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Large language models (LLMs) can complete general scientific question-and-answer, yet they are constrained by
their pretraining cut-off dates and lack the ability to provide specific, cited scientific knowledge. Here, we
introduce Network for Knowledge Organization (NEKO), a workflow that uses LLM Qwen to extract knowledge
through scientific literature text mining. When user inputs a keyword of interest, NEKO can generate knowledge
graphs to link bioinformation entities and produce comprehensive summaries from PubMed search. NEKO
significantly enhance LLM ability and has immediate applications in daily academic tasks such as education of
young scientists, literature review, paper writing, experiment planning/troubleshooting, and new ideas/hy-
pothesis generation. We exemplified this workflow’s applicability through several case studies on yeast
fermentation and cyanobacterial biorefinery. NEKO’s output is more informative, specific, and actionable than
GPT-4’s zero-shot Q&A. NEKO offers flexible, lightweight local deployment options. NEKO democratizes arti-
ficial intelligence (AI) tools, making scientific foundation model more accessible to researchers without excessive

computational power.

1. Introduction

Biomanufacturing has a potential US market of over 30 billion dol-
lars annually (2023 Government Accountability Office report). How-
ever, a primary challenge that needs urging solutions is the high cost to
develop cellular factories that meet commercially relevant performance.
Biological systems are complex and there are many important levers (e.
g. genetic regulations, enzyme functions, cellular metabolism, and
extracellular conditions) that need to be analyzed and tuned to engineer
a desired phenotype (i.e., design-build-test-learn cycles for bioprocess
development) (Liao et al., 2022). Therefore, a holistic knowledgebase
for bioprocess development is essential. Currently, vast amount of syn-
thetic biology and biomanufacturing literatures have been published. A
PubMed search of “synthetic biology or metabolic engineering” queries
generated ~125,000 publications, which offers wealthy bioinformation.
The pressing need for efficient knowledge integration has coincided
with the advent of large language models (LLMs) (Bai et al., 2023;
OpenAl, 2023), which now facilitate rapid text information processing.
Notably, recent advances in retrieval-augmented generation (RAG) have
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made LLMs powerful tools for information processing and knowledge
mining from text (Jiang et al., 2023; Lewis et al., 2020; Ni et al., 2024).
While general-purpose pretrained LLMs can provide answers to scien-
tific inquiries (Stribling et al., 2024), encapsulating infinite knowledge
within LLM’s finite parameter space remains an inherent challenge
(Martino et al.; Sun et al., 2023). Therefore, LLM needs a database and a
RAG pipeline to store and distillate factual knowledge. Knowledge
graphs have emerged as a promising solution, offering an intuitive
representation and knowledge synthesis that is interpretable by both
LLMs and humans (Pan et al., 2024; Yang et al., 2023). The synergy
between LLM and knowledge graph construction can help scientists
collect key information and make informed decisions on research.

This study introduces NEKO, a Knowledge Graph workflow to
enhance generative Al for extracting trustworthy knowledge from the
literature. Exemplified through case studies, NEKO demonstrates broad
applicability in data collections and information distillations from
diverse reliable sources (Fig. 1). First, NEKO helps scholars to quickly
inquire into a research topic or scientific question by combining,
distillate and organize information from multiple articles. Second,
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NEKO can solve logic problems and generate new ideas or hypothesis to
be tested by connecting key concepts and synthesizing holistic knowl-
edge from closely relevant articles. Third, it can help experiment plan-
ning and troubleshooting by presenting all past considerations in a
systematic way. Therefore, NEKO can not only accelerate the learning
and training process of synthetic biology researchers, but also assist
them to write literature review, prepare research proposal, and optimize
experimental design. NEKO is compatible with any instruction-
following LLM, including proprietary models like GPT-4 (from
OpenAl) (OpenAl, 2023) and open-source alternatives like Qwen (from
Alibaba) (Bai et al., 2023). Recently, the concept of foundation model
(Bommasani et al., 2021; Qin et al., 2023) becomes a new research in-
terest due to its specialized knowledge in various fields. NEKO is a
lightweight application that anyone can construct synthetic biology
foundation model according to specific needs. Developed using
beginner-friendly Python code, the entire workflow is readily accessible
via GitHub.

