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ARTICLE INFO ABSTRACT

Dataset link: hitps://physionet.org/content /cxr Many real-world image recognition problems, such as diagnostic medical imaging exams, are “long-tailed” —
-It-icev-workshop-cvamd/1.1.0/ there are a few common findings followed by many more relatively rare conditions. In chest radiography,
o - diagnosis is both a long-tniled and multi-label problem, as patients often present with multiple findings

simultaneously, While researchers have begun to study the problem of long-tailed leaming in medical image

Chest X-ra;
mg'mﬂeglﬂ ning recognition, few have studied the interaction of label imbalance and label co-occurrence posed by long-
Computer-aided diagnosis tailed, multi-label disease classification. To engage with the research community on this emerging topic, we

conducted an open challenge, CXR-LT, on long-tailed, multi-label thorax disease classification from chest
X-rays (CXRs). We publicly release a largescale benchmark dataset of over 350,000 CXRs, each labeled
with at least one of 26 clinical findings following a long-tailed distribution. We synthesize common themes
of top-performing solutions, providing practical recommendations for long-tailed, multi-label medical image
classification. Finally, we use these insights to propose a path forward involving vision-language foundation
models for few- and zero-shot disease classification.
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G. Holste et al
1. Introduction

Like many diagnostic medical exams, chest X-rays (CXRs) vield a
long-tailed distribution of clinical findings. This means that while a
small subset of diseases are routinely observed, the majority are quite
rare (Zhou et al,, 2021). This long-tailed distribution challenges con-
ventional deep learning methods, as they tend to favor common classes
and often overlook the infrequent yet crucial classes. In response,
several methods (Zhang et al, 2023b) have been proposed lately with
a focus on addressing label imbalance in long-tailed medical image
recognition tasks (Zhang et al., 2021a; Juet al, 2021, 2022; Yang et al.,
2022). Of note, diagnosing from CXRs is not only a long-tailed problem,
but also multi-label, since patients often present with multiple disease
findings simultaneously. Despite this, only a limited number of studies
have incorporated knowledge of label co-occurrence into their learning
process (Chen et al., 2020; Wang et al,, 2023; Chen et al., 2019a).

Owing to the fact that most large-scale image classification bench-
marks feature single-label images with a predominately balanced label
distribution, we establish a new benchmark for long-tailed, multi-label
medical image classification. Specifically, we expanded the MIMIC-
CXR (Johnson et al.,, 2019a) dataset by increasing the set of target
disease findings from 14 to 26. This is achieved by introducing 12 new
disease findings by parsing the radiology reports associated with each
CXR study.

In our effort to engage with the community on this emerging inter-
disciplinary topic, we have released the data and launched the CXR-LT
challenge on long-tailed, multi-label thorax disease classification on
CXRs. In this paper, we summarize the CXR-LT challenge, consolidate
key insights from top-performing solutions, and offer practical perspec-
tive for advancing long-tailed, multi-label medical image classification.
Finally, we use our findings to suggest a path forward toward few- and
zero-shot disease classification in the long-tailed, multi-label setting by
leveraging multimodal foundation models.

Our contributions can be summarized as follows:

1. We have publicly released a large multi-label, long-tailed CXR
dataset containing 377,110 images. Each image is labeled with
one or multiple labels from a set of 26 disease findings. In addi-
tion, we have provided a “gold standard” subset encompassing
human-annotated consensus labels.

2. We conducted CXR-LT, a challenge for long-tailed, multi-label
thorax disease classification on CXRs. We summarize insights
from top-performing teams and offer practical recommendations
for advancing long-tailed, multi-label medical image classifica-
tion.

3. Based on the insights from CXR-LT, we propose a methodological
path forward for few- and zero-shot generalization to unseen
disease findings via multimodal foundation models.

2. Methods
2.1. Dataset curation

In this section, we detail the data curation process of two datasets:
(i) the CXR-LT dataset used in the challenge, and (i) a manually
annotated “gold standard” test set used for additional evaluation of
top-performing solutions after the conclusion of the challenge.

2.1.1. CXR-LT dataset

The CXR-LT challenge dataset' was created by extending the label
set of the MIMIC-CXR dataset’ (Johnson et al., 2019a), resulting in a
more challenging, long-tailed label distribution. MIMIC-CXR is a large-
scale, publicly available dataset of de-identified CXRs and radiology

1 https://physionet.org/content/cxr-lt-icev-workshop-cvamd /1.1.0/.
2 https://physionet.org/content/mimic-cxr/2.0.0/.
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reports. The dataset contains a total of 377,110 frontal and lateral
CXR images acquired from 227,835 studies conducted during routine
clinical practice at the Beth Israel Deaconess Medical Center (Boston,
Massachusetts, USA) emergency department from 2011-2016.

Following Holste et al. (2022), the radiology reports associated
with each CXR study were parsed via RadText (Wang et al., 2022), a
radiology text analysis tool, to extract the presence status of 12 new
rare disease findings: (1) Calcification of the Aorta, (2) Emphysema, (3)
Fibrosis, (4) Hemnia, (5) Infiltration, (6) Mass, (7) Nodule, (8) Pleural
Thickening, (9) Pneumomediastinum, (10) Pneumoperitoneum, (11)
Subcutaneous Emphysema, and (12) Tortuous Aorta. These particular
findings were selected by (i) identifying diseases found in the NIH
ChestXRay dataset (Wang et al.,, 2017) labels that were not present
in the MIMIC-CXR labels and (ii) discussing with radiologists which
findings might be important to include that were not captured by
existing public CXR datasets. The latter point led to the inclusion of
Calcification of the Aorta and Tortuous Aorta (cardiac findings) as
well as Pneumomediastinum, Pneumoperitoneum, and Subcutaneous
Emphysema (trapped air in undesirable cavities or under the skin).

The resulting dataset consisted of 377,110 CXRs, each labeled with
at least one of 26 disease findings following a long-tailed distribu-
tion (Fig. 1). Though MIMIC-CXR contained the images and text re-
ports needed for additional labeling, we used images from the MIMIC-
CXR-JPG dataset (Johnson et al, 2019b) in this challenge since the
preprocessed JPEG images (~600 GB) would be more accessible to
participants than the raw DICOM data (~4.7 TB) provided in MIMIC-
CXR.” Finally, the dataset was randomly split into training (70%),
development (10%), and test sets (20%) at the patient level to avoid
label leakage. Challenge participants would have access to all images,
but only have access to labels for the training set.

