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Climate change is increasing the frequency of large-scale, extreme environmental events and
flattening environmental gradients. Whether such changes will cause spatially synchronous,
large-scale population declines depends on mechanisms that limit metapopulation synchrony,
thereby promoting rescue effects and stability. Using long-term data and empirical dynamic
models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity
in environmental responses, and environmental gradients to assess their role in inhibiting
synchrony across 36 marine fish and invertebrate species. Overall, spatial heterogeneity in
population dynamics was as important as environmental drivers in explaining population
variation. This heterogeneity leads to weak synchrony in the California Current Ecosystem,
where populations exhibit diverse responses to shared, large-scale environmental change.
In contrast, in the Northeast U.S. Shelf Ecosystem, gradients in average environmental
conditions among locations, filtered through nonlinear environmental response curves, limit
synchrony. Simulations predict that environmental gradients and response diversity will
continue to inhibit synchrony even if large-scale environmental extremes become common.
However, if environmental gradients weaken, synchrony and periods of large-scale population
decline may rise sharply among commercially important species on the Northeast Shelf. Our
approach thus allows ecologists to 1) quantify how differences among local communities
underpin landscape-scale resilience and 2) identify the kinds of future climatic changes most
likely to amplify synchrony and erode species stability.

synchrony | environmental gradients | time-delay embedding | empirical dynamic models |
spatial dynamics

A striking feature in ecosystems is the tendency for populations to grow and fall in unison
across large geographic areas (1). Studies utilizing long time series have revealed that
ecological synchrony typically arises from synchrony in environmental conditions that
drive population fluctuations (called “Moran effects”; refs. 2 and 3). Moran effects have
been shown to produce widespread synchrony in a diverse array of taxa (4-6) and are
increasing with climate change in several systems (reviewed in ref. 7). Importantly, syn-
chrony can delay or prevent metapopulation recovery when periods of low abundance
coincide across locations, leaving few abundant populations to seed overall recovery
through rescue effects (8—10). In this sense, mechanisms that inhibit synchrony contribute
to resilience and stability of spatially extended systems.

In most metapopulations, synchrony remains limited in strength, routinely being far
lower than synchrony in putative environmental drivers (e.g., refs. 11 and 12); reviewed in
ref. 13). Here, we identify three mechanisms that can inhibit Moran effects and ask whether
they will persist under climate change. The first is demographic response diversity, in which
populations grow differently in response to local abundance (Fig. 14; we abbreviate response
diversity with RD). For example, populations without Allee effects may recover from a heat
wave faster. Although spatial variation in traits underlying demographic processes is ubig-
uitous [e.g., heterogeneity in lifespan (14) or growth rate (15)], demographic RD has been
quantified only in a handful of taxa (e.g., ref. 1), most frequently as variation in carrying
capacity. The second mechanism is environmental response diversity, in which populations
differ in their response to environmental conditions (Fig. 1B). A heat wave, for instance,
more severely impacts populations that lack thermal refugia or local adaptation to high
temperatures. Although environmental RD appears widespread (e.g., refs. 16 and 17), few
studies quantify its emergent impacts on spatial population dynamics and synchrony. The
third mechanism is environmental gradients, i.e., differences in mean environmental condi-
tions among populations. If the population response to environment is unimodal and an
environmental gradient is present, synchronous changes in the environment can generate
opposing responses in different populations even if there is no environmental RD (Fig. 1C).
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Fig. 1. Three mechanisms may explain why metapopulation synchrony is far lower than synchrony in environmental drivers. (A) Demographic RD through spatial
heterogeneity in density dependence F; can cause population-specific responses to an environmentally driven decline in population density (pink arrow); here,
population 2 recovers more slowly. (B) Environmental RD through spatial heterogeneity in environment dependence G, can cause the impacts of environmental
change to differ qualitatively between populations; here, population 2 is negatively impacted due to lacking access to thermal refugia. (C) Gradients in mean
local environment and nonlinear responses to environment (here, a unimodal thermal response curve) can also create population-specific responses: Here,
a +5 °C anomaly benefits population 1, which experiences lower average temperatures, but exceeds thermal tolerances in population 2, which experiences

higher average temperatures.