2. Methods

Code availability. The codes and examples used in this study are
deposited in this GitHub repository: https://github.com/xiao-zheng
yang/NEKO.

Web-based literature search. This workflow starts with online
literature search. This step is compatible with any web-based databases
with application programming interface (API) services. In this study, we
used PubMed and arXiv as examples. User of NEKO input a search
keyword into corresponding API, and the API would return the article
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title and abstract. The search result was saved in an article list excel file.
This workflow also applies to PDF files. After downloading research
articles in PDF, the files were read and divided into 1000 words seg-
ments. Then these texts were passed to the next step.

LLM text processing. LLMs were used to process the text from API
search or from downloaded PDFs. LLMs with strong retrieval augmented
generation (RAG) capabilities were recommended. In this study, we
demonstrated with Qwen1.5 (developed by Alibaba, China), but we also
provided codes compatible with GPT-4. Qwenl.5-72B-chat were
downloaded from Hugging Face and deployed on a high-performance
computing cluster with Nvidia A100 GPUs. The text from previous
step were sequentially input into LLM with the following system prompt:

“You are specialized for analyzing scientific paper abstracts, focusing
on identifying entities causal relationships related to biological
studies, such as performance, species, genes, methods of genetic
engineering, enzymes, proteins, and bioprocess conditions (e.g.,
growth conditions). You output the identified causal relationships
between entities in combination pairs. The output strictly follows the
format: (Entity A, Entity B), (Entity C, Entity D) ... with no additional
text.”

User can customize this prompt based on specific needs. This prompt
is a general prompt for synthetic biology studies. We also included a
specific prompt example focused on gene expression/deletion and cell
response in our GitHub page. The response from LLM was processed by
the Word2Vec method (Rong, 2014). A word embedding from
sentence-transformers (Reimers and Gurevych, 2019) was used to
identify and combine entities with same meanings. The processed lists of
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entities were saved and passed to the next step.

Knowledge graph visualization. Each pair of entities indicates
their causal relationship. An open-source Pyvis package (Perrone et al.,
2020) was used to construct knowledge graph. The nodes represent
entities, while edges (lines connecting nodes) are labeled as the article
title as citation/source.

Keyword search and summarization. After obtaining the
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knowledge graph, it is recommended to search for a keyword and filter
the knowledge graph for cleaner visualization. The entities/nodes
related to the search keyword were extracted and input into LLM for
summary report generation. LLMs with good reasoning ability, such as
GPT-4 and Qwen1.5-32B/72B, are recommended.

Problem solving and hypothesis generations. After obtaining
summary reports about relevant concepts, these reports were combined.

L 4 These are the terms related to Y. lipolytica 3-carotene
production, categorize them and write a summary report.

NEKO knowledge mining from >200 PDF files

Sample report: B-carotene production in Y. lipolytica

The terms provided are related to the field of metabolic engineering and synthetic biology, specifically
focusing on the optimization and enhancement of B-carotene production in microorganisms, particularly
Yarrowia lipolytica. -carotene is a precursor to vitamin A and has significant nutritional and
pharmaceutical importance. Here's a categorized summary of the key concepts:

1. Microbial Hosts: Mainly Yarrowia lipolytica, but also includes other species like Xanthophyllomyces
dendrorhous, Escherichia coli, Saccharomyces cerevisiae, and Blakeslea trispora, which are used as
platforms for p-carotene biosynthesis.

2. Genetic Modifications: Technigues such as gene deletion (ACLA4, AMHY 1), overexpression
(ERG13, ERGY, HMG, CarB, CarRP), promoter optimization, integration of multiple copies of pathway
genes, and introduction of heterologous genes (from Mucor circinelloides, cyanobacteria) are employed
fo enhance B-carotene production.

3. Pathway Genes and Enzymes: Key genes and enzymes involved in 3-carotene synthesis include
HMG, GGPS (Geranylgeranyl pyrophosphate synthase), cril criYB, criZ, phytoene dehydrogenase
(carB), and B-carotene ketolase (criVW).

4. Metabolic Engineering Strategies: These include nitrogen mitation, deletion of competing pathways
(beta-oxidation), overexpression of central metabolic modules, and manipulation of MVA (mevalonate)
and MEP (methylerythritol phosphate) pathways.

