
Efficient Numerical Wave Propagation
Enhanced by an End-to-End Deep

Learning Model

Luis Kaiser1(B) , Richard Tsai1 , and Christian Klingenberg2

1 Oden Institute for Computational Engineering and Science, University of Texas
at Austin, 201 E 24th St, Austin, TX 78712, USA
lkaiser@utexas.edu, ytsai@math.utexas.edu

2 Department of Mathematics, University of Wuerzburg, Emil-Fischer-Straße 40,
97074 Wuerzburg, Germany

klingen@mathematik.uni-wuerzburg.de

Abstract. In a variety of scientific and engineering domains, the need
for high-fidelity and efficient solutions for high-frequency wave propa-
gation holds great significance. Recent advances in wave modeling use
sufficiently accurate fine solver outputs to train a neural network that
enhances the accuracy of a fast but inaccurate coarse solver. In this
paper we build upon the work of Nguyen and Tsai (2023) and present
a novel unified system that integrates a numerical solver with a deep
learning component into an end-to-end framework. In the proposed set-
ting, we investigate refinements to the network architecture and data
generation algorithm. A stable and fast solver further allows the use
of Parareal, a parallel-in-time algorithm to correct high-frequency wave
components. Our results show that the cohesive structure improves per-
formance without sacrificing speed, and demonstrate the importance of
temporal dynamics, as well as Parareal, for accurate wave propagation.

1 Introduction

Wave propagation computations form the forward part of a numerical method for
solving the inverse problem of geophysical inversion. This involves solving the
wave equation with highly varying sound speed many times in a most efficient
way. For instance, by accurately analyzing the reflections and transmissions gen-
erated by complex media discontinuities, it becomes possible to characterize
underground formations when searching for natural gas. However, traditional
numerical computations often demand a computationally expensive fine grid to
guarantee stability.

Aside from physics-informed neural networks (PINNs) [1,2] and neural oper-
ators [3,4], convolutional neural network (CNN) approaches yield remarkable
results [5–7] to improve the efficiency of wave simulations, but demand pre-
ceding media analysis and tuning of inputs. Furthermore, numerical solvers are
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avoided to prioritize speed [8]; especially for extended periods, these methods
can diverge.

Therefore, combining a classical numerical solver with a neural network to
solve the second-order linear wave equation efficiently across a variety of wave
speed profiles is a central point of our research. We take a first step by expanding
the method of Nguyen and Tsai [5] and build an end-to-end model that enhances
a fast numerical solver through deep learning. Thus, component interplay is opti-
mized, and training methods can involve multiple steps to account for temporal
wave dynamics. Similarly, while other Parareal-based datasets [5,9] are limited
to single time-steps to add back missing high-frequency components, a cohesive
system can handle Parareal for sequential time intervals.

Approach and Contribution. An efficient numerical solver G∆tu ≡ G∆t [u, c]
is used to propagate a wave u(x, t) = (u, ∂tu) for a time step t + ∆t on a medium
described by the piecewise smooth wave speed c(x) for x ∈ [−1, 1]2. This method
is computationally cheap since the advancements are computed on a coarse grid
using a large time step within the limitation of numerical stability; however,
it is consistently less accurate than an expensive fine solver F∆tu ≡ F∆t [u, c].
Consequently, the solutions G∆tu exhibit numerical dispersion errors and miss
high-fidelity details. In a supervised learning framework, we aim to reduce this
discrepancy using the outputs from F∆t as the examples.

We define a restriction operator R which transforms functions from a fine
grid to a coarse grid. Additionally, for mapping coarse grid functions to a fine
grid, we integrate a neural network Iθ to augment the under-resolved wave field.
We can now define a neural propagator Ψ∆t [u, c, θ] ≡ Ψθ

∆t that takes a wave field u
defined on the fine grid, propagates it on a coarser grid, and returns the enhanced
wave field on the fine grid,

un+1 := u(x, t + ∆t) = F∆tun ≈ Ψθ
∆tun := IθG∆tRun. (1)

The models are parameterized by the family of initial wave fields Fu0 and wave
speeds Fc.