2.1.2. Gold standard test set

While the CXR-LT dataset is large and challenging due to heavy
label imbalance and label co-occurrence, it inevitably suffers from
label noise much like other datasets with automatically text-mined
labels (Abdalla and Fine, 2023). To remedy this, we aimed to construct
a “gold standard” set, derived from the challenge test set, with labels
that were manually annotated after analyzing the radiology reports.
This smaller, but higher quality, dataset would then be used as an
auxiliary test set to perform additional evaluation of the top-performing
CXR-LT solutions after the conclusion of the challenge.

To build a gold standard set for evaluation, we first curated a
sample of test set reports with at least two positive disease findings
as determined by RadText. This was necessary to ensure a sufficient
number of positive examples for tail classes; given the extreme rarity
of certain findings (as low as 0.2% prevalence), a random sample of
several hundred reports may not even yield a single instance of several
rare findings, prohibiting proper performance evaluation. A subset of
451 such reports were manually annotated by six human readers, who
marked the presence or absence of the 26 disease findings in each
radiology report. Before manual labeling, all reports were preprocessed
through RadText (Wang et al, 2022) to identify and highlight all
relevant disease mentions in the text in order to ease the annotation
process. Each annotator was then provided with the reports and a list
of synonyms for each of the 26 findings. Annotators were asked to
select all disease findings that were conclusively affirmed positive in the
report. Following MIMIC-CXR, annotators could select “No Finding” if
no other findings (except “Support Devices™) were present.

Before annotation, a training session was held to align the stan-
dards among annotators where each annotator practiced by labeling
10 reports. Any disagreements in this phase were discussed until con-
sensus was reached, leading to the formulation of a shared annotation

3 https//physionet.org/content/mimic-cxr-jpg/2.0.0/.
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Fig. 1. Long-tailed distribution of the CXR-LT 2023 challenge dataset. The dataset was formed by extending the MIMIC-CXR (Johnson et al., 2019a) benchmark to include 12

new clinical findings (red) by parsing radiology reports.
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Fig. 2. Flowchart describing CXR-LT gold standard dataset annotation.

guideline (Fig. 2). Following the training session, the official anno-
tation process consisted of two rounds: the first round covering 200
reports and the second round covering 251 reports. After each round,
individual disease-level disagreements between annotators on a given
report were compiled and adjudicated by a third annotator. For the
first round, the overall agreement rate was 93.2% and the Cohen’s
Kappa coefficient was 0.795; for the second round, the agreement rate
was 94.9% with a Cohen’s kappa of 0.778. After removing reports that
were not annotated by at least two readers, the CXR-LT gold standard
set consisted of 406 cases. The resulting label distribution of the gold
standard set can be found in Supplementary Fig. 1.

2.2, CXR-LT challenge task

The CXR-LT challenge was formulated as a 26-way multi-label
classification problem. Given a CXR, participants were tasked with
detecting all disease findings present. If no findings were present,
participants could predict “No Finding”, with the exception that “No
Finding” can co-occur with “Support Devices” as this is not a clinically
meaningful diagnostic finding. Since this is a multi-label classification
problem with severe label imbalance, the primary evaluation metric
was mean average precision (mAP), specifically, the “macro-averaged”
AP across the 26 classes. While area under the receiver operating
characteristic curve (AUROC) is a standard metric employed for related
datasets (Wang et al., 2017; Seyyed-Kalantari et al., 2021), AUROC
can be heavily inflated in the presence of class imbalance (Fernan-
dez et al., 2018; Davis and Goadrich, 2006). Instead, mAP is more
appropriate for the long-tailed, multi-label setting since it measures per-
formance across decision thresholds and does not degrade under class
imbalance (Rethmeier and Augenstein, 2022). For thoroughness, mean
AUROC (mAUROC) and mean F1 score — using a decision threshold of
0.5 for each class — were also calculated.

The challenge was conducted on Codalab (Pavao et al, 2023).
Any registered Codalab user could apply to participate, but since
this competition used MIMIC-CXR-JPG data (Johnson et al, 2019b),
which requires credentialing and training through PhysioNet (Gold-
berger et al.,, 2000), participants were required to submit proof of
PhysioNet credentials to enter. During the Development Phase, regis-
tered participants downloaded the labeled training set and (unlabeled)
development set, for which they would generate a comma-separated
values (CSV) file with predictions to upload. Submissions were then
evaluated on the held-out development set and results were updated
to a live, public leaderboard. During the Test Phase, test set images
(without labels) were released. Participants were asked to submit CSV
files with predictions on the much larger, held-out test set and were
only given a maximum of 5 successful attempts. For this phase, the
leaderboard was kept hidden and the single best-scoring submission (by
mAP) by each team was retained. The final Test Phase leaderboard was
used to rank participants, primarily by mAP, then by mAUROC in the
event of ties.
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Fig. 3. Flowchart describing CXR-LT challenge participation. Over 200 teams applied to participate in the challenge on CodaLab, and 59 teams met registration requirements. Of
the 17 teams that participated in the Test Phase, 11 submitted their written solutions for presentation at the ICCV CVAMD 2023 workshop. The top 9 of these submissions were
accepted to the workshop and are described in this paper.

Table 1
Overview of top-performing CXR-LT challenge solutions. ENS = ensemble; RW = loss re-weighting.
Team Rank Image Backbone ENS RW Pretraining Notes
resolution

T1 1 1024 ConvNeXt-5 4 ImageNet — Two-stage training; cross-view Transformer;
CheXpert, NIH, ML-Decoder classifier (label as text)
VinDr

T2 2 512, 768 EfficientNetV2-S, 4 4 ImageNet Heavy mosaic augmentation

ConvNeXt-5

T3 3 448 ConvNeXt-B ' 4 ImageNet21K — Ensemble of “head” and “tail” experts
NIH

T4 4 384 ConvNeXt-B v ImageNet Custom robust asymmetric loss (RAL)

T5 5 512 ResNet50° v v ImageNet* Vision-language modeling (label as text); co-train on

NIH, CheXpert
T6 6 448 ResNeXt101, 4 ImageNet — Used synthetic data to augment tail classes
DenseNetl61 CheXpert, NIH,

PadChest

TF T 224-512 EfficientNetV2-S 4 ImageNet, Three-stage training with increasing resolution
ImageNet21k

T8 8 448 TResNet50 4 ImageNet Heavy CutMix-like aug ion; fi Py id

with deep supervision
T9 11 1024 ResNet101 4 ImageNet RIDE mixture of experts; LSE pooling; label as

text/graph with cross-modal attention

2 T5 additionally used a Transformer text encoder pretrained on PubMedBERT (Gu et al, 2020) and Clinical-T5 (Lehman and Johnson, 2023).

