tensorised solution of the Landau equation f̄N = f⊗N in the sense of relative entropy,

HN (fN |f̄N ) =
1

N

∫
TdN

fN log
fN
f̄N

dV =
1

N

∫
TdN

fN log fNdV − 1

N

∫
TdN

fN log f̄NdV.

Its subadditivity implies the bound on the distance between k-th marginals

fk,N (t, v1, . . . , vk) =

∫
Td(N−k)

fN (t, v1, . . . , vN )dvk+1 . . . dvN ,

and tensorised f⊗k as

Hk(fk,N |f⊗k) =
1

k

∫
Tdk

fk,N log
fk,N
f⊗k

dv1 · · · dvk ≤ HN (fN |f⊗N ). (2.2)

For simplicity, we denote the HN (fN (t)|f̄N (t)) as HN (t). Now we state our main result.

Theorem 2.2. Under assumptions above, there exists some positive constant C1 and C2 independent with
N such that the relative entropy of fN and f̄N on the torus TdN has the following estimate

HN (t) ≤
(
HN (0) +

C1

N

)
eC2t.

Then, Theorem 2.2 implies the quantitative propagation of chaos result:

Corollary 2.3. Under assumptions above, and further assuming supN NHN (0) <∞, one has the strong
propagation of chaos, for some constant C3 independent with N ,

∥fk,N − f⊗k∥L∞([0,T ],L1(Tdk)) ≤
C3√
N
.

The proof of Corollary 2.3 is straightforward by applying (2.2) and Csiszár-Kullback-Pinsker inequality
as for any functions g1 and g2 on Tdk as

∥g1 − g2∥L1(Tdk) ≤
√

2kHk(g1|g2).

3. Proof of Theorem 2.2

We firstly derive the evolution of relative entropy HN , and it holds

d

dt

(
1

N

∫
TdN

fN log fNdV

)
=

1

N

∫
TdN

(1 + log fN )∂tfNdV

=− 1

N

N∑
i=1

∫
TdN

1

N

N∑
j=1

a(vi − vj) :
∇vifN√
fN

⊗ ∇vifN√
fN

dV

+
1

N

N∑
i=1

∫
TdN

1

N

N∑
j=1

b(vi − vj) · ∇vifNdV,

where we plug in (2.1) and integrate by parts in the second step; similarly, we have

d

dt

(
1

N

∫
TdN

fN log f̄NdV

)
=

1

N

∫
TdN

(
log f̄N∂tfN + fN

∂tf̄N
f̄N

)
dV

=− 1

N

N∑
i=1

∫
TdN

1

N

N∑
j=1

a(vi − vj) :
∇vi f̄N ⊗∇vifN

f̄N
dV +

1

N

N∑
i=1

∫
TdN

1

N

N∑
j=1

b(vi − vj) · ∇vi f̄N
f̄N

fNdV

− 1

N

N∑
i=1

∫
TdN

a ∗ f(vi) : ∇vi
fN
f̄N

⊗∇vi f̄NdV +
1

N

N∑
i=1

∫
TdN

b ∗ f(vi) · ∇vi
fN
f̄N

f̄NdV.
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Using the identity

∇vi
fN
f̄N

=
f̄N∇vifN − fN∇vi f̄N

f̄2N
,

enables us to rewrite

d

dt
HN (t) =

d

dt

(
1

N

∫
TdN

fN log fNdV

)
− d

dt

(
1

N

∫
TdN

fN log f̄NdV

)
= − 1

N

N∑
i=1

∫
TdN

fN
1

N

N∑
j=1

a(vi − vj) : ∇vi log
fN
f̄N

⊗∇vi log
fN
f̄N

dV

+
1

N

N∑
i=1

∫
TdN

fN

[
a ∗ f(vi)− 1

N

N∑
j=1

a(vi − vj)
]
: ∇vi log

fN
f̄N

⊗∇vi log f̄NdV

− 1

N

N∑
i=1

∫
TdN

fN

[
b ∗ f(vi)− 1

N

N∑
j=1

b(vi − vj)
]
· ∇vi log

fN
f̄N

dV

=: I1 + I2 + I3.