2 Finite-Difference-Based Wave Propagators

We consider smooth initial conditions and absorbing or periodic boundary con-
ditions that lead to well-posed initial boundary value problems. Since we are
interested in seismic exploration applications, both boundary conditions can be
used to simulate the propagation of wave fields with initial energy distributed
inside a compact domain. Following the setup in [5], let Qhu denote a numerical
approximation of ∆u with discretized spatial and temporal domains, i.e.,

∂ttu(x, t) ≈ c2(x)Qhu(x, t). (2)

For the spatial (∆x, δx) and temporal spacing (∆t, δt) on uniform Cartesian grids,
the approximation (u, ut )t ≈ (ut, c2Qhu) can be solved by a time integrator:
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• Coarse solver G∆t! := (SQh

∆x,∆t )M with ∆t" = M∆t, which operates on the
lower resolution grid, ∆xZ2 × ∆tZ+. Qh is characterized by the velocity
Verlet algorithm with absorbing boundary conditions [10].

• Fine solver F∆t! := (SQh

δx,δt )m with ∆t" = mδt, which operates on the higher
resolution grid, δxZ2 × δtZ+, and is sufficiently accurate for the wave speed.
We shall use the explicit Runge-Kutta of forth-order (RK4) pseudo-spectral
method [11]. Since this approach is only suitable for PDEs with periodic
boundary conditions, we first apply F∆t! to a larger domain and then crop
the result.

Model Components. As the two solvers operate on different Cartesian grids,
with δx < ∆x and δt < ∆t, we define the restriction operator R, which trans-
forms functions from a fine to a coarse grid, and the prolongation operator I,
which maps the inverse relation. The enhanced variants consist of (a) bilinear
interpolations denoted as R and I0, while I0Ru ! u, and (b) neural network
components denoted as Iθ ≡ Λ†I θ

∆t!
Λ, while the lower index indicates that the

neural networks are trained when the step size ∆t" is used. For improved neu-
ral network inference, we use the transition operator Λ to transform physical
wave fields (u, ut ) to energy component representations (∇u, c−2ut ), with Λ† as
the pseudo-inverse (see also [5,12]). Figure 1 provides a schema visualizing the
wave argument transitions.

Variants of the Neural Propagators. A simple model with bilinear interpo-
lation (E2E-V, I0Ψθ

∆t!
R) is used as a baseline. Each variant changes the baseline

by exactly one aspect. This allows us to isolate the effect of each architecture
modification. The four investigated end-to-end models Ψθ

∆t!
:= I θ

∆t!
G∆t!R are:

Fig. 1. Detailed schematic of E2E-JNet3 (adapted from [5]). Each convolutional block
(blue) encompasses a 3× 3 convolutional layer (groups = 3, padding = 1), followed by a
batch normalization and a ReLU activation function. Connectivity within the network
is depicted by arrows, with the dashed arrow specifically indicating a single application
of G∆t! .
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E2E-JNet3: E2E 3-level JNet (Fig. 1)
E2E-JNet5: E2E 5-level JNet
E2E-Tira: Tiramisu JNet [13]
E2E-Trans: Transformer JNet [14]

The second baseline is taken from [5] and denoted as the modular, not end-
to-end 3-level JNet (NE2E-JNet3), I θ

∆t!
(G∆t!R), while results of G∆t! are used

to separately train the E2E-JNet3 upsampling component.

3 Data Generation Approaches

For optimal results, the training horizon must be long enough to contain suffi-
ciently representative wave patterns that develop in the propagation from the
chosen distribution of initial wave fields. Yet the number of iterations must
remain small to maintain similarities across different wave speeds. Similar to [5],
we chose to generate the dataset in the following way:

1. An initial wave field u0 = (u0, p0) ∈ Fu0 is sampled from a Gaussian pulse,

u0 = e−
|x+τ |2
σ2 , p0 ≡ ∂tu0 = 0 (3)

with x ∈ [−1, 1]2, 1
σ2 ∼ N(250, 10) and the initial velocity field p0. τ ∈

[−0.5, 0.5]2 is the displacement of the Gaussian pulse’s location from the cen-
ter.