5. Fermentation Conditions: Factors like high glucose feeding rate, fed-batch fermentation, carbon-to-
nitrogen ratio, temperature regulation, and use of different media (YPD, synthetic medium, glucose,
xylose) are manipulated to optimize B-carotene production.

6. Yield and Titer: Achieved improvements are mentioned, such as a 49% increase in B-carotene titers,
272% increase in p-carotene production, and [(-carotene yields reaching ©.5 g/L.

7. Recombinant Strains and Transformation: Genetic engineering tools are used to create
recombinant strains, often through iterative integration or homologous recombination, to achieve higher
B-carotene content.

8. Bioreactors and Analytical Techniques: Flask cultures, fermentation broth, and [-carotene
extraction using solvents like acetone are mentioned, along with techniques like photometric
measurement, 2 3-oxidosqualene analysis, and carotenoid profiling.

9. Lipid and Metabolite Accumulation: [3-carotene sequestration in lipid bodies, lipid overproduction,
and sgualene overproduction are noted as strategies to enhance carotenoid accumulation.

10. Synthetic Biology Applications: Synthetic biology approaches are employed for pathway
engineering, promoter shuffling, and the creation of carotenoid platform strains.

Overall, these terms represent a comprehensive exploration of the strategies and technigues used to
improve [(-carotene production in microorganisms, highlighting the importance of metabolic engineering
and synthetic biology in optimizing bioconversion processes. The research focuses on strain optimization,
pathway manipulation, and fermentation conditions to maximize B-carotene yields while considering
factors like cellular stress response and morphological engineering.

Highlights: Quantifiable knowledge, Gene targets, Strain engineering strategies, Cultivation
conditions, Reliable sources and citations

Fig. 2. Compare NEKO and ChatGPT zero-shot Q&A. The topic is to write a summary of production of p-carotene in Y. lipolytica.

62




Z. Xiao et al. Metabolic Engineering 87 (2025) 60-67

® | Writea report about optimizing B-carotene production
R i, v /ipolytica.

user

ChatGPT Zero-shot direct Q&A

Producing B-carotene in Yarrowia lipolytica represents a compelling example of the application of metabolic engineering
and synthetic biology in microorganisms to produce high-value compounds. This report will delve into various aspects of
B-carotene production in Yarrowia lipolytica, including its significance, metabolic pathways involved, genetic engineering
strategies, cultivation conditions, and challenges faced in scaling up production.

1. Introduction to B-Carotene and Yarrowia lipolytica

B-Carotene is a highly valued carotenoid with widespread applications in the food, pharmaceutical, and cosmetic
industries due to its antioxidant properties and role as a vitamin A precursor. Yarrowia lipolytica is a non-conventional
yeast that has garnered attention as an efficient host for the production of various compounds, including lipids, citric acid,
and high-value carotenoids like B-carotene. lts ability to utilize a wide range of substrates, robustness in different
cultivation conditions, and well-characterized genetic background make it an attractive platform for metabolic engineering.
2. Metabolic Pathways for B-Carotene Synthesis

The biosynthesis of B-carotene in Yarrowia lipolytica invalves the mevalonate pathway for the synthesis of isoprenoid
precursors, which are then converted into B-carotene through several enzymatic steps. Key enzymes involved include
geranylgeranyl diphosphate synthase (GGPPS), phytoene synthase (PSY), phytoene desaturase (FDS), and lycopene B-
cyclase (LCY). Enhancing the flux through these pathways and balancing the expression levels of these enzymes are
crucial for optimizing pB-carotene production.

3. Genetic Engineering Strategies

Several genetic engineering strategies have been employed to increase B-carotene production in Yarrowia lipolytica:
Overexpression of Biosynthetic Genes: Targeted overexpression of genes involved in the B-carotene biosynthesis
pathway, suchas PSY, PDS, and LCY, has been shown to enhance production.

CRISPR/Cas9 Mediated Genome Editing: The CRISPR/Cas9 system has been utilized for precise genomic modifications,
including knockout of competing pathways and integration of biosynthetic gene clusters to increase B-carotene yield.
Promoter Engineering: Utilizing strong, constitutive, or inducible promoters to drive the expression of biosynthetic genes
has proven effective in optimizing production.

