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Despite significant investments in access network infrastructure, universal access to high-quality Internet
connectivity remains a challenge. Policymakers often rely on large-scale, crowdsourced measurement datasets
to assess the distribution of access network performance across geographic areas. These decisions typically
rest on the assumption that Internet performance is uniformly distributed within predefined social bound-
aries, such as zip codes, census tracts, or neighborhood units. However, this assumption may not be valid
for two reasons: (1) crowdsourced measurements often exhibit non-uniform sampling densities within ge-
ographic areas; and (2) predefined social boundaries may not align with the actual boundaries of Internet
infrastructure.

In this paper, we present a spatial analysis on crowdsourced datasets for constructing stable boundaries for
sampling Internet performance. We hypothesize that greater stability in sampling boundaries will reflect the
true nature of Internet performance disparities than misleading patterns observed as a result of data sampling
variations. We apply and evaluate a series of statistical techniques to: (1) aggregate Internet performance
over geographic regions; (2) overlay interpolated maps with various sampling unit choices; and (3) spatially
cluster boundary units to identify contiguous areas with similar performance characteristics. We assess the
effectiveness of the techniques we apply by comparing the similarity of the resulting boundaries for monthly
samples drawn from the dataset. Our evaluation shows that the combination of techniques we apply achieves
higher similarity compared to directly calculating central measures of network metrics over census tracts or
neighborhood boundaries. These findings underscore the important role of spatial modeling in accurately
assessing and optimizing the distribution of Internet performance, which can better inform policy, network
operations, and long-term planning decisions.
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1 Introduction

Measuring the performance of Internet access networks is critical for characterizing the quality
of service that ISPs deliver to users [10] and for identifying discrepancies in Internet performance
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in both urban and rural areas [25, 55]. Over the past few decades, there have been significant
advancements in measuring access network performance, both in terms of novel measurement in-
frastructure [23, 58] and analysis techniques [6, 47, 59, 60]. These advances have primarily focused
on measuring the performance of a single access link, using metrics such as throughput, latency,
jitter, and packet loss. The Measurement Lab (M-Lab) [29] and Ookla Speedtest [36] datasets are
currently widely used for understanding Internet performance of an access link [11]. Their increas-
ing prevalence has also enabled researchers to use these datasets to ask a broader set of questions
about Internet performance across an ISP or a region [4, 17, 35, 42]. In particular, there has been sig-
nificant recent interest in understanding the distribution of Internet performance across different
geographies [10, 30, 37, 52], especially for specific social and policy-related inquiries.

Yet, utilizing these crowdsourced measurements to characterize Internet performance across a
geographic region introduces new challenges, given the nature of their data. Most notably, crowd-
sourced datasets are self-selected, both in time and in space. Both the Ookla and M-Lab datasets
generate crowdsourced “point” measurements from a subset of Internet users across different ge-
ographies. These measurements, often irregularly concentrated over space, are performed when-
ever a user decides to run a speed test. Consequently, these data points reflect only a small, non-
uniform fragment of the overall user base and geographic area, posing significant challenges for
a comprehensive analysis. Yet, both policy and operational decisions affecting a geographic re-
gion rely on applying robust spatial analysis techniques to these small, self-selected samples to
make generalizations about Internet performance for the entire resident population across that
respective region.

Spatial analysis can potentially transform these scattered data points into cohesive insights,
identifying patterns and trends that are not immediately apparent. One significant challenge to
this approach is identifying geographic sampling boundaries for Internet performance and deter-
mining methods to summarize these point measurements over space. Additionally, individual mea-
surements can be significantly noisy due to various factors such as testing infrastructure, access
media, and the client’s hardware or software platform [31, 40]. Spatial de-noising and aggregation
of these measurements is, therefore, critical for drawing meaningful conclusions about network
performance over specific geographies. Analysis based on such de-noised datasets, on the other
hand, can ultimately help pinpoint areas truly needing further infrastructure investments.

Prior work on applying spatial analysis to Internet measurements has taken a different approach,
treating spatial boundaries as given and applying aggregation techniques within these pre-defined
boundaries. For example, previous work has attempted to characterize Internet performance over
conventional boundaries such as zip codes, census tracts, or neighborhood units [19, 25, 38, 47, 50].
An important conclusion from previous work is that there is often significant variation in Internet
performance over these boundaries [50]; previous work has suggested that such regions need ad-
ditional attention or policy intervention. However, these approaches suffer from a few important
limitations. First, the use of aggregate measures such as mean, median and inter-quantile range
(IQR) [38, 50] on point measurements may lead to inaccurate conclusions across a region, particu-
larly when the region exhibits high variability or is poorly sampled. For example, measurements
in pre-defined regions are often clustered in some portions of the space and dispersed in others
[25]. Thus, any aggregate measures calculated over irregularly clustered data may overrepresent
densely sampled areas.

Second, to our knowledge, no previous work has assessed the accuracy of previous techniques [19,
25] in summarizing Internet performance over a pre-defined geography. This may prevent regula-
tors and ISPs from adopting the most effective aggregation techniques for their analyses. Finally,
correlating Internet performance with population measures such as median income and popula-
tion density [19, 38, 47] using existing social boundaries may be inappropriate due to imperfect
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alignment with infrastructure boundaries. A single social boundary may encompass multiple areas
with heterogeneous Internet infrastructure, potentially leading to misleading correlations. Simply
put, there is no reason to expect that Internet performance should be spatially aggregated along
human-defined boundaries that have nothing to do with the Internet itself. This paper is the first
to explore and evaluate alternate spatial clustering approaches that more accurately reflect rela-
tionships in the underlying Internet measurement data.

Our work addresses these concerns by applying a new combination of statistical techniques to
aggregate point measurements over a geography and discover stable sampling boundaries, that is,
boundaries that show less variability when subject to variations in the underlying data. We hy-
pothesize that optimizing for stability will make it easier to compare data across different regions,
time periods, and longitudinal studies. With consistent boundaries, we expect reduced influence
of variability in the underlying data, which is likely to reflect true differences rather than artifacts
of boundary shifts. This consistency is critical for accurate spatial analysis, as stable geographic
boundaries will enable researchers, operators, policymakers, and others to track changes over time,
compare different geographic areas, and conduct longitudinal studies with greater confidence in
outcomes.

The solution we develop comprises three steps. We first use and compare prior techniques to
interpolate Internet performance to synthetic, out-of-sample locations for areas that are otherwise
unsampled in crowdsourced datasets. Second, we use this capability to summarize latency within
small, polygonal tessellations of varying resolutions, census tracts, as well as neighborhood bound-
aries within a large US city. Finally, we cluster these smaller units to discover the edges of sampling
boundaries. We focus on latency because this metric is increasingly critical to user quality of ex-
perience for latency-sensitive applications, such as Web browsing, interactive video, and gaming;
latency is also an important differentiator between conventional fixed-line ISPs and emerging fixed
5G providers and is thus an important metric to study. Although we focus on this single metric
for this paper, as our focus is on applying the spatial analysis techniques themselves, we expect
that the techniques that we develop are broadly applicable across other metrics.

