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Despite signi昀椀cant investments in access network infrastructure, universal access to high-quality Internet
connectivity remains a challenge. Policymakers o昀琀en rely on large-scale, crowdsourcedmeasurement datasets
to assess the distribution of access network performance across geographic areas. 吀栀ese decisions typically
rest on the assumption that Internet performance is uniformly distributed within prede昀椀ned social bound-
aries, such as zip codes, census tracts, or neighborhood units. However, this assumption may not be valid
for two reasons: (1) crowdsourced measurements o昀琀en exhibit non-uniform sampling densities within ge-
ographic areas; and (2) prede昀椀ned social boundaries may not align with the actual boundaries of Internet
infrastructure.

In this paper, we present a spatial analysis on crowdsourced datasets for constructing stable boundaries for
sampling Internet performance. We hypothesize that greater stability in sampling boundaries will re昀氀ect the
true nature of Internet performance disparities than misleading pa琀琀erns observed as a result of data sampling
variations. We apply and evaluate a series of statistical techniques to: (1) aggregate Internet performance
over geographic regions; (2) overlay interpolated maps with various sampling unit choices; and (3) spatially
cluster boundary units to identify contiguous areas with similar performance characteristics. We assess the
e昀昀ectiveness of the techniques we apply by comparing the similarity of the resulting boundaries for monthly
samples drawn from the dataset. Our evaluation shows that the combination of techniques we apply achieves
higher similarity compared to directly calculating central measures of network metrics over census tracts or
neighborhood boundaries. 吀栀ese 昀椀ndings underscore the important role of spatial modeling in accurately
assessing and optimizing the distribution of Internet performance, which can be琀琀er inform policy, network
operations, and long-term planning decisions.
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1 Introduction

Measuring the performance of Internet access networks is critical for characterizing the quality
of service that ISPs deliver to users [10] and for identifying discrepancies in Internet performance
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in both urban and rural areas [25, 55]. Over the past few decades, there have been signi昀椀cant
advancements in measuring access network performance, both in terms of novel measurement in-
frastructure [23, 58] and analysis techniques [6, 47, 59, 60]. 吀栀ese advances have primarily focused
on measuring the performance of a single access link, using metrics such as throughput, latency,
ji琀琀er, and packet loss. 吀栀e Measurement Lab (M-Lab) [29] and Ookla Speedtest [36] datasets are
currently widely used for understanding Internet performance of an access link [11].吀栀eir increas-
ing prevalence has also enabled researchers to use these datasets to ask a broader set of questions
about Internet performance across an ISP or a region [4, 17, 35, 42]. In particular, there has been sig-
ni昀椀cant recent interest in understanding the distribution of Internet performance across di昀昀erent
geographies [10, 30, 37, 52], especially for speci昀椀c social and policy-related inquiries.

Yet, utilizing these crowdsourced measurements to characterize Internet performance across a
geographic region introduces new challenges, given the nature of their data. Most notably, crowd-
sourced datasets are self-selected, both in time and in space. Both the Ookla and M-Lab datasets
generate crowdsourced “point” measurements from a subset of Internet users across di昀昀erent ge-
ographies. 吀栀ese measurements, o昀琀en irregularly concentrated over space, are performed when-
ever a user decides to run a speed test. Consequently, these data points re昀氀ect only a small, non-
uniform fragment of the overall user base and geographic area, posing signi昀椀cant challenges for
a comprehensive analysis. Yet, both policy and operational decisions a昀昀ecting a geographic re-
gion rely on applying robust spatial analysis techniques to these small, self-selected samples to
make generalizations about Internet performance for the entire resident population across that
respective region.

Spatial analysis can potentially transform these sca琀琀ered data points into cohesive insights,
identifying pa琀琀erns and trends that are not immediately apparent. One signi昀椀cant challenge to
this approach is identifying geographic sampling boundaries for Internet performance and deter-
mining methods to summarize these point measurements over space. Additionally, individual mea-
surements can be signi昀椀cantly noisy due to various factors such as testing infrastructure, access
media, and the client’s hardware or so昀琀ware platform [31, 40]. Spatial de-noising and aggregation
of these measurements is, therefore, critical for drawing meaningful conclusions about network
performance over speci昀椀c geographies. Analysis based on such de-noised datasets, on the other
hand, can ultimately help pinpoint areas truly needing further infrastructure investments.

Prior work on applying spatial analysis to Internet measurements has taken a di昀昀erent approach,
treating spatial boundaries as given and applying aggregation techniques within these pre-de昀椀ned
boundaries. For example, previous work has a琀琀empted to characterize Internet performance over
conventional boundaries such as zip codes, census tracts, or neighborhood units [19, 25, 38, 47, 50].
An important conclusion from previous work is that there is o昀琀en signi昀椀cant variation in Internet
performance over these boundaries [50]; previous work has suggested that such regions need ad-
ditional a琀琀ention or policy intervention. However, these approaches su昀昀er from a few important
limitations. First, the use of aggregate measures such as mean, median and inter-quantile range
(IQR) [38, 50] on point measurements may lead to inaccurate conclusions across a region, particu-
larly when the region exhibits high variability or is poorly sampled. For example, measurements
in pre-de昀椀ned regions are o昀琀en clustered in some portions of the space and dispersed in others
[25]. 吀栀us, any aggregate measures calculated over irregularly clustered data may overrepresent
densely sampled areas.

Second, to our knowledge, no previouswork has assessed the accuracy of previous techniques [19,
25] in summarizing Internet performance over a pre-de昀椀ned geography. 吀栀is may prevent regula-
tors and ISPs from adopting the most e昀昀ective aggregation techniques for their analyses. Finally,
correlating Internet performance with population measures such as median income and popula-
tion density [19, 38, 47] using existing social boundaries may be inappropriate due to imperfect
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alignment with infrastructure boundaries. A single social boundarymay encompass multiple areas
with heterogeneous Internet infrastructure, potentially leading to misleading correlations. Simply
put, there is no reason to expect that Internet performance should be spatially aggregated along
human-de昀椀ned boundaries that have nothing to do with the Internet itself. 吀栀is paper is the 昀椀rst
to explore and evaluate alternate spatial clustering approaches that more accurately re昀氀ect rela-
tionships in the underlying Internet measurement data.

Our work addresses these concerns by applying a new combination of statistical techniques to
aggregate point measurements over a geography and discover stable sampling boundaries, that is,
boundaries that show less variability when subject to variations in the underlying data. We hy-
pothesize that optimizing for stability will make it easier to compare data across di昀昀erent regions,
time periods, and longitudinal studies. With consistent boundaries, we expect reduced in昀氀uence
of variability in the underlying data, which is likely to re昀氀ect true di昀昀erences rather than artifacts
of boundary shi昀琀s. 吀栀is consistency is critical for accurate spatial analysis, as stable geographic
boundaries will enable researchers, operators, policymakers, and others to track changes over time,
compare di昀昀erent geographic areas, and conduct longitudinal studies with greater con昀椀dence in
outcomes.

吀栀e solution we develop comprises three steps. We 昀椀rst use and compare prior techniques to
interpolate Internet performance to synthetic, out-of-sample locations for areas that are otherwise
unsampled in crowdsourced datasets. Second, we use this capability to summarize latency within
small, polygonal tessellations of varying resolutions, census tracts, as well as neighborhood bound-
aries within a large US city. Finally, we cluster these smaller units to discover the edges of sampling
boundaries. We focus on latency because this metric is increasingly critical to user quality of ex-
perience for latency-sensitive applications, such as Web browsing, interactive video, and gaming;
latency is also an important di昀昀erentiator between conventional 昀椀xed-line ISPs and emerging 昀椀xed
5G providers and is thus an important metric to study. Although we focus on this single metric
for this paper, as our focus is on applying the spatial analysis techniques themselves, we expect
that the techniques that we develop are broadly applicable across other metrics.

To evaluate the quality of the resulting clusters, we measure the similarity between boundaries
using the Adjusted Rand Index (ARI) [56] formonthly samples drawn from the interpolated dataset.
We show that these techniques achieve a median pairwise ARI score of 0.59 (on a scale of -1 to 1),
which provides a 0.39 gain over computing raw averages for census tract boundaries. An ARI score
of 0.59 indicates a moderate to strong agreement between the clustering results for independent
monthly 昀椀ts, demonstrating that the clusterings capture signi昀椀cant spatial structure in the data.
Our work makes the following contributions:
• We develop an end-to-end analysis pipeline to construct stable measurement-driven bound-

aries for sampling Internet performance over a large US city . Our boundaries show consis-
tency across monthly samples drawn from the same dataset, up to an Adjusted Rand Index of
0.59.

• We demonstrate how and when ISPs and regulators can use our techniques to identify areas
with similar latency characteristics from a given sample of measurement data. For instance,
we show that using the 95Cℎ percentile of latency for spatial aggregation yields more stable
clusters than using the 10Cℎ , when homogenous clusters covering small geographic areas are
desirable.

• We 昀椀nd that boundaries constructed from 17-month-long, ISP-speci昀椀c data samples do not
show signi昀椀cant similarity between ISPs.吀栀is suggests that the FCC should consider releasing
ISP-speci昀椀c representations of Internet performance for greater transparency.
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• While network operators may deploy their own measurement infrastructures, our approach
o昀昀ers signi昀椀cant advantages by utilizing crowdsourced data, allowing coverage from mul-
tiple real-world vantage points in a cost-e昀昀ective manner. We release our source code for
constructing these boundaries, enabling the research community, policymakers, and ISPs to
use it in their analyses [53].

2 Background

We describe processes for summarizing Internet performance within a geography; then, we dis-
cuss spatial interpolation and clustering techniques for identifying boundaries for data across a
geography that could ultimately be applied to Internet performance measurements.
2.1 Sampling Internet Performance in a Region: Two Approaches
Discovering boundaries for sampling Internet performance in a region can be done with two pos-
sible approaches: Targeted data collection within a region, and statistical interpolation of existing,
crowdsourced data.