2. Every u0 ∈ Fu0 is then propagated eight time steps ∆t" = 0.06 by F∆t! . We
adopt the fine grid settings for the spatial (δx = 2

128 ) and temporal resolution
(δt = 1

1280 ) from [5].

The wave trajectories un+1 = F∆t!un provide the input and output data
for the supervised learning algorithm, which aims to learn the solution map
Ψθ
∆t!

: X () Y :

X := {(∇un, c−2(un)t, c)}
Y := {(∇un+1, c−2(un+1)t )},

(4)

whereD = {(x, y)} with x ∈ X, y ∈ Y .D is modified to createDm,Dw,m (Subsect.
3.1), and Dp (Subsect. 3.2). For brevity, the dataset is only specified if the model
is trained on a modified version; e.g., E2E-JNet3 (Dm) is the E2E-JNet3 model
trained on Dm.

Wave Speeds c ∼ Fc are sampled from randomly chosen subregions of two
synthetic geological structures, Marmousi [15] and BP [16], that are mapped
onto the spatial grid hZ2 ∩ [−1, 1]2 (see Fig. 2). Four manually modified media
(cf. [5]) are added during testing to examine rapid variations in wave speed.



16 L. Kaiser et al.

Fig. 2. Velocity profiles. Brighter colors indicate higher velocity, while randomly cho-
sen subregions are shown in red squares. Marmousi and BP profiles are drawn with a
probability of 30% each, and the other velocity profiles with a probability of 10% each,
respectively.

3.1 Multi-step Training

During evaluation, the end-to-end model Ψθ
∆t is applied multiple times to itself

to iteratively advance waves over the duration ∆t. It comes naturally to include
longer-term dependencies also in our training dataset. For k time steps, we there-
fore introduce a multi-step training strategy that modifies Eq. (1):

un+k := u(tn + k∆t) = (F∆t )kun ≈ (Ψθ
∆t )kun. (5)

By computing the gradient with respect to the sum of consecutive losses, the
gradient flows through the entire computation graph across multiple time steps.

For each initial condition u0, F∆t is applied N times with solutions denoted
as un, ∀n ∈ U1 := {0, . . . , N}. In random order, Ψθ

∆t is applied to every un for a
random amount of steps k ∈ U2 := {n+ 1, . . . , N − n}. Formally, the optimization
problem can therefore be described as:

min
θ∈Rm×n

L(Ψθ
∆t ;D) = min

θ∈Rm×n

1
|D|

∑
u0,c

∑
n∼U1\{N }

∑
k∼U2

n<k≤N−n

‖(Ψθ
∆t )kun − (F∆t )kun‖2Eh

.

(6)
The norm ‖·‖2Eh

is the discretized energy semi-norm MSE as detailed in [5].
We draw both n and k from the uniform random distributions, i.e., n ∼
U1 and k ∼ U2, respectively. The novel dataset is denoted as Dm =
{(∇ukn, c−2(ukn)t, c;∇un+1, c−2(un+1)t )}.
Weighted Approach. Since in the model’s initial, untrained phase, feature
variations can be extreme and may lead to imprecise gradient estimations, we
aim to accelerate convergence by weighting individual losses. Therefore, rather
than drawing k ∼ U2 from a uniform distribution, we select values according to a
truncated normal distribution TN(µ,σ, a, b) from the sample space represented
as −∞ < a < b < ∞. This focuses on minimizing the impact of errors in the
early training stage. After every third epoch, the mean µ is increased by one to
account for long-term dependencies. We refer to this dataset as Dw,m.
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3.2 Parareal Algorithm