3. Results NIH ChestXRay (Wang et al., 2017), CheXpert (Irvin et al,, 2019), and
VinDrCXR (Nguyen et al.,, 2022). Using this backbone as a frozen fea-
3.1. CXR-LT challenge participation ture extractor, a Transformer then aggregated multi-view features in a

given study. T1 used the ML-Decoder (Ridnik et al., 2023) classification

The CXR-LT challenge received 209 team applications on Codalab,* head, which represents the labels as text and performs cross-attention
of which 59 were approved after providing proof of credentialed access over image (CXR) and text (label) features. Finally, this team utilized
to MIMIC-CXR-JPG (Johnson et al.,, 2019b). During the Development a weighted asymmetric loss (Ridnik et al., 2021a) to combat the inter-
Phase, 23 teams participated, contributing a total of 525 unique sub- class imbalance caused by the long-tailed distribution and intra-class
missions to the public leaderboard. Ultimately, 17 teams participated in imbalance caused by the dominance of negative labels in multi-label
the final Test Phase, and 11 of these teams submitted papers describing classification.
their challenge solution to the ICCV CVAMD 2023 workshop.” The 9
accepted workshop papers, representing the top-performing teams in 3.2.2. T2 (Nguyen-Mau et al, 2023)

the CXR-LT challenge, were used for study in this paper (Fig. 3). This team utilized augmentation, ensemble, and re-weighting meth-
ods for imbalanced multi-label classification. Specifically, they used an
3.2. Methods of top-performing teams ensemble of EfficientNetV2-S (Tan and Le, 2021) and ConvNeXt-S (Liu

et al.,, 2022) models. Of note, the team made use of heavy “mosaic”
A summary of top-performing solutions can be found in Table 1, augmentation (Bochkovskiy et al., 2020), randomly tiling four CXRs
including Test Phase rank, image resolution, backbone architecture into a single image and using the union of their label sets as ground
used, and other methodological characteristics. Though each solution truth. They used a weighted focal loss (Lin et al., 2017) to handle
is described in the paragraphs below, please refer to the paper in each imbalance, then test-time augmentation and a multi-level ensemble
subsection title for full details. across both model architectures and individual models obtained by
stratified cross-validation to improve generalization.
3.2.1. T1 (Kim, 2023)
This team used a two-stage framework that aggregated features 3.2.3. T3 (Jeong et al, 2023)
across views (e.g., frontal and lateral CXRs). In the first stage, a This team proposed an ensemble method based on ConvNeXt-B (Liu
ConvNeXt-S model (Liu et al., 2022) model was pretrained with Noisy et al, 2022) with the CSRA dassifier (Zhu and Wu, 2021). After
Student (Xie et al., 2020) self-training on the external CXR datasets  Pretraining on the NIH ChestXRayl4 (Wang et al, 2017) dataset,
T3 trained three separate models, respectively, on CXR-LT data only
from “head” classes, “tail” classes, and all classes; an average of these
4 hittps://codalab.lisn,upsaclay.fr/competitions/12599. three models formed the final output. Each model utilized a weighted
5 https://cvamd2023.github.io/. cross-entropy loss and the Lion optimizer (Chen et al, 2023).
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Table 2
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Final Test Phase results of the CXR-LT 2023 challenge. Presented is average precision (AP) of each team’s final model on all 26 classes evaluated

on the test set. The best AP for a given class is highlighted in bold.

T1 T2 T3 T4 T5 T6 7 T8 9
Atelectasis 0.622 0.609 0.611 0.607 0.606 0610 0.602 0.595 0.546
Calcification of the Aorta 0.162 0.140 0.145 0.143 0.135 0.109 0.130 0.116 0.111
Cardiomegaly 0.661 0.652 0.652 0.648 0.653 0.652 0.668 0.640 0.581
Consolidation 0.240 0.228 0.234 0.219 0.228 0.230 0225 0.218 0.171
Edema 0.563 0.553 0.559 0.556 0.554 0557 0.551 0.545 0.497
Emphysema 0.210 0.193 0.193 0.193 0.180 0.184 0.161 0.165 0.128
Enlarged Cardiomediastinum 0.186 0.184 0.184 0.184 0.186 0.185 0.183 0.177 0.140
Fibrosis 0.167 0.163 0.157 0.153 0.154 0.154 0.116 0.132 0.120
Fracture 0.379 0.262 0.269 0.289 0.243 0262 0.171 0.219 0.171
Hernia 0.570 0.585 0.563 0.551 0.539 0.538 0.499 0.484 0.343
Infiltration 0.063 0.057 0.060 0.060 0.057 0.058 0.056 0.055 0.049
Lung Lesion 0.034 0.042 0.041 0.038 0.040 0.031 0.031 0.031 0.021
Lung Opacity 0.617 0.597 0.603 0.597 0.594 0.598 0.590 0.584 0.529
Mass 0.250 0.224 0.213 0.206 0.200 0227 0.187 0.167 0.112
Nodule 0.267 0.192 0.204 0.200 0.180 0.196 0.137 0.166 0.117
Pleural Effusion 0.843 0.829 0.831 0.832 0.830 0.805 0.822 0.822 0.781
Pleural Other 0.070 0.037 0.043 0.040 0.039 0.016 0.059 0.042 0.007
Pleural Thickening 0.137 0.108 0.116 0.110 0.126 0.083 0.119 0.097 0.055
Pneumomediastinum 0.332 0.384 0.376 0.339 0.387 0284 0.326 0.308 0.096
Pneumonia 0.312 0.305 0.311 0.309 0.304 0.308 0292 0.294 0.258
Pneumoperitoneum 0.324 0.316 0.261 0.283 0.303 0.237 0.262 0.235 0.155
Pneumothorax 0.602 0.533 0.549 0.553 0.511 0.546 0451 0.474 0.427
Subcutaneous Emphysema 0.598 0.556 0.564 0.560 0.570 0.520 0.507 0.538 0.492
Support Devices 0.918 0.906 0.916 0.913 0.910 0910 0.894 0.903 0.887
Tortuous Aorta 0.066 0.061 0.060 0.060 0.058 0.056 0.063 0.053 0.045
No Finding 0.486 0.478 0.488 0.479 0.485 0.468 0471 0.469 0.428
Mean 0.372 0.354 0.354 0.351 0.349 0.339 0.330 0.328 0.279