吀栀e 昀椀rst approach involves collecting data from ISPs and aligning sampling boundaries with
coverage maps that are regularly updated by the FCC [18].吀栀e accuracy of these maps has recently
come under scrutiny [57], which, in the United States, has given rise to the Broadband Equity
Access and Deployment (BEAD) program’s Challenge process [32]. 吀栀e BEAD Challenge process
is designed to allocate federal funding for broadband infrastructure projects across the United
States, particularly in underserved regions. To enhance broadband availability maps across the
country, participants in this process are required to submit accurate coverage data by running
local measurement campaigns. 吀栀e challenge process is ongoing [61], with states and territories
submi琀琀ing their data to the National Telecommunications and Information Administration (NTIA)
for review. Creating accurate coveragemaps is a future objective that involves extensive regulatory
considerations.

An alternative approach is to analyze the statistical distribution of existing crowdsourced mea-
surement data from speed test providers such as Ookla or M-Lab. A key challenge to this approach
is the under-representation of areas where users are less likely to conduct speed tests. It is thus
important to apply post-collection analysis techniques that accurately characterize Internet per-
formance in sparsely sampled areas.
2.2 Spatial Interpolation and Clustering of Crowdsourced Measurements
In this work, we adopt the second approach. To address the challenge of data sparsity in crowd-
sourced measurements, we apply and evaluate spatial interpolation techniques in the context of
Internet measurement data. We then explore the use of a spatial clustering technique to identify
geographic boundaries for sampling Internet performance, given this interpolated data. In this
section, we provide an overview of relevant spatial statistics literature.
2.2.1 Spatial Interpolation.吀栀ere are two types of interpolation techniques: deterministic and sto-
chastic. Deterministic techniques make mathematical assumptions about the spatial process to
predict the target variable without incorporating randomness in the process. Examples of deter-
ministic techniques include Inverse Distance Weighting (IDW) [54], LOESS [9], and Self-tuning
Bandwidth in Kernel Regression (STBKR) [25]. While Kriging [12] is o昀琀en considered determinis-
tic in application, it is based on a stochastic model and can provide uncertainty estimates, making
it somewhat of a hybrid technique.

Stochastic techniques, on the other hand, incorporate randomness and statistical properties of
the spatial data to yield predictions along with uncertainty estimates at each location. 吀栀ese tech-
niques are more appropriate when there is strong spatial dependence in the underlying data. Ex-
amples of stochastic techniques include Gaussian processes [1], Random Forests [48], and Neural
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networks [46]. Gaussian processes model spatial data as a collection of random variables, where
the covariance between any two variables is a function of the distance between them. Random
forests are stochastic due to the randomization involved in their construction procedure, while the
stochasticity in neural networks stems from weight initialization and gradient descent process.

In the context of crowdsourced network data, we argue that the noise introduced by factors such
as Wi-Fi [51] and access equipment [59] may weaken spatial auto-correlation between neighbor-
ing measurements. 吀栀is can make deterministic techniques more suitable, as they do not rely on
the statistical properties of the data as much as stochastic techniques. In this paper, we thus use
three deterministic techniques—IDW, LOESS, and STBKR—for comparison and design an analysis
pipeline that can be integrated with any spatial interpolation method. Exploration of stochastic
techniques for interpolating Internet measurement data is a ripe avenue for future work.
2.2.2 Spatial Clustering & Regionalization. Spatial clustering involves the process of grouping sim-
ilar data points based on their spatial proximity, or sometimes another a琀琀ribute of interest. Com-
mon spatial clustering algorithms include K-Means, DBSCAN, and Hierarchical Clustering. 吀栀e
output of applying these algorithms to spatial data is a set of clusters, which may or may not be
contiguous in space. A speci昀椀c form of spatial clustering is regionalization, also known as spatially
constrained clustering. Clusters formed using regionalization are contiguous in space. Common
regionalization algorithms include the Automatic Zoning Procedure (AZP) [2], the Max-P algo-
rithm [13], and Spatial ‘K’luster Analysis by Tree Edge Removal (SKATER) [3]. In this work, we
consider the use of regionalization in identifying areas with similar Internet performance in a
citywide geography.

Our analysis is limited to regionalization techniques because of our prior assumptions about In-
ternet infrastructure. Internet infrastructure is o昀琀en laid out hierarchically in contiguous regions,
with local networks aggregating into regional, and ultimately into core networks [20]. SKATER
uses a tree-based methodology, under which it tries to hierarchically merge similar spatial units.
Depending on the policy or other objectives, the number of clusters parameter in SKATER can be
adjusted to identify how local clusters are merged into regional or city-level clusters. 吀栀is charac-
teristic makes SKATER a good 昀椀t for analyzing Internet performance data.
3 Method

吀栀is section describes our analysis method.We 昀椀rst analyze latency measurements from the Ookla
dataset to discover statistical boundaries for sampling Internet performance in a large US city. We
then describe the data preprocessing steps that we applied to the initial sample of Ookla mea-
surements to arrive at the dataset that we use for our analysis in this paper. 吀栀is preprocessing
ensures that our interpolation and clustering analyses are least a昀昀ected by noise originating from
a variety of factors that could distort the sample, such as VPN connections (which can arti昀椀cially
in昀氀ate latency) and inaccurate geolocation (which can create outliers that do not correspond to
spatial properties in the dataset). Given the dimensionality of the dataset, there can be consid-
erable variations in sample selection methods for interpolation and clustering. Our approach is
designed to ensure that our results are reasonably robust to these variations. Finally, we describe
our analysis pipeline, which involves spatial interpolation to construct a uniform surface model
of latency values, followed by regionalization to identify contiguous regions with similar latency
characteristics.
3.1 Scope of Analysis

Dataset: 1 We use a proprietary Ookla dataset for our analysis as Ookla provides the largest crowd-
sourced measurement dataset for access network performance in the present day. As opposed to
1Access to the Ookla dataset used in this paper can be obtained from h琀琀ps://www.ookla.com/speedtest-intelligence
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Preprocessing Step Number of Samples Retained

Measurements for Chicago 5,924,004
Non-VPN Measurements 5,266,797
Auto-selected Server Measurements 5,005,881
GPS-only Measurements 891,431

Table 1. Summary of the filtering steps applied to the initial sample of Ookla measurements.

the M-Lab dataset, Ookla provides access to a greater number of point measurements with high
quality geolocations, which is crucial for spatial analysis. Ookla uses a combination of GPS and
IP geolocation to triangulate a user. We found a lack of availability of an accuracy measure for
the geolocated measurements, which renders these measurements unreliable for a high-resolution
spatial analysis. So, we choose to focus on GPS geolocated measurements. We analyze this dataset
for 昀椀xed line ISPs because these ISPs are likely to provide a more stable and consistent service
quality compared to mobile ISPs, which is desirable for spatial analysis. Finally, we conduct our
analyses for the city of Chicago because (1) it provides the second-largest overall sample size at a
city level, and (2) it is a city with a well documented history of measurement sampling bias across
its subdivisions [47, 50].
Performance metric: We use latency for spatial analysis due to its strong correlation with ge-
ographic distance and its e昀昀ectiveness as a proxy for end-user quality of experience (QoE), com-
pared to metrics like throughput or packet loss [7]. Higher latency o昀琀en results in increased bu昀昀er-
ing for real-time applications such as video streaming, conferencing, and online gaming. Addition-
ally, latency allows for comparisons across di昀昀erent access technologies like DSL, Fiber, and Cable.
In contrast, throughput can be in昀氀uenced by subscription tiers, local bo琀琀lenecks, and server ca-
pacity, making it less suitable for spatial analysis. Packet loss, being more sporadic and prone to
ge琀琀ing in昀氀uenced by transient issues like network congestion, may not exhibit clear spatial pat-
terns. Ultimately, analyzing latency can help network operators and regulators pinpoint regions
with poor user satisfaction and guide targeted policy interventions to enhance Internet quality.
3.2 Data Preprocessing
From a vast US-wide dataset, we focus on measurements that originated from Chicago because
this city provided a large sample size, has a rich set of demographics, and there is evidence for
considerable sampling bias across its subdivisions. Next, we exclude measurements that are con-
ducted over a VPN connection. We do so to ensure that only the measurements conducted over
the user’s home network are considered. VPNs can introduce additional latency and may not be
representative of the user’s actual experience. Next, we 昀椀lter out measurements conducted against
servers that are not auto-selected by Ookla to conduct the speed test. We exclude these measure-
ments to ensure that the latency being analyzed is representative of typical latency experienced
by user-facing applications.

Most Content Delivery Networks (CDNs) tend to deploy their content caches close to end users
[21] for achieving low latency. Ookla defaults to nearby servers based on ping results for multiple
servers, ensuring that the selected server is the closest to the user. Using an auto-selected server
thus ensures that our analysis is not biased by the user’s choice of a distant server. Finally, we
exclude all IP geolocated measurements due to their lack of reliability for high resolution spatial
analysis. GeoIP measurements are expected to yield high location errors, which could skew our
昀椀ndings. 吀栀ough GPS is also prone to errors, we found in our sample that a large proportion of
GPS locations (87.4%) were within a 460-meter radius of the true location. 460 meters is the size
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Descriptive Value

Measurement Duration Jan 2022 – Jun 2023
# Measurements 891,431
# distinct ISPs 799
# distinct vantage points (VP) 133,427
Median # samples per VP 2
# target servers 909
# hexagonal cells 899
# cells with lower than average sample size (sparse cells) 643
Average # measurements per cell per month 66.15

Table 2. Basic descriptives of the final sample of Ookla measurements.