Identical to [5], our implemented scheme iteratively refines the solution using
the difference between F∆t and G∆t for each subinterval ∆t. In particular, missing
high-frequency components occur due to the transition to a lower grid resolution,
or a too simple numerical algorithm. Therefore, a more elaborate model Ψθ

∆t is
required for convergence. Formally, we rearrange Eq. (1) for the time stepping
of F∆t , and replace F∆t (IR)un by the computationally cheaper strategy Ψθ

∆t end-
to-end:

uk+1n+1 := Ψθ
∆tu

k+1
n + [F∆tukn − Ψθ

∆tu
k
n], k = 0, . . . ,K − 1 (7)

u0n+1 := Ψθ
∆tu

0
n, n = 0, . . . , N − 1. (8)

We observe that the computationally expensive F∆tukn on the right-hand side
of Eq. (7) can be performed in parallel for each iteration in k.

Parareal iterations alter a given initial sequence of wave fields u0n to ukn for
n ∈ N. This means that neural operators should be trained to map ukn to F∆tukn.
Therefore, appropriate training patterns for this setup would naturally differ
from those found in D, and the dataset for use with Parareal should be sampled
from a different distribution, denoted as Dp.

4 Evaluation Setup

The parameters for G∆t! are set to ∆x = 2
64 and ∆t = 1

600 , with a bilinear
interpolation scale factor of two.

Experiment 1: Architecture Preselection. The average training time of
each variant is approximately 73 CPU core hours. Due to resource constraints,
we therefore limit our main analysis to one end-to-end variant. Here, we selected
the most promising approach from four deep learning architectures trained on
D.

Experiment 2: Multi-step Training. We train the chosen end-to-end variant
from experiment 1 on Dm using an equal number of training points as in D.
The test set is consistent with D to enable comparison with other experiments.

Experiment 3: Weighted Multi-step Training. The setup follows experi-
ment 2, while the models are trained on Dw,m.

Experiment 4: Parareal Optimization. We explore improvements to our
variants using the Parareal scheme in two datasets:
A. Comprehensive Training (Dp

train): The models are trained according to the
Parareal scheme in Eq. (7) and Eq. (8) with K = 4 using a random sample
that constitutes a quarter of the original dataset D for fair comparisons. The
gradients are determined by summing the losses of a Parareal iteration.
B. Fine-tuning (Dp

refine): Rather than employing an un-trained model, we deploy
variants that were pre-trained on a random subset containing half of D. Then,
for another subset that constitutes an eighth of D, Ψθ

∆t is applied with Parareal.
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5 Discussion

Each of the total 72 runs required an average of 72.8 GPU core hours on one
NVIDIA A100 Tensor Core GPU to complete, while the E2E-JNet3 was trained
almost 41% faster and the E2E-Tira three times slower than the average. This
sums up to a total runtime on a single GPU of just over 5,241 hours.

The best trial on the test set was achieved by E2E-Tira with an energy MSE
of 0.0109, which is well below the 0.0462 from the previously published model,
NE2E-JNet3. Our most efficient variant is E2E-JNet3 trained on Dw,m with an
energy MSE of 0.0169, which is close to the results of more extensive models
such as E2E-Tira and E2E-Trans, but is more than five times faster.

End-to-End Structure. The first important observation based on Fig. 3 is that
integrating NE2E-JNet3 into a single, end-to-end system (E2E-JNet3) improved
the average accuracy on the validation set by more than 46%, and on the test
set by ca. 53%. The ability to include the loss of both the coarse solver and
downsampling layer also caused a lower standard deviation and fewer outliers,
since the mean is well above the median for NE2E-JNet3 compared to E2E-
JNet3.

