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Abstract—In many applications, collecting ground truth labels
is labor intensive and costly. Thus, researchers often turn to
pragmatic labeling tools based on heuristics, at the potential cost
of introducing noise. When multiple different labeling tools are
used, we find ourselves in the setting of multiple noisy labels.
Previous work studying supervised learning with multiple noisy
labels focuses on classification and proposes different strategies to
aggregate labels. Here, we move beyond classification and study
multiple noisy labels in the context of time-to-event prediction
(i.e., survival analysis). As we show, survival analysis presents
additional challenges when learning from multiple noisy labels
since outcomes may be censored. We formalize the problem
of multiple noisy labels in survival analysis and propose a
novel approach. Our approach leverages a reference set with
both noisy and ground truth labels to model the noisy time-
to-event distribution and their associated errors and then uses
these distributions to predict the ground truth time-to-event
distribution. When predicting sepsis onset in the MIMIC-III
dataset, our approach more accurately estimates time-to-events
compared to the next best baseline (median time-to-event error
across 10 replications: 14.5 hours [interquartile range 13.25-
15.75] vs. 17.50 hours [interquartile range 16.25-18.00]). CODE

Index Terms—Survival Analysis, Time-to-Event Prediction,
Noisy Labels, Multiple Labelers, Health Application

I. INTRODUCTION

Motivation. In survival analysis, one aims to estimate the
probability of an event (e.g., death) occurring over time.
Training survival analysis models requires accurately labeled
time-to-events (TTEs). In many domains, like healthcare,
accurate TTEs can be difficult to obtain. For example, with
some diseases, identifying TTEs can require manual chart
review by a clinical expert (e.g., sepsis [1]-[3]), making it
challenging to efficiently label large datasets. Thus, automated
pragmatic labeling tools based on the structured components
of the dataset (e.g., tables from an electronic health record)
are often used instead [4], [5]. For example, one could label
sepsis onset as 1) when the CDC (Center for Disease Control
and Prevention) definition is met [6] or 2) when the Sepsis3
definition is met [7]. However, this could mislabel who expe-
riences the event and when the event occurs. In the absence
of ground truth TTEs for most patients, one can potentially
learn an accurate survival model by combining noisy proxies
from different labelers/annotators. We refer to this setting as
survival analysis with multiple noisy labels.

Current Gaps. Work studying multiple noisy labels focuses
almost entirely on classification, where approaches generally
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aggregate the noisy labels from a dataset at 1) preprocessing
time [8], [9], or 2) inference time [10]-[13]. Survival analysis
differs from standard classification in that some individuals
may have censored outcomes (i.e., an individual is only known
to be event free up until a certain point). Work addressing
noisy labels in survival analysis is largely limited to the
single labeler case [14]. In our setting with multiple noisy
labels, one could naively take the average of the noisy TTEs
during preprocessing and then use this aggregate as ground
truth during training. However, this requires assumptions on
the relationship between the ground truth and noisy TTEs.
Moreover, it is not immediately obvious how to aggregate
censored outcomes. Instead, one could aggregate at inference
time by first using standard techniques to learn to model
each labeler separately and then aggregating (e.g., averaging)
the labeler-specific predictions. This addresses issues around
aggregating censored labels but still requires assumptions on
how to aggregate the noisy predictions (e.g., the ground truth
TTE is the average of the noisy ones).

Our Idea. To address the limitations of past work and
naive solutions, we introduce a novel approach for survival
analysis with multiple noisy labels. Applied to a variety of
experimental settings involving both synthetic and real data,
our approach is more robust than adaptations of approaches
from classification with respect to the rate of censorship in the
data at training, and it does not require assumptions on how
the noisy and ground truth TTEs are related. Our approach
leverages a small reference set, i.e., a small subset of data
for which we have expert-labeled TTEs that serve as ground
truth. Reference sets can be constructed by randomly selecting
a subset of individuals in the training data and then having a
subject expert assign ground truth labels to these individuals
via manual review. While this is still associated with a cost, it
is significantly less costly than labeling the entire dataset, in
many settings. Overall, our contributions are as follows.

o We formalize the multiple noisy labels problem in the
context of survival analysis.