For instance, a +5 °C temperature change might cause mortality in
equatorial populations by exceeding thermal tolerances, while ben-
efiting poleward populations. However, the roles of RD and envi-
ronmental gradients in population dynamics have not been
quantified and the mechanisms mediating population synchrony
in the field remain largely unknown.

Critically, the dominant mechanism can determine how a spe-
cies responds to climate change. In systems where environmental
gradients inhibit Moran effects, ecological synchrony and
large-scale population declines may rise as climate change flattens
those gradients. Temperature gradients, for instance, are flattening
globally as northern latitudes (18) and higher elevations (19) warm
faster than southern latitudes and lower elevations, respectively.
Moreover, population synchrony may increase due to the growing
frequency of extreme environmental events (20-23). This may
occur either because extreme events span large areas, in effect
increasing environmental synchrony, or because populations
decline more strongly under severe conditions, in effect over-
whelming RD. Thus, anticipating climate change impacts on
synchrony requires a shift in research, from describing synchrony
patterns, toward a data-driven understanding of synchrony mech-
anisms and how they shape spatial population dynamics.

If we had a well-vetted, data-driven, spatial population model,
we could evaluate demographic RD as heterogeneity in density
dependence across populations, environmental RD as heteroge-
neity in environment dependence, and ask whether populations
respond nonlinearly to environmental drivers with gradients
(Fig. 1). Unfortunately, experimentally resolving how dynamics
vary across populations is not feasible in most systems. Fortunately,
empirical dynamic models (EDMs) can infer population dynamics
from time series without specifying the underlying equations a
priori. Here, we resolve how population dynamics vary among
populations by combining spatially hierarchical EDMs with sur-
vey data from two large marine ecosystems: the California Current
and the Northeast U.S. Continental Shelf (“CA Current” and
“NE Shelf” hereafter; Fig. 24 and S/ Appendix, Table S1). For
this, we compiled data spanning 40 to 48 y, 800 to 1,000 km of
coastline, 11 putative environmental drivers, and 36 fish and
invertebrate species. While many of these species currently have
low synchrony (Fig. 2B), whether this stability will continue is
unknown as both systems face large climatic changes (20, 24, 25).

Here, we show that spatial EDMs effectively predict observed
synchrony and variation in population abundance. Next, by

https://doi.org/10.1073/pnas.2404155121

removing (or allowing) spatial differences in demographic RD
and/or environmental RD and by removing (or allowing) envi-
ronmental gradients, we quantify how each mechanism reduces
metapopulation synchrony and contributes to model fit in each
species. We specifically compare six nested model formulations:
Spg (all three mechanisms present); Sy, (demographic RD only);
Sagg (environmental RD only); Sy (gradlents only); Sy, (no
mechanisms present); and S;._ (no environmental drivers and no
demographic RD). Simulating the best-fitting models under
altered environmental scenarios, we then show that potential cli-
mate change can alter synchrony, and therefore stability, on large
spatial scales, in distinct but predictable ways depending on the
aspect of climate change that one considers.

Results

We first evaluate the relevance of environmental drivers and RD
in general for predicting population dynamics. Unsurprisingly,
the environment has a large influence: including environmental
predictors increases out-of-sample — R? (average leave-one-out R”
value across species) from 0.21 in models with density dependence
only (S;.) t0 0.37 (Sy; Fig. 3B). Relevant drivers were chosen
for each species via model selection: at least one ocean climate
index was selected for all species, and temperature, upwelling, and/
or zooplankton were also selected for 78% of species (SI Appendix,
Table S2). Although not a physical driver, we used zooplankton
as a likely proxy of local environmental productivity (26). We note
that our models allow interactions between environmental drivers;
preliminary models that allowed interactions between density and
environment did not improve fit, and we thus model density- and
environment- dependence additively (Fig. 1).