To evaluate the quality of the resulting clusters, we measure the similarity between boundaries
using the Adjusted Rand Index (ARI) [56] for monthly samples drawn from the interpolated dataset.
We show that these techniques achieve a median pairwise ARI score of 0.59 (on a scale of -1 to 1),
which provides a 0.39 gain over computing raw averages for census tract boundaries. An ARI score
of 0.59 indicates a moderate to strong agreement between the clustering results for independent
monthly fits, demonstrating that the clusterings capture significant spatial structure in the data.
Our work makes the following contributions:

e We develop an end-to-end analysis pipeline to construct stable measurement-driven bound-
aries for sampling Internet performance over a large US city . Our boundaries show consis-
tency across monthly samples drawn from the same dataset, up to an Adjusted Rand Index of
0.59.

e We demonstrate how and when ISPs and regulators can use our techniques to identify areas
with similar latency characteristics from a given sample of measurement data. For instance,
we show that using the 95" percentile of latency for spatial aggregation yields more stable
clusters than using the 10*", when homogenous clusters covering small geographic areas are
desirable.

e We find that boundaries constructed from 17-month-long, ISP-specific data samples do not
show significant similarity between ISPs. This suggests that the FCC should consider releasing
ISP-specific representations of Internet performance for greater transparency.
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o While network operators may deploy their own measurement infrastructures, our approach
offers significant advantages by utilizing crowdsourced data, allowing coverage from mul-
tiple real-world vantage points in a cost-effective manner. We release our source code for
constructing these boundaries, enabling the research community, policymakers, and ISPs to
use it in their analyses [53].

2 Background

We describe processes for summarizing Internet performance within a geography; then, we dis-
cuss spatial interpolation and clustering techniques for identifying boundaries for data across a
geography that could ultimately be applied to Internet performance measurements.

2.1 Sampling Internet Performance in a Region: Two Approaches

Discovering boundaries for sampling Internet performance in a region can be done with two pos-
sible approaches: Targeted data collection within a region, and statistical interpolation of existing,
crowdsourced data.

The first approach involves collecting data from ISPs and aligning sampling boundaries with
coverage maps that are regularly updated by the FCC [18]. The accuracy of these maps has recently
come under scrutiny [57], which, in the United States, has given rise to the Broadband Equity
Access and Deployment (BEAD) program’s Challenge process [32]. The BEAD Challenge process
is designed to allocate federal funding for broadband infrastructure projects across the United
States, particularly in underserved regions. To enhance broadband availability maps across the
country, participants in this process are required to submit accurate coverage data by running
local measurement campaigns. The challenge process is ongoing [61], with states and territories
submitting their data to the National Telecommunications and Information Administration (NTIA)
for review. Creating accurate coverage maps is a future objective that involves extensive regulatory
considerations.

An alternative approach is to analyze the statistical distribution of existing crowdsourced mea-
surement data from speed test providers such as Ookla or M-Lab. A key challenge to this approach
is the under-representation of areas where users are less likely to conduct speed tests. It is thus
important to apply post-collection analysis techniques that accurately characterize Internet per-
formance in sparsely sampled areas.

2.2 Spatial Interpolation and Clustering of Crowdsourced Measurements

In this work, we adopt the second approach. To address the challenge of data sparsity in crowd-
sourced measurements, we apply and evaluate spatial interpolation techniques in the context of
Internet measurement data. We then explore the use of a spatial clustering technique to identify
geographic boundaries for sampling Internet performance, given this interpolated data. In this
section, we provide an overview of relevant spatial statistics literature.

2.2.1 Spatial Interpolation. There are two types of interpolation techniques: deterministic and sto-
chastic. Deterministic techniques make mathematical assumptions about the spatial process to
predict the target variable without incorporating randomness in the process. Examples of deter-
ministic techniques include Inverse Distance Weighting (IDW) [54], LOESS [9], and Self-tuning
Bandwidth in Kernel Regression (STBKR) [25]. While Kriging [12] is often considered determinis-
tic in application, it is based on a stochastic model and can provide uncertainty estimates, making
it somewhat of a hybrid technique.

Stochastic techniques, on the other hand, incorporate randomness and statistical properties of
the spatial data to yield predictions along with uncertainty estimates at each location. These tech-
niques are more appropriate when there is strong spatial dependence in the underlying data. Ex-
amples of stochastic techniques include Gaussian processes [1], Random Forests [48], and Neural
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networks [46]. Gaussian processes model spatial data as a collection of random variables, where
the covariance between any two variables is a function of the distance between them. Random
forests are stochastic due to the randomization involved in their construction procedure, while the
stochasticity in neural networks stems from weight initialization and gradient descent process.
In the context of crowdsourced network data, we argue that the noise introduced by factors such
as Wi-Fi [51] and access equipment [59] may weaken spatial auto-correlation between neighbor-
ing measurements. This can make deterministic techniques more suitable, as they do not rely on
the statistical properties of the data as much as stochastic techniques. In this paper, we thus use
three deterministic techniques—IDW, LOESS, and STBKR—for comparison and design an analysis
pipeline that can be integrated with any spatial interpolation method. Exploration of stochastic
techniques for interpolating Internet measurement data is a ripe avenue for future work.

2.2.2  Spatial Clustering & Regionalization. Spatial clustering involves the process of grouping sim-
ilar data points based on their spatial proximity, or sometimes another attribute of interest. Com-
mon spatial clustering algorithms include K-Means, DBSCAN, and Hierarchical Clustering. The
output of applying these algorithms to spatial data is a set of clusters, which may or may not be
contiguous in space. A specific form of spatial clustering is regionalization, also known as spatially
constrained clustering. Clusters formed using regionalization are contiguous in space. Common
regionalization algorithms include the Automatic Zoning Procedure (AZP) [2], the Max-P algo-
rithm [13], and Spatial ‘K’'luster Analysis by Tree Edge Removal (SKATER) [3]. In this work, we
consider the use of regionalization in identifying areas with similar Internet performance in a
citywide geography.

Our analysis is limited to regionalization techniques because of our prior assumptions about In-
ternet infrastructure. Internet infrastructure is often laid out hierarchically in contiguous regions,
with local networks aggregating into regional, and ultimately into core networks [20]. SKATER
uses a tree-based methodology, under which it tries to hierarchically merge similar spatial units.
Depending on the policy or other objectives, the number of clusters parameter in SKATER can be
adjusted to identify how local clusters are merged into regional or city-level clusters. This charac-
teristic makes SKATER a good fit for analyzing Internet performance data.

3 Method

This section describes our analysis method. We first analyze latency measurements from the Ookla
dataset to discover statistical boundaries for sampling Internet performance in a large US city. We
then describe the data preprocessing steps that we applied to the initial sample of Ookla mea-
surements to arrive at the dataset that we use for our analysis in this paper. This preprocessing
ensures that our interpolation and clustering analyses are least affected by noise originating from
a variety of factors that could distort the sample, such as VPN connections (which can artificially
inflate latency) and inaccurate geolocation (which can create outliers that do not correspond to
spatial properties in the dataset). Given the dimensionality of the dataset, there can be consid-
erable variations in sample selection methods for interpolation and clustering. Our approach is
designed to ensure that our results are reasonably robust to these variations. Finally, we describe
our analysis pipeline, which involves spatial interpolation to construct a uniform surface model
of latency values, followed by regionalization to identify contiguous regions with similar latency
characteristics.