Fig. 1. Overview of our analysis pipeline. First, we construct an interpolated map of the region.
Then, we use this map to perform spatial clustering.

of a resolution-8 hexagon in the H3 tessellation system [15], which we use for our analysis in
Section 5. As an additional consideration, we analyze the age of GPS locations in the 昀椀nal sample.
Across our 17-month sample, we found the 95Cℎ percentile location age to be about 63 seconds
across all measurements, indicating that most locations are reasonably recent.

Table 1 summarizes the 昀椀ltering steps used to build our analytic sample. Most reduction in
the dataset size occurs at the initial 昀椀ltering steps, which is expected because we are focusing
on a speci昀椀c geography. We believe that the 昀椀nal sample is representative of the population of
users for multiple ISPs in a large US city, and is thus suitable for our analysis. We compare the
quality of boundaries between ISPs in Section 6. Basic descriptive statistics for the 昀椀nal sample are
summarized in Table 2.
3.3 Analysis Approach
Given the unreliability of current FCC coverage maps, our analysis aims to establish statistical
sampling boundaries for latency in Chicago. With latency measurements likely to be unevenly dis-
tributed across the geography, our 昀椀rst step is to develop a uniform surfacemodel of latency values.
吀栀is model allows us to estimate latency at unsampled locations and ensures that our conclusions
are not biased by uneven sampling densities. We achieve this by applying spatial interpolation
techniques.

We 昀椀rst evaluate the performance of three interpolation methods by predicting latency at in-
sample locations. 吀栀en, using one of the methods, we predict latency at regularly spaced points
on the map, which we further overlay with di昀昀erent boundary unit choices. Finally, we use the
SKATER regionalization algorithm, which preserves spatial contiguity, to identify regions with
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similar latency characteristics. Figure 1 summarizes our pipeline and the analysis goals. We de-
scribe key aspects of this pipeline in detail below.
Interpolation at regular grid spacing. We used an 80-20 split of the dataset to evaluate the
chosen techniques across the city’s geography. Due to the dataset’s large size, we 昀椀t each model
on monthly splits, resulting in 17 di昀昀erent 昀椀ts per interpolation method parameter choice. Our
evaluation ensures that all measurements from a single user appear exclusively in either the train-
ing set or the test set to prevent over昀椀琀琀ing. Including a user’s measurements in both sets could
lead models to learn the user’s latency distribution rather than the underlying spatial pa琀琀erns. By
treating each user independently, we assess how well the models generalize to unsampled users
at a given location. Upon selecting a suitable interpolation method, we then predict latency at
regularly spaced points across the city to construct a uniform surface model of latency. 吀栀e grid
points for this out-of-sample interpolation step are chosen to be spread across the city at a regular
spacing of 50 meters. 吀栀is choice is made to ensure that the interpolated map was evenly spaced,
granular and smooth, which allows an unbiased calculation of latency aggregates such as aver-
ages and percentiles. We implement our interpolation work昀氀ow using standard Python libraries
such as Scikit-learn [41] and Geopandas [26], but tools such as ArcGIS [45] or QGIS [43] can also
be adopted for this step. 吀栀e choice of Python libraries is motivated by their open-source nature,
昀氀exibility, and ease of integration with typical data science work昀氀ows.
Overlay with Hexagons. 吀栀is process involves creating a tessellation of regular hexagons to
comprehensively cover the entire study area of Chicago. Hexagons are chosen because they have
the highest perimeter-to-area ratio among regular polygons, which allows them to tessellate the
mapwithminimal overlap.吀栀e Federal Communication Commission (FCC) commonly uses the H3
tessellation system [15] to map broadband availability across the United States. H3 is a hierarchical
geospatial indexing system widely used in real-time applications such as taxi demand forecasting
and urban planning. H3 hexagons can be constructed at 16 di昀昀erent resolutions ranging from 0
to 15, with a higher resolution representing hexagons of smaller edge lengths. 吀栀e FCC uses a
resolution of 8 for their broadband availability maps. To ensure compatibility with the FCC maps,
we choose to use the same resolution for our analysis.
Aggregation over each cell. Upon overlaying the interpolated points with regular hexagonal
cells, we select a suitable clustering criterion for SKATER. We thus experiment with di昀昀erent ag-
gregation choices such as mean, percentiles, standard deviation and other metrics used in prior
work. 吀栀e sensitivity of our approach to these metrics is discussed in Section 6.1. Ultimately, we
apply and evaluate SKATER to perform regionalization on the aggregated cells to identify regions
with similar latency characteristics.
Spatial Clustering. Stable regional clusterings across time are expected to be relevant for e昀昀ec-
tive policy-making, particularly in the context of funding programs like the BEAD initiative. BEAD
funding aims to address disparities in broadband access by targeting resources to underserved ar-
eas. Consistent regional boundaries ensure that these investments are directed e昀케ciently and eq-
uitably. Our approach, therefore, should result in clusters that identify consistently underserved
regions regardless of the choice of time interval for drawing the data samples. We thus evaluate
our regionalization results from a lens of stability across time. To measure stability, we use the Ad-
justed Rand Index (ARI) [56] due to its ability to preserve the relative ordering of the clusters. ARI
considers all pairs of hexagons and counts the number of pairs that are assigned to the same or dif-
ferent clusters between two clusterings. 吀栀en, it calculates the probability of agreement between
the two clusterings, and compares it to the expected agreement under random assignment. 吀栀e
ARI score ranges between -1 and 1, with 1 indicating perfect agreement between the clusterings,
0 indicating random assignment, and -1 indicating complete disagreement. We use the ARI score
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Interpolation
Method

Description Parameters

Inverse Distance
Weighting (IDW)

Computes weighted average of
nearbymeasurements. Uses the dis-
tance from an unsampled location
for weight calculations.

? (Impact of distance on weights)

Locally Estimated
Sca琀琀erplot Smooth-
ing (LOESS)

Fits local regression lines to de-
noise latency across space. Uses lat-
long values directly for regression.

B?0= (Proportion of data points
used for regression)

Self-tuning Band-
width in Kernel
Regression (STBKR)

Computes weighted averages of
nearby measurements as estimates
for unsampled locations. Uses a
Gaussian Kernel to model point
densities.

2 (Controls bandwidth of the ker-
nel), : (Number of nearest neigh-
bors)

Table 3. A summary of chosen interpolation methods and their parameters.

to compare the clusterings obtained for di昀昀erent choices of SKATER parameters. For each param-
eter combination, we calculate the median ARI score between each pair of monthly clusterings.
Median is chosen for this aggregation because we noticed multimodal behavior in the distribution
of pairwise ARI scores over our parameter choices.
4 Interpolation

In this section, we compare three deterministic interpolation techniques—Inverse DistanceWeight-
ing (IDW), Locally Estimated Sca琀琀erplot Smoothing (LOESS), and Self-tuning Bandwidth in Kernel
Regression (STBKR)—to estimate latency at unsampled locations in the Ookla dataset. We evaluate
the precision and reliability of these techniques, and discuss the implications of our 昀椀ndings.
4.1 Problem Formulation
Assume that we are given = observed locations with latency values I8 at locations (G8 , ~8 ), 8 =

1, 2, . . . , =, and we are interested in estimating the latency I at an unmeasured location (G,~). Let
/ (G,~) denote the latency value at location (G,~) for a speci昀椀c month. We are interested in obtain-
ing an estimate /̂ (G,~) for / (G,~) at (G,~).
4.2 Techniques
For the above problem formulation, we consider three interpolation techniques: Inverse Distance
Weighting (IDW), Locally Estimated Sca琀琀erplot Smoothing (LOESS), and Self-tuning Bandwidth
in Kernel Regression (STBKR). We summarize these techniques in Table 3.
Inverse Distance Weighting (IDW). IDW assigns weights to each nearby data point based on
its distance from an unsampled location. It uses these weights to calculate a linear combination
of nearby values as an estimate of the target metric at an unsampled location. 吀栀e relationship
between the similarity of nearby data points and their distance is assumed to be inverse in nature.
吀栀e IDW estimate /̂ (G,~) at location (G,~) is given by:

/̂ (G,~) =

∑=
8=1

I8
3
?
8∑=

8=1
1

3
?
8
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where 38 is the Euclidean distance between the target location (G,~) and the 8Cℎ data point
(G8 , ~8 ), and ? ≥ 1 is a parameter used to control the in昀氀uence of nearby points. A higher value of
? indicates a greater in昀氀uence.
Locally Estimated Scatterplot Smoothing (LOESS). LOESS [9] is a non-parametric regression
technique that 昀椀ts a smooth curve to a sca琀琀erplot of data points. By 昀椀琀琀ing a set of local polyno-
mials to the spatial data, it smoothes any discontinuities and e昀昀ectively captures the underlying
spatial pa琀琀erns. LOESS uses a smoothing parameter U , commonly known as the span, to control
the extent of smoothing. It assigns weights to the nearby data points (G8 , ~8 ) depending on their
distance from an unsampled location (G,~) using a Tri-cube Kernel.吀栀e weights,F{(G,~), (G8 , ~8 )}
are given by:




(
1 −

(
∥ (G8 ,~8 )−(G,~) ∥

ℎ

)3)3
if ∥(G8 , ~8 ) − (G,~)∥ ≤ ℎ,

0 otherwise
吀栀e bandwidth of the Kernel ℎ is set in such a way that approximately U × = neighbors are

included in each local regression, where = is the total number of data points. ∥(G8 , ~8 ) − (G,~)∥
denotes the Euclidean distance between a sampled and an unsampled location. 吀栀e 昀椀nal estimate
/̂ (G,~) at location (G,~) is given by /̂ (G,~) = V̂0 + V̂1G + V̂2~. 吀栀e coe昀케cients V̂ (G,~) = {V̂0, V̂1, V̂2}
are determined byminimizing theweighted sum of squared residuals, akin to traditional regression
methods:

