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Abstract

Uncontrolled curing-induced residual stress and strain are significant limitations to the efficient design of ther-

moset composites that compromise their structural durability and geometrical tolerance. Experimentally validated

process modeling for the evaluation of processing parameter contributions to the residual stress build-up is cru-

cial to identify residual stress mitigation strategies and enhance structural performance. This work presents an

experimentally validated novel numerical approach based on higher-order finite elements for the process mod-

eling of fiber-reinforced thermoset polymers across two composite characteristic length scales, the micro and

macro-scale levels. The cure kinetics is described using an auto-catalytic phenomenological model. An instanta-

neous linear-elastic constitutive law, informed by time-dependent material characterization, is used to evaluate

the stress state evolution as a function of the degree of cure and time. Micromechanical modeling is based on

Representative Volume Elements (RVEs) that account for random fiber distribution verified against traditional

3D FE analysis. 0/90 laminate testing at the macroscale validates the proposed approach within an accuracy of

9%.
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1 Introduction

Experimentally-validated process modeling of thermoset composites is fundamental for overcoming technological

challenges that will enable the full potential of the fourth industrial revolution (Industry 4.0) in advanced

manufacturing [1]. Within Industry 4.0, Integrated Computational Materials Engineering (ICME) is a new

paradigm for the concurrent design of materials and products that aims to create a cyber-physical ecosystem that

will enable streamlining design and manufacturing and obtain accurate life and performance predictions based

on digital twins starting from an accurate representation of the part during manufacturing [2]. Fiber-reinforced

plastics (FRP) play a prominent role in lightweight eco-efficient transportation, including Urban Air Mobility

(UAM), space exploration, automotive, and wind, due to their outstanding mechanical properties, such as

specific strength and stiffness. However, their complex mechanical response and uncertainties in their properties

due to manufacturing imperfections lead to the use of larger margins of safety and an overly conservative

design, which restricts the utilization of the full potential of composite materials and limits structural efficiency.

A further bottleneck is the ample design space associated with composite structures, which renders physical

testing a lengthy and resource-intensive task.

The manufacturing process of thermoset FRP has a significant effect on both the final geometry of the part

as well as its mechanical performance. The manufacturing process, or curing, consists of an exothermic chemical

reaction, during which material properties change as a function of time and temperature. The thermal expansion

mismatch between fibers and matrix leads to differential expansion within the composite microstructure. Such

thermal expansion mismatch at the level of the constituents, in combination with chemical shrinkage of the

matrix and the thermo-mechanical properties evolution during the cure cycle, results in self-equilibrated residual

stresses [3, 4]. High residual stress levels during the cure cycle can lead to the formation of micro-cracks within

the matrix, significantly reducing the composite mechanical performance and service life [5, 6]. The robust

design and optimization of composite structures thus requires an accurate understanding of the development of

residual stresses within the manufactured part.

Computationally efficient multiscale process modeling is needed to predict curing-induced residual stresses

accurately [7]. Different numerical techniques can reproduce the relevant fundamental physics across the relevant

scales in fiber-reinforced composites, including the evolution of the mechanical and non-mechanical properties

of the matrix as a function of curing, local fiber constraint of the curing matrix, thermal gradients, and stress

concentrations induced by complex tow architectures [8–13]. Recent work proved that it is possible to virtually

reproduce the crosslinking formation of the polymer during curing at the nano-scale using Molecular Dynamics

(MD) simulations [14, 15]. MD simulations accurately represent the chemical composition of the resin and its

curing agent and predict the mechanical property evolution of the matrix as a function of the crosslinking density

[16, 17]. The local variation in fiber volume fraction driven by the stochastic distribution of the fibers induces

local variability in the residual stress state, which in turn affects the mechanical properties of the curing resin.

Additionally, fiber closeness can act as a stress riser in the microstructure that triggers premature failure [18–20].



Modeling the micro-scale resolution enables the explicit representation of the reinforcing fibers and the resulting

stochastic property variabilities within the composite constituents needed to represent a realistic structure [21–

23]. Thus, the explicit modeling of the fibers at the micro-scale is crucial to predict the composite failure behavior

accurately [24–28]. While traditional 3D Finite Element (3D-FE) analysis is a preferred tool to analyze complex

structures at the macro-scale [29, 30], computational micromechanical models based on conventional FE can

incur prohibitively high costs, especially when they are used in a multiscale setting to inform composite material

behavior in a structural-level analysis [31]. Thus, a computationally-efficient numerical approach is necessary

to model the microstructure, which would eventually form part of multiscale process modeling frameworks.