Response diversity (RD) appears as important as environment
for predicting population dynamics (Fig. 3B): allowing for demo-
graphic and environmental RD in addition to environmental
drivers further increases — R? to 0.49 (Spg; Fig. 3B). For several
species, drivers such as ocean climate have different effects in dif-
ferent populations (e.g., Fig. 3 C and D). Note that this is likely
an underestimate of the importance of RD, as data selection for
the NE Shelf species intentionally omitted populations with qual-
itatively different dynamics, usually located at range boundaries
(81 Appendix, Fig. S1 and Methods), often characterized by steady
declines or increases that may reflect ongoing range shifts (27).
Critically, our full models incorporating all synchrony-reducing
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Fig. 2. Population synchrony is much lower than synchrony in environmental
drivers across 36 species in two large marine ecosystems. (A) Study regions and
centroids of locations by which survey data were aggregated; for Dungeness
crab, points are port locations. (B) Average observed synchrony (defined as
correlation at 350 km) for environmental drivers and species populations; we
show synchrony for all species and for subsets of taxonomically related species
that occur in both systems (Herrings denote Clupeiformes; see S/ Appendix,
Table S2 for a list of species in each subset). Synchrony is evaluated for the
environmental drivers included in the best-fitting models for each species
(S/ Appendix, Table S2).

mechanisms (Spg¢;) explain nearly half of the variation in popu-
lation dynamics on average and attain a level of model-predicted
synchrony close to that of data (0.35 predicted vs. 0.26 observed,
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We next compare how each of the three potential mechanisms
explains dynamics and reduces Moran effects (Fig. 4 A and B).
Specifically, we quantify how scenarios with demographic RD (Sp,),
environmental RD (Syz,), gradients (S.g), and all three mechanisms
(Speg) increase model fit and reduce model-predicted synchrony
compared to a baseline scenario with no mechanisms present (§4,,)-
We remove environmental gradients by subtracting the local mean
from environmental data in each location, and then refitting and
iterating models on these environmental data without gradients (see
Methods and SI Appendix, Appendix D for details).

Environmental RD primarily reduces synchrony in California,
while environmental gradients primarily reduce synchrony on the
NE Shelf (Fig. 44). Accordingly, these mechanisms play a large
role in improving model fit in their respective regions (Fig. 45).
Environmental gradients in California and demographic RD on
the NE Shelf play secondary roles in improving model fit and
reducing synchrony. We also find that when mechanisms co-occur,
they reduce synchrony subadditively. In 12 out of 36 species, we
detected multiple mechanisms that each reduced synchrony by
>0.1 when modeled individually (S Appendix, Table S2). Across
these 12 species, median predicted synchrony was 0.85 in models
with no mechanisms, 0.32 in models with a single mechanism,
and 0.28 in models with multiple mechanisms. In other words,
the presence of a single mechanism reduces synchrony nearly as
much as the presence of multiple mechanisms.

The fact that gradients are stronger overall on the NE Shelf than
in California (Fig. 34) potentially explains their greater influence
in this ecosystem. However, gradient strength depends not only
on system but also on which set of environmental drivers primarily
influence a particular species (as determined by model selection;
ST Appendix, Table S2). Across species, stron§er gradients are asso-
ciated with reduced synchrony (Fig. 4C, R” = 0.27, P = 0.004),
although the slope of this relation is significantly negative only
for gradient magnitudes <12%.

We explore three ways in which climate change might affect syn-
chrony and the frequency of large-scale population declines. One
pathway is extreme environmental events (28, 29): If synchronous
drivers strongly impact organisms, they may overwhelm existing
mechanisms that prevent synchrony. An intense heat wave, for
instance, may exceed thermal thresholds in populations both with
and without refugia from heat. Second, climate change may erode
synchrony-reducing mechanisms themselves, for instance, if the loss
of local adaptation to rapidly changing conditions reduces RD. A
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Fig. 3. Both ecosystems exhibit strong environmental gradients and demographic and environmental RD. (A) Latitudinal trends in mean environmental conditions
in each ecosystem. (B) Performance of models incorporating no environmental drivers or RD (black, scenario Sy_), environmental drivers and no RD (green,
scenario Sgeq) or both environmental drivers and RD to demography and environment (pink, scenario Sep). Curves are distributions of model R? across 36
species; dotted lines and — R? values denote the means of each distribution. (C and D) Examples of RD to three drivers in models of two species, with different