V̂ (G,~) = argmin
V

=∑

8=1

F{(G,~), (G8 , ~8 )}{I8 − /̂ (G8 , ~8 )}2

It is worth noting that the above formulation uses a linear polynomial. It is possible to use higher-
order polynomials to 昀椀t the data, though this may lead to over昀椀琀琀ing. In our work, we restrict the
scope to linear polynomials due to their low complexity and high interpretability.
Self-tuning Bandwidth in Kernel Regression (STBKR). 吀栀e STBKR technique proposed in
Jiang et. al. [25] uses a Gaussian Kernel regression method to estimate mobile Internet quality.
吀栀eir approach allows the bandwidth of the Kernel to be tuned automatically, depending on the
density of measurements in the local neighborhood of an unsampled location.吀栀e STBKR estimate
of /̂ (G,~) at location (G,~) is given by:

/̂ (G,~) =
∑=

8=1  ℎ (G,~) (∥(G8 , ~8 ) − (G,~)∥) I8
∑=

8=1  ℎ (G,~) (∥(G8 , ~8 ) − (G,~)∥)

where ℎ (G,~) is theGaussianKernel functionwith bandwidthℎ, given by (D) = 1√
2cℎ (G,~) 4

− D2

2ℎ2 (G,~) .
吀栀e use of a Gaussian Kernel provides a mechanism for decaying the in昀氀uence of data points as
their distance from the unsampled location increases. 吀栀e adaptive bandwidth ℎ(G,~) is given by
ℎ(G,~) = 2': (G,~)2, where 2 is a parameter to control the bandwidth, and ': (G,~) is the aver-
age distance between (G,~) and its : nearest neighbors. Parameters 2 and : are both tuned using
cross-validation.
4.3 Evaluation

Objective. To assess whether the chosen methods can potentially yield accurate estimates at syn-
thetic, out-of-sample grid locations, we 昀椀rst performed an in-sample evaluation.We thus evaluated
the models on the preprocessed dataset using an 80-20 split for each month. 吀栀en, we compared
the best case latency estimate at each test location. We de昀椀ne the best case latency estimate as the
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Fig. 2. Error analysis for prior interpolation techniques. The x-axis shows per-location latency val-
ues on a log scale. While STBKR provides well-aligned estimates, IDW shows a greater sensitivity
to outliers in latency.

one that minimizes the absolute error for a ground truth measurement conducted at that location.
Finally, we compare the estimate and the ground truth, i.e, /̂ (G,~) and / (G,~), across models. Our
evaluation ensures that we use the same training and testing sets across all models and parameter
choices.
Parameter Selection. Our estimates were optimized using a grid search over each parameter
choice.We set the parameters for eachmodel as follows:? = 1, 2, 3 for IDW, and B?0= = 0.05, 0.1, 0.5, 1

for LOESS. For STBKR, we vary 2 between 10−5 and 100, while : is varied between 5 and 1000, both
on logarithmic scales.
Overall Comparisons. Figure 2 shows the distributions of ground truth and predicted latency
values across the three interpolation models. In Figure 2a, we observe a narrow range for LOESS
estimates, suggesting that the model underestimates latency for a vast majority of locations.吀栀ese
underestimates are likely a result of the model’s dependence on the locations’ coordinates. LOESS
performs a regression over the lat-long values directly. While this allows the model to capture the
broader trends in latency across the geography, it is less e昀昀ective in capturing the extreme values.
So, using LOESS with a linear polynomial may not be appropriate when there is a greater presence
of outliers in ground-truth latency estimates. In contrast, the STBKR model (Figure 2b) shows a
slightly be琀琀er alignment with the ground truth, suggesting that the model performs be琀琀er than
LOESS in capturing extreme values. However, in comparison to IDW, we notice that the distribu-
tion of STBKR estimates possesses a shorter rightmost tail, indicating that STBKR underestimates
latency at locations with high ground-truth values. 吀栀is is further con昀椀rmed by counting the num-
ber of locations for which we observe > 50ms latency estimates for STBKR. We 昀椀nd that for IDW,
the number of locations with > 50 ms latency is 2.04 times higher than STBKR. 吀栀e ability to
capture extreme values is crucial towards understanding the distribution of latency over a geog-
raphy, especially when the focus is on identifying areas with poor connectivity. Further, STBKR
being a Kernel regression method, has an $ (# 2) complexity for parameter tuning [22], where #
is the total number of data points. 吀栀is makes it computationally expensive for large datasets. In
contrast, IDW does not require an additional parameter tuning step, and involves lower number
of computations, making it a suitable choice for large datasets such as Ookla.

Takeaways. We evaluate three deterministic interpolation techniques – IDW, LOESS and
STBKR – to estimate latency by down-sampling the Ookla dataset. 吀栀e lower computational
complexity for IDW, coupled with its higher sensitivity to extreme values, makes it a suitable
choice for large datasets such as Ookla. We thus choose IDW as the primary interpolation
technique for our subsequent analysis.
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5 Regionalization

To construct the sampling boundaries for Chicago, we 昀椀rst interpolate latency measurements
across the citywide geography at regular grid spacing. 吀栀en, we overlay these measurements with
hexagon cells. Finally, we apply SKATER with aggregates calculated within these boundary units
as the clustering metric. We next formally describe the problem and our approach to regionaliza-
tion.
5.1 Problem Formulation
吀栀e problem of discovering statistical sampling boundaries for latency can be restructured as an
unsupervised learning problem. Consider a geographical region Ω and a set of its partitions H =

{�8 }=8=1. Further, consider a set of latency measurements conducted over the region asX = {G8 }=8=1.
Our goal is to 昀椀nd a set of spatially contiguous clusters C = {�8 }#8=1 such that each cluster �8 is a
subset ofH , and the latency values within each cluster are drawn from a common distribution. To
achieve this, we calculate the mean latency for each partition �8 as `8 = 1

|�8 |
∑

G∈�8
G and assign a

feature vector v8 = [`8 ] to each partition. To calculate the dissimilarity among the partitions, we
consider the use of Euclidean distance, 3 (v8 , v9 ) = ∥v8 − v9 ∥. Using this dissimilarity function, we
apply a spatial clustering algorithm to group the partitions into # clusters. Finally, we de昀椀ne the
existence of a sampling boundary (�) between two partitions of the region Ω as:

�(�8 , � 9 ) =
{
True, if �8 ∈ �: and � 9 ∈ �; , with : ≠ ;

False, otherwise

5.2 Technique
We choose SKATER [3] as the default regionalization algorithm. SKATER provides a fast and e昀케-
cient way to identify spatially contiguous clusters in a given region. Additionally, it o昀昀ers a way
to control for homogeneity of the clusters by se琀琀ing thresholds. 吀栀e SKATER algorithm involves
three main steps. First, it constructs a graph where each node represents a spatial unit, e.g, a cen-
sus tract boundary, hexagonal units, geographic coordinates of Internet users, or a neighborhood.
吀栀e edges between the nodes denote spatial adjacency, i.e., two nodes are connected if they share
a common boundary. In case of points, the edges are constructed using a distance threshold. 吀栀e
weights of these edges are determined using the dissimilarity between the nodes, which is Eu-
clidean distance in our case. In the second step, SKATER constructs a Minimum Spanning Tree
(MST) from the graph. An MST is a tree that connects all the nodes in the graph using the mini-
mum possible edge weights.吀栀e use of MST in this step ensures a faster runtime, as considering all
edges in the graph is infeasible. In the 昀椀nal step, the MST is iteratively pruned by removing edges
with the highest weights. 吀栀is results in a set of connected components, one for each spatially con-
tiguous cluster.吀栀e number and size of the clusters can be controlled using two parameters, # and
5 ;>>A . # denotes the number of clusters, and 5 ;>>A denotes the minimum number of nodes in each
cluster. We apply SKATER to the resolution-8 hexagon cell overlay for Chicago upon interpolating
the latency values using IDW at regular grid spacing of 50 meters.
5.3 Cluster Optimization

Objective. Since there is li琀琀le prior knowledge about the true number of clusters and their individ-
ual sizes, we perform a sensitivity analysis for optimizing the parameters for SKATER. 吀栀ere can
be numerous ways to conduct this analysis. Akin to traditional clustering methods, approaches
such as Silhoue琀琀e score [49] or Davies-Bouldin index [27] can be used to determine the optimal
parameters for SKATER. While these approaches are widely used, they may give us a di昀昀erent
set of parameters for each monthly set of IDW interpolated latency estimates. 吀栀is is undesirable
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because true infrastructure boundaries may be less prone to changes over time. To address this
issue, we use a more intuitive, grid-search based approach to 昀椀nd the optimal set of parameters.
For each month, while varying # and 5 ;>>A , we select the set of parameters that yield most similar
boundaries between monthly 昀椀ts. Further, for a given choice of 5 ;>>A , if increasing the number of
clusters by one results in the same cluster boundaries, we cease increasing the number of clusters
any further. 吀栀is is because the additional cluster does not provide any additional information
about the underlying spatial distribution of latency.
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(a) Median Adjusted Rand Index (ARI)
as a function # .

(b) Boundaries for May 2022
with # = 77. Zoomed-in
green region is a spatial out-
lier.

(c) Boundaries for
77 neighborhoods in
Chicago.

Fig. 3. Analysis of clustering performance using SKATER. 3a shows the median ARI score for
5 ;>>A = 2 against # calculated over monthly fits of SKATER. 3b and 3c compare the resulting clus-
ters for # = 77 and 5 ;>>A = 2 with the neighborhood boundaries for Chicago. Boundaries drawn
from measurement data do not align with administrative boundaries.