Several cure models have been proposed in the literature [32–34], with one of the most popular formulations

being the phenomenological model by Kamal and Sourour [35]. These kinetic models have been used in various

numerical investigations on the prediction of residual stresses during the curing process, as well as the influence

of these stresses on the effective mechanical properties of the composite. For instance, Ding et al. proposed a

3D thermo-viscoelastic model to simulate residual stresses in composite laminates during curing [36]. Maiaru

et al. investigated the influence of the manufacturing process on the transverse strength of unidirectional FRP

using traditional FEs [20]. More recently, Hui et al. developed a micro-scale viscoplastic model to investigate

the effect of curing-induced stresses on the compressive strength of unidirectional FRP [37]. Similarly, DMello

et al. presented an approach to simulate the curing process of homogenized textile composites and subsequently

evaluated the effect of the developed residual stresses on the tensile strength of the composite [30].

a unified formulation for micro and macro scale modeling

This paper presents the implementation of an instantaneous linear elastic micro-scale curing model in a

computational framework based on higher-order FEs that will enable multiscale modeling of fiber-reinforced

composites. Lagrange polynomials are implemented within the Carrera Unified Formulation (CUF), which is

a generalized framework for developing higher-order structural theories. CUF-based models are capable of an

accuracy approaching that of 3D-FEs at significantly reduced computational effort [38]. The advantages of CUF

have been demonstrated in recent years for various classes of problems, such as progressive damage and impact

[39–41], micromechanical analysis [42–45], and the analysis of process-induced deformations in cured composite

parts [46]. The present work combines a process modeling formulation for thermoset epoxies [20, 47] with CUF

theories to enable the micro-scale curing analysis of thermoset composites.

This work is organized as follows: Section 2 describes the higher-order FE structural modeling approach

within CUF and the process modeling formulation. A series of numerical assessments is presented in Section 3

to verify the proposed approach using traditional FEs. The main conclusions are summarized in Section 4.



2 Numerical modeling

2.1 Process Modeling: Thermoset Curing

The thermoset cure kinetics, for a given cure cycle, is governed by an auto-catalytic phenomenological semi-

empirical kinetic model [35], as follows

dφ

dt
=

[

A1exp

(

−
∆E1

RT

)

+A2exp

(

−
∆E2

RT

)

φn

]

(1 − φm) (1)

where φ is the degree of cure, R is the gas constant, T is the cure temperature at time t, with the activation

energies denoted by ∆E1 and ∆E2. The constants A1 and A2, and the exponents m and n, are determined

experimentally. The thermal state of the thermoset is a consequence of the prescribed cure temperature and the

heat generated due to the exothermic nature of the curing process, and the resulting temperature distribution

is evaluated using the Fourier heat transfer model as follows

ρcp
dT

dt
= κi

d2T

dt2
+

dq

dt
, with

dq

dt
= ρHT

dφ

dt
(2)

where ρ and cp are respectively the density and specific heat of the epoxy, κi is the thermal conductivity, q

is the instantaneous exothermic heat generated during the curing process, and HT is the total heat of reaction.

Figure 1: Temperature - degree of cure plot of RIM R135/H1366 epoxy resin system with evolution of the elastic
modulus.



During the curing process, the change in the degree of cure (as a function of time) results in an evolution

of the chemo-rheological and thermo-mechanical properties of the thermoset. These properties have been

previously characterized in-house for the RIM R135/H1366 epoxy resin system [47], and their evolution for

the manufacturer recommended cure cycle is plotted in Fig. 1. The experimentally determined cure kinetics

constants for this material system, required to evaluate Eq. 1, is listed in Table 1. The evaluated degree of

cure, for a specific time t, can be used to determine the material state of the thermoset as seen in Fig. 1. These

properties can be used with an instantaneous linear-elastic constitutive model, previously described in Ref. [20],

to predict the development of residual stresses (σi) as a function of the evolving thermal and chemical strains

as follows

σi(t) =
[

Cij(t)
[

εtotj (t)− (εthermj (t) + εshrinkj (t))δj
]]

, where δj =















1 j = 1,2,3

0 j > 3

(3)

where εtotj (t), εthermj (t) and εshrinkj (t) are respectively the total, thermal and chemical shrinkage strains, and

Cij is the material stiffness as a function of time.