3.1 Scope of Analysis

Dataset: | We use a proprietary Ookla dataset for our analysis as Ookla provides the largest crowd-
sourced measurement dataset for access network performance in the present day. As opposed to

! Access to the Ookla dataset used in this paper can be obtained from https://www.ookla.com/speedtest-intelligence
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Preprocessing Step Number of Samples Retained
Measurements for Chicago 5,924,004
Non-VPN Measurements 5,266,797
Auto-selected Server Measurements 5,005,881
GPS-only Measurements 891,431

Table 1. Summary of the filtering steps applied to the initial sample of Ookla measurements.

the M-Lab dataset, Ookla provides access to a greater number of point measurements with high
quality geolocations, which is crucial for spatial analysis. Ookla uses a combination of GPS and
IP geolocation to triangulate a user. We found a lack of availability of an accuracy measure for
the geolocated measurements, which renders these measurements unreliable for a high-resolution
spatial analysis. So, we choose to focus on GPS geolocated measurements. We analyze this dataset
for fixed line ISPs because these ISPs are likely to provide a more stable and consistent service
quality compared to mobile ISPs, which is desirable for spatial analysis. Finally, we conduct our
analyses for the city of Chicago because (1) it provides the second-largest overall sample size at a
city level, and (2) it is a city with a well documented history of measurement sampling bias across
its subdivisions [47, 50].

Performance metric: We use latency for spatial analysis due to its strong correlation with ge-
ographic distance and its effectiveness as a proxy for end-user quality of experience (QoE), com-
pared to metrics like throughput or packet loss [7]. Higher latency often results in increased buffer-
ing for real-time applications such as video streaming, conferencing, and online gaming. Addition-
ally, latency allows for comparisons across different access technologies like DSL, Fiber, and Cable.
In contrast, throughput can be influenced by subscription tiers, local bottlenecks, and server ca-
pacity, making it less suitable for spatial analysis. Packet loss, being more sporadic and prone to
getting influenced by transient issues like network congestion, may not exhibit clear spatial pat-
terns. Ultimately, analyzing latency can help network operators and regulators pinpoint regions
with poor user satisfaction and guide targeted policy interventions to enhance Internet quality.

3.2 Data Preprocessing

From a vast US-wide dataset, we focus on measurements that originated from Chicago because
this city provided a large sample size, has a rich set of demographics, and there is evidence for
considerable sampling bias across its subdivisions. Next, we exclude measurements that are con-
ducted over a VPN connection. We do so to ensure that only the measurements conducted over
the user’s home network are considered. VPNs can introduce additional latency and may not be
representative of the user’s actual experience. Next, we filter out measurements conducted against
servers that are not auto-selected by Ookla to conduct the speed test. We exclude these measure-
ments to ensure that the latency being analyzed is representative of typical latency experienced
by user-facing applications.

Most Content Delivery Networks (CDNs) tend to deploy their content caches close to end users
[21] for achieving low latency. Ookla defaults to nearby servers based on ping results for multiple
servers, ensuring that the selected server is the closest to the user. Using an auto-selected server
thus ensures that our analysis is not biased by the user’s choice of a distant server. Finally, we
exclude all IP geolocated measurements due to their lack of reliability for high resolution spatial
analysis. GeolP measurements are expected to yield high location errors, which could skew our
findings. Though GPS is also prone to errors, we found in our sample that a large proportion of
GPS locations (87.4%) were within a 460-meter radius of the true location. 460 meters is the size
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Descriptive Value
Measurement Duration Jan 2022 - Jun 2023
# Measurements 891,431
# distinct ISPs 799
# distinct vantage points (VP) 133,427
Median # samples per VP 2
# target servers 909
# hexagonal cells 899
# cells with lower than average sample size (sparse cells) 643
Average # measurements per cell per month 66.15

Table 2. Basic descriptives of the final sample of Ookla measurements.

S
HQ 5 P> U > <:> .
A \_/Hf
Original Data Interpolate at Overlay Aggregate Cluster
Distribution regular grid with over each
spacing Hexagons cell

Fig. 1. Overview of our analysis pipeline. First, we construct an interpolated map of the region.
Then, we use this map to perform spatial clustering.

of a resolution-8 hexagon in the H3 tessellation system [15], which we use for our analysis in
Section 5. As an additional consideration, we analyze the age of GPS locations in the final sample.
Across our 17-month sample, we found the 95" percentile location age to be about 63 seconds
across all measurements, indicating that most locations are reasonably recent.

Table 1 summarizes the filtering steps used to build our analytic sample. Most reduction in
the dataset size occurs at the initial filtering steps, which is expected because we are focusing
on a specific geography. We believe that the final sample is representative of the population of
users for multiple ISPs in a large US city, and is thus suitable for our analysis. We compare the
quality of boundaries between ISPs in Section 6. Basic descriptive statistics for the final sample are
summarized in Table 2.

3.3 Analysis Approach

Given the unreliability of current FCC coverage maps, our analysis aims to establish statistical
sampling boundaries for latency in Chicago. With latency measurements likely to be unevenly dis-
tributed across the geography, our first step is to develop a uniform surface model of latency values.
This model allows us to estimate latency at unsampled locations and ensures that our conclusions
are not biased by uneven sampling densities. We achieve this by applying spatial interpolation
techniques.

We first evaluate the performance of three interpolation methods by predicting latency at in-
sample locations. Then, using one of the methods, we predict latency at regularly spaced points
on the map, which we further overlay with different boundary unit choices. Finally, we use the
SKATER regionalization algorithm, which preserves spatial contiguity, to identify regions with
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similar latency characteristics. Figure 1 summarizes our pipeline and the analysis goals. We de-
scribe key aspects of this pipeline in detail below.

Interpolation at regular grid spacing. We used an 80-20 split of the dataset to evaluate the
chosen techniques across the city’s geography. Due to the dataset’s large size, we fit each model
on monthly splits, resulting in 17 different fits per interpolation method parameter choice. Our
evaluation ensures that all measurements from a single user appear exclusively in either the train-
ing set or the test set to prevent overfitting. Including a user’s measurements in both sets could
lead models to learn the user’s latency distribution rather than the underlying spatial patterns. By
treating each user independently, we assess how well the models generalize to unsampled users
at a given location. Upon selecting a suitable interpolation method, we then predict latency at
regularly spaced points across the city to construct a uniform surface model of latency. The grid
points for this out-of-sample interpolation step are chosen to be spread across the city at a regular
spacing of 50 meters. This choice is made to ensure that the interpolated map was evenly spaced,
granular and smooth, which allows an unbiased calculation of latency aggregates such as aver-
ages and percentiles. We implement our interpolation workflow using standard Python libraries
such as Scikit-learn [41] and Geopandas [26], but tools such as ArcGIS [45] or QGIS [43] can also
be adopted for this step. The choice of Python libraries is motivated by their open-source nature,
flexibility, and ease of integration with typical data science workflows.