« We adapt existing approaches from the multiple noisy
labels literature in classification and identify their short-
comings in the survival analysis setting.

o We propose a novel approach for survival analysis with
multiple noisy labels and show that our approach is more
robust than the baselines across a variety of settings.
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Fig. 1: Demonstration with example timelines. Instead of
observing ground truth time-to-events (TTEs) in our dataset,
we observe m > 1 noisy proxies. In this figure we have m = 2
labelers for five example individuals. Notation) ¢: last time
observed, ¢;: indicator for whether an event was recorded for
labeler j 0;: observed time for labeler j, which is £ if ¢; == 0
or noisy TTE é; otherwise; T': length of horizon.

II. METHODS

We formalize the multiple noisy labels problem in the con-
text of survival analysis and describe our proposed approach.

A. Notation and Problem Setup

In survival analysis with clean/correct labels, our dataset
is: D = {x(¥,c 0¥}"_ . Here, n is the number of individ-
uals, x € R? is a feature vector, d is the number of features,
and c is a binary indicator for whether the event occurred
(i.e., ¢ = 0 if the event is censored and ¢ = 1 otherwise). The
observed time, o, corresponds to the TTE, denoted with e, if
c=1.1If ¢ =0, o corresponds to the last time of observation,
¢ (i.e., we know that the event did not occur by time o, but
we do not know what happened after time o).

We consider a setup in which we aim to predict survival
within a fixed time horizon [15]. Given an event of interest, we
aim to predict: 1) whether the event occurs within 7" time steps
(i.e., P(e € {1,2,...,T}x)) and 2) the probability of the event
occurring at each time point 1,2, ...,7" given that it occurred
within 7' time steps (i.e., P(e = t|x,e € {1,2,...,T}) for
t = 1,2,...,T). Using these predictions, the corresponding

survival function is S(f[x) = 1 — 22:1 Ple = ulx) =
1= Ple=ulx,e€ {1,2,....,THP(e € {1,2,.., T}x),
and the predicted TTE is the median value of S(t[x) (i.e.,
é = argmin,S(t|x) < 0.5) [16], where * denotes a prediction.
Unless otherwise indicated, let superscripts in parentheses
denote individual indices (e.g., x(¥)) and subscripts denote
indices into vectors (e.g., xx). Where convenient, we drop the
indexing superscripts. We assume that e ~ D(f(x)), where
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f can be any function, and D is a distribution. We make no
assumptions on D other than f(x) is the median of D and that
D can be approximated by the empirical survival distribution.

In the multiple noisy labels setting with m labelers,
instead of observing o in the dataset, we observe 0 €
{1,2,...,T}™, a vector of observed times for each labeler.
Each entry 6; corresponds to the observed time for labeler
j €{1,2,...,m}, which can be a noisy TTE or £. If we observe
a noisy TTE for labeler j, denoted ¢;, we assume that it can
be written as €; = e + §;(x) where §;(x) is a labeler-specific
error value that can be instance-dependent. Taken together,
0 = (01,02,...,0p,). Similarly, instead of observing ¢, we
observe ¢ € {0,1}™, where each ¢; represents an indicator
for event occurrence for labeler ;.

We define three ways that individuals can be considered
based on censorship (Figure 1). Let D) = Ex(i),ém,()(i)).
The first is fully observed: & = {DW|@E” > ovj) v
(max; oy) == T)}, which includes those who have a
recorded TTE for all labelers (i.e., uncensored) or were
observed for the entire prediction horizon with potentially
no event for some labelers (i.e., administratively censored).
Note that, since we are only concerned with predicting event
occurrence within some time horizon, administratively cen-
sored individuals have a fully observed outcome (i.e., no
event if none are recorded). The second is fully censored:
¢ = {DW|(&"” == 0¥j)A([max; o{"] < T)}, which includes
those whose were not observed for the entire prediction
horizon and have censored TTEs for all labelers. The third
is partially censored: P = {D(i)|((mamjé§.z) - minﬁﬁ”) >
0) A (max; oy) < T)}, which includes those who were not
observed for the entire horizon and whose noisy TTEs are
censored for at least one, but not all labelers. We use the
common assumption [17] that censorship is independent of x
(e, P(DW € ¢) = P(DW ¢ C|x) and P(D®) € P) =
P(D% € P|x)) and that ¢ is uncorrelated with e.