The computational approach to simulate the curing process is developed based on the instantaneous linear-

elastic nature of Eq. 3. A time-based analysis, considering an incremental time period ∆t, is performed over the

cure cycle seen in Fig. 1, and the degree of cure is evaluated at each time increment. The mechanical properties

of the thermoset are determined as a function of the degree of cure, based on experimental characterization data.

An uncoupled displacement-temperature analysis is performed to compute the displacements and temperature

fields. Finally, Eq. 3 is used to predict the residual stress developed within the thermoset material.

Table 1: Cure kinetics parameters for the RIM R135/H1366 epoxy resin system [47].

Cure kinetic parameter Value

Exponent m 0.4 [−]
Exponent n 1.5 [−]
Rate constant A1 3.6×109 [s−1]
Rate constant A2 0.01245 [s−1]
Activation energy ∆E1 85.3 [kJ/mol]
Activation energy ∆E2 11.1 [kJ/mol]

2.2 Structural modeling: Carrera Unified Formulation

The Carrera Unified Formulation (CUF) is a generalized framework to derive higher-order structural theories,

and in combination with the Finite Element Method (FEM), can be used to develop higher-order numerical

models. Specifically, CUF allows for the kinematic enrichment of beam (1D-CUF) and plate/shell (2D-CUF)

elements by the use of additional interpolation functions, resulting in numerical models that approach the

accuracy of 3D-FEA at significantly reduced computational effort.
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Figure 2: Modeling of a prismatic structure using 1D-CUF.

The current work uses 1D-CUF models, wherein the cross-section of beam elements is explicitly defined

by a set of additional interpolation functions, termed as expansion functions (Fτ ), as seen in Fig. 2. In this

approach, the displacement field is defined as [38]

u = Fτ (x, z)uτ (y), τ = 1, 2, ...,M (4)

where M is the number of terms within the expansion function. Various classes of polynomial functions can

be used as (Fτ ), and is chosen by the user. The most popular choice of expansion function are those based on

Taylor series [48] and Lagrange polynomials [49]. Various other functions have been proposed to enhance the

cross-sectional interpolation [50, 51]. The present work considers the use of Lagrange polynomials as Fτ , which

consist of nodal interpolation functions within the cross-sectional discretization, see Fig. 2. This leads to a

purely displacement-based formulation as seen below:

ux =

Nnode
∑

i=1

Fi(x, z) · u
x
i

uy =

Nnode
∑

i=1

Fi(x, z) · u
y
i

uz =
Nnode
∑

i=1

Fi(x, z) · u
z
i

(5)

where ux
i , u

y
i , u

z
i and Fi(x, z) are the translational degrees of freedom (DOF) and the interpolation function,

respectively, of node i. Furthermore, the use of cross-sectional Lagrange elements allows for the explicit modeling

of each component domain within the structure, and is known as Component-Wise modeling [52, 53].

Finite element formulation

The stress and strain fields are defined using the Voigt notation as follows:



σ = {σxx, σyy, σzz , σxy, σxz, σyz}

ε = {εxx, εyy, εzz, εxy, εxz, εyz}

(6)

Considering infinitesimal strain theory, the displacement-strain relationship is described using the differential

operator D as

ε = Du (7)

with
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The stress-strain relation is given as

σ = C(φ)ε (8)

where C is the 6 × 6 material stiffness matrix. For the case of thermoset polymers, C depends on the

cure state which is quantified by the degree of cure (φ) as described in Section 2.1. Discretizing the structure,

schematically shown in Fig. 2, along its axis with 1D finite elements (using interpolation functions Ni), and

refining the cross-sectional kinematics using expansion functions Fτ , the 3D displacement can be written as

u(x, y, z) = Fτ (x, z)Ni(y)uτi (9)

According to the principle of virtual work

δLint = δLext (10)

where the virtual variation of the internal strain energy δLint is defined as

δLint =

∫

V

δεT : σ (11)