Overlay with Hexagons. This process involves creating a tessellation of regular hexagons to
comprehensively cover the entire study area of Chicago. Hexagons are chosen because they have
the highest perimeter-to-area ratio among regular polygons, which allows them to tessellate the
map with minimal overlap. The Federal Communication Commission (FCC) commonly uses the H3
tessellation system [15] to map broadband availability across the United States. H3 is a hierarchical
geospatial indexing system widely used in real-time applications such as taxi demand forecasting
and urban planning. H3 hexagons can be constructed at 16 different resolutions ranging from 0
to 15, with a higher resolution representing hexagons of smaller edge lengths. The FCC uses a
resolution of 8 for their broadband availability maps. To ensure compatibility with the FCC maps,
we choose to use the same resolution for our analysis.

Aggregation over each cell. Upon overlaying the interpolated points with regular hexagonal
cells, we select a suitable clustering criterion for SKATER. We thus experiment with different ag-
gregation choices such as mean, percentiles, standard deviation and other metrics used in prior
work. The sensitivity of our approach to these metrics is discussed in Section 6.1. Ultimately, we
apply and evaluate SKATER to perform regionalization on the aggregated cells to identify regions
with similar latency characteristics.

Spatial Clustering. Stable regional clusterings across time are expected to be relevant for effec-
tive policy-making, particularly in the context of funding programs like the BEAD initiative. BEAD
funding aims to address disparities in broadband access by targeting resources to underserved ar-
eas. Consistent regional boundaries ensure that these investments are directed efficiently and eq-
uitably. Our approach, therefore, should result in clusters that identify consistently underserved
regions regardless of the choice of time interval for drawing the data samples. We thus evaluate
our regionalization results from a lens of stability across time. To measure stability, we use the Ad-
justed Rand Index (ARI) [56] due to its ability to preserve the relative ordering of the clusters. ARI
considers all pairs of hexagons and counts the number of pairs that are assigned to the same or dif-
ferent clusters between two clusterings. Then, it calculates the probability of agreement between
the two clusterings, and compares it to the expected agreement under random assignment. The
ARI score ranges between -1 and 1, with 1 indicating perfect agreement between the clusterings,
0 indicating random assignment, and -1 indicating complete disagreement. We use the ARI score
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Interpolation Description Parameters
Method
Inverse Distance Computes weighted average of p (Impact of distance on weights)

Weighting (IDW) nearby measurements. Uses the dis-
tance from an unsampled location
for weight calculations.

Locally  Estimated Fits local regression lines to de- span (Proportion of data points
Scatterplot Smooth- noise latency across space. Uses lat- used for regression)
ing (LOESS) long values directly for regression.

Self-tuning  Band- Computes weighted averages of ¢ (Controls bandwidth of the ker-
width in Kernel nearby measurements as estimates nel), k (Number of nearest neigh-
Regression (STBKR) for unsampled locations. Uses a bors)

Gaussian Kernel to model point

densities.

Table 3. A summary of chosen interpolation methods and their parameters.

to compare the clusterings obtained for different choices of SKATER parameters. For each param-
eter combination, we calculate the median ARI score between each pair of monthly clusterings.
Median is chosen for this aggregation because we noticed multimodal behavior in the distribution
of pairwise ARI scores over our parameter choices.

4 Interpolation

In this section, we compare three deterministic interpolation techniques—Inverse Distance Weight-
ing (IDW), Locally Estimated Scatterplot Smoothing (LOESS), and Self-tuning Bandwidth in Kernel
Regression (STBKR)—to estimate latency at unsampled locations in the Ookla dataset. We evaluate
the precision and reliability of these techniques, and discuss the implications of our findings.

4.1 Problem Formulation

Assume that we are given n observed locations with latency values z; at locations (x;,y;), i =
1,2,...,n, and we are interested in estimating the latency z at an unmeasured location (x, y). Let
Z(x,y) denote the latency value at location (x, y) for a specific month. We are interested in obtain-
ing an estimate Z(x, y) for Z(x,y) at (x,y).

4.2 Techniques

For the above problem formulation, we consider three interpolation techniques: Inverse Distance
Weighting IDW), Locally Estimated Scatterplot Smoothing (LOESS), and Self-tuning Bandwidth
in Kernel Regression (STBKR). We summarize these techniques in Table 3.

Inverse Distance Weighting (IDW). IDW assigns weights to each nearby data point based on
its distance from an unsampled location. It uses these weights to calculate a linear combination
of nearby values as an estimate of the target metric at an unsampled location. The relationship
between the similarity of nearby data points and their distance is assumed to be inverse in nature.
The IDW estimate Z(x, y) at location (x, y) is given by:

n Zi
=1 g#

Z(.‘X‘,y) = n—ll
i=1 E
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where d; is the Euclidean distance between the target location (x,y) and the i*" data point
(xi,yi), and p > 1 is a parameter used to control the influence of nearby points. A higher value of
p indicates a greater influence.

Locally Estimated Scatterplot Smoothing (LOESS). LOESS [9] is a non-parametric regression
technique that fits a smooth curve to a scatterplot of data points. By fitting a set of local polyno-
mials to the spatial data, it smoothes any discontinuities and effectively captures the underlying
spatial patterns. LOESS uses a smoothing parameter &, commonly known as the span, to control
the extent of smoothing. It assigns weights to the nearby data points (x;, y;) depending on their
distance from an unsampled location (x, y) using a Tri-cube Kernel. The weights, w{(x, y), (x;, y:)}
are given by:

- 2 ) — 3 3 .
(1 - (M) Gent) ) i (v yi) = ()| < h,

0 otherwise

The bandwidth of the Kernel & is set in such a way that approximately @ X n neighbors are
included in each local regression, where n is the total number of data points. ||(x;, y;) — (x,y)||
denotes the Euclidean distance between a sampled and an unsampled location. The final estimate
Z(x,y) at location (x, y) is given by Z(x, y) = ﬁo +ﬁ1x +/32y The coefficients ﬁ(x y) = {ﬂo, /31, /32}
are determined by minimizing the weighted sum of squared residuals, akin to traditional regression
methods:

f(x.y) = arg min IZ:; w{(x,y), G y) Hai = Z(xy))?

It is worth noting that the above formulation uses a linear polynomial. It is possible to use higher-

order polynomials to fit the data, though this may lead to overfitting. In our work, we restrict the
scope to linear polynomials due to their low complexity and high interpretability.
Self-tuning Bandwidth in Kernel Regression (STBKR). The STBKR technique proposed in
Jiang et. al. [25] uses a Gaussian Kernel regression method to estimate mobile Internet quality.
Their approach allows the bandwidth of the Kernel to be tuned automatically, depending on the
density of measurements in the local neighborhood of an unsampled location. The STBKR estimate
of Z(x,y) at location (x,y) is given by:

2it1 Kngey) (1Gxi yi) = (e )1 2
izt Knixy) Ui yi) = ()11

Z(x,y) =

u2

where K}, (x, ) is the Gaussian Kernel function with bandwidth h, given by K (u) = e ¥y,

1
Verh(x,y)
The use of a Gaussian Kernel provides a mechanism for decaying the influence of data points as

their distance from the unsampled location increases. The adaptive bandwidth h(x, y) is given by
h(x,y) = cRi(x,y)? where c is a parameter to control the bandwidth, and Ry (x,y) is the aver-
age distance between (x,y) and its k nearest neighbors. Parameters ¢ and k are both tuned using
cross-validation.