lines corresponding to different populations.
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Fig. 4. Environmental RD in California and environmental gradients in the NE Shelf are the primary mechanisms that reduce synchrony, and gradient magnitude
explains synchrony differences among taxa. (A and B) Decrease in predicted synchrony and increase in model fit when different synchrony-reducing mechanisms
are incorporated (Demographic RD = S, Gradients = Sy, Environmental RD = Sg,, All = Spe) relative to a model with no mechanisms present (Sy.,; see SI Appendix,
Appendix D for model details). Bars show median and distribution of values across 36 species in California (blue) and the NE Shelf (gray). (C) Relationship between
observed synchrony and environmental gradient magnitude (averaged across environmental predictors selected for each species). Line is a best-fit spline across
species, with blue (black) portions denoting a slope found to be significantly (not significantly) different from zero and the gray area denoting 95% Cl of the mean.
Larger points in (C) correspond to species with larger geographic extent and for which gradient magnitude is better resolved.

third pathway is weakening latitudinal temperature gradients (18),
which is also flattening gradients in zooplankton (24, 30) as warming,
stratification, and declines in epilimnion nutrients are disproportion-
ately greater in northern latitudes (18, 31). To evaluate these possible
pathways, we simulate our best-fit models under i) an increase in
extreme event frequency and spatial extent that reflects predicted
increases in heat waves, mean temperature, and ocean climate varia-
bility (Methods), ii) a loss of response diversity, and iii) a loss of envi-
ronmental gradients.

In both regions, we find that existing mechanisms can prevent
high metapopulation synchrony even when environmental extremes
become more common (Fig. 54). By contrast, and regardless of
extreme event frequency, synchrony in both regions strongly
increases with the loss of gradients or RD. Greater synchrony in
turn corresponds to lower stability and more frequent periods of
low projected region-wide density (measured as the 10th quantile
of regional density; Fig. 5B). The largest increases in synchrony and
declines in stability arise when more frequent extreme events coin-
cide with the loss of gradients (Fig. 5 Cand D). This effect is greater
in species influenced by larger gradients, highlighting how climate
change impacts may vary by species. In all treatments, we find little
to no change in mean population density (S/ Appendix, Fig. S4C),
meaning that more frequent large-scale declines arise from a loss
of metapopulation stability.

Discussion

We quantify the relative importance of mechanisms that reduce
population synchrony relative to the synchrony of environmental
drivers, and hence promote stability, across taxa in two marine
systems. Our results reveal that environmental RD and environ-
mental gradients can greatly reduce population synchrony. The
primacy of these mechanisms varied by region, reflecting the
stronger gradients present on the NE Shelf, but also depended on
taxa. For instance, the reduction of synchrony by gradients pre-
viously found for Atlantic blue crabs (13) occurs in a variety of
other species and depends on the extent to which environmental
drivers with gradients impact a species’ dynamics. This variation
also explains observed synchrony differences across taxa (Fig. 2B).

https://doi.org/10.1073/pnas.2404155121

More frequent, larger-scale extreme environmental events by
themselves are unlikely to impact species’ regional stability (Fig. 5).
Instead, synchrony and the frequency of large-scale declines will
increase if climate change erodes environmental gradients or RD.
This risk varies across species (Fig. 5D and SI Appendix, Table S2),
underscoring previous findings that system-wide climate changes
can have species-specific impacts (27). We also point out that the
impacts of increased synchrony within our study species may cas-
cade to higher trophic levels as mobile predators and fisheries cannot
compensate for periods of resource depletion by moving to alternate
locations (i.e., a loss of spatial portfolio effects). Altogether, our
results demonstrate that without an understanding of spatial pop-
ulation dynamics, projections of environmental change alone tell
us little about the stability of species and natural resources.