Metabolic Flux Analysis: Computational models to analyze and redirect metabolic flux towards B-carotene synthesis have
been developed, identifying bottlenecks and targets for genetic engineering.

4. Cultivation Conditions

Optimizing the cultivation conditions, such asthe carbon source, pH, temperature, and aeration, is essential for
maximizing B-carotene production. Yarrowia lipolytica can utilize a variety of carbon sources, including glucose, glycerol,
and industrial waste streams. Controlled batch, fed-batch, or continuous cultures under optimized conditions have been

developed to enhance yield and productivity.

5. Challenges and Future Perspectives

Scaling up B-carotene production in Yarrowia lipolytica to industrial levels poses several challenges:

Product Inhibition and Toxicity: High levels of B-carotene can be toxic to the cells or inhibit growth, necessitating
strategies to balance production and cell viability.

Economic Feasibility: The economic viability of the process depends on substrate cost, product yield, and the efficiency of
downstream processing. Utilizing low-cost substrates and improving extraction methods are key areas of research.
Regulatory and Safety Considerations: Meeting food and pharmaceutical grade standards for 3-carotene produced in
Yarrowia lipolytica requires thorough safety and regulatory assessment.

6. Conclusion

The production of B-carotene in Yarrowia lipolytica exemplifies the potential of metabolic engineering in creating
sustainable and economically viable bioprocesses for high-value compounds. Ongoing research and technological
advancements in genetic engineering, bioprocess optimization, and systems biology continue to unlock the potential of
Yarrowia lipolytica as a versatile platform for industrial biotechnology applications.

Fig. 2. (continued).

NEKO leverages the inference capabilities of LLMs to propose novel 3. Results

research plans and hypotheses. In the cyanobacterial nitrogen fixation

example, concepts of Anabaena sp. nitrogen fixation and common bio- NEKO (Fig. 1a) is a generative Al tool which can be a companion for
fertilizer formulation were input to Qwenl.5-72B. The LLM inference synthetic biology researchers. Using Y. lipolytica PubMed abstract
gives a brief description of potential research directions and hypotheses, knowledge mining as a demonstration (Fig. 1b), we plotted all infor-
which are evaluated by human researchers. mation on a single knowledge graph. We identified two main regions:

the core knowledge region at the center, which encapsulates common
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research topics and interconnected knowledge from various articles,
critical for tasks such as process optimization and scale-up in bio-
production applications. The peripheral knowledge region contains
fewer common topics. Researchers are encouraged to integrate this pe-
ripheral knowledge with the core by conducting experiments. We
demonstrated NEKO’s applicability in academic tasks through several
case studies (Fig. 1C). This method of augmenting LLM with existing
academic infrastructure is a more economical choice. Users can locally
deploy NEKO and quantized LLM even on consumer-level desktops, with
as little as 24 GB GPU RAM (Nvidia RTX 3090 or 4090). Compared to
pretraining science LLM, NEKO saves tremendous time and monetary
costs (Fig. 1d).

We choose Qwen as an example LLM in this study due to its excep-
tional Retrieval Augmented Generation (RAG) ability. With 14B pa-
rameters, Qwen can achieve comparable RAG score as GPT-4
(QwenTeam, 2024). The use of local LLM is more economical and safer
for copyright materials. It can bypass the request rate limitation of
OpenAl APL. Interestingly, during our practical deployment of NEKO, we
found that Qwenl.5 is as good as GPT-4 in terms of instruction
following, scientific reasoning, and the comprehensiveness of responses.
To date, there was few Qwen application journal articles, leading us to
conclude that Qwenl.5 is an underappreciated yet reliable LLM for
practical applications. The field of LLM/AI is evolving very fast. During
publishing our article, Qwen2.5 was released with better RAG capabil-
ities compared to its predecessor (Yang et al., 2024). User can easily
substitute new LLM using the same Hugging Face transformers
framework.