4.3 Evaluation
Objective. To assess whether the chosen methods can potentially yield accurate estimates at syn-
thetic, out-of-sample grid locations, we first performed an in-sample evaluation. We thus evaluated

the models on the preprocessed dataset using an 80-20 split for each month. Then, we compared
the best case latency estimate at each test location. We define the best case latency estimate as the
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Fig. 2. Error analysis for prior interpolation techniques. The x-axis shows per-location latency val-
ues on a log scale. While STBKR provides well-aligned estimates, IDW shows a greater sensitivity
to outliers in latency.

one that minimizes the absolute error for a ground truth measurement conducted at that location.
Finally, we compare the estimate and the ground truth, i.e, Z(x, y) and Z(x, y), across models. Our
evaluation ensures that we use the same training and testing sets across all models and parameter
choices.

Parameter Selection. Our estimates were optimized using a grid search over each parameter
choice. We set the parameters for each model as follows: p = 1, 2, 3 for IDW, and span = 0.05,0.1,0.5, 1
for LOESS. For STBKR, we vary ¢ between 107> and 100, while k is varied between 5 and 1000, both
on logarithmic scales.

Overall Comparisons. Figure 2 shows the distributions of ground truth and predicted latency
values across the three interpolation models. In Figure 2a, we observe a narrow range for LOESS
estimates, suggesting that the model underestimates latency for a vast majority of locations. These
underestimates are likely a result of the model’s dependence on the locations’ coordinates. LOESS
performs a regression over the lat-long values directly. While this allows the model to capture the
broader trends in latency across the geography;, it is less effective in capturing the extreme values.
So, using LOESS with a linear polynomial may not be appropriate when there is a greater presence
of outliers in ground-truth latency estimates. In contrast, the STBKR model (Figure 2b) shows a
slightly better alignment with the ground truth, suggesting that the model performs better than
LOESS in capturing extreme values. However, in comparison to IDW, we notice that the distribu-
tion of STBKR estimates possesses a shorter rightmost tail, indicating that STBKR underestimates
latency at locations with high ground-truth values. This is further confirmed by counting the num-
ber of locations for which we observe > 50 ms latency estimates for STBKR. We find that for IDW,
the number of locations with > 50 ms latency is 2.04 times higher than STBKR. The ability to
capture extreme values is crucial towards understanding the distribution of latency over a geog-
raphy, especially when the focus is on identifying areas with poor connectivity. Further, STBKR
being a Kernel regression method, has an O(N?) complexity for parameter tuning [22], where N
is the total number of data points. This makes it computationally expensive for large datasets. In
contrast, IDW does not require an additional parameter tuning step, and involves lower number
of computations, making it a suitable choice for large datasets such as Ookla.

Takeaways. We evaluate three deterministic interpolation techniques — IDW, LOESS and
STBKR - to estimate latency by down-sampling the Ookla dataset. The lower computational
complexity for IDW, coupled with its higher sensitivity to extreme values, makes it a suitable
choice for large datasets such as Ookla. We thus choose IDW as the primary interpolation
technique for our subsequent analysis.
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5 Regionalization

To construct the sampling boundaries for Chicago, we first interpolate latency measurements
across the citywide geography at regular grid spacing. Then, we overlay these measurements with
hexagon cells. Finally, we apply SKATER with aggregates calculated within these boundary units
as the clustering metric. We next formally describe the problem and our approach to regionaliza-
tion.

5.1 Problem Formulation

The problem of discovering statistical sampling boundaries for latency can be restructured as an
unsupervised learning problem. Consider a geographical region Q and a set of its partitions H =
{H;}?,. Further, consider a set of latency measurements conducted over the region as X = {x;}1 .
Our goal is to find a set of spatially contiguous clusters C = {Ci}ﬁi , such that each cluster C; is a
subset of H, and the latency values within each cluster are drawn from a common distribution. To
achieve this, we calculate the mean latency for each partition H; as y; = ﬁ Yxem, X and assign a
feature vector v; = [g;] to each partition. To calculate the dissimilarity among the partitions, we
consider the use of Euclidean distance, d(v;, v;) = ||v; — v;||. Using this dissimilarity function, we
apply a spatial clustering algorithm to group the partitions into N clusters. Finally, we define the
existence of a sampling boundary (B) between two partitions of the region Q as:

True, ifH; € Crand Hj € Cp, withk # [

False, otherwise

B(H;, Hj) = {

5.2 Technique

We choose SKATER [3] as the default regionalization algorithm. SKATER provides a fast and effi-
cient way to identify spatially contiguous clusters in a given region. Additionally, it offers a way
to control for homogeneity of the clusters by setting thresholds. The SKATER algorithm involves
three main steps. First, it constructs a graph where each node represents a spatial unit, e.g, a cen-
sus tract boundary, hexagonal units, geographic coordinates of Internet users, or a neighborhood.
The edges between the nodes denote spatial adjacency, i.e., two nodes are connected if they share
a common boundary. In case of points, the edges are constructed using a distance threshold. The
weights of these edges are determined using the dissimilarity between the nodes, which is Eu-
clidean distance in our case. In the second step, SKATER constructs a Minimum Spanning Tree
(MST) from the graph. An MST is a tree that connects all the nodes in the graph using the mini-
mum possible edge weights. The use of MST in this step ensures a faster runtime, as considering all
edges in the graph is infeasible. In the final step, the MST is iteratively pruned by removing edges
with the highest weights. This results in a set of connected components, one for each spatially con-
tiguous cluster. The number and size of the clusters can be controlled using two parameters, N and
floor. N denotes the number of clusters, and floor denotes the minimum number of nodes in each
cluster. We apply SKATER to the resolution-8 hexagon cell overlay for Chicago upon interpolating
the latency values using IDW at regular grid spacing of 50 meters.

5.3 Cluster Optimization

Objective. Since there is little prior knowledge about the true number of clusters and their individ-
ual sizes, we perform a sensitivity analysis for optimizing the parameters for SKATER. There can
be numerous ways to conduct this analysis. Akin to traditional clustering methods, approaches
such as Silhouette score [49] or Davies-Bouldin index [27] can be used to determine the optimal
parameters for SKATER. While these approaches are widely used, they may give us a different
set of parameters for each monthly set of IDW interpolated latency estimates. This is undesirable
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because true infrastructure boundaries may be less prone to changes over time. To address this
issue, we use a more intuitive, grid-search based approach to find the optimal set of parameters.
For each month, while varying N and floor, we select the set of parameters that yield most similar
boundaries between monthly fits. Further, for a given choice of floor, if increasing the number of
clusters by one results in the same cluster boundaries, we cease increasing the number of clusters
any further. This is because the additional cluster does not provide any additional information
about the underlying spatial distribution of latency.
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Fig. 3. Analysis of clustering performance using SKATER. 3a shows the median ARI score for
floor = 2 against N calculated over monthly fits of SKATER. 3b and 3c compare the resulting clus-
ters for N = 77 and floor = 2 with the neighborhood boundaries for Chicago. Boundaries drawn
from measurement data do not align with administrative boundaries.