Our general results support findings of species-specific terrestrial
studies. For gradients, Hagen et al. (32) found reduced synchrony
across elevational temperature gradients in a moth metapopulation
driven by regional climate. This indicates that our results for latitu-
dinal gradients can also explain low synchrony at finer spatial scales.
Previous studies that quantified demographic RD as spatial variation
in intrinsic population growth and carrying capacity (12, 33, 34)
also found that demographic RD has a limited impact on metapo-
pulation synchrony. Simultaneously, metapopulation synchrony in
these studies was low and similar to synchrony in our systems [e.g.,
mean correlation at 300 km = 0.30 in our study; 0.27 for six insect
species in ref. 12; 0.25 for blue and great tits (34); 0.03 for cormo-
rants (33)]. We therefore suggest that environmental gradients and
environmental RD might inhibit synchrony in these other systems.

Several strategic management insights also come from our results.
First, we find that temperature affects the dynamics of only a frac-
tion of species (33%), while local productivity (zooplankton) was
a more ubiquitous predictor (80% of species). This highlights that
warming may primarily impact fisheries only through its potential
indirect effects on productivity. Second, in our simulations, extreme
events increase synchrony primarily by spanning large areas (i.e., by
increasing environmental synchrony) rather than by making histor-
ically rare, extreme conditions more frequent (S7 Appendix, Fig. S4).
Both results are in line with recent work showing that population
die-offs in response to marine heat waves currently appear rare

pnas.org
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Fig. 5. Climate change is likely to increase synchrony and large-scale population declines by eroding synchrony-reducing mechanisms rather than by increasing
extreme environmental events. (A and B) In EDM projections across 36 species, synchrony and large-scale declines increase to a greater extent when synchrony-
reducing mechanisms are lost (orange bars) than when environmental extremes increase in frequency and spatial extent (hashed bars). Green bars are values
for observed data. (C and D) Change in projected synchrony and large-scale declines with increased extremes and the loss of gradients. Points are plotted
vs. environmental gradient magnitude; larger points correspond to species with larger geographic extent. ‘Gradients and RD lost’ simulations in A and B are
projections of models without RD (scenarios Sy.g); all other results are projections of the full models (scenarios Sgep).

globally (35). Third, we identified 24 species that have no or only
one synchrony-reducing mechanism (87 Appendix, Table S2) and,
in turn, may be vulnerable to increased metapopulation-wide
declines. In limited preliminary analyses, we did not find a relation
between the number of mechanisms and species taxonomy.

Low demographic RD and high environmental RD (Fig. 45)
also suggest steps for improving population models used in fisheries
management. Whether and how to model spatial variation in pop-
ulation dynamics is a common source of debate in stock assessment
models. Our results suggest that for many species, demographic
processes may be similar across large areas, but there may be local
differences in responses to the environment. Future assessments can
readily quantify the importance of demographic and environmental
RD using EDM, while fundamental research could disentangle
whether environmental RD arises from heterogeneity in habitat,
community composition, or local adaptation.

Several factors may affect our results. First, observation error
could bias estimates of synchrony and, potentially, estimates of
demographic RD. Future work could account for this using new

PNAS 2025 Vol.122 No.1 e2404155121

state-space EDM methods that account for observation error (36).
Observation error may explain why observed synchrony is less
than predicted synchrony, although our methods account for var-
iability in sample timing (S Appendix, Appendix A). Second, a
portion of the observed synchrony may be caused by mobile pred-
ators or dispersal. As EDM implicitly accounts for dispersal via
time lags, our simulations are therefore unable to account for
changes in mobile predators and dispersal. We note that dispersal
in marine systems typically happens in early (larval) life stages,
and the effect of larval supply on adult biomass is often weak. In
line with this, spatial extensions of EDM found little impact of
dispersal on dynamics in the NE Shelf (37). Third, our analysis
may underestimate the role of gradients in reducing synchrony
because spatially uniform ocean climate indices were often selected
as important predictors. While climate indices themselves lack a
gradient, they represent a collection of spatially heterogeneous
processes such as nutrient transport and productivity. Future anal-
yses incorporating a larger collection of spatially resolved predic-
tors may refine our results and help resolve mechanisms.

https://doi.org/10.1073/pnas.2404155121
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While climate change is unlikely to eliminate RD or gradients
entirely, as simulated, our study provides bounds on possible sce-
narios. As climate change impacts on individuals and the environ-
ment become better resolved, simulations under more realistic
environmental projections could be used to identify vulnerable
species whose future stability might be compromised. Improved
model fits and predictions for individual species might also be
attained using more species-tailored environmental drivers. Although
our dataset has insufficient sample size to draw conclusions about
patterns in individual taxa, differences in synchrony-reducing mech-
anisms across different taxonomic groups could also be explored in
future work.