3.1. Case study 1: knowledge acquisition and distillation on f-carotene
production in Y. Lipolytica

NEKO can help researchers quickly acquire up-to-date knowledge
about one research topic. To illustrate, NEKO rapidly read more than
200 research articles in PDF files and produce a knowledge base for the
oleaginous yeast Y. lipolytica. When searching for f-carotene production
in Y. lipolytica, NEKO’s analysis pinpointed relevant nodes, with the
summary presented in Fig. 2. NEKO also produced a knowledge graph
illustrating the connections between knowledge entities (Fig. S1). Users
can click one line connecting two nodes and view the title of the article
containing the knowledge connection. Compared to ChatGPT-4 zero-
shot Q&A, NEKO gave 200% more gene targets, 200% more strain en-
gineering strategies, and 57% more bioprocess cultivation conditions,
with knowledge from 37 reliable peer-reviewed sources (Table 1). We
also did a negative control by using base LLM Qwenl.5 to write a
summary about f-carotene production in Y. lipolytica (Fig. S2). Qwenl.5
only gave general optimization suggestions like GPT-4 did. This dem-
onstrates that without NEKO knowledge mining workflow, the LLM does
not has specific knowledge about f-carotene production. NEKO aug-
ments the LLM by providing a light-weight knowledge database.

Another information-intensive academic task is experiment planning
and troubleshooting. We illustrate this through NEKO’s ability to syn-
thesize experiment procedures and actionable insights. For example,
when aiming to genetically engineer Y. lipolytica, user needs to obtain
the procedures for strain transformation. NEKO provided a detailed,
step-by-step methodological guidance (Fig. S3), including specific DNA
amount used (2 pg), procedure name (LiAc or electroporation), selection

Table 1
Compare NEKO and ChatGPT zero-shot Q&A.

NEKO workflow GPT-4 zero-shot Q&A

Quantifiable knowledge 3 0
Gene targets 12 4
Strain engineering strategies 12 4
Cultivation conditions 11 7
Reliable sources and citations 37 0
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markers (hygromycin resistance or ura3d4 defective allele), etc. Take
another example, assume the user is having trouble expressing GGPPS,
an essential enzyme in p-carotene synthesis pathway. NEKO can search
for information regarding to GGPPS and compile a report with sugges-
tions to troubleshoot this scenario (Fig. S4). We noticed that GPT-4’s
suggestions were heavily templated. When given another f-carotene
production gene CarRP (Fig. S5), GPT-4’s suggestions were very similar
to GGPPS’s case. Contrasting NEKO’s outputs with GPT-4’s templated
responses highlighted NEKO’s ability to generate pertinent suggestions
based on mined knowledge.

3.2. Case study 2: literature review of non-model species Rhodosporidium
toruloides

Literature review is one of the time-consuming academic tasks, and
we demonstrated NEKO’s quick application in review paper writing in
this case study. Rhodosporidium toruloides is gaining research attention
recently for its high lipid content and native carotenoid production. We
applied NEKO to R. toruloides article abstracts (total 392 articles) on
PubMed. By visualizing the knowledge graph and comparing with
Y. lipolytica (Fig. S6), R. toruloides literature is still at its early stage of
research. The knowledge from studies is disconnected from each other.
After LLM summarization (Fig. 3 and Fig. S7), NEKO identified trending
research areas, including genetic engineering, metabolic pathway,
adaptive evolution experiments, and biochemical production. More-
over, NEKO enables users to refine their searches by specifying target
products. For instance, focusing on lipid production yielded a detailed
breakdown of the research topic (Fig. S8). NEKO excels at providing
details like strain engineering gene targets and fermentation conditions.
Overall, NEKO provides a framework for users to organize the knowl-
edge and structure their review paper writing. By further inspecting the
article list and entity list, users can produce rich and precise literature
study.

3.3. Case 3: hypotheses generation and new theory for exploration

Being able to summarize literature information is part of a competent
synthetic biology foundation model. In this case study, we demonstrate
that LLM can do inference and propose new hypotheses given relevant
concepts. In essence, relevant concepts were “prompts” for LLM to
generate new experiment plan. For example, we are interested in engi-
neering a nitrogen-fixing cyanobacteria Anabaena sp. to produce gua-
nidine and urea as bio-fertilizers. We combined relevant concepts of
Anabaena sp. nitrogen fixation and common bio-fertilizer formulations.
The LLM Qwenl.5-72B can do inference and write a brief research
proposal and experiment plan (Fig. 4, Fig. S9). Interestingly, same as our
research plan, this workflow correctly identified gene targets as nitro-
genase, arginine decarboxylase (ethylene-forming enzyme), and urease.
Compared to GPT-4 zero-shot Q&A in Fig. S10, NEKO pointed out that
urea and guanidine are more stable than ammonia, and they are suitable
for long term storage and transportation. The proposed experiments for
cyanobacterial production of guanidine are detailed, incorporating tools
like CRISPR-Cas9, metabolic engineering, and dynamic expression
control systems. In terms of project deliverables, NEKO’s report had a
thorough plan that includes in vitro and in vivo characterization, field
trials, and an economic/environmental evaluation, offering a more ho-
listic project design than GPT-4’s zero-shot Q&A.