Parameter Selection.We use the Adjusted Rand Index (ARI) to compare the clusterings obtained
for di昀昀erent choices of # and 5 ;>>A . For each parameter combination, we calculate the median
ARI score between each pair of monthly clusterings. We generally observed a low sensitivity of
the ARI towards the choice of 5 ;>>A (varied between 2 and 37) when we used mean to aggregate
latency over each cell. Figure 3a shows the median ARI score for 5 ;>>A = 2 versus # calculated
over monthly 昀椀ts of SKATER. We choose a 5 ;>>A of 2 because it helps us identify small clusters
with signi昀椀cant di昀昀erences in latency from their neighbors. We observe that a lower # (# ≤ 3)
allows for more stable clusters, but the similarity between the resulting clusters tends to stabilize
between # = 7 and # = 9. Beyond this stage, the median ARI starts to decline as the clusters
become increasingly fragmented. We choose # = 7 and 5 ;>>A = 2 for subsequent analysis and
demonstrations as this combination gives a higher similarity in the vicinity of the stabilization
point. 吀栀is choice also allows us to identify 昀椀ne-grained boundaries while ensuring that the clus-
ters are not overly fragmented.
Misalignment with Administrative Boundaries. We also check whether data-driven bound-
aries generated using SKATER align with administrative area boundaries. In Figure 3b and Fig-
ure 3c, we compare the resulting clusters for # = 77 and 5 ;>>A = 2 with the neighborhood bound-
aries for Chicago. 吀栀e choice of # is the same as the total number of neighborhoods in Chicago.
We observe that the clusters drawn from latency measurement data do not show a one-to-one
correspondence with the administrative boundaries. 吀栀is result suggests that sampling along ad-
ministrative boundaries may not be the best approach for understanding the spatial distribution
of latency.
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Takeaways.While we choose 5 ;>>A = 2 and # = 7 for subsequent analysis, we argue that the
choice of # and 5 ;>>A ultimately depends on the policy use-case under consideration. For a
given 5 ;>>A , a lower value of# may be suited in scenarios that may involve allocating a limited
investment budget towards larger divisions of the geography. A higher value of # , instead, is
desirable in cases when targeted interventions may be required in regions marked by abnormal
performance. An example of such a region is the green region shown in the zoomed-in box in
Figure 3b. In comparison with the citywide average of 19.07 ms, we observe a higher average
latency of 45.04 ms for this region. 吀栀e orange neighboring region shows an average latency
of 17.15 ms. 吀栀is also demonstrates the ability of our approach in identifying spatial outliers
in latency.

6 Cluster Sensitivity to Data Sampling Choices

Our analysis thus far used a single, IDW-interpolated sample of Ookla measurements in combina-
tion with average latency as the default clustering metric. In this section, we discuss the sensitivity
of our results towards the choice of sampling and aggregation methods. We experiment with the
aggregation metric, the aggregation unit, and the ISP to compare sampling boundaries.
6.1 Impact of Aggregation Metric

10
th  Perc

ent
ile

Medi
an

Mean

90
th  Perc

ent
ile

95
th  Perc

ent
ile

97
.5
th  Perc

ent
ile

99
th  Perc

ent
ile

Stan
dar

d D
evi

atio
n

Ine
qua

lity
 Ratio

Lat
enc

y R
edu

ctio
n

0.0

0.2

0.4

0.6

0.8

1.0

Ad
jus

te
d 

Ra
nd

 In
de

x

(a) 5 ;>>A = 2, # = 7
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(b) 5 ;>>A = 25, # = 7

Fig. 4. Comparison of boundary similarities under two extreme values of 5 ;>>A . Higher percentiles
show a greater ARI score when we require more homogeneous clusters.

Experiment Setup.We 昀椀rst assess which aggregation metrics lead to more stable boundaries across
monthly 昀椀ts. While mean, percentiles and standard deviation are more intuitive metrics to pick
from, a number of additional, compound metrics have been proposed in prior work.吀栀e inequality
ratio [33] is de昀椀ned as the ratio between the 90Cℎ and 10Cℎ percentile of latency. A higher value of
this metric indicates a higher degree of variability in the latencymeasurements within a hexagonal
cell. Latency reduction [50], i.e, the di昀昀erence between 90Cℎ and 10Cℎ percentile latency, is also
considered for stability checks. For each choice of metric, we calculate the ARI score between the
boundaries obtained using SKATER. 吀栀en, we compare the distribution of pairwise ARI scores
calculated between monthly 昀椀ts of the algorithm.
Observations. Figure 4 shows a comparison of the pairwise ARI scores for above metric choices.
In Figure 4a, with a 5 ;>>A of 2, we observe that the 10Cℎ and the 90Cℎ percentile show a similar
ARI score, while the ARI score for the 95Cℎ and 97.5Cℎ percentiles is higher. Contrary to this, in
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Figure 4b, we observe a reduced stability as we move from the 10Cℎ to the 90Cℎ percentile while
using a higher value of 5 ;>>A . Other metrics show moderate levels of ARI scores.
Dependence on cluster size. We argue that above observations are an artifact of an important
trade-o昀昀. 吀栀e 5 ;>>A parameter, in essence, controls the balance between homogeneity and conti-
guity in the resulting clusters. A lower 5 ;>>A results in clusters of greater homogeneity but less
contiguity, while a higher 5 ;>>A results in larger but less homogeneous clusters. When 5 ;>>A is set
to 2, a superior homogeneity in the clusters reduces the di昀昀erence between the 10Cℎ and 90Cℎ per-
centiles, leading to similar ARI scores for these metric choices in a cluster. Since the cluster sizes
are relatively small, regions showing consistently high levels of latency are likely to persist across
months. 吀栀is leads to a higher similarity for the 95Cℎ and 97.5Cℎ percentiles. 吀栀e 99Cℎ percentile is
more likely to capture rare events such as outages or congestion, and thus registers a lower ARI
score than the 97.5Cℎ percentile. When 5 ;>>A is changed to 25, the clusters become more contigu-
ous and large, with greater di昀昀erences arising between the extreme values. Across larger areas,
the baseline latency is likely to remain stable, whereas the variability in latency above the baseline
is expected to be greater. 吀栀is leads to a reduced similarity as we move from the 10Cℎ to the 90Cℎ
percentile.

Takeaways. 吀栀e above results are relevant from a policy standpoint because they highlight
the importance of choosing the right aggregation metric for carving out sampling boundaries
for latency. When the policy objectives are to identify smaller regions with consistently poor
latency for targeted interventions, a lower 5 ;>>A coupled with a higher percentile metric such
as the 90Cℎ or 95Cℎ is more suitable. On the other hand, when there is a need to identify larger
regions with varying levels of latency, a higher 5 ;>>A in combination with a lower percentile
metric, such as the 10Cℎ , is more preferable.

6.2 Impact of Aggregation Unit

(a) Regular Hexagons (b) Census Tracts (c) Neighborhoods

Fig. 5. Comparison of boundaries under di昀昀erent aggregation unit choices with # = 7 for June
2022. The choice of sampling unit can significantly a昀昀ect resulting sampling boundaries, andhence
our conclusions about the spatial distribution of latency.

Experiment Setup. We next evaluate how the choice of the smallest spatial unit a昀昀ects the simi-
larity amongmonthly 昀椀ts of SKATER. To this end, we consider the use of three unit types – regular
hexagons, census tracts and neighborhood boundaries for Chicago. We continue with our choice
of # = 7 but set 5 ;>>A to 1 for these comparisons. 吀栀is is because for census tracts, we noticed
that two of the tracts were disconnected from the rest, leading to two distinct spatial islands. Due
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(b) Interpolated Averaging

Fig. 6. Pairwise ARI comparison across aggregation unit choices and averaging method for raw
and interpolated data. Raw averaging is only suitable when computed over regular and small spa-
tial scales.

to this behavior, we notice that any choice with 5 ;>>A ≥ 2 led to the exclusion of these discon-
nected tracts from the analysis, potentially skewing the results and reducing the validity of our
comparisons. By se琀琀ing 5 ;>>A to 1, we ensure that all spatial units, however small, are included in
the analysis, and we make fair comparisons between the three unit choices.
Observations. Figure 5 shows an example comparison between the resulting boundaries for June
2022. We notice that the South and South-West sides are clustered together in all three cases, with
this boundary extending up to the far North for neighborhood units. Additionally, we observe a
greater degree of variability in the Northern regions, with the hexagonal units providingmore 昀椀ne-
grained sets of clusters. To further understand the cluster quality for the above unit choices with
or without interpolation, we plot the monthly pairwise ARI score distributions in Figure 6a and
Figure 6b. We see that prior interpolation ensures a consistent ARI score across the choice of ag-
gregation units, with hexagons achieving the highest median ARI scores. Additionally, we see that
raw averaging of point latency measurements tends to produce worse clustering performance in
the case of census tract and neighborhood units. Overall, hexagonal units with post-interpolation
averaging register a median ARI score of 0.59, in comparison to a score of 0.20 for the traditional
practice of using census tract units with raw averaging.
Unstable administrative clusterswith raw averaging.Census tracts and neighborhood bound-
aries tend to be unevenly distributed in size, shape and population density, leading to irregular
smoothing of latency variations, and thus less stable boundaries. For hexagonal cells, we observe
a superior clustering performance for raw averaging, suggesting that raw averaging is only reli-
able when computed over small yet regular spatial units. Interpolated averaging, on the other hand,
ensures consistent boundaries across the choice of aggregation units, with hexagons showing the
highest median ARI scores.吀栀is is because prior interpolation helps capture the underlying spatial
trends in the data, leading to more consistent boundaries across di昀昀erent spatial unit choices.

Takeaways. Above results signal a signi昀椀cant departure from the status quo of using raw av-
eraging for aggregating Internet performance over administrative regions. For policy, it is thus
advisable to use prior interpolation to ensure consistency in results when using administrative
boundaries, or high resolution, regular spatial units if computing aggregates directly from raw
measurements.
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Fig. 7. Heatmap of ARI scores between ISPs for the 17-month duration. We observe low similarity
between the boundaries obtained for di昀昀erent ISPs.