Unifying Population and Landscape Dynamics. Our approach
advances mechanism-focused synchrony research by quantifying
multiple synchrony-reducing mechanisms and how they act
in concert. Ciritically, our nonparametric approach does not
assume a parametric model (e.g., logistic dynamics) or a specific
(and often unknown) population response to environment.
We demonstrate that ecological dynamics vary greatly across
populations and that the resulting response diversity underpins
landscape stability. As such, this work complements experimental
approaches that quantify resilience at the scale of individuals
(e.g., thermal tolerance thresholds) but is rarely feasible at
metapopulation scales.

More generally, our approach pairing long-term data with hier-
archical EDMs can detect how nonlinear species’ density depend-
ence, responses to environment, and species interactions differ
among local communities. Thus, future studies applying hierar-
chical EDMs to long-term data can directly quantify how ecolog-
ical interactions and population dynamics depend on local
environment and community composition. Finally, classical views
contend that while “black-box” models excel at prediction, para-
metric models are the principal path to inferring mechanisms.
Although it is true that EDM can outperform parametric models
in forecasting (38), our study is one of many recent demonstra-
tions (13, 39, 40) that appropriately constrained phenomenolog-
ical models can reveal ecological mechanisms. We suggest that
EDMs form a key link in scaling up our understanding from
simple models to large and complex ecosystems.

Methods

Long-Term Data. We developed an annual dataset of 36 marine fish and inver-
tebrate species by combining data from several spatially extensive, long-term
surveys (S1 Appendix, Table S1). These “species” included three larger taxonomic
groups (shrimp, krill, and pelagic juvenile rockfishes). For most species, data
spanned at least 10 degrees of latitude and were aggregated into one degree
latitude bins (“locations” or “populations” throughout, Fig. 24). Density data were
log-transformed and normalized within locations. We combined biological survey
data with data on 11 candidate environmental drivers (listed in S/ Appendix,
Table S2), which included winter and summer sea surface temperatures, zooplank-
ton biomass, upwelling, and ocean climate indices. See S/ Appendix, Appendix A
for more details on data sources and data processing.

EDM Model Framework. To model population dynamics, we predict abun-
dance changes based on past changes that occurred when the system was in
a similar state. This approach effectively “reconstructs” population dynamics
from time series (41) and works for nonautonomous systems with long-term
change (42). In particular, we model log abundance of population i in year t,
XL,, using the vector of lagged log population densities at timest — Lto t — 1,

X, = {X,1 X} and the vector of p different environmental drivers

E {EW <o E] - FP

it=1r it=L" it=1" T

£ } We model dynamics as an addi-

tive combination of density dependence F; (X, ) and environment-dependence
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G/(E;,), such that X;, = F,(X;,) + G/(E;,). This allows us to separately resolve
demographic RD (spatial heterogeneity in F;) and environmental RD (hetero-
geneity in G)).

Foreach species, we fit models in two stages. We first fita model with lags of den-
sity, X, = = F,(X;,)and computed the out-of-sample residuals x,; = X;, — f,-(X,-,t)
where F,-( ;1) is the map constructed by leaving out the (i, t)"" observation. We
then fit a model to the residuals using lags of the environment, x,, = G; (E; ).
Importantly, reversing the fitting order(i.e., fitting G,(E;,) and then F, (X, )] does
not affect our qualitative results (S/ Appendix, Appendix D). Out of sample pre-
dictions for the full model were then X, = F,(X;,) + G, (E;, ), where G, is also

computed leaving out the (i, )" point.