Parameter Selection. We use the Adjusted Rand Index (ARI) to compare the clusterings obtained
for different choices of N and floor. For each parameter combination, we calculate the median
ARI score between each pair of monthly clusterings. We generally observed a low sensitivity of
the ARI towards the choice of floor (varied between 2 and 37) when we used mean to aggregate
latency over each cell. Figure 3a shows the median ARI score for floor = 2 versus N calculated
over monthly fits of SKATER. We choose a floor of 2 because it helps us identify small clusters
with significant differences in latency from their neighbors. We observe that a lower N (N < 3)
allows for more stable clusters, but the similarity between the resulting clusters tends to stabilize
between N = 7 and N = 9. Beyond this stage, the median ARI starts to decline as the clusters
become increasingly fragmented. We choose N = 7 and floor = 2 for subsequent analysis and
demonstrations as this combination gives a higher similarity in the vicinity of the stabilization
point. This choice also allows us to identify fine-grained boundaries while ensuring that the clus-
ters are not overly fragmented.

Misalignment with Administrative Boundaries. We also check whether data-driven bound-
aries generated using SKATER align with administrative area boundaries. In Figure 3b and Fig-
ure 3¢, we compare the resulting clusters for N = 77 and floor = 2 with the neighborhood bound-
aries for Chicago. The choice of N is the same as the total number of neighborhoods in Chicago.
We observe that the clusters drawn from latency measurement data do not show a one-to-one
correspondence with the administrative boundaries. This result suggests that sampling along ad-
ministrative boundaries may not be the best approach for understanding the spatial distribution
of latency.
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Takeaways. While we choose floor = 2 and N = 7 for subsequent analysis, we argue that the
choice of N and floor ultimately depends on the policy use-case under consideration. For a
given floor, alower value of N may be suited in scenarios that may involve allocating a limited
investment budget towards larger divisions of the geography. A higher value of N, instead, is
desirable in cases when targeted interventions may be required in regions marked by abnormal
performance. An example of such a region is the green region shown in the zoomed-in box in
Figure 3b. In comparison with the citywide average of 19.07 ms, we observe a higher average
latency of 45.04 ms for this region. The orange neighboring region shows an average latency
of 17.15 ms. This also demonstrates the ability of our approach in identifying spatial outliers
in latency.

6 Cluster Sensitivity to Data Sampling Choices

Our analysis thus far used a single, IDW-interpolated sample of Ookla measurements in combina-
tion with average latency as the default clustering metric. In this section, we discuss the sensitivity
of our results towards the choice of sampling and aggregation methods. We experiment with the
aggregation metric, the aggregation unit, and the ISP to compare sampling boundaries.

6.1 Impact of Aggregation Metric
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Fig. 4. Comparison of boundary similarities under two extreme values of floor. Higher percentiles
show a greater ARI score when we require more homogeneous clusters.

Experiment Setup. We first assess which aggregation metrics lead to more stable boundaries across
monthly fits. While mean, percentiles and standard deviation are more intuitive metrics to pick
from, a number of additional, compound metrics have been proposed in prior work. The inequality
ratio [33] is defined as the ratio between the 90" and 10" percentile of latency. A higher value of
this metric indicates a higher degree of variability in the latency measurements within a hexagonal
cell. Latency reduction [50], i.e, the difference between 90" and 10" percentile latency, is also
considered for stability checks. For each choice of metric, we calculate the ARI score between the
boundaries obtained using SKATER. Then, we compare the distribution of pairwise ARI scores
calculated between monthly fits of the algorithm.

Observations. Figure 4 shows a comparison of the pairwise ARI scores for above metric choices.
In Figure 4a, with a floor of 2, we observe that the 10" and the 90" percentile show a similar
ARI score, while the ARI score for the 95" and 97.5"" percentiles is higher. Contrary to this, in
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Figure 4b, we observe a reduced stability as we move from the 10t to the 90" percentile while
using a higher value of floor. Other metrics show moderate levels of ARI scores.

Dependence on cluster size. We argue that above observations are an artifact of an important
trade-off. The floor parameter, in essence, controls the balance between homogeneity and conti-
guity in the resulting clusters. A lower floor results in clusters of greater homogeneity but less
contiguity, while a higher floor results in larger but less homogeneous clusters. When floor is set
to 2, a superior homogeneity in the clusters reduces the difference between the 10" and 90" per-
centiles, leading to similar ARI scores for these metric choices in a cluster. Since the cluster sizes
are relatively small, regions showing consistently high levels of latency are likely to persist across
months. This leads to a higher similarity for the 95" and 97.5'" percentiles. The 99" percentile is
more likely to capture rare events such as outages or congestion, and thus registers a lower ARI
score than the 97.5t" percentile. When floor is changed to 25, the clusters become more contigu-
ous and large, with greater differences arising between the extreme values. Across larger areas,
the baseline latency is likely to remain stable, whereas the variability in latency above the baseline
is expected to be greater. This leads to a reduced similarity as we move from the 10" to the 90"
percentile.

Takeaways. The above results are relevant from a policy standpoint because they highlight
the importance of choosing the right aggregation metric for carving out sampling boundaries
for latency. When the policy objectives are to identify smaller regions with consistently poor
latency for targeted interventions, a lower floor coupled with a higher percentile metric such
as the 90" or 95" is more suitable. On the other hand, when there is a need to identify larger
regions with varying levels of latency, a higher floor in combination with a lower percentile
metric, such as the 10", is more preferable.

6.2 Impact of Aggregation Unit

®

(a) Regular Hexagons (b) Census Tracts (c) Neighborhoods

Fig. 5. Comparison of boundaries under different aggregation unit choices with N = 7 for June
2022. The choice of sampling unit can significantly affect resulting sampling boundaries, and hence
our conclusions about the spatial distribution of latency.

Experiment Setup. We next evaluate how the choice of the smallest spatial unit affects the simi-
larity among monthly fits of SKATER. To this end, we consider the use of three unit types — regular
hexagons, census tracts and neighborhood boundaries for Chicago. We continue with our choice
of N = 7 but set floor to 1 for these comparisons. This is because for census tracts, we noticed
that two of the tracts were disconnected from the rest, leading to two distinct spatial islands. Due
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Fig. 6. Pairwise ARl comparison across aggregation unit choices and averaging method for raw
and interpolated data. Raw averaging is only suitable when computed over regular and small spa-
tial scales.

to this behavior, we notice that any choice with floor > 2 led to the exclusion of these discon-
nected tracts from the analysis, potentially skewing the results and reducing the validity of our
comparisons. By setting floor to 1, we ensure that all spatial units, however small, are included in
the analysis, and we make fair comparisons between the three unit choices.

Observations. Figure 5 shows an example comparison between the resulting boundaries for June
2022. We notice that the South and South-West sides are clustered together in all three cases, with
this boundary extending up to the far North for neighborhood units. Additionally, we observe a
greater degree of variability in the Northern regions, with the hexagonal units providing more fine-
grained sets of clusters. To further understand the cluster quality for the above unit choices with
or without interpolation, we plot the monthly pairwise ARI score distributions in Figure 6a and
Figure 6b. We see that prior interpolation ensures a consistent ARI score across the choice of ag-
gregation units, with hexagons achieving the highest median ARI scores. Additionally, we see that
raw averaging of point latency measurements tends to produce worse clustering performance in
the case of census tract and neighborhood units. Overall, hexagonal units with post-interpolation
averaging register a median ARI score of 0.59, in comparison to a score of 0.20 for the traditional
practice of using census tract units with raw averaging.