6.3 Impact of ISP

Experiment Setup. Our samples thus far have included latency data from multiple ISPs together
for aggregation into cells. We now evaluate how much do ISPs share latency boundaries among their
respective samples.We therefore 昀椀rst select top-昀椀ve ISPs on the basis of their measurement counts.
吀栀en, we apply IDW individually to the 17-month-long samples on a per-ISP, per-month basis to
interpolate these measurements over the city. Next, with a 5 ;>>A = 2 and # = 7, we apply SKATER
a昀琀er aggregating these measurements over hexagonal cells using the 95Cℎ percentile. 吀栀is choice
was made to ensure that we compare the most homogeneous clusters between ISPs using our best
case metric from Section 6.1. Finally, we calculate the median ARI score between the boundaries
obtained for each ISP pair over the 17-month period.
Observations. Figure 7 shows a heatmap of the resulting ARI scores between the top 昀椀ve ISPs.
We observe that the ISPs generally show a lower degree of similarity between their sampling
boundaries. In contrast, when we interpolate measurements over a collective sample derived from
all ISPs (as shown previously), we observe a higher degree of similarity between the boundaries.
Low similarity between ISP boundaries. When using a collective sample, the aggregation pro-
cess smoothens out variability in latency measurements across ISPs, leading to more consistent
boundaries over time.吀栀e di昀昀erences between ISPs may arise from several factors such as the geo-
graphic distribution of servers, the underlying access technology, the network design for the ISPs,
or the per-ISP sample size. When measurements from all ISPs are jointly interpolated, individual
ISP characteristics are more likely to be smoothened out, and the resulting boundaries are more
likely to re昀氀ect the geographic distribution of latency in the region. Looking at each ISP individ-
ually on a regionalized map is likely to provide a more consumer-transparent view of network
performance in a region. It would not only help new subscribers make informed decisions about
their Internet connections, but also assist in maintaining greater scrutiny over ISPs regarding their
service level agreements (SLAs). 吀栀e FCC should thus consider releasing ISP and region speci昀椀c
maps to ensure that the representations of network performance are accurate and reliable.

Takeaways. If a network operator is interested in understanding the spatial distribution of la-
tency for their network, they should not rely on boundaries constructed from a heterogeneous
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sample from multiple ISPs. Rather, they are recommended to use their own data to make in-
formed decisions about infrastructure upgrades. Moreover, funding agencies and regulators
should consider the ISP-speci昀椀c nature of latency when making decisions about infrastructure
investments.

7 Improving Clustering Stability

While our use of ARI score as an evaluation metric allows for understanding the degree of similar-
ity between boundaries, it does not help localize the boundary variation, or volatility in each clus-
tering. Localizing this volatility can be crucial for making informed decisions about infrastructure
investments. Areas with high clustering volatility can be used for running additional measurement
campaigns to 昀椀ll data gaps, while those showing low volatility can be prioritized for immediate
policy interventions. We use bootstrap resampling [14] techniques to calculate this metric. Boot-
strap resampling is o昀琀en used to estimate sample statistics when the underlying distribution of the
data is unknown. In our case, we use this technique to simulate the perturbations across clusters
to estimate the distribution of volatility in cluster assignments. We de昀椀ne volatility for a cell as
the probability that applying SKATER on two di昀昀erent samples of the same dataset will result in
di昀昀erent cluster assignments for the cell. Formally, for a cell �8 , we de昀椀ne the clustering volatility
as:

+ (�8 ) =
∑ |� |

9=1

∑ |� |
:=1

� {C9 (�8 ) ≠ C: (�8 )}
( |� |
2

)

where |� | denotes the number of bootstrap samples drawn from the dataset. A total of 1000
samples is o昀琀en considered adequate for most practical use cases [14], so we choose |� | = 1000.
C9 (�8 ) denotes the cluster assignment for the cell �8 when SKATER with # = 7 and 5 ;>>A = 2

is applied to the 9Cℎ bootstrap sample. � {C9 (�8 ) ≠ C: (�8 )} denotes the indicator function that
assumes 1 when two di昀昀erent bootstrap samples result in a di昀昀erent cluster assignment, and 0
otherwise.

( |� |
2

)

denotes the binomial coe昀케cient, indicating the total number of pairs of cluster
assignments for the cell.

Bootstrap resampling in its original form assumes that the samples drawn are independently
and identically distributed. For calculating clustering volatility, we use a spatial version of this
technique, called block bootstrapping [44]. Block bootstrapping accounts for potential spatial auto-
correlation in the data that may be induced due to smoothing of variations caused by interpolation.
We estimate that the interpolated dataset produces a global Moran’s I [34] (an indicator of overall
spatial dependence) of 0.795, on a scale of -1 and 1, with a signi昀椀cance level of 0.001 among 10Cℎ

percentile latency aggregates, suggesting that the smoothing caused by IDW induced signi昀椀cant
spatial auto-correlation. In block bootstrapping, instead of drawing individual point samples in-
dependently, we thus resample points from complete hexagonal cells to account for local spatial
dependencies in the data. We use a block size of one cell under the assumption that spatial depen-
dencies between cells are minimal. We then calculate the clustering volatility for each cell over the
city.

Figure 9 shows an example boundary volatility map for Chicago for January 2022 with 10Cℎ per-
centile as the aggregation metric under block bootstrapping. We use # = 7 and 5 ;>>A = 2 for this
analysis. We observe that majority of the hexagonal cells show a low-to-moderate level of volatil-
ity. 吀栀ese regions show some fuzziness in the boundaries, indicating that the cluster assignments
for these cells are more likely to change across di昀昀erent samples of the interpolated dataset. We
also observe that three distinct regions show zero boundary volatility overall. 吀栀e North-Western
region hosts the city’s airport, the Central-Eastern region is marked by Chicago’s central business
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Fig. 9. Resulting clustering volatility map for January 2022. The 10Cℎ percentile of latency is used
as the aggregation metric. Block bootstrapping identifies three distinct regions of zero boundary
volatility.

district (CBD), while the Southern region generally represents areas with a high poverty rate [28].
吀栀ese areas are likely to represent distinct network conditions than other suburban areas, leading
to more stable boundaries over time. Regions falling in these contiguous cells with low volatility
can be prioritized for immediate policy interventions, depending on the underlying latency dis-
tribution. On the other hand, regions marked with signi昀椀cant volatility, such as some suburban
regions, can bene昀椀t from additional data collection e昀昀orts for ensuring more stable boundaries.
8 Related Work

Crowdsourced speed test datasets, such as Ookla and M-Lab have found a variety of policy use
cases in prior research. Bauer et. al. [5] describe the best practices for reporting data to reason
about advertised and measured speeds for ISPs. Similarly, Feamster and Livingood [16] describe
the need to augment speed test outputs with additional contextual information to increase the
scope and usability of crowdsourced data. Going a step further, Paul et. al. [40] showed an empir-
ical characterization of several factors that may confound Internet performance of an access link.
Further, Macmillan et. al. [31] augment real-world speed test data with laboratory experiments
to understand the di昀昀erences between M-Lab’s NDT and Ookla’s Speedtest tools. 吀栀ey 昀椀nd that
Ookla Speedtest tends to report higher speeds than M-Lab NDT under high latency conditions,
further showcasing the need for additional context in analyzing speed test data. Finally, Clark and
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Wedeman [10] discuss the need to interpret aggregate statistics on speed test data over geogra-
phies to understand the overall behavior of the Internet. While these studies collectively point
towards a need for a comprehensive understanding of the Internet access landscape, they do not
leverage the spatial nature of the crowdsourced measurement data to inform policy decisions.

More recently, there is an emergence of studies that do leverage location information from
crowdsourced speed test data for analysis. Paul et. al. [39] summarize upload and download speeds
within census block groups using the M-Lab dataset, and correlate these speeds with demographic
data. 吀栀ey 昀椀nd income levels to possess signi昀椀cant relationship with download speed. Further,
Lee et. al. [30] present a methodology for regional bias correction in crowdsourced Ookla speed
test measurements. Krzysztof et. al. [24] explore local Internet quality in Poland using a spatial
analysis on an Ookla dataset, highlighting the non-uniformity in access quality among rural and
urban areas. Caldas et. al. [8] perform a similar analysis over Denmark to highlight Internet ac-
cess disparities in Denmark. 吀栀ough these studies leverage spatial information, they: (1) still rely
on aggregates calculated over prede昀椀ned social boundaries for analysis, and (2) do not take into
account uneven densities of measurements within these boundaries. 吀栀ese limitations can lead
to coarse generalizations, and can prevent policymakers from identifying speci昀椀c areas that may
need immediate interventions.