3.2.4. T4 (Park et al, 2023)

This team proposed a novel robust asymmetric loss (RAL) for mult-
label long-tailed classification. RAL improves upon the popular focal
loss (Lin et al., 2017) by including a Hill loss term (Zhang et al.,
2021b), which mitigates sensitivity to the negative term of the original
focal loss. The team used an ImageNet-pretrained ConvNeXt-B (Liu
et al.,, 2022) with the proposed RAL loss and data augmentation fol-
lowing (Azizi et al.,, 2021; Chen et al., 2019b).

3.2.5. T5 (Hong et al, 2023)

This team used a vision-language modeling approach leveraging
large pre-trained models. The authors utilized an ImageNet-pretrained
ResNet50 (He et al,, 2016) and text encoder pre-trained on PubMed-
BERT (Gu et al.,, 2020) and Clinical-T5 (Lehman and Johnson, 2023)
to extract features from images and label text, respectively. For multi-
label classification, they employed a multi-label Transformer query
network to aggregate image and text features. To handle imbalance,
the team used class-specific loss re-weighting informed by validation
set performance. They also incorporated external training data (NIH
ChestXRay 14 Wang et al, 2017 and CheXpert Irvin et al, 2019),
used test-time augmentation, and performed “class-wise’” ensembling
to improve generalization.

3.2.6. T6 (Verma, 2023)

This team used domain-specific pretraining, ensembling, and syn-
thetic data augmentation to improve performance. With an ImageNet-
pretrained ResNeXtl01 (Xie et al, 2017) and DenseNet101 (Huang
et al, 2017), the team further pretrained on the CXR benchmarks NIH
ChestXRayl4 (Wang et al., 2017), CheXpert (Irvin et al, 2019), and
PadChest (Bustos et al., 2020). This team also used RoentGen (Cham-
bon et al,, 2022), a multimodal generative model for synthesizing CXRs
from natural language, to generate additional CXRs for tail classes in
order to combat imbalance.

3.2.7. T7 (Yamagishi and Hanaoka, 2023)
This team used a multi-stage training scheme with ensembling and
oversampling. For the first stage, an ImageNet2lk-pretrained

EfficientNetV2-S§ (Tan and Le, 2021) was trained on 224 x 224 reso-
lution images. The weights from this model were then used to train on
320 x 320 and 384 x 384 images, then 512 x 512 images. An ensemble
was then formed by averaging the predictions of four models trained
on various resolutions, with some models leveraging oversampling of
minority classes to mitigate class imbalance. Test-time augmentation
and view-based post-processing were also used to boost performance.

3.2.8. T8 (Kim et al, 2023)

This team utilized an ImageNet-pretrained TResNet50 (Ridnik et al.,
2021b) with heavy augmentation and ensembling. The authors made
use of MixUp (Zhang et al., 2017), which linearly combines training
images and their labels, and CutMix (Yun et al., 2019), which “cuts
and pastes” regions from one training image onto another. They also
used a “feature pyramid” approach, extracting pooled features from
four layers throughout the network and aggregating these multi-scale
features.

3.2.9. T9 (Seo et al, 2023)

This team built upon ML-GCN (Chen et al,, 2019b), a framework
for multi-label image classification, which uses GloVe (Pennington
et al, 2014) to embed each label as a node within a graph capable
of incorporating the co-occurrence patterns of labels. To combat the
long-tailed distribution of classes, the authors trained a ResNet101 (He
et al, 2016) with class-balanced sampling and the Routing DIverse
Experts (RIDE) method (Wang et al., 2020) to diversify the members of
their ensemble (Zhang et al., 2023b). They also used log-sum-exp (LSE)
pooling (Pinheiro and Collobert, 2015) and a Transformer encoder to
attend over image and text features.

3.3. CXR-LT challenge results

3.3.1. CXR-LT test phase results

Detailed Test Phase results of 9 top-performing CXR-LT teams can
be found in Table 2. T1, the 1st-placed team, reached an mAP of 0.372,
considerably outperforming the 2nd-5th-placed teams, who performed
similarly with mAP ranging from 0.349 to 0.354; further, T1 achieved
best performance on 20 out of 26 classes. Maximum per-class AP ranged
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Table 3

Long-tailed classification performance on “head”, “medium”, and “tail” classes by
average mAP within each category. These categories were determined by relative
frequency of each class in the training set (denoted in parentheses). The rightmost
column denotes the average of head, medium, and tail mAP. The best mAP in each
column appears in bold.

Overall Head (>10%) Medium (1-10%) Tail (<1%) Avg

T1 0.372 0.499 0.246 0.242 0.329
T2 0.354 0.482 0.226 0.227 0.311
T3 0.354 0477 0.226 0.246 0.316
T4 0.351 0.480 0.221 0.220 0.307
T5 0.349 0.474 0.218 0.243 0.312
T6 0.339 0.476 0.210 0.179 0.288
T7 0.330 0.460 0.195 0.216 0.290
T8 0.328 0.461 0.195 0.195 0.284
T9 0.279 0.420 0.154 0.086 0.220
Table 4

Comparison of disease prevalence with d text-mined labeling vs. manual

human annotation of the 406 radiology reports in our gold standard test set.