Unstable administrative clusters with raw averaging. Census tracts and neighborhood bound-
aries tend to be unevenly distributed in size, shape and population density, leading to irregular
smoothing of latency variations, and thus less stable boundaries. For hexagonal cells, we observe
a superior clustering performance for raw averaging, suggesting that raw averaging is only reli-
able when computed over small yet regular spatial units. Interpolated averaging, on the other hand,
ensures consistent boundaries across the choice of aggregation units, with hexagons showing the
highest median ARI scores. This is because prior interpolation helps capture the underlying spatial
trends in the data, leading to more consistent boundaries across different spatial unit choices.

Takeaways. Above results signal a significant departure from the status quo of using raw av-
eraging for aggregating Internet performance over administrative regions. For policy, it is thus
advisable to use prior interpolation to ensure consistency in results when using administrative
boundaries, or high resolution, regular spatial units if computing aggregates directly from raw
measurements.
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Fig. 7. Heatmap of ARl scores between ISPs for the 17-month duration. We observe low similarity
between the boundaries obtained for different ISPs.

6.3 Impact of ISP

Experiment Setup. Our samples thus far have included latency data from multiple ISPs together
for aggregation into cells. We now evaluate how much do ISPs share latency boundaries among their
respective samples. We therefore first select top-five ISPs on the basis of their measurement counts.
Then, we apply IDW individually to the 17-month-long samples on a per-ISP, per-month basis to
interpolate these measurements over the city. Next, with a floor = 2and N = 7, we apply SKATER
after aggregating these measurements over hexagonal cells using the 95 percentile. This choice
was made to ensure that we compare the most homogeneous clusters between ISPs using our best
case metric from Section 6.1. Finally, we calculate the median ARI score between the boundaries
obtained for each ISP pair over the 17-month period.

Observations. Figure 7 shows a heatmap of the resulting ARI scores between the top five ISPs.
We observe that the ISPs generally show a lower degree of similarity between their sampling
boundaries. In contrast, when we interpolate measurements over a collective sample derived from
all ISPs (as shown previously), we observe a higher degree of similarity between the boundaries.

Low similarity between ISP boundaries. When using a collective sample, the aggregation pro-
cess smoothens out variability in latency measurements across ISPs, leading to more consistent
boundaries over time. The differences between ISPs may arise from several factors such as the geo-
graphic distribution of servers, the underlying access technology, the network design for the ISPs,
or the per-ISP sample size. When measurements from all ISPs are jointly interpolated, individual
ISP characteristics are more likely to be smoothened out, and the resulting boundaries are more
likely to reflect the geographic distribution of latency in the region. Looking at each ISP individ-
ually on a regionalized map is likely to provide a more consumer-transparent view of network
performance in a region. It would not only help new subscribers make informed decisions about
their Internet connections, but also assist in maintaining greater scrutiny over ISPs regarding their
service level agreements (SLAs). The FCC should thus consider releasing ISP and region specific
maps to ensure that the representations of network performance are accurate and reliable.

Takeaways. If a network operator is interested in understanding the spatial distribution of la-
tency for their network, they should not rely on boundaries constructed from a heterogeneous
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sample from multiple ISPs. Rather, they are recommended to use their own data to make in-
formed decisions about infrastructure upgrades. Moreover, funding agencies and regulators
should consider the ISP-specific nature of latency when making decisions about infrastructure
investments.

7 Improving Clustering Stability

While our use of ARI score as an evaluation metric allows for understanding the degree of similar-
ity between boundaries, it does not help localize the boundary variation, or volatility in each clus-
tering. Localizing this volatility can be crucial for making informed decisions about infrastructure
investments. Areas with high clustering volatility can be used for running additional measurement
campaigns to fill data gaps, while those showing low volatility can be prioritized for immediate
policy interventions. We use bootstrap resampling [14] techniques to calculate this metric. Boot-
strap resampling is often used to estimate sample statistics when the underlying distribution of the
data is unknown. In our case, we use this technique to simulate the perturbations across clusters
to estimate the distribution of volatility in cluster assignments. We define volatility for a cell as
the probability that applying SKATER on two different samples of the same dataset will result in
different cluster assignments for the cell. Formally, for a cell H;, we define the clustering volatility
as:

S 2P G (H) # Ci(H))}
('3

where |B| denotes the number of bootstrap samples drawn from the dataset. A total of 1000
samples is often considered adequate for most practical use cases [14], so we choose |B| = 1000.
C;(H;) denotes the cluster assignment for the cell H; when SKATER with N = 7 and floor = 2
is applied to the j!" bootstrap sample. I {Cj(H;) # Cix(H;)} denotes the indicator function that
assumes 1 when two different bootstrap samples result in a different cluster assignment, and 0
otherwise. (”23 ‘) denotes the binomial coefficient, indicating the total number of pairs of cluster
assignments for the cell.

Bootstrap resampling in its original form assumes that the samples drawn are independently
and identically distributed. For calculating clustering volatility, we use a spatial version of this
technique, called block bootstrapping [44]. Block bootstrapping accounts for potential spatial auto-
correlation in the data that may be induced due to smoothing of variations caused by interpolation.
We estimate that the interpolated dataset produces a global Moran’s I [34] (an indicator of overall
spatial dependence) of 0.795, on a scale of -1 and 1, with a significance level of 0.001 among 10th
percentile latency aggregates, suggesting that the smoothing caused by IDW induced significant
spatial auto-correlation. In block bootstrapping, instead of drawing individual point samples in-
dependently, we thus resample points from complete hexagonal cells to account for local spatial
dependencies in the data. We use a block size of one cell under the assumption that spatial depen-
dencies between cells are minimal. We then calculate the clustering volatility for each cell over the
city.

Figure 9 shows an example boundary volatility map for Chicago for January 2022 with 10°" per-
centile as the aggregation metric under block bootstrapping. We use N = 7 and floor = 2 for this
analysis. We observe that majority of the hexagonal cells show a low-to-moderate level of volatil-
ity. These regions show some fuzziness in the boundaries, indicating that the cluster assignments
for these cells are more likely to change across different samples of the interpolated dataset. We
also observe that three distinct regions show zero boundary volatility overall. The North-Western
region hosts the city’s airport, the Central-Eastern region is marked by Chicago’s central business

V(H;) =

Oth
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Fig. 9. Resulting clustering volatility map for January 2022. The 10’* percentile of latency is used
as the aggregation metric. Block bootstrapping identifies three distinct regions of zero boundary
volatility.

district (CBD), while the Southern region generally represents areas with a high poverty rate [28].
These areas are likely to represent distinct network conditions than other suburban areas, leading
to more stable boundaries over time. Regions falling in these contiguous cells with low volatility
can be prioritized for immediate policy interventions, depending on the underlying latency dis-
tribution. On the other hand, regions marked with significant volatility, such as some suburban
regions, can benefit from additional data collection efforts for ensuring more stable boundaries.