Another class of studies closely related to our work directly leverage point measurements by not
assuming prior structure to measurement sampling boundaries. For instance, Sommers et. al. [55]
use Inverse Distance Weighting (IDW) to understand the spatial distribution of cellular and Wi-Fi
performance in metro areas. Similar to Caldas et. al., they observe a degradation in performance as
one moves further away from metro areas. Jiang et. al. [25] propose the Self-tuning Bandwidth in
Kernel Regression (STBKR) technique to estimate cellular speed test quality using speed measure-
ments fromOokla.吀栀ey 昀椀nd that STBKR outperforms Kriging in accurately estimating throughput
in sparsely sampled regions. 吀栀e LOESS technique, used in astronomy [9] to analyze the trajec-
tories of celestial objects, has not been used in the context of Internet performance. In our work,
we extend these techniques to identify distinct regions for sampling Internet performance on the
basis of latency, with a focus on stability of these boundaries over time and sampling variations.
9 Conclusion & Future Work

吀栀is work presents a new approach for discovering statistical latency sampling boundaries within
a geographic region, such as a city, using crowdsourced latency measurements. 吀栀e 昀椀ndings of
this study underscore the importance of spatial analysis in network planning and the bene昀椀ts of
targeted infrastructure investments for equitable Internet access. We show that the method we
develop can identify contiguous geographic regions with poor Internet performance; such infor-
mation can be used to inform policy interventions and also assist ISPs with infrastructure planning.
We summarize the implications of our work and discuss potential future directions below.
Applying our approach to policymaking.Our work provides a method for identifying Internet
latency sampling boundaries, assuming minimal information about the underlying infrastructure.
By delineating clear latency boundaries, network operators can target speci昀椀c areas for infrastruc-
ture improvements, optimizing resource allocation and enhancing overall network performance.
For instance, our illustration from Figure 3b provides a starting point for identifying areas with
higher latency. Given a sample of diagnostic measurement data and a speci昀椀c timescale, contigu-
ous regions with poor latency can be identi昀椀ed over a geography in a similar manner. Even though
network operators may have their own measurement infrastructure in place, our method is partic-
ularly valuable for leveraging crowdsourced data, which can provide coverage from a large number
of real-world vantage points in a cost-e昀昀ective manner. It enables operators to work with sca琀琀ered
samples, where continuous measurements are unavailable. Integrating our clustering approach
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with further diagnostic information can give rise to suitable infrastructure improvements such as
cable upgrades, deployment of additional hardware, or routing optimizations in under-provisioned
areas. Our 昀椀nding from Section 6.2 suggests that the use of regular spatial units in place of admin-
istrative boundaries is expected to generate Internet performance representations that are more
appropriate to inform long-term policy interventions. Finally, our 昀椀nding from Section 6.3 pro-
vides an important insight into using crowdsourced data for the FCC. Instead of relying on a large
heterogeneous dataset, regulators can use our method to identify boundaries on a per-ISP basis,
which can help in understanding the impact of di昀昀erent ISPs on overall network performance in
a region.
Reliance on crowdsourced measurement data. Although our approach helps reveal signif-
icant spatial structure from latency measurements, our sampling boundaries are still based on
crowdsourced data. Despite its wide adoption, Ookla data may not be representative of all users,
especially those with limited or no Internet access. Future work can thus explore the possibility of
exploring an augmentation of multiple data sources using novel metrics to improve the representa-
tiveness of the data. Our 昀椀ndings from Section 6.1 provide a starting point for such an exploration.
吀栀e design of spatial clustering methods that improve the ARI scores for metrics such as the in-
equality ratio, or latency reduction, can be a promising direction, as these metrics can potentially
remain consistent across datasets and device types.
Sensitivity to interpolation.A key component of our method relies on prior interpolation meth-
ods to build a surface model of latency across the city. Although we primarily use IDW interpola-
tion in this work, the mutual agreement between boundaries drawn using di昀昀erent interpolation
algorithms is remaining to be evaluated. Additionally, interpolationmethods that incorporate local
context such as network topology, routing information, and urban infrastructure can be explored
to improve the accuracy of the surface model. 吀栀is information can enhance the stability of the
clustering boundaries and the accuracy of the regionalization process.
Geographic scope. 吀栀e primary focus of our analysis is on the city of Chicago. Our approach
identi昀椀es boundaries for sampling Internet latency without relying on Chicago-speci昀椀c informa-
tion such as census or demographic data. While Chicago’s diverse urban environment o昀昀ers an
intriguing testbed, we expect our methodology to be generalizable to other cities with similar data
availability and population density. A key challenge to extending our work to rural and remote
areas with low connectivity is the availability of crowdsourced data. Operators and regulators can
play an important role in collecting and sharing data from these regions to explore the potential
of our methodology in these areas.
Temporal analysis. Our criterion for identifying sampling boundaries from latency data is based
on the stability of the sampling boundaries across multiple temporal samples. While our distance
calculations for prior interpolation involve geographic distances only, our methods can be ex-
tended to temporal distances as well. Such an approach would allow a more nuanced understand-
ing of the stability of boundaries, and the impact of temporal variations in network performance
on the sampling boundaries.

Ethics

In this work, we analyze a proprietary Ookla dataset under a data usage agreement (DUA). In
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a margin of a few hundred meters. 吀栀e IP addresses are masked up to the last octet, which en-
sures anonymity. We did not 昀椀nd any other personally identi昀椀able information in the dataset. Our
research, therefore, does not raise any ethical concerns.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 34. Publication date: December 2024.



34:22 Taveesh Sharma, Paul Schmi琀琀, Francesco Bronzino, Nick Feamster, and Nicole P. Marwell

Acknowledgments

We thank the anonymous reviewers and our shepherd Paul Barford for their constructive feedback
and guidance. We are grateful to Jared Schachner, Jonatas Marques, and other colleagues at the
Internet Equity Initiative (IEI) for their feedback on this research. 吀栀is work was supported by
National Science Foundation (NSF) grants IMR-2319603, CCRI-2213821, and SAI-2324515 at the
University of Chicago, and by the ANR Project No ANR-21-CE94-0001-01 (MINT) at ENS de Lyon.

References
[1] Jeremy Aldworth and Noel Cressie. 1999. Sampling designs and prediction methods for Gaussian spatial processes.

In Multivariate analysis, design of experiments, and survey sampling. CRC Press, 25–78.
[2] Luc Anselin. 2018. Spatial Clustering (2). Disponible en (2018).
[3] Renato M Assunção, Marcos Corrêa Neves, Gilberto Câmara, and Corina da Costa Freitas. 2006. E昀케cient regional-

ization techniques for socio-economic geographical units using minimum spanning trees. International Journal of
Geographical Information Science 20, 7 (2006), 797–811.

[4] Ba琀琀le For the Net. 2022. Internet Health Test based on Measurement Lab NDT. https://www.battleforthenet.com/
internethealthtest/

[5] Steven Bauer, David D Clark, and William Lehr. 2010. Understanding broadband speed measurements. Tprc.
[6] Zachary S Bischof, Fabian E Bustamante, and Nick Feamster. 2017. Characterizing and improving the reliability of

broadband internet access. arXiv preprint arXiv:1709.09349 (2017).
[7] Broadband Internet Technical Advisory Group (BITAG). 2022. Latency Explained. https://www.bitag.org/documents/

BITAG_latency_explained.pdf
[8] Maria Paula Caldas, Paolo Veneri, and Michelle Marshalian. 2023. Assessing spatial disparities in Internet quality

using speed tests. (2023).
[9] M. Cappellari, R. M. McDermid, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, A. F. Crocker, R. L. Davies,

T. A. Davis, P. T. de Zeeuw, P.-A. Duc, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, R. Morganti, T. Naab,
T. Oosterloo, M. Sarzi, N. Sco琀琀, P. Serra, A.-M. Weijmans, and L. M. Young. 2013. 吀栀e ATLAS3� project - XX. Mass-
size and mass-f distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular
gas fraction and stellar initial mass function. MNRAS 432 (2013), 1862–1893. https://doi.org/10.1093/mnras/stt644
arXiv:1208.3523

[10] David D Clark and Sara Wedeman. 2021. Measurement, Meaning and Purpose: Exploring the M-Lab NDT Dataset. In
TPRC49: 吀栀e 49th Research Conference on Communication, Information and Internet Policy.

[11] Broadband Mapping Coalition. 2022. Assessing Available Databases for Network Performance Measurements:
Speed Test Datasets. https://broadbandmappingcoalition.org/assessing-available-databases-network-performance-
measurements-speed-test-datasets/. Accessed: 2024-07-31.

[12] Noel Cressie. 1988. Spatial prediction and ordinary kriging. Mathematical geology 20 (1988), 405–421.
[13] Juan C Duque, Luc Anselin, and Sergio J Rey. 2012. 吀栀e max-p-regions problem. Journal of Regional Science 52, 3

(2012), 397–419.
[14] Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap: CRC press. Ekman, P., & Friesen, WV

(1978). Manual for the facial action coding system (1994).
[15] Uber Engineering. 2024. Introducing H3: Uber’s Hexagonal Hierarchical Spatial Index. https://www.uber.com/blog/

h3/. Accessed: 2024-08-07.
[16] Nick Feamster and Jason Livingood. 2020. Measuring internet speed: current challenges and future recommendations.

Commun. ACM 63, 12 (2020), 72–80.
[17] Federal Communications Commission. 2022. FTC Takes Action Against Frontier for Lying about In-

ternet Speeds and Ripping O昀昀 Customers Who Paid High-Speed Prices for Slow Service. Press Re-
lease. https://www.ftc.gov/news-events/news/pressreleases/2022/05/ftc-takes-action-against-frontier-lying-about-
internet-speeds-ripping-customers-who-paid-highspeed.

[18] Federal Communications Commission (FCC). 2022. FCC National Broadband Map. FCC National Broadband Map.
https://broadbandmap.fcc.gov

[19] Peter Cody Fiduccia. 2022. Deconstructing the Digital Divide: 吀栀e Geography, Demography, and Spatial Dependence of
Internet Stability in the US. Cornell University.

[20] Zihui Ge, Daniel R Figueiredo, Sharad Jaiswal, and Lixin Gao. 2001. Hierarchical structure of the logical Internet
graph. In Scalability and Tra昀케c Control in IP Networks, Vol. 4526. SPIE, 208–222.

[21] Syed Hasan, Sergey Gorinsky, Constantine Dovrolis, and Ramesh K Sitaraman. 2014. Trade-o昀昀s in optimizing the
cache deployments of CDNs. In IEEE INFOCOM 2014-IEEE conference on computer communications. IEEE, 460–468.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 34. Publication date: December 2024.