Combining Eqs. 8, 9 and 11, the stiffness matrix can be derived as

δLint = δuT
sjkijτsuτi (12)



with

kijτs =

∫

l

∫

A

DT (Ni(y)Fτ (x, z))C(φ)D(Nj(y)Fs(x, z)) dA dl (13)

The 3x3 matrix kijτs is the Fundamental Nucleus (FN), and its definition remains invariant with respect

to any given combination of interpolation function Ni and expansion function Fτ . The element-level stiffness

matrix can then be computed by assembling the fundamental nuclei associated with each combination of the

nodal indices {i, j, τ, s}. The numerical model used in the current work requires a temperature DOF, in addition

to the three mechanical DOF, in order to simulate the thermoset curing process. The temperature DOF can

be accounted for in the FN by considering a thermal term kθ as follows [54]

kθ =

∫

l

∫

A

∇
T (NiFτ )κ∇(NjFs) dA dl (14)

where κ is the material thermal conductivity. Considering an uncoupled temperature-displacement problem,

the augmented FN is now a 4× 4 matrix, defined as

kuθijτs =







kijτs 0

0 kθ






(15)

2.3 Macroscale modeling

The structural modeling approach described in Section 2.2 is also employed in composite process modeling

at the macroscopic length-scale, and enables the prediction of structural distortions after the curing and tool

removal process. The cure kinetics model (see Section 2.1) is used to evaluate the resin cure state, and hence

the evolving material properties, based on the applied cure cycle. The effective ply properties are then obtained

by homogenization, via the ply micromechanics model by Bogetti and Gillespie [55]. Both the composite part

and the mold are explicitly modeled in the process simulation to account for the effect of tool removal. A shear

layer, i.e., a layer of elements with reduced shear stiffness, is used to represent the tool/part interface and allow

for frictionless interaction between the tool and part [46]. At the end of the cure cycle, an additional mechanical

analysis is performed to simulate the tool removal procedure and predict the final composite deformed shape

after demolding [56].

Considering an increment n within the time-based process analysis, corresponding to time tn, the mechanical

problem is described as [46]

Kn∆Un = ∆Fn (16)

where Kn is the global stiffness matrix including contributions from the tool, composite part, and the

shear layer. ∆Un is the incremental displacement as a result of the incremental thermal and shrinkage strains



represented by ∆Fn. The interfacial force term representing the constraint of the tool on the part can be

calculated as

∆Finterface
n = Kpart

n ∆Upart
n −∆Fpart

n (17)

where the quantities with superscript part refers to components containing degrees of freedom associated

with only the composite part. The incremental force terms calculated from Eq. 17 at each time-step are summed

at the end of the cure analysis to obtain the total interfacial forces acting on the part as follows

Finterface =

Nsteps
∑

n=1

∆Finterface
n (18)

The deformation U∗ due to the total interface force evaluated in Eq. 18 is computed by solving the following

problem

KpartU∗ = Finterface (19)

The final deformed state of the composite structure, after curing and tool-removal, is obtained as

Upart = U∗ +

Nsteps
∑

n=1

∆Upart
n (20)

3 Microscale Verification Against Traditional FEs

A series of numerical assessments is presented in this section, with the aim of verifying the proposed modeling

approach, as well as to evaluate its performance with respect to conventional 3D-FEA. The micromechanical

models of the fiber-reinforced epoxy are composed of IM7 fiber and RIM R135/H1366 epoxy resin, whose

thermo-mechanical properties are listed in Table 2 and 3, respectively. In each case, the cure simulation follows

the cure cycle plotted in Fig. 1.

3.1 Curing of square-packed RUC

The present numerical example considers the square-packed Repeating Unit Cell (RUC) with a single fiber,

as shown in Fig. 3a. The boundary conditions applied on the RUC are schematically shown in Fig. 3b. A

prescribed temperature based on the cure cycle (See Fig. 1) is applied on the surface of the RUC. Flat Boundary

Conditions (FBC), a special case of Periodic Boundary Conditions (PBC), are applied on the faces of the RUC

which ensures that its faces remain flat in the deformed configuration. Further details on the use of FBC and

its equivalence to PBC in the current application can be found in [20, 47].



Table 2: Elastic and thermal material properties of the IM7 carbon fiber [47].