Multi-step Training. Introducing a multi-step training loss enhanced the ben-
efits of an end-to-end architecture even further (cf. E2E-JNet3 (Dm) in Fig. 3)
without increasing the number of model parameters. Figure 4 depicts how all
end-to-end models had a much lower relative energy MSE (cf. [5]) increase par-
ticularly for the first three time steps on the test set. Hence, we conclude that

Fig. 3. Total performance of all hyperparameter search trials on the validation set.
The boxes represent the range between the 25th and 75th percentile of values, while
the whiskers indicate 1.5 times the interquartile range. The blue line illustrates the
result of the baseline E2E-V. The red dot shows the mean and the black line marks
the median of the data. The grey histograms in the background present the average
training time of the respective variant in hours on a single GPU.
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Fig. 4. Comparing the NE2E-JNet3 model and three end-to-end JNet3 variants that
differ in their training algorithms. Initial conditions and velocity profiles are sampled
from D and the relative energy MSE results of 10 runs are averaged. As expected,
all models show a bounded growth as the waves vanish due to absorbing boundary
conditions.

Fig. 5. Visualizing the wave field correction of E2E-JNet3 (Dw,m) in the energy semi-
norm after four time steps of ∆t". The initial condition and velocity profile are sampled
from D.

connecting wave states to incorporate temporal propagation dynamics in the
training data appears to be especially important for the early stages of wave
advancements. Additionally, by taking fewer steps through sampling from a nor-
mal distribution that is being shifted along the x-axis (cf. E2E-JNet3 (Dw,m)),
we successfully avoid high performance fluctuations when the model is only par-
tially trained. Figure 5 visualizes the correction of the low-fidelity solution of
G∆t! by E2E-JNet3 (Dw,m).

Upsampling Architecture. An overview of the upsampling architecture per-
formances can be found in Table 1. As expected, the larger networks (E2E-Tira
and E2E-Trans) performed slightly better compared to the 3-level JNet archi-
tecture, but for the ResNet architecture (E2E-JNet5), more weights did not
increase accuracy by much. Consequently, we theorize that the ResNet design
may be insufficient for capturing high-fidelity wave patterns, while especially
highly-connected layers with an optimized feature and gradient flow (E2E-Tira)
are better suited. Given that E2E-JNet3 (Dw,m) had only a slightly worse aver-
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Table 1. Upsampling variants performance averaged over 10 runs using a batch size
of 64.

variant number of parametersGPU time (sec) test energy MSE

F∆t! - 57.96749 -

E2E-V - 2.40421 0.07437

E2E-JNet3 40,008 2.88331 0.02496

E2E-JNet5 640,776 10.84893 0.02379

E2E-Tira 123,427 13.57449 0.01274

E2E-Trans 936,816 15.67633 0.01743

Fig. 6. Energy MSE of E2E-JNet3 and E2E-JNet3 (Dp
refine) averaged over 10 runs.

age energy MSE on the test set, we generally advise against using the expensive
models in our setup.

Parareal. While models trained with Dp
train have an unstable training progress

and diverging loss, applying E2E-JNet3 (Dp
refine) within the Parareal scheme

showed better accuracy than E2E-JNet3 with Parareal (cf. Figure 6). As this
training method improved the stability of Parareal, sampling the causality of
concurrently solving multiple time intervals is an efficient enhancement to our
end-to-end structure.
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6 Conclusion

In this paper we enhanced the method proposed by Nguyen and Tsai [5], and
reported the results of a large-scale study on different variants that investigate
the efficacy of these enhancements.

All end-to-end variants, including the variants with training modifications,
outperformed the modular framework of [5]. In particular, the lightweight end-
to-end 3-level JNet (E2E-JNet3) performed reasonably well given its low com-
putation cost, and was further improved through a weighted, multi-step training
scheme (Dw,m) to feature time-dependent wave dynamics without adding com-
plexity to the model or substantially extending the training duration. Similarly,
the Parareal iterations using the neural propagator trained by the Parareal-
based data showed significant performance improvements over E2E-JNet3 with-
out extensive additional computational cost due to parallelization.

As expected, certain expensive upsampling architectures, such as intensify
the interconnections between feature and gradient flows (Tiramisu JNet), signif-
icantly increased the accuracy. However, the high computational demand makes
its application mostly impractical in modern engineering workflows.
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