B. Proposed Approach

Our approach (Figure 2) consists of two steps. In the first
step, we train two models to predict, for a given individual,
a) the noisy TTEs and b) the errors of the noisy TTEs. By
predicting the noisy TTE errors, we assume that the same la-
belers are used across the dataset and are somewhat predictable
in their labeling behaviors. From these two predictions, we
aim to recover the ground truth TTE, which can then be
used as a pseudo-label in the second step. In the second step,
we train a third model to map the input features and noisy
TTE predictions from the first step to the ground truth TTE,
which we use to predict the survival function. Throughout,
we use cross entropy loss to learn the respective distributions
since it does not require any assumptions on the forms of the
distributions other than that they can be approximated by the
empirical distributions.

To learn to predict the noisy TTE errors, we assume access
to a small subset of randomly chosen individuals for whom we
have both noisy and expert-assigned labels (i.e., an unbiased
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Fig. 2: Overview of proposed approach. Based on x, we first
predict the noisy TTEs and their errors as intermediate outputs.
We then concatenate the noisy TTE prediction with x and map
this to a prediction of the ground truth TTE as the final output
of the approach. The approach can be implemented using the
three components shown in the shaded boxes that are trained
as described in Step la, Step 1b, and Step 2.

reference set). In practice, there are many settings for which
reference sets are available. With health data, it is often
possible to have a clinician review a small subset of randomly
chosen patient charts to obtain ground truth.

Step la: Noisy TTE Prediction. Here, we learn to predict
the distribution of noisy TTEs as the output of the model
parameterized by 6. Let € denote a noisy TTE sampled from
{é1,éa,...,én} with uniform probability given x. Note that
the ¢€; values themselves are not necessarily from the same
distribution. For example, given X, ¢; may come from N(1,
2) while é; may be from N(3, 1). Predicting the distribution
of noisy TTEs then becomes predicting [P(é = 1|x), P(é =
2|x), ..., P(é = T|x), P(¢ ¢ {1,2,...,T}x)] € [0,1]T+1.

For labeler j, censored and uncensored labels are handled
in ways similar to past work [18]-[21]. For uncensored labels,
we can use the corresponding 65-1) as supervision with cross
entropy loss through £;,. For censored labels, we minimize the
probability of event occurrence before the time of follow-up
using L since we have no other information.

Lu(i, ) = ~log (PED = 571x9))
_(z)

Le(i.j) = ~log 1—213( )~ fx)

We can write the objective function over all individuals and
all labelers with Lo (where I is the indicator function)

Lo=3" 316

=0 j=1

== 1)Ly (i, ) + L& == 0)Lc(i, )
For individuals in U, we use the first term of L». For
individuals in C, we use the second term of L. For individuals
in P, we use both terms of Lo.
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Step 1b: Error Prediction. Here, we learn to predict the
distribution of errors as the output of the model parame-
terized by ¢. To learn the distribution of errors, we use a
similar method to learning the distribution of noisy TTEs.
However, instead of using the entire dataset, we only use the
reference set, denoted with A. For such individuals, we have
(x,¢€,0,c,0) and assume that A C Y. Using A, we train ¢
with L. Note that, since we assume A C U/, individuals with
¢ == 0 are those who do not experience the event by the
end of the prediction horizon. L only considers those who
experience the event when learning the distribution of errors.
Those who d0 not experience the event are used in Step 2 to
learn P(e ¢ {1,2,...,7}). Similar to &, let §(x) denote the
error of a noisy TTE sampled from {g;(x), §2(x), ..., gm (X)}
with uniform probability. Like é;, the §;(x) values are not
necessarily drawn from the same distribution. Predicting the
TTE error distribution then becomes predicting [P(j(x(*)) =
~T|x), P((x©) = T + 1[x), .. PG(xD) = T|x)