Material Property Value

Density ρf 1780.0 [kg/m3]

Axial modulus Ef
11 276.0 [GPa]

Transverse modulus Ef
22, E

f
33 19.5 [GPa]

In-plane Poisson’s ratio νf12, ν
f
13 0.28 [−]

Out-of-plane Poisson’s ratio νf23 0.25 [−]

In-plane shear modulus Gf
12, G

f
13 70.0 [GPa]

Out-of-plane shear modulus Gf
23 7.8 [GPa]

Axial coefficient of thermal expansion (CTE) αf
11 -0.54E-6 [K−1]

Transverse CTE αf
22, α

f
33 10.08E-6 [K−1]

Thermal conductivity κf 5.4 [W/mK]
Specific heat cfp 879.0 [J/kgK]

Table 3: Elastic and thermal material properties of the RIM R135/H1366 epoxy resin [47].

Material Property Value

Density ρm 1200.0 [kg/m3]
Elastic modulus Em 2482.0 [MPa]
Poisson’s ratio νm 0.37 [MPa]
Coefficient of thermal expansion αm 61.0E-6 [K−1]
Coefficient of chemical shrinkage βm 0.111 [−]
Thermal conductivity κm 0.245 [W/mK]
Specific heat cmp 1600.0 [J/kgK]

(a) Square-packed RUC

Deformed configuration

(b) Boundary conditions for curing analysis

Figure 3: Schematic representation of a square-packed RUC with the applied boundary conditions.



The process modelling of the square-packed RUC is performed using a series of CUF models with varying

levels of refinement within the RUC face, using both 4-node linear (L4) and 9-node quadratic (L9) quad elements.

Each CUF model consists of a single linear beam element (B2) along the thickness direction. Two reference

3D-FE models are also developed in Abaqus, where the RUC thickness is represented by a single element. The

discretization used in each numerical model is visualized in Fig. 4. The residual stresses in the transverse

direction (22-component) that develop within the RUC at the end of the cure cycle, as predicted by the various

models, is shown in the form of contour plots in Fig. 5. A summary of all the numerical models, along with the

required computational time, is presented in Table 4.

52 elements 226 elements20 elements 423 elements

Figure 4: Meshes used in Abaqus and CUF to discretize the square-packed RUC.

(d) CUF - 52 L4 (e) CUF - 227 L4 (g) CUF - 52 L9(f) CUF - 20 L9

(c) ABQ - Mesh 3 (423 C3D8T)(a) ABQ - Mesh 1 (52 C3D8T) (b) ABQ - Mesh 2 (226 C3D8T)

Figure 5: Distribution of residual stress (22-component) in the square-packed RUC at the end of cure.

From Fig. 5, it is seen that both the CUF and 3D-FE models are in very good agreement with each other,

and provides further verification of the proposed numerical approach. The coarsest models in both cases, i.e.

‘ABQ - Mesh 1’ and ‘CUF - 54 L4’, predict very similar stress fields, and are underestimated when compared to

the refined models. A similar observation is made for the case of the ‘CUF - 20 L9’ model, where the predicted

stresses are indicative of the intermediate level of refinement within the model. It is also seen that further

mesh refinement, in both CUF and 3D-FE, doesn’t lead to any significant differences, thereby indicating mesh

convergence. Comparing the associated computational time (see Table 4) for the ‘ABQ - Mesh 2’ analysis with



Table 4: Summary of the numerical models used in the process simulation of the square-packed RUC.

Model No. of elements DOF Analysis Time [s]

Abaqus - Mesh 1 52 C3D8T 523 40
Abaqus - Mesh 2 226 C3D8T 2,043 52
Abaqus - Mesh 3 423 C3D8T 3,683 68
CUF - Mesh 1 52 L4 520 3.2
CUF - Mesh 2 227 L4 2,048 13.4
CUF - Mesh 3 20 L9 712 4.7
CUF - Mesh 4 52 L9 1,864 14.6

those based on refined CUF (227 L4 and 52 L9), it is seen that the proposed CUF approach is approximately

4x as fast as the corresponding 3D-FEA, for similar levels of accuracy.

3.2 Curing of RVE with random fiber distribution

P1

P2

P3

Figure 6: RVE with 20 randomly distributed fibers.