4. Discussion

NEKO can compile massive literature reports, fill knowledge gap,
remove redundant data, and connect information streams, which can be
used to collect both features and targets from literature for developing
standardized datasets (Xiao et al., 2023). NEKO can be widely used for
Synthetic biology research. It distinguishes itself from other
knowledge-based Q&A platforms by overcoming the context length
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limitations of LLMs without directly reading article texts. All NLP tools
used in this study are off-the-shelf, without the need for pretraining.
NEKO is compatible with any LLM, although the effectiveness is influ-
enced by the LLM’s ability to follow instructions and its RAG capabil-
ities. Generally, LLMs with a higher number of parameters tend to
perform better in identifying causal relationships and generating logical
summary reports. When using Qwen1.5-72B running on 4*A100 GPUs,
NEKO can process about 300 PubMed abstracts in 1 h. It seems that GPU
memory (GPU RAM) and CPU computation are the limiting factors. If
using GPT-4, user’s API request rate is subject to OpenAl policies. Our
preliminary findings indicate that NEKO typically offers more factual
information compared to GPT-4. However, users are advised to verify
important information. We also applied this workflow to other disci-
plines such as computer science. By modifying the knowledge mining
prompt, NEKO was capable of produce a mini review of recent knowl-
edge retrieval studies on arXiv (Fig. S11). In general, NEKO works with
any online article database with API services. Users need to modify the
knowledge mining prompt based on their specific needs.

As academic research grows in complexity and increasingly spans
multiple disciplines, researchers are investing substantial time in liter-
ature review and knowledge acquisition. NEKO addresses this challenge
by streamlining literature study tasks, enabling knowledge synthesis
from literature (Kastner et al., 2012; Whittemore et al., 2014). This trend
towards continuously interacting research with LLM represents a new
common. We envision a roadmap for three tiers of science Al and LLM
knowledge synthesis (Fig. 5). Currently most pretrained LLMs are at tier
2, and they can answer general scientific questions based on pretraining
text corpus. NEKO is at tier 1. It can output summary reports based on
literature search and give reliable cited knowledge. To some extent, it
can help guide experiments in the physical world. It serves as a “human
prompter” by brainstorming potential experiment plans. The top tier O is
one of the ultimate development goals for science foundation models,
which can provide quantitative feasibility score based on human eval-
uation and experiment feedback. However, there are challenges asso-
ciated with this goal. First, data generated by experiments are
multi-modal, and it is difficult to integrate multi-omics datasets by
text LLM only (Bi et al., 2024; Xu et al., 2024). Multi-modal LLM should
be able to process images, videos, and data plots, minimizing manual
efforts for data curation. Second, the inherent variability of experiment
(Gilman et al.,, 2021) requires standardized workflow to facilitate
effective feedback loops between practical research and LLM inferences.
Third, biological systems are chaotic and subject to the influence of
experiment initial conditions (Elowitz et al., 2002; Paulsson, 2005; Raj
and Van Oudenaarden, 2008), so the notion of creating an omniscient Al
Laplace’s demon is not feasible. A pragmatic approach acknowledges
these limitations, focusing on the integration of Al within a defined set of
constraints and assumptions. The key is to integrate knowledge mining
workflow with physical world, and NEKO provides a lightweight
deployment example for integrating LLM with routine education and
academic tasks. During the drafting of our article, Microsoft released
GraphRAG, a state-of-the-art knowledge graph generation tool. While
NEKO and GraphRAG share similar concepts, we emphasize NEKO’s
simplicity and its advantage for local deployment. NEKO’s simplicity
brings trustworthiness and all steps in the workflow is fully traceable.
More importantly, GraphRAG or OpenAl are not easily accessible in
certain countries (e.g., China). In contrast, NEKO uses an open source
LLM Qwen, which may serve broader synthetic biology community with
low costs.