(3.1)

The first term on the right-hand side of (3.1) can be bounded by the assumption on the minimal
eigenvalue of matrix a as

I1 = −
∫
TdN

fN
1

N

N∑
j=1

a(v1 − vj) : ∇v1 log
fN
f̄N

⊗∇v1 log
fN
f̄N

dV

≤ −
∫
TdN

fN λ1 Id : ∇v1 log
fN
f̄N

⊗∇v1 log
fN
f̄N

dV = −λ1
∫
TdN

fN

∣∣∣∇v1 log
fN
f̄N

∣∣∣2dV,
where we used v1 instead of averaging all vi by exchangeability. Simple inequality xy ≤ 1

λ1
x2 + λ1

4 y
2 for

positive constant λ1 implies the estimate on the last two terms in (3.1) as

I2 + I3 =

∫
TdN

fN

[
a ∗ f(v1)− 1

N

N∑
j=1

a(v1 − vj)
]
: ∇v1 log

fN
f̄N

⊗∇v1 log f̄NdV

−
∫
TdN

fN

[
b ∗ f(v1)− 1

N

N∑
j=1

b(v1 − vj)
]
· ∇v1 log

fN
f̄N

dV

≤ λ1
2

∫
TdN

fN

∣∣∣∇v1 log
fN
f̄N

∣∣∣2dV +
1

λ1

∫
TdN

fN

∥∥∥a ∗ f(v1)− 1

N

N∑
j=1

a(v1 − vj)
∥∥∥2∣∣∣∣∇v1 f̄N

f̄N

∣∣∣∣2dV
+

1

λ1

∫
TdN

fN

∣∣∣b ∗ f(v1)− 1

N

N∑
j=1

b(v1 − vj)
∣∣∣2dV,

where we take the Frobenius norm for matrices. Also we notice that under our assumption on the solutions
f(t, v) of the Landau-like equation (1.1), it holds

sup
V ∈TdN ,t∈[0,T ]

∣∣∣∣∇v1 f̄N
f̄N

∣∣∣∣ = sup
v∈Td,t∈[0,T ]

∣∣∣∣∇vf(t, v)

f(t, v)

∣∣∣∣ <∞.

Combining the estimates above, we get the bound of (3.1) that

d

dt
HN (t) ≤

Cf

λ1

d∑
α,β=1

∫
TdN

fN

(
aα,β ∗ f(v1)− 1

N

N∑
j=1

aα,β(v
1 − vj)

)2
dV

+
1

λ1

d∑
α=1

∫
TdN

fN

(
bα ∗ f(v1)− 1

N

N∑
j=1

bα(v
1 − vj)

)2
dV.
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The following lemma is the same as [13, Lemma 1].

Lemma 3.1. For any two probability densities fN and f̄N on TdN , and any Φ ∈ L∞ (
TdN

)
, one has that

∀η > 0, ∫
TdN

fNΦdV ≤ 1

η

(
HN

(
fN | f̄N

)
+

1

N
log

∫
TdN

f̄Ne
NηΦdV

)
.

Applying this lemma with bounded functions

Φ1 =
(
aα,β ∗ f(v1)− 1

N

N∑
j=1

aα,β(v
1 − vj)

)2
, Φ2 =

(
bα ∗ f(v1)− 1

N

N∑
j=1

bα(v
1 − vj)

)2

respectively, we deduce that

d

dt
HN (t) ≤

Cfd
2 + d

λ1η
H(t) +

Cf

λ1ηN

d∑
α,β=1

log

∫
TdN

f̄N exp

{
ηN

(
aα,β ∗ f(v1)− 1

N

N∑
j=1

aα,β(v
1 − vj)

)2
}
dV

+
1

λ1ηN

d∑
α=1

log

∫
TdN

f̄N exp

{
ηN

(
bα ∗ f(v1)− 1

N

N∑
j=1

bα(v
1 − vj)

)2
}
dV.

And we notice that the identity holds

ηN
(
aα,β ∗ f(v1)− 1

N

N∑
j=1

aα,β(v
1 − vj)

)2
=

( 1√
N

N∑
j=1

√
η
(
aα,β ∗ f(v1)− aα,β(v

1 − vj)
))2

;

similarly, it has

ηN
(
bα ∗ f(v1)− 1

N

N∑
j=1

bα(v
1 − vj)

)2
=

( 1√
N

N∑
j=1

√
η
(
bα ∗ f(v1)− bα(v

1 − vj)
))2

.

To give further estimate, we will take advantage of [13, Theorem 3] as follows.

Lemma 3.2. Assume that a scalar function ψ ∈ L∞ with ∥ψ∥L∞ < 1
2e , and that for any fixed z,∫

Td ψ(z, v)f(v)dv = 0, then∫
TdN

f̄N exp
( 1

N

N∑
j1,j2=1

ψ
(
v1, vj1

)
ψ
(
v1, vj2

) )
dV < C0.

For each entry α, β, denoting functions ψ1 and ψ2 respectively as ψ1(z, v) =
√
η
(
aα,β∗f(z)−aα,β(z−v)

)
and ψ2(z, v) =

√
η
(
bα ∗ f(z)− bα(z− v)

)
, we can choose some suitable η such that each component of ψ1

and ψ2 satisfying the assumption that ∥ψ∥L∞ < 1
2e in Lemma 3.2. Then it holds that

d

dt
HN (t) ≤

Cfd
2 + d

λ1η
H(t) +

C ′
0

λ1ηN
.

Therefore, Gronwall’s lemma implies the main result Theorem 2.2.
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