8 Related Work

Crowdsourced speed test datasets, such as Ookla and M-Lab have found a variety of policy use
cases in prior research. Bauer et. al. [5] describe the best practices for reporting data to reason
about advertised and measured speeds for ISPs. Similarly, Feamster and Livingood [16] describe
the need to augment speed test outputs with additional contextual information to increase the
scope and usability of crowdsourced data. Going a step further, Paul et. al. [40] showed an empir-
ical characterization of several factors that may confound Internet performance of an access link.
Further, Macmillan et. al. [31] augment real-world speed test data with laboratory experiments
to understand the differences between M-Lab’s NDT and Ookla’s Speedtest tools. They find that
Ookla Speedtest tends to report higher speeds than M-Lab NDT under high latency conditions,
further showcasing the need for additional context in analyzing speed test data. Finally, Clark and
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Wedeman [10] discuss the need to interpret aggregate statistics on speed test data over geogra-
phies to understand the overall behavior of the Internet. While these studies collectively point
towards a need for a comprehensive understanding of the Internet access landscape, they do not
leverage the spatial nature of the crowdsourced measurement data to inform policy decisions.

More recently, there is an emergence of studies that do leverage location information from
crowdsourced speed test data for analysis. Paul et. al. [39] summarize upload and download speeds
within census block groups using the M-Lab dataset, and correlate these speeds with demographic
data. They find income levels to possess significant relationship with download speed. Further,
Lee et. al. [30] present a methodology for regional bias correction in crowdsourced Ookla speed
test measurements. Krzysztof et. al. [24] explore local Internet quality in Poland using a spatial
analysis on an Ookla dataset, highlighting the non-uniformity in access quality among rural and
urban areas. Caldas et. al. [8] perform a similar analysis over Denmark to highlight Internet ac-
cess disparities in Denmark. Though these studies leverage spatial information, they: (1) still rely
on aggregates calculated over predefined social boundaries for analysis, and (2) do not take into
account uneven densities of measurements within these boundaries. These limitations can lead
to coarse generalizations, and can prevent policymakers from identifying specific areas that may
need immediate interventions.

Another class of studies closely related to our work directly leverage point measurements by not
assuming prior structure to measurement sampling boundaries. For instance, Sommers et. al. [55]
use Inverse Distance Weighting (IDW) to understand the spatial distribution of cellular and Wi-Fi
performance in metro areas. Similar to Caldas et. al, they observe a degradation in performance as
one moves further away from metro areas. Jiang et. al. [25] propose the Self-tuning Bandwidth in
Kernel Regression (STBKR) technique to estimate cellular speed test quality using speed measure-
ments from Ookla. They find that STBKR outperforms Kriging in accurately estimating throughput
in sparsely sampled regions. The LOESS technique, used in astronomy [9] to analyze the trajec-
tories of celestial objects, has not been used in the context of Internet performance. In our work,
we extend these techniques to identify distinct regions for sampling Internet performance on the
basis of latency, with a focus on stability of these boundaries over time and sampling variations.

9 Conclusion & Future Work

This work presents a new approach for discovering statistical latency sampling boundaries within
a geographic region, such as a city, using crowdsourced latency measurements. The findings of
this study underscore the importance of spatial analysis in network planning and the benefits of
targeted infrastructure investments for equitable Internet access. We show that the method we
develop can identify contiguous geographic regions with poor Internet performance; such infor-
mation can be used to inform policy interventions and also assist ISPs with infrastructure planning.
We summarize the implications of our work and discuss potential future directions below.

Applying our approach to policymaking. Our work provides a method for identifying Internet
latency sampling boundaries, assuming minimal information about the underlying infrastructure.
By delineating clear latency boundaries, network operators can target specific areas for infrastruc-
ture improvements, optimizing resource allocation and enhancing overall network performance.
For instance, our illustration from Figure 3b provides a starting point for identifying areas with
higher latency. Given a sample of diagnostic measurement data and a specific timescale, contigu-
ous regions with poor latency can be identified over a geography in a similar manner. Even though
network operators may have their own measurement infrastructure in place, our method is partic-
ularly valuable for leveraging crowdsourced data, which can provide coverage from a large number
of real-world vantage points in a cost-effective manner. It enables operators to work with scattered
samples, where continuous measurements are unavailable. Integrating our clustering approach
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with further diagnostic information can give rise to suitable infrastructure improvements such as
cable upgrades, deployment of additional hardware, or routing optimizations in under-provisioned
areas. Our finding from Section 6.2 suggests that the use of regular spatial units in place of admin-
istrative boundaries is expected to generate Internet performance representations that are more
appropriate to inform long-term policy interventions. Finally, our finding from Section 6.3 pro-
vides an important insight into using crowdsourced data for the FCC. Instead of relying on a large
heterogeneous dataset, regulators can use our method to identify boundaries on a per-ISP basis,
which can help in understanding the impact of different ISPs on overall network performance in
aregion.

Reliance on crowdsourced measurement data. Although our approach helps reveal signif-
icant spatial structure from latency measurements, our sampling boundaries are still based on
crowdsourced data. Despite its wide adoption, Ookla data may not be representative of all users,
especially those with limited or no Internet access. Future work can thus explore the possibility of
exploring an augmentation of multiple data sources using novel metrics to improve the representa-
tiveness of the data. Our findings from Section 6.1 provide a starting point for such an exploration.
The design of spatial clustering methods that improve the ARI scores for metrics such as the in-
equality ratio, or latency reduction, can be a promising direction, as these metrics can potentially
remain consistent across datasets and device types.

Sensitivity to interpolation. A key component of our method relies on prior interpolation meth-
ods to build a surface model of latency across the city. Although we primarily use IDW interpola-
tion in this work, the mutual agreement between boundaries drawn using different interpolation
algorithms is remaining to be evaluated. Additionally, interpolation methods that incorporate local
context such as network topology, routing information, and urban infrastructure can be explored
to improve the accuracy of the surface model. This information can enhance the stability of the
clustering boundaries and the accuracy of the regionalization process.

Geographic scope. The primary focus of our analysis is on the city of Chicago. Our approach
identifies boundaries for sampling Internet latency without relying on Chicago-specific informa-
tion such as census or demographic data. While Chicago’s diverse urban environment offers an
intriguing testbed, we expect our methodology to be generalizable to other cities with similar data
availability and population density. A key challenge to extending our work to rural and remote
areas with low connectivity is the availability of crowdsourced data. Operators and regulators can
play an important role in collecting and sharing data from these regions to explore the potential
of our methodology in these areas.

Temporal analysis. Our criterion for identifying sampling boundaries from latency data is based
on the stability of the sampling boundaries across multiple temporal samples. While our distance
calculations for prior interpolation involve geographic distances only, our methods can be ex-
tended to temporal distances as well. Such an approach would allow a more nuanced understand-
ing of the stability of boundaries, and the impact of temporal variations in network performance
on the sampling boundaries.

Ethics

In this work, we analyze a proprietary Ookla dataset under a data usage agreement (DUA). In
this dataset, the geolocations of Ookla users were truncated upto 4 decimal places, which allows
a margin of a few hundred meters. The IP addresses are masked up to the last octet, which en-
sures anonymity. We did not find any other personally identifiable information in the dataset. Our
research, therefore, does not raise any ethical concerns.
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