This assessment considers a periodic RVE with 20 randomly distributed fibers, as shown in Fig. 6. The

RVE boundary conditions described in Section 3.1 are applied in the current analysis. A series of CUF models

is developed with increasing levels of refinement within the RVE face, and a single linear beam element (B2)

is used to represent the RVE thickness in each model. Three 3D-FE models are also developed in Abaqus as a

numerical reference. The residual stress (22-component) predicted by the models at the end of the cure cycle

is presented in Fig. 7. The residual stress evolution at three specific points within the RVE (see Fig. 6), as a

function of cure time, is plotted in Fig. 8. A summary of the computational models is presented in Table 5.

From Fig. 7, it is seen that successive refinement of the mesh leads to a converged solution in both the

3D-FE and CUF models. The coarsest models significantly underestimate the compressive stresses that develop

at the point P1, which is the matrix region between two neighboring fibers, and thus a zone of considerable

stress concentration within the RVE. This can be observed in Fig. 8a, where the ‘ABQ - Mesh 1’ and ‘CUF -

678 L4’ models both predict similar magnitudes of the developed residual stress, which is in strong contrast to

that predicted by the more refined models. On the other hand, considering the stress evolution at the point P2

(see Fig. 8b), it is seen that all the model predictions are in good general agreement. This is attributed to the



(b) ABQ - Mesh 2 (8,828 C3D8T) (c) ABQ - Mesh 3 (17,070 C3D8T)(a) ABQ - Mesh 1 (3,178 C3D8T)

(d) CUF - 678 L4 (e) CUF - 891 L4 (f) CUF - 454 L9

Figure 7: Distribution of residual stress (22-component) in the 20-fiber RVE at the end of cure.

(a) P1 (b) P2 (c) P3

Figure 8: Evolution of residual stress (22-component) as a function of cure time.



fact that the point P2 is situated in a matrix-rich region, and the absence of any stress concentrator implies

the sufficiency of a lower mesh density. Finally, examining the residual stress evolution at the point P3 (see

Fig. 8c), it is seen that the coarsest 3D-FE model, i.e. ‘ABQ - Mesh 1’, underestimates the post-cure stress

magnitude, and while this is not as inaccurate as in the case of Point P1, still has a considerable error with

respect to the refined models. This is explained by the fact that the Point P3 lies in the immediate vicinity of

a single fiber which acts as a stress concentrator. The trends observed in the behavior of the ‘ABQ - Mesh 1’

model at the points P1, P2 and P3 is therefore consistent with the level of stress concentration experienced by

the matrix at these points. It is noted that the corresponding coarsest CUF model, i.e. ‘CUF - 678 L4’, predicts

a post-cure residual stress which is in good agreement with that reported by refined models, at the Point P3,

inferring that the coarsest CUF model performs better than the corresponding 3D-FE model.

Considering the significant variation in stress concentration at different points within the RVE, which is

a consequence of the randomly distributed fibers, any numerical model would require a refined discretization

of the matrix component in order to accurately predict the post-cure residual stresses. The ‘ABQ - Mesh 2’

model is the coarsest 3D-FE model whose results are sufficiently accurate, based on the mesh convergence study.

The corresponding CUF model, with an equivalent quality of predicted results, is the ‘CUF - 891 L4’ model.

Comparing the computational costs associated with these two models, see Table 5, it is seen that the CUF

approach is approximately 10x as fast as the 3D-FE case, and is over 7x smaller in computational size based on

the number of DOF within the models. An important observation is that the computational efficiency of CUF

over 3D-FE, when the model domain is increased from a single-fiber RUC to a 20-fiber RVE, correspondingly

increases from approximately 4x to 10x, indicating the superior scalability of CUF. Finally, the ‘CUF - 454 L9’

model, while very accurate, has an unnecessarily excessive level of kinematic refinement, and the corresponding

higher computational cost therefore implies that a sufficiently refined L4 model (such as the ‘CUF - 891 L4’

model) is preferable over those based on L9, for the current class of problem. It is, however, noted that even the

‘CUF - 454 L9’ model is about 3.5x as fast as the most refined 3D-FE model, i.e. ‘ABQ - Mesh 3’, and is 6.8x

smaller in size, demonstrating the computational efficiency of the CUF approach over conventional 3D-FEA.