Not knowing the functional forms of our model a priori, we estimated the
nonlinear functions £, and G; using hierarchical Bayesian Gaussian process (GP)
regression asimplemented in the GPEDM package (43).The hierarchical structure
allows for heterogeneity in these functions across populations. To prevent overfit-
ting, we seta prior with a mode of 0 on the importance of all lag predictors so that
those which do not improve fit are effectively omitted (44, 45); see SI Appendix,
Appendix B for more details on our hierarchical GP approach.

Model Selection and Analysis. We evaluated model performance using leave-
one-out (LOO) out-of-sample R? = 1 — = (% /r—Xlr)/z(X,, —X,,)%. For each spe-
cies, we fit models with the number of lags L ranging from 1 to 6 and selected
the model with the Lvalue that;)roduced the hlghest RZ In cases where a lower
L produced a similar R2L lie, R >09 x maxd( ) d € 1:1], we selected the
more parsimonious model. More details on model selection, including selection
of environmental drivers, is provided in S/ Appendix, Appendix C.

To quantify the strength of environmental gradients relevant to a given spe-
cies (Figs. 4C and 5 C and D), we first scaled each driver to the interval (0,1)
across all populations and calculated the mean (across time) of each retained

driver p and each population i, E_f’ We then calculated gradient magnitude

Mp = (max,E” — minE") / D, where D is the maximum distance between pop-
ulations for the species, and averaged MP across all drivers. Finally, we analyzed the
relation between average M and observed synchrony across species (Fig. 4C) by
fitting a spline in mgcv and analyzing its slope using tsgam packages (46).

Throughout,we quantified synchronyasthe expected Pearsoncorrelationinlog
density between populations 350 km apart. This corrects for substantial variation
inthe geographic range of modeled species after datafiltering (350to 1,700 km).
We chose 350 km because the metapopulations we modeled exceeded this
distance in all but one species. We estimated synchrony using the ncf package
(47), which fits a spline to the pairwise correlation between populations as
a function of distance and then evaluated the spline at 350 km. To robustly
evaluate predicted synchrony in models, we ran 1,000 simulations from each
fitted EDM using permutations of the observed ("historical”) environmental
conditions (Figs. 4 A and C and 5). For each year and species, we set environ-
mental values (or global mean-centered environmental values, for models
without gradients) equal to those observed in a randomly selected year. We
then simulate abundance by iterating the model year-by-year, using abun-
dance predicted for one year to predict abundance in the following L years
and measure synchrony in these simulations. In S/ Appendix, Appendix D, we
show that accounting for temporal autocorrelation in the environment had
little impact on all our results.

Simulating Climate Change. Expected climatic changes in our study systems
include increased variability in ocean climate indices ENSO (20), NPGO (48), NAO
(29),an associated increase in heat wave frequency (28, 29), and increased mean
temperature (2 to 5 °Cby 2,100; ref. 49). Ongoing declines in latitudinal tempera-
ture gradients are also expected to continue (18), and the productivity gradient on
the NE Shelf (Fig. 24) is expected to flatten as zooplankton biomass declines dis-
proportionately in the Gulf of Maine (24, 30). To explore the strategic implications
of these changes for metapopulation synchrony, we first calculated the mean of
each environmental driver pin each population junder historic conditions, Ep and
deviations from these means, £/, * = E/, — E” Next, we generated a set of 1,000-y
permuted "historical” condltlons as described above and randomly chose 40% of
years to contain extreme events. In an extreme year, for each driver, we randomly
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choose a single value FP from the upper 25% or lower 25% of all values £ We
then setEft inall locations to £7 + 7, in simulations with gradients present and

to E7in simulations with gradients absent. Altogether, our approach simulates an
increase in both the frequency and spatial extent of extreme events. For summer
and winter temperatures, we sample extreme values only from the upper 10% of
observations to simulate a conservative level of warming (NE Shelf: +2.3 °C; CA
Current: +1.5 °C). We simulated models as described above.

Data, Materials, and Software Availability. Previously published data were
used for this work (refs. 1-3, 5,7-10, and 12 and reference 19 of the S/ Appendix).
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