5. Conclusion

NEKO is a low-cost and in-house pipeline for knowledge graph
construction. It improves LLM performance by extracting synthetic
biology information and connecting relevant knowledge entities from
the literature. NEKO also shows potentials to design synthetic biology
experiments and generate new research hypotheses. In the future, we
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Tier 0: Model can provide quantitative feasibility score
based on human evaluation and experiment feedback.

/‘ Tier 1: Model can summarize literature information and

conduct LLM inference to provide experiment plans.

Tier 2: Model can answer general scientific
questions based on LLM pretraining text corpus.

T2

Fig. 5. Proposed science Al and LLM knowledge synthesis roadmap.

will test this knowledge mining workflow coupled with experiment
feedback, facilitating design-build-test-learn (DBTL) cycles and offering
a foundation model for synthetic biology applications.

CRediT authorship contribution statement

Zhengyang Xiao: Writing - original draft, Visualization, Software,
Methodology, Investigation, Formal analysis, Data curation. Himadri B.
Pakrasi: Writing — review & editing, Supervision, Project administra-
tion, Funding acquisition, Conceptualization. Yixin Chen: Writing —
review & editing, Project administration, Funding acquisition, Concep-
tualization. Yinjie J. Tang: Writing — review & editing, Supervision,
Resources, Project administration, Funding acquisition,
Conceptualization.

Conflict of interest statement
The authors declare no conflict of interest.
Acknowledgements

This study is funded by United States NSF award number 2225809
and DOE Energy Earthshots award number DE-SC0024702.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ymben.2024.11.006.

Data availability
Data will be made available on request.

References

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan, Y., Ge, W., Han, Y., Huang, F.,
2023. Qwen Technical Report. arXiv Preprint arXiv:2309.16609.

Bi, Z., Dip, S.A., Hajialigol, D., Kommu, S., Liu, H., Lu, M., Wang, X., 2024. Al for
biomedicine in the era of large language models. arXiv preprint arXiv:2403.15673.

Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M.
S., Bohg, J., Bosselut, A., Brunskill, E., 2021. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258.

Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S., 2002. Stochastic gene expression in
a single cell. Science 297, 1183-1186.

Gilman, J., Walls, L., Bandiera, L., Menolascina, F., 2021. Statistical design of
experiments for synthetic biology. ACS Synth. Biol. 10, 1-18.

Jiang, Z., Xu, F.F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., Yang, Y., Callan, J.,
Neubig, G., 2023. Active Retrieval Augmented Generation arXiv preprint arXiv:
2305.06983.

Kastner, M., Tricco, A.C., Soobiah, C., Lillie, E., Perrier, L., Horsley, T., Welch, V.,
Cogo, E., Antony, J., Straus, S.E., 2012. What is the most appropriate knowledge
synthesis method to conduct a review? Protocol for a scoping review. BMC Med. Res.
Methodol. 12, 1-10.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler, H.,

Lewis, M., Yih, W.-t., Rocktaschel, T., 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Adv. Neural Inf. Process. Syst. 33, 9459-9474.

Liao, X., Ma, H., Tang, Y.J., 2022. Artificial intelligence: a solution to involution of
design-build-test-learn cycle. Curr. Opin. Biotechnol. 75, 102712.

Martino, A., Iannelli, M., Truong, C., Knowledge Injection to Counter Large Language
Model (LLM) Hallucination. Springer, pp. 182-185.


https://doi.org/10.1016/j.ymben.2024.11.006
https://doi.org/10.1016/j.ymben.2024.11.006
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref1
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref1
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref2
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref2
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref3
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref3
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref3
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref4
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref4
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref5
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref5
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref6
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref6
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref6
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref7
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref7
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref7
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref7
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref8
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref8
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref8
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref9
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref9

Z. Xiao et al.

Ni, S., Bi, K., Guo, J., Cheng, X., 2024. When do LLMs need retrieval augmentation?
Mitigating LLMs’ overconfidence helps retrieval augmentation. arXiv preprint arXiv:
2402.11457.