Table 5: Summary of the numerical models used in the process simulation of the 20-fiber RVE.

Model No. of elements DOF Analysis Time [s]

Abaqus - Mesh 1 3,178 C3D8T 19,911 352
Abaqus - Mesh 2 8,828 C3D8T 54,447 830
Abaqus - Mesh 3 17,070 C3D8T 104,403 1622
CUF - Mesh 1 678 L4 5,728 55
CUF - Mesh 2 891 L4 7,432 85
CUF - Mesh 3 454 L9 15,400 463



4 M a c r o s c al e E x p e ri m e n t al V ali d a ti o n

4 . 1 P r o c e s s m o d eli n g of [ 02 / 9 0 2 ] fl a t l a mi n a t e
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T h e m a t e ri al pr o p e r ti e s of A S 4 c a r b o n fi b e r a n d E P O N 8 6 2 / W r e si n h a v e b e e n li st e d i n T a bl e 6 a n d T a bl e 7,

r e s p e cti v el y, w hil e t h e c ur e ki n eti c s p a r a m et e r s f o r t h e E P O N 8 6 2 / W i s s u m m a ri z e d i n T a bl e 8.

T h e C U F m o d el of t h e t e st g e o m etr y, i n cl u di n g b o t h t h e al u mi n u m t o ol a n d t h e c o m p o sit e l a mi n a t e, i s

s h o w n s c h e m a ti c all y i n Fi g. 9 ( b). T h e t o ol / p a r t i nt e rf a c e i s m o d el e d a s a s h e a r l a y e r c o n si sti n g of a si n gl e l a y e r

of el e m e nts. T h e e ntir e g e o m etr y i s m o d el e d al o n g t h e x- a xi s u si n g 1 4 li n e a r B 2 el e m e nts. T h e t o ol a n d s h e a r

l a y e r c r o s s- s e cti o n s ( y- z pl a n e) a r e m o d ell e d u si n g 1 4 li n e a r L 4 el e m e nts e a c h, w hil e t h e c o m p o sit e l a mi n a t e

s e cti o n i s di s c r eti z e d wit h 1 6 L 4 li n e a r el e m e nts. Pli e s wit h t h e s a m e o ri e nt a ti o n h a v e b e e n m o d el e d u si n g

a si n gl e s e cti o n el e m e nt i n t h e t hi c k n e s s dir e cti o n ( z- a xi s). D uri n g t h e c uri n g pr o c e s s, t h e b o tt o m s urf a c e of

t h e t o ol i s f ull y c o n str ai n e d, a n d a t e m p e r a t ur e b o u n d a r y c o n diti o n i s pr e s c ri b e d o n it a c c o r di n g t o t h e c ur e

c y cl e d e s c ri b e d i n R ef. [ 5 7]. S y m m etr y c o n diti o n s a r e a p pli e d o n t h e c o m p o sit e p a r t d uri n g t h e t o ol r e m o v al

pr o c e d ur e.
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( a )  Fl a t l a mi n a t e s c h e m a ti c

Fi g u r e 9: ( a ) S c h e m a ti c r e p r e s e nt a ti o n of t h e [ 0 2 / 9 0 2 ] fl a t l a mi n a t e wi t h t o ol, ( b ) C U F m o d el u s e d i n t h e m a c r o- s c al e
p r o c e s s a n al y si s.

T h e d e s c ri b e d C U F m o d el i s u s e d t o p e rf o r m t h e c uri n g si m ul a ti o n, a n d s u b s e q u e ntl y, t h e t o ol r e m o v al st e p

t o e v al u a t e t h e fi n al w a r p e d pr o fil e of t h e l a mi n a t e. T h e v e r ti c al d e fl e cti o n ( u z ) di stri b uti o n of t h e l a mi n a t e i s

vi s u ali z e d a s a c o nt o ur pl o t i n Fi g. 1 0 a. T h e pr e di ct e d C U F s ol uti o n i s c o m p a r e d wit h r ef e r e n c e e x p e ri m e nt al

a n d n u m e ri c al d a t a fr o m [ 5 7], a n d i s pr e s e nt e d i n Fi g, 1 0 b.