Automated Human 4

Atelectasis 0.488 0.308 —37%
Calcification of the Aorta 0.062 0.116 +88%
Cardiomegaly 0.448 0.392 -13%
Consolidation 0.214 0.182 —15%
Edema 0.313 0.249 —20%
Emphysema 0.113 0.071 —37%
Enlarged Cardiomediastinum 0.313 0.291 —7%

Fibrosis 0.081 0.054 —33%
Fracture 0.133 0.118 —11%
Hernia 0.074 0.047 —37%
Infiltration 0.113 0.03 —74%
Lung Lesion 0.076 0.015 —81%
Lung Opacity 0.571 0.49 —14%
Mass 0.096 0.049 —49%
No Finding 0.091 0.091 +0%

Nodule 0.096 0.081 —15%
Pleural Effusion 0.562 0.451 —20%
Pleural Other 0.052 0.047 —10%
Pleural Thickening 0.052 0.054 +5%

Pneumomediastinum 0.099 0.086 —12%
Pneumonia 0.283 0.054 —81%
Pneumoperitoneum 0.084 0.059 —29%
Pneumothorax 0.214 0.121 —44%
Subcutaneous Emphysema 0.108 0.103 —4%

Support Devices 0.564 0.544 —4%

Tortuous Aorta 0.059 0.081 +38%

widely from 0.063 (Infiltration) to 0.918 (Support Devices), likely ow-
ing to the challenges posed by label imbalance and noise. Interestingly,
T1 demonstrated outstanding performance particularly on the Fracture
(0.379 mAP vs. next-best 0.289) and Nodule (0.267 mAP vs. next-best
0.204) classes. Since T1 was the only team to explicitly fuse multi-
view information, it is conceivable that this learned aggregation of
frontal- and lateral-view information aided performance particularly
for findings like Fracture and Nodule, which may better be resolved by
multiple views. Additional Test Phase results by AUROC can be found
in Supplementary Table 1.

3.3.2. Long-tailed classification performance

To examine predictive performance by label frequency, we split the
26 target classes into “head” (>10%), “medium” (1%-10%), and “tail”
(<1%) categories based on prevalence in the training set. Category-wise
mAP is presented in Table 3, as well as a “category-wise average’ of
head, medium, and tail mAP. We first observe that T1 considerably
outperformed all other teams particularly on the more common head
and medium classes, though other teams performed comparably or
slightly better (T3 and T5) on tail classes. We also find that T1-T5 on
average outperformed the remaining four teams on tail classes much
more so than head and medium classes. Critically, T1-T5 were the only
five teams to use loss re-weighting, which appears to have provided
clear benefits in modeling rare diseases.
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3.4. Evaluation on a gold standard test set

As described in Section 2.1.2, a “gold standard” test set of 406
newly labeled CXRs was curated for additional evaluation on a small
subset of the challenge test set with higher-quality labels. This section
describes differences in human vs. automated annotation patterns and
predictive performance with human vs. automated labels in this gold
standard set.

3.4.1. Differences in human vs. text-mined annotation

To form a head-to-head comparison of disease annotation patterns
of human readers vs. automatic text mining tools, we examined the
distribution of manual and automated labels on the 406 gold standard
reports (Table 4). Overall, we find that automatic labeling produced
a higher volume of positive findings per image (median: 5, mean
+ std: 5.4 + 1.9) than manual annotation (median: 4, mean + std:
4.2 + 1.8). This is likely a consequence of the conservative label-
ing approach adopted by annotators after the initial training session.
While we elected to only mark the presence of a finding if it was
unambiguously affirmed positive in the report, text analysis tools like
RadText do not necessarily adhere to the same rule. For example,
potentially ambiguous phrases like “cannot rule out pneumonia” and
“likely effusion” might be marked positive by a text analysis tool but
not by human annotators.

While manual labeling produced fewer positive findings in general,
we find that certain diseases were substantially more and less likely to
be marked positive by a human reader than RadText. For example, as
seen in Table 4, Pneumonia and Lung Lesion both saw an >80% drop
in prevalence with human labeling. On the other hand, Calcification of
the Aorta (88%) and Tortuous Aorta (38%) — both newly added cardiac
findings — were considerably more prevalent upon human annotation,
suggesting a low recall for these aortic findings with RadText. Inter-
estingly, there was no difference in the number of reports marked No
Finding, indicating that it is perhaps straightforward for both humans
and text analysis tools to recognize the absence of findings in a normal
report.

Since this is a multi-label classification problem, we also exam-
ine differences in co-occurrence behavior between findings in the
text-mined vs. gold standard labels. We first computed a conditional co-
occurrence probability matrix for each dataset, Ct** and C8°¢, where
entry (i, j) represents the observed conditional probability that finding
j was present given finding i was present: C;; = P(jli). We then
computed C8%Y_C®t the difference in conditional co-occurrence prob-
ability between human vs. automated labels, visualized as a heatmap in
Supplementary Fig. 2. We observe certain irregularities such as an >0.6
drop in P(Enlarged Cardiomediastinum | Pneumomediastinum) in the
gold standard labels. Upon examination, we find that
P(Enlarged Cardiomediastinum | Pneumomediastinum) = 1 in the text-
mined labels, meaning every time Pneumomediastinum occurred, so
did Enlarged Cardiomediastinum. This potentially reflects a shortcom-
ing of text-mined labeling, where the presence of “mediastinum” may
be falsely interpreted as a positive assertion of both Pneumomedi-
astinum and Enlarged Cardiomediastinum; in reality, these are two very
different clinical findings that are unlikely to occur together.

3.4.2. Gold standard test set results

Detailed results of top-performing teams on the gold standard test
set can be found in Table 5 (additional results by AUROC in Supplemen-
tary Table 2). AP values were generally higher in the gold standard set
than the original challenge test set, with certain classes experience large
changes in performance — for example, the maximum AP jumps from
0.162 to 0.688 for Calcification of the Aorta and from 0.598 to 0.887
for Subcutaneous Emphysema. However, these dramatic differences are
to be expected when considering that the gold standard test set is not
a representative subset of the challenge test set; for reasons outlined
in Section 2.1.2, the gold standard set consisted of studies that were
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Table 5
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Gold standard test set results from CXR-LT 2023 participants. Presented is average precision (AP) of each team’s final model on all 26 classes
evaluated on our human-annotated gold standard test set. The best AP for a given class is highlighted in bold.