OpenAl, 2023. GPT-4 Technical report. arXiv preprint. 2303.08774.

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X., 2024. Unifying large language
models and knowledge graphs: a roadmap. IEEE Trans. Knowl. Data Eng.

Paulsson, J., 2005. Models of stochastic gene expression. Phys. Life Rev. 2, 157-175.

Perrone, G., Unpingco, J., Lu, H.-m., 2020. Network Visualizations with Pyvis and VisJS
arXiv preprint arXiv:2006.04951.

Qin, Y., Hu, S., Lin, Y., Chen, W., Ding, N., Cui, G., Zeng, Z., Huang, Y., Xiao, C., Han, C.,
2023. Tool Learning with Foundation Models arXiv preprint arXiv:2304.08354.

QwenTeam, 2024. Introducing Qwenl1.5. https://qwenlm.github.io/blog/qwen1.5/.

Raj, A., Van Oudenaarden, A., 2008. Nature, nurture, or chance: stochastic gene
expression and its consequences. Cell 135, 216-226.

Reimers, N., Gurevych, 1., 2019. Sentence-bert: Sentence Embeddings Using Siamese
Bert-Networks arXiv preprint arXiv:1908.10084.

Rong, X., 2014. word2vec parameter learning explained. arXiv preprint arXiv:
1411.2738.

67

Metabolic Engineering 87 (2025) 60-67

Stribling, D., Xia, Y., Amer, M.K., Graim, K.S., Mulligan, C.J., Renne, R., 2024. The model
student: GPT-4 performance on graduate biomedical science exams. Sci. Rep. 14,
5670.

Sun, K., Xu, Y.E., Zha, H., Liu, Y., Dong, X.L., 2023. Head-to-tail: How knowledgeable are
large language models (1lm)? AKA will llms replace knowledge graphs? arXiv
preprint arXiv:2308.10168.

Whittemore, R., Chao, A., Jang, M., Minges, K.E., Park, C., 2014. Methods for knowledge
synthesis: an overview. Heart Lung 43, 453-461.

Xiao, Z., Li, W., Moon, H., Roell, G.W., Chen, Y., Tang, Y.J., 2023. Generative artificial
intelligence GPT-4 accelerates knowledge mining and Machine learning for synthetic
biology. ACS Synth. Biol. 12, 2973-2982.

Xu, X., Li, J., Zhu, Z., Zhao, L., Wang, H., Song, C., Chen, Y., Zhao, Q., Yang, J., Pei, Y.,
2024. A comprehensive review on synergy of multi-modal data and AI Technologies
in Medical Diagnosis. Bioengineering 11, 219.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., Li, C., Li, C., Liu, D., Huang, F.,
2024. Qwen2 Technical Report arXiv preprint arXiv:2407.10671.

Yang, L., Chen, H., Li, Z., Ding, X., Wu, X., 2023. Chatgpt is not enough: Enhancing large
language models with knowledge graphs for fact-aware language modeling. arXiv
preprint arXiv:2306.11489.


http://refhub.elsevier.com/S1096-7176(24)00148-4/sref11
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref11
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref11
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref12
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref13
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref13
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref14
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref15
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref15
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref16
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref16
https://qwenlm.github.io/blog/qwen1.5/
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref18
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref18
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref19
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref19
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref20
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref20
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref21
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref21
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref21
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref22
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref22
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref22
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref23
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref23
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref24
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref24
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref24
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref25
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref25
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref25
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref26
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref26
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref27
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref27
http://refhub.elsevier.com/S1096-7176(24)00148-4/sref27

	Network for knowledge Organization (NEKO): An AI knowledge mining workflow for synthetic biology research
	1 Introduction
	2 Methods
	3 Results
	3.1 Case study 1: knowledge acquisition and distillation on β-carotene production in Y. Lipolytica
	3.2 Case study 2: literature review of non-model species Rhodosporidium toruloides
	3.3 Case 3: hypotheses generation and new theory for exploration

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Conflict of interest statement
	Acknowledgements
	Appendix A Supplementary data
	datalink5
	References