T h e o bt ai n e d r e s ults s h o w e x c ell e nt a g r e e m e nt b et w e e n m o d eli n g e ff o r ts a n d e x p e ri m e nt al r e s ults pr o vi d e d

b y [ 5 7], a n d s e r v e s a s a v ali d a ti o n c a s e f o r t h e pr o p o s e d n u m e ri c al a p pr o a c h. N u m e ri c al pr e di cti o n s s u g g e st t h a t



Table 6: Elastic and thermal material properties of AS4 carbon fiber [57].

Material Property Value

Density ρf 1790.0 [kg/m3]

Axial modulus Ef
11 231.0 [GPa]

Transverse modulus Ef
22, E

f
33 15.0 [GPa]

In-plane Poisson’s ratio νf12, ν
f
13 0.27 [−]

Out-of-plane Poisson’s ratio νf23 0.25 [−]

In-plane shear modulus Gf
12, G

f
13 24.0 [GPa]

Out-of-plane shear modulus Gf
23 5.01 [GPa]

Axial coefficient of thermal expansion (CTE) αf
11 -9.0E-7 [K−1]

Transverse CTE αf
22, α

f
33 7.2E-6 [K−1]

Axial thermal conductivity κf
11 6.83 [W/mK]

Transverse thermal conductivity κf
22, κ

f
33 2.18 [K−1]

Specific heat cfp 1134.0 [J/kgK]

Table 7: Elastic and thermal material properties of EPON 862/W epoxy resin [57].

Material Property Value

Density ρm 1300.0 [kg/m3]
Elastic modulus Em 2230.0 [MPa]
Poisson’s ratio νm 0.36 [MPa]
Coefficient of thermal expansion αm 1.85E-4 [K−1] (above Tg)

7.78E-5 [K−1] (below Tg)
Coefficient of chemical shrinkage βm 0.111 [−]
Thermal conductivity κm 0.148 [W/mK]
Specific heat cmp 1219.0 [J/kgK]

accurate evolution of the thermo-mechanical properties are fundamental to enhance the prediction of residual

stress and strain after demolding. The same numerical assessment has been repeated, considering the RIM

R135/H1366 epoxy system (see Section 2.1). Figure 11 shows results of the process modeling simulations for

the RIM R135/H1366 flat laminate virtually manufactured using the proposed approach.
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Figure 10: (a) CUF prediction of the vertical deflection of the EPON 862/W flat laminate after the curing and tool-
removal process (5x scale-factor), and (b) Comparison of CUF predictions of the maximum deflection with reference
experimental and numerical data [57].



Table 8: Cure kinetics parameters for EPON 862/W epoxy resin [57].

Cure kinetic parameter Value

Exponent m 0.4 [−]
Exponent n 1.65 [−]
Rate constant A1 –
Rate constant A2 7098 [s−1]
Activation energy ∆E1 -
Activation energy ∆E2 5.5E4 [J ]

Figure 11: CUF prediction of the vertical deflection of the RIM R135/H1366 flat laminate after the curing and tool-
removal process (5x scale-factor).

5 Conclusion

A numerical approach based on the Carrera Unified Formulation (CUF) has been proposed for the curing

analysis of thermoset fiber-reinforced composites at the micro-scale, and the prediction of residual stresses that

develop during the cure cycle. A description of the thermoset process model and CUF structural modeling

is presented, along with an overview of their combination which is used to simulate the curing process for a

prescribed cure cycle. A set of numerical assessments has been considered as verification cases, where the CUF

approach is compared with reference 3D finite element models developed in Abaqus. The assessed cases include

a single-fiber repeating unit cell and a 20-fiber representative volume element, and demonstrate the accuracy

of the CUF models. It is also shown that CUF models exhibit an order-of-magnitude higher computational

efficiency – in terms of analysis time – than 3D-FE models, for comparable levels of accuracy. By comparing the

computational costs of the two numerical methods for the single-fiber RUC and 20-fiber RVE cases, it is seen that

CUF scales better than 3D-FEA as the structural size is increased. Such advantages, inherent to CUF, make it

a strong candidate in applications such as virtual manufacturing and testing with a multiscale resolution, which

fall under the scope of Integrated Computational Materials Engineering (ICME). The experimental validation

of the 0/90 laminate at the macroscale shows that accurate material characterization as function of time is

needed to predict residual stress in a computational efficient way within 9% accuracy.
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