Tl T2 T3 T4 T5 T6 T7 T8 T9
Atelectasis 0.465 0.481 0.494 0.453 0.500 0.464 0.444 0.455 0.449
Calcification of the Aorta 0.658 0.609 0.688 0.662 0.621 0.578 0.544 0.613 0541
Cardiomegaly 0.696 0.718 0.718 0.704 0.720 0732 0.754 0.718 0.664
Consolidation 0.415 0.449 0.471 0.474 0.436 0.476 0.411 0.426 0.406
Edema 0.600 0.590 0.601 0572 0.589 0.587 0.571 0.587 0540
Emphysema 0.298 0.356 0.362 0.309 0.359 0.388 0.394 0.279 0.292
Enlarged Cardiomediastinum 0.351 0.370 0.349 0.349 0.337 0.341 0.328 0.314 0.337
Fibrasis 0.417 0.491 0.460 0.458 0.487 0.497 0.397 0.437 0.428
Fracture 0.583 0.455 0.535 0.494 0.524 0.501 0.385 0.366 0.389
Hernia 0.759 0.808 0.804 0.766 0722 0.723 0.714 0.708 0514
Infiltration 0.065 0.049 0.059 0.048 0.049 0.046 0.053 0.080 0.095
Lung Lesion 0.028 0.071 0.033 0.042 0.030 0.032 0.066 0.040 0.044
Lung Opacity 0.642 0.651 0.678 0.656 0.656 0.650 0.655 0.652 0.623
Mass 0.410 0.477 0.389 0.376 0.369 0.412 0.321 0.363 0.128
Nodule 0.435 0.325 0.296 0.300 0.272 0.359 0.362 0.257 0212
Pleural Effusion 0.856 0.835 0.836 0.842 0.831 0.808 0.822 0.837 0.804
Pleural Other 0.385 0.212 0.224 0.259 0.230 0.121 0.249 0.245 0.138
Pleural Thickening 0.386 0.249 0.249 0.204 0.244 0.190 0.251 0.210 0.132
Pneumomediastinum 0.771 0.830 0.795 0.800 0.823 0.757 0.837 0.776 0.569
Pneumonia 0.114 0.131 0.127 0.123 0.111 0.111 0.114 0.103 0.096
Pneumoperitoneum 0.586 0.539 0.632 0539 0.557 0.443 0.499 0.526 0.487
Pneumothorax 0.675 0.649 0.701 0.641 0.598 0.663 0.562 0.568 0.587
Subcutaneous Emphysema 0.845 0.825 0.852 0.887 0.874 0.777 0.774 0.813 0.837
Support Devices 0.952 0.950 0.957 0.960 0.956 0.951 0.932 0.946 0.944
Tortuous Aorta 0.362 0.329 0.322 0.309 0.336 0.386 0.265 0.299 0.280
No Finding 0.731 0.841 0.834 0.729 0.852 0.828 0.815 0.807 0.766
Mean 0.519 0.511 0.518 0.498 0.503 0.493 0.481 0.478 0.435
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Fig. 4. Comparison of performance on CXR-LT Test Phase data (Section 2.1.1) and
gold standard test data (Section 2.1.2).

far more likely to contain many disease findings than the overall test
set (median: 2, mean + std: 2.4 + 1.5). A direct comparison of class-
wise performance — specifically, the mean AP for each class across all
9 teams — using automated text-mined vs. human labels in the 406
gold standard test cases can be found in Supplementary Table 3. Here,
we observe that performance on “gold standard” human labels vs.
text-mined labels dropped for 19 out of 26 classes and experienced a
12.3% drop in AP on average. This can be attributed to the large label
distribution shift outlined in Section 3.4.1, meaning models have been
optimized on the particular noise patterns inherent in the text-mined
training set labels.

Despite this large distribution shift, the overall correspondence of
team results remained consistent between the official CXR-LT challenge
test set and the gold standard set (Fig. 4; R = 0.958, r = 0.979,
P = 47 x 10-9). Even the team rankings remained consistent with the
exception of T3 outperforming T2 and T5 outperforming T4 on the
gold standard test set. This is to be expected when considering that
teams T2-T5 were separated by, at most, 0.005 mAP in the CXR-LT
Test Phase.

(“modal”) simulated rank corresponding to the actual observed rank for
all 9 teams. While T1 and T9 always, respectively, placed 1st and 9th,
T2 and T3 were nearly interchangeable, with T2 placing 2nd in 52% of
trials and T3 placing 2nd in the remaining 48%.

In contrast, simulated team rankings were far more volatile when
evaluated on the gold standard test set. For example, T1 — which con-
siderably outperformed other teams in the official challenge — placed
1st in under half of all simulated rankings, placing as low as 5th in
some instances. Additionally, T2 placed 1st in 40% of trials, perhaps
supported by the fact that the cosine similarity between the predicted
probabilities of T1 and T2 was 0.95, considerably higher than between
T1 and any other team (Supplementary Fig. 3). Overall, this variability
is to be expected given the small sample size of the gold standard
set; even when sampling “disease-heavy” studies to ensure that every
finding was represented, certain tail classes were still only observed
a handful of times (as few as 9), resulting in noisy estimates of per-
formance. While improved label quality is valuable, this highlights the
pervasive importance of sample size and justifies our choice for using
the large-scale, text-mined labels for CXR-LT Test Phase evaluation.
Despite this variability, however, the simulated modal rank actually
corresponded to the original CXR-LT Test Phase rank in all instances
but one: on the gold standard set, T4 placed 5th most often (43%) and
TS placed 4th most often (52%).
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4. Discussion
4.1. Themes of successful solutions

As outlined in Table 1, several salient patterns emerge among top-
performing challenge solutions. In summary, many successful CXR-LT
solutions leveraged

* Relatively high image resolution (>300 x 300)

» Modern CNNs like ConvNeXt and EfficientNetV2

» Large-scale domain-specific pretraining on CXR data

« Strong data augmentation and ensemble learning

« Loss re-weighting to amplify tail classes

+ Multimodal learning via text-based label representations.