Beyond Data Points: Regionalizing Crowdsourced Latency Measurements 34:23

[22] Trevor Hastie, Robert Tibshirani, JeromeH Friedman, and JeromeH Friedman. 2009.吀栀e elements of statistical learning:
data mining, inference, and prediction. Vol. 2. Springer.

[23] Cheng Huang, Angela Wang, Jin Li, and Keith W Ross. 2008. Measuring and evaluating large-scale CDNs. In ACM
IMC, Vol. 8. 15–29.

[24] Krzysztof Janc, Dariusz Ilnicki, and Wojciech Jurkowski. 2022. Spatial regularities in Internet performance at a local
scale: 吀栀e case of Poland. Moravian Geographical Reports 30, 3 (2022), 163–178.

[25] Hanyang Jiang, Henry Shaowu Yuchi, Elizabeth Belding, Ellen Zegura, and Yao Xie. 2023. Mobile Internet 儀甀ality
Estimation using Self-Tuning Kernel Regression. arXiv preprint arXiv:2311.05641 (2023).

[26] Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman, James McBride, Je昀昀rey Gerard, Je昀昀
Tratner, Ma琀琀hew Perry, Adrian Garcia Badaracco, Carson Farmer, Geir Arne Hjelle, Alan D. Snow, Micah Cochran,
Sean Gillies, Lucas Culbertson, Ma琀琀 Bartos, Nick Eubank, maxalbert, Aleksey Bilogur, Sergio Rey, Christopher Ren,
Dani Arribas-Bel, Leah Wasser, Levi John Wolf, Martin Journois, Joshua Wilson, Adam Greenhall, Chris Holdgraf,
Filipe, and François Leblanc. 2020. geopandas/geopandas: v0.8.1. https://doi.org/10.5281/zenodo.3946761

[27] Ismo Kärkkäinen and Pasi Fränti. 2000. Minimization of the value of Davies-Bouldin index. In Proceedings of the
IASTED International Conference on Signal Processing and Communications (SPC’2000). IASTED/ACTA Press. 426–432.

[28] Jerome L Kaufman. 2013. Chicago: segregation and the new urban poverty. In Urban segregation and the welfare state.
Routledge, 45–63.

[29] Measurement Lab. 2024. MLab Test Your Speed. https://speed.measurementlab.net/. Accessed: 2024-08-07.
[30] Hyeongseong Lee, Udit Paul, Arpit Gupta, Elizabeth Belding, and Mengyang Gu. 2023. Analyzing Disparity and

Temporal Progression of Internet儀甀ality through Crowdsourced Measurements with Bias-Correction. arXiv preprint
arXiv:2310.16136 (2023).

[31] Kyle MacMillan, Tarun Mangla, James Saxon, Nicole P Marwell, and Nick Feamster. 2023. A comparative analysis of
ookla speedtest and measurement labs network diagnostic test (ndt7). Proceedings of the ACM on Measurement and
Analysis of Computing Systems 7, 1 (2023), 1–26.

[32] Jonatas Marques, Alexis Schrubbe, Nicole P Marwell, and Nick Feamster. 2024. Are We Up to the Challenge? An
analysis of the FCC Broadband Data Collection Fixed Internet Availability Challenges. arXiv preprint arXiv:2404.04189
(2024).

[33] Noah Martin and Fahad Dogar. 2023. Divided at the Edge-Measuring Performance and the Digital Divide of Cloud
Edge Data Centers. Proceedings of the ACM on Networking 1, CoNEXT3 (2023), 1–23.

[34] P. A. P. Moran. 1950. Notes on continuous stochastic phenomena. Biometrika 37, 1/2 (1950), 17–23.
[35] New York State O昀케ce of the A琀琀orney General. 2020. New York Internet Health Test. https://ag.ny.gov/SpeedTest
[36] Ookla. 2024. Ookla Speedtest. https://www.speedtest.net/. Accessed: 2024-08-07.
[37] Udit Paul, Vinothini Gunasekaran, Jiamo Liu, Tejas N Narechania, Arpit Gupta, and Elizabeth Belding. 2023. Decoding

the Divide: Analyzing Disparities in Broadband Plans O昀昀ered by Major US ISPs. In Proceedings of the ACM SIGCOMM
2023 Conference. 578–591.

[38] Udit Paul, Jiamo Liu, Vivek Adarsh, Mengyang Gu, Arpit Gupta, and Elizabeth Belding. 2021. Characterizing perfor-
mance inequity across us ookla speedtest users. arXiv preprint arXiv:2110.12038 (2021).

[39] Udit Paul, Jiamo Liu, David Farias-Llerenas, Vivek Adarsh, Arpit Gupta, and Elizabeth Belding. 2022. Characterizing
internet access and quality inequities in california m-lab measurements. In Proceedings of the 5th ACM SIGCAS/SIGCHI
Conference on Computing and Sustainable Societies. 257–265.

[40] Udit Paul, Jiamo Liu, Mengyang Gu, Arpit Gupta, and Elizabeth Belding. 2022. 吀栀e importance of contextualization
of crowdsourced active speed test measurements. In Proceedings of the 22nd ACM Internet Measurement Conference.
274–289.

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand 吀栀irion, Olivier Grisel, Mathieu
Blondel, Peter Pre琀琀enhofer, RonWeiss, Vincent Dubourg, et al. 2011. Scikit-learn:Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[42] Pennsylvania State University and Measurement Lab. 2019. Broadband Availability and Access in Rural Pennsylvania.
https://www.rural.pa.gov/publications/broadband.cfm

[43] QGIS Development Team. 2009. QGIS Geographic Information System. Open Source Geospatial Foundation. http:
//qgis.org

[44] Boris Radovanov and Aleksandra Marcikić. 2014. A comparison of four di昀昀erent block bootstrap methods. Croatian
Operational Research Review (2014), 189–202.

[45] CA: Environmental Systems Research Institute Redlands. 2011. ArcGIS Desktop: Release 10.
[46] Juan P Rigol, Claire H Jarvis, and Neil Stuart. 2001. Arti昀椀cial neural networks as a tool for spatial interpolation.

International Journal of Geographical Information Science 15, 4 (2001), 323–343.
[47] James Saxon and Dan A Black. 2022. What we can learn from selected, unmatched data: measuring Internet inequality

in Chicago. Computers, Environment and Urban Systems 98 (2022), 101874.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 34. Publication date: December 2024.



34:24 Taveesh Sharma, Paul Schmi琀琀, Francesco Bronzino, Nick Feamster, and Nicole P. Marwell

[48] Aleksandar Sekulić, Milan Kilibarda, Gerard BMHeuvelink, Mladen Nikolić, and Branislav Bajat. 2020. Random forest
spatial interpolation. Remote Sensing 12, 10 (2020), 1687.

[49] Ketan Rajshekhar Shahapure and Charles Nicholas. 2020. Cluster quality analysis using silhoue琀琀e score. In 2020 IEEE
7th international conference on data science and advanced analytics (DSAA). IEEE, 747–748.

[50] Ranya Sharma, Tarun Mangla, James Saxon, Marc Richardson, Nick Feamster, and Nicole P Marwell. 2022. Bench-
marks or Equity? A New Approach to Measuring Internet Performance. A New Approach to Measuring Internet Per-
formance (August 3, 2022) (2022).

[51] Ranya Sharma, Marc Richardson, Guilherme Martins, and Nick Feamster. 2023. Measuring the Prevalence of WiFi
Bo琀琀lenecks in Home Access Networks. arXiv:2311.05499 [cs.NI] https://arxiv.org/abs/2311.05499

[52] Taveesh Sharma, Jonatas Marques, Nick Feamster, and Nicole P Marwell. 2023. A First Look at the Spatial and Tem-
poral Variability of Internet Performance Data in Hyperlocal Geographies. Available at SSRN 4568668 (2023).

[53] Taveesh Sharma, Paul Schmi琀琀, Francesco Bronzino, Nick Feamster, and Nicole P Marwell. 2024. Latency Regionaliza-
tion. https://github.com/noise-lab/latency-regionalization. Accessed: 2024-10-17.

[54] Donald Shepard. 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the
1968 23rd ACM national conference. 517–524.

[55] Joel Sommers and Paul Barford. 2012. Cell vs. WiFi: On the performance of metro area mobile connections. In Pro-
ceedings of the 2012 internet measurement conference. 301–314.

[56] Douglas Steinley. 2004. Properties of the hubert-arable adjusted rand index. Psychological methods 9, 3 (2004), 386.
[57] Sean Stokes and Kathleen Sla琀琀ery 吀栀ompson. 2022. With Billions of Dollars of Broadband Funding at Stake, the

Timing of the Challenge Process to the FCC‘s Broadband Map Under Increasing Scrutiny. 吀栀e National Law Re-
view (2022). https://natlawreview.com/article/billions-dollars-broadband-funding-stake-timing-challenge-process-
to-fcc-s-broadband

[58] Srikanth Sundaresan, Sam Burne琀琀, Nick Feamster, and Walter De Donato. 2014. {BISmark}: A testbed for deploying
measurements and applications in broadband access networks. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). 383–394.

[59] Srikanth Sundaresan, Walter De Donato, Nick Feamster, Renata Teixeira, Sam Crawford, and Antonio Pescapè. 2011.
Broadband internet performance: a view from the gateway. ACM SIGCOMM computer communication review 41, 4
(2011), 134–145.

[60] Srikanth Sundaresan, Xiaohong Deng, Yun Feng, Danny Lee, and Amogh Dhamdhere. 2017. Challenges in inferring
internet congestion using throughput measurements. In Proceedings of the 2017 Internet Measurement Conference. 43–
56.

[61] National Telecommunications and Information Administration. 2024. State and Territory Challenge Process Tracker.
https://www.internetforall.gov/state-and-territory-challenge-process-tracker. Accessed: 2024-07-31.

Received August 2024; revised September 2024; accepted October 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 3, Article 34. Publication date: December 2024.