High image resolution. Compared to the vast majority of research
efforts in natural image recognition, top-performing CXR-LT solutions
used relatively high image resolution — usually greater than the stan-
dard 224 x 224 and as high as 1024 x 1024. It is well-understood
that increased image resolution improves visual recognition with deep
neural networks (Touvron et al.,, 2019; Tan and Le, 2019, 2021),
particularly in medical applications such as radiology (Thambawita
et al., 2021; Sabottke and Spieler, 2020), where diagnosis can often
rely on resolving faint or small abnormalities. In fact, Haque et al.
(2023) specifically found 1024 x 1024 (used by two top-performing
teams) to be an optimal spatial resolution for MIMIC-CXR-JPG disease
classification, observing that 2048 x 2048 resolution actually degraded
performance.

on CXR-LT Test Phase data (top) and gold standard test data (bottom). Simulated challenge rankings were computed via 500 bootstrap samples
of bootstrap trials for which each team achieved a given rank.

Modern convolutional neural network backbones. Also, de-
spite the recent popularity of Vision Transformers (ViTs) (Khan et al,
2022), all top-performing solutions used a convolutional neural net-
work (CNN) as the image encoder. The most popular choice was
ConvNeXt (Liu et al., 2022), followed by the EfficientNet (Tan and Le,
2021) and ResNet (He et al., 2016) architecture families. This observa-
tion is echoed by a recent comprehensive benchmark of architectures
on a wide array of visual recognition tasks (Goldblum et al., 2024):
“Despite the recent attention paid to transformer-based architectures
and self-supervised leaming, high-performance convolutional networks
pretrained via supervised learning outperform transformers on the
majority of tasks..”. The authors also found ConvNeXt, the most pop-
ular architecture among top CXR-LT performers, to outperform other
backbones.

Large-scale pretraining. In this vein, all top-performing solutions
utilized supervised pretraining or transfer learning of some kind. While
many used standard ImageNet-pretrained models (some leveraging
the larger ImageNet21k), several teams performed additional domain-
specific pretraining on publicdy available, external CXR datasets such
as NIH ChestXRay (Wang et al., 2017), CheXpert (Irvin et al., 2019),
and PadChest (Bustos et al,, 2020). Specifically, T1, T3, and T5 all per-
formed multi-stage pretraining, whereby they fine-tuned an ImageNet-
pretrained backbone on large external CXR datasets for disease classifi-
cation. Such a two-stage pretraining scheme with (1) “generalist” then
(2) domain-specific pretraining has proven successful in prior works
such as REMEDIS (Azizi et al, 2023) and Reed et al. (2022) in the
context of self-supervised pretraining.
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Ensemble learning and data augmentation. Many (7 out of 9)
top solutions involved ensemble learning, aggregating the outputs of
multiple models for improved generalization (Ganaie et al,, 2022; Fort
et al., 2019). Ensembles often benefit from diverse constituent models,
and teams formed diverse ensembles in several unique ways: T2 and
T5 formed ensembles across different model architectures, T2 and T7
formed ensembles across different image resolutions, and T3 formed
an ensemble of head (common) class and tail (rare) class models.
However, ensembling was not strictly necessary for high performance,
evidenced by the fact that the 1st- and 4th-placed teams utilized a
single well-trained model. Additionally, all teams used image augmen-
tation, another standard technique to boost generalization (Xu et al.,
2023). Notably, T2 and T8 employed “mosaic” and CutMix augmen-
tation, respectively, effectively blending input images and labels as a
form of regularization.

Loss re-weighting. Owing to the challenging long-tailed nature of
this problem, the top five solutions all used loss re-weighting in order
to adequately model rare classes. From Table 3, one can see that the
performance gap between T1-T5 and the remaining four teams is most
apparent on the uncommon medium and tail classes. Specifically, T1
used a weighted asymmetric loss (Ridnik et al.,, 2021a) specifically
designed for imbalanced multi-label classification, T2 used a class-
weighted focal loss (Lin et al, 2017), and T4 used a novel robust
asymmetric loss that includes an additional regularization term to a
weighted focal loss. It should also be noted that teams addressed the
long-tailed distribution in ways other than loss re-weighting, such as
mixture of experts (T3 and T9) and synthetic data generation of tail
classes (T6).

Multimodal vision-language learning. Multimodal vision-
language leaming has recently become a popular approach in deep
learning for radiology, typically as a means of pretraining on paired
CXR imaging and free-text radiology reports (Chen et al.,, 2019a; Yan
and Pei, 2022; Delbrouck et al., 2022; Moon et al.,, 2022; Li et al.,
2024; Moor et al, 2023). While this challenge did not use radiology
report data, three top-performing teams found success by directly
representing the disease label information as text. For example, T1
used the ML-Decoder (Ridnik et al., 2023) classification head, which
considers labels as text “queries” that participate in cross-attention with
image features. T5, on the other hand, used a Transformer pretrained
on large amounts of clinical text (Gu et al., 2020; Lehman and Johnson,
2023) to directly encode disease labels. For example, encoding the text
“Pleural Effusion” rather than a one-hot label enables the model to
embed this information in a semantically meaningful way in relation to
the language it has already encountered during pretraining on medical
text.

4.2. Limitations and future work

In addition to the common themes of successful solutions outlined
above, it should be emphasized that the unique and often novel as-
pects of each team’s solution also contributed to their success. For
example, Kim (2023) leveraged a cross-view Transformer to aggregate
information across radiographic views; Park et al. (2023) proposed
a novel robust asymmetric loss (RAL), with additional experiments
demonstrating improved performance on other long-tailed medical im-
age classification tasks; Verma (2023) leveraged a vision-language
foundation model, RoentGen (Chambon et al., 2022), to synthesize
“tail” class examples to combat the long-tailed problem; Hong et al.
(2023) took a vision-language approach leveraging Transformers pre-
trained on clinical text in order to learn rich representations of the
multi-label disease information. One promising observation is that
many teams reached very similar overall performance — measured by
Test Phase mAP — with dramatically different methods. This suggests
that the solutions from our participants may represent orthogonal contri-
butions that, when combined, prove greater than the sum of their parts.
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Future work might unify the insights leammed from top-performing solu-
tions into a single long-tailed, multi-label medical image classification
framework.

This study could also be strengthened by examining bias both in
the data and the models put forth by top-performing teams. First,
MIMIC-CXR was collected at a single institution — a major teaching
hospital of Harvard Medical School — which may only represent the
specific demographics of this setting. Second, prior work has shown
that deep neural networks trained on single-institution CXR datasets
often display disparities in predictive performance based on factors like
race and sex (Seyyed-Kalantari et al.,, 2021). In fact, Seyyed-Kalantari
et al. (2021) observed this effect on MIMIC-CXR-JPG specifically and
noted that training on larger, multi-institutional datasets mitigated
these disparities. It would be interesting to evaluate whether teams that
pretrained on additional external CXR data not only achieved improved
predictive performance but also improved group faimess. Future work
may address subgroup faimess as an additional dimension of desired
model behavior alongside predictive performance.

Regarding the data contributions of this work, we acknowledge that
the CXR-LT dataset bears the same pitfalls as many other publicly avail-
able CXR benchmarks with automatically text-mined labels, namely
label noise (Abdalla and Fine, 2023). We attempted to rectify this by
manually annotating radiology reports to obtain a gold standard test
set for additional evaluation. While this improved the label quality, this
approach is limited in that it can only, at best, confirm the opinion of
the individual radiologist writing the report. Even for highly trained
experts, diagnosis from CXR is difficult and complex, leading to high
inter-reader variability (Hopstaken et al., 2004; Sakurada et al., 2012).
Ideally, a true “gold standard” dataset would consist of consensus
labeling from multiple radiologists’ interpretations. However, this is of
course prohibitively expensive and time-consuming (Zhou et al., 2021)
given the volume of labeled data required to train deep learning models
and is the primary motivation for automatic disease labeling in the first
place.

Though many diagnostic exams are long-tailed, most publicly avail-
able medical imaging datasets only include labels for a few common
findings. The CXR-LT dataset thus represents a major contribution to
due its large scale (>375,000 images), multi-label nature, and long-
tailed label distribution of 26 clinical findings. However, a select few
large-scale, long-tailed medical imaging datasets exist, such as HyperK-
vasir (Borgli et al., 2020) - containing >10,000 endoscopic images la-
beled with 23 findings — and PadChest (Bustos et al., 2020) - containing
>160,000 CXRs labeled with 174 findings.

While CXR-LT and PadChest represent meaningful contributions to
long-tailed learning from CXR, it should be noted that the “true” long
tail of all clinical findings is at least an order of magnitude longer
than any current publicly available dataset can offer. For example,
Radiology Gamuts Ontology® (Budovec et al, 2014) documents 4691
unique radiological image findings. Thus, one way to enhance the CXR-
LT dataset might be to include an even wider variety of automatically
text-mined findings to mimic the extremely long tail of real-world
CXR. However, this approach too has its own limitations. Even if we
could construct a dataset with labels for up to 1000 dlinical findings,
ranging from common and well-studied to exceedingly rare, and train
a model on this long-tailed data, what happens when a new finding is
encountered? One might argue that the only way to tackle the true long-
tailed distribution of imaging findings is to develop a model that can
adaptively generalize to previously unseen diseases. Future iterations
of the CXR-LT challenge will consider this problem through the lens
of zero-shot classification: can participants train a model to accurately
detect a clinical finding that the model has not been trained on?

6 http://www.gamuts.net/about.php.
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4.3. The future of long-tailed, multi-label learning

If zero-shot disease classification is the ultimate step toward clini-
cally viable long-tailed medical image classification, then vision-
language foundation models provide a very promising path forward.
Several top-performing CXR-LT teams found success by encoding the
label information as text, allowing for rich representation learning of
the disease labels and their correlations. This allowed (Kim, 2023) to
better handle the long-tailed, multi-label distribution via the text- and
attention-based ML-Decoder classifier (Ridnik et al., 2023) and Seo
et al. (2023) to exploit correlations between labels via graph learning
of text-based label representations via ML-GCN (Chen et al., 2019b).
While, for example, the approach of Hong et al. (2023) did not
earn 1st place in this challenge, it would almost certainly prove the
most useful when encountering a previously unseen disease finding, a
practical scenario in real-world clinical deployment. Since (Hong et al.,
2023) leverage Transformer encoders pretrained on large collections
of clinical text including PubMedBERT (Gu et al., 2020) and Clinical-
TS (Lehman and Johnson, 2023), the model retains a rough semantic
understanding of biomedical concepts via the textual representation
of disease information. This in turn allows natural generalization to
new findings by relating the text “prompt” of the potential new disease
finding to relevant concepts encountered during pretraining, which is
expressly not possible with standard unimodal deep learning methods.

Recent studies have shown that vision-language modeling with
encoders pretrained on large collections of medical image and text data
enable zero-shot disease classification, in some cases nearly reaching
the performance of fully supervised approaches (Hayat et al,, 2021; Tiu
et al.,, 2022; Mishra et al., 2023; Zhang et al., 2023a; Li et al,, 2024;
Moor et al., 2023). For example, CheXzero (Tiu et al., 2022) performed
Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021)
on paired CXR images and radiology reports, where the model was
trained to properly match reports with their CXRs. At test time, this
model could then encode text “prompts” of “<Pathology>" and “No
<Pathology>", after which the model could determine which prompt
best matched the given CXR, effectively performing zero-shot disease
classification on par with board-certified radiologists. Critically, this
ability to flexibly encode any new disease information would enable
zero-shot learning of tail classes that might otherwise be difficult or
impossible to obtain traditional labels for. Further, such a multimodal
approach can be readily combined with many of the methods employed
by top-performing CXR-LT teams such as loss re-weighting, heavy
data augmentation, and ensemble learning. This would allow for a
computer-aided diagnosis system capable of adaptively generalizing
to unseen findings, thus capturing the true long tail of all imaging
findings.

5. Conclusion

In summary, we curated and publicly released a large-scale dataset
of over 375,000 CXR images for long-tailed, multi-label disease classifi-
cation. We then hosted an open challenge, CXR-LT, to engage with the
research community on this important task. We compiled and synthe-
sized common threads through the most successful challenge solutions,
providing practical recommendations for long-tailed, multi-label med-
ical image classification. Lastly, we identify a path forward toward
tackling the “true” long tail of all imaging findings via multimodal
vision-language foundation models capable of zero-shot generalization
to unseen diseases, which future iterations of the CXR-LT challenge will
address.
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