[0, 1]2T+L, where Aogz) =00 — 5!

m

ZZ () ==1) logP( (x¥) =

icAj=1

Step 2: Ground Truth TTE Prediction. In Step 2, we aim
to predict the ground truth TTE distribution as the output of
the model parameterized by ), where we map the features
and our prediction for the distribution of noisy TTEs to a
prediction of the ground truth TTE distribution (i.e., [P(e =
1x), P(e = 2|x),..., P(e = T|x),P(e ¢ {1,2,...,T}|x)] €
[0,1]7F1). Since we lack reference TTEs for the majority of
the dataset, we cannot apply cross entropy loss as we did
when learning the distribution of noisy TTEs. However, since
we learned to predict the distributions of the noisy TTEs and
errors, we can use these predictions to estimate the ground
truth TTE, which can then be used as pseudo-labels for this
step. Given the pseudo-labels, we use cross-entropy loss to
learn the ground truth survival distribution. This is represented
in the first term of L below.

Ao x(¥)

n

Lo = %Z —log (P(e(i) = éfgg|e(i) <T, X(i)))

i=1

(DD € AN == 0)log( (e ¢ {1,2,. T}|x<i>))

Here, é40y = |20, tP(6 = t|é < T,%) + 3, eP(§(x) = €[x)]
is the mean predicted TTE [22], offset by the error prediction,
whose value is clipped to 1 or 7" if needed. The term e < T’
is shorthand for e € {1,2,...,T}, which describes the event
occurring within the prediction horizon with P(e < T) =

Ple ¢ {1,2,..,T}). The term P(e = tle < T) =
P(e =t)/P(e < T) is the conditional probability of event
occurrence. The second term of L provides supervision over
the probability of the event occurring outside of the horizon,
using individuals from 4. Note that we use e instead of €4,
for individuals in the reference set in Lo and that 6, ¢,
and v can be implemented with any architecture (e.g., feed
forward network) that outputs a probability distribution. Thus,
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we expect that the time and space complexity of our approach
with respect to training, storage and inference will be the same
as any standard implementation of these architectures.

While we could rely on only the pseudo-labels from Step
1 to construct the survival curve, this will likely lead to
miscalibrated predictions. This is because the distributions
from which the noisy TTEs are drawn do not necessarily match
that of the ground truth TTE. For example, in healthcare,
the time when a patient is billed for a diagnostic code may
not directly match the natural progression of the respective
condition [23]. Thus, Step 2 serves as a re-calibration step.

In contrast to adaptations from classification ap-
proaches, our approach incorporates censored individuals
at each stage and learns how to aggregate the noisy TTEs.
We hypothesize that, because of this, we will outperform
existing approaches designed for classification.

III. EXPERIMENTS AND DISCUSSION

We empirically explored how our proposed approach com-
pares with approaches for learning with multiple noisy labels
adapted from classification in a variety of tasks using both
synthetic and real datasets. For our synthetic data, we used
T = 200, n = 5,000, and d = 100. We obtained e by drawing
from a normal distribution centered around a function of the
features. We drew e from a normal distribution to contrast
with how we generated the noisy TTEs. TTE noise was drawn
from a skewed distribution based on another function of the
features. Censorship status was assigned randomly. From our
real data, MIMIC-III, we predicted sepsis onset since multiple
definitions of sepsis exist, and there is currently no ground
truth definition. We used demographic and vital sign features
from the first seven hours of admission to the intensive care
unit with a time horizon of 24 hours starting at ¢ = 7. To
approximate ground truth sepsis onset, we used a composite
definition based on 1) the CDC definition and 2) the Centers
for Medicare and Medicaid Services (CMS) definition [6], [24]
like past work [25]. As our noisy labels, we considered Sepsis1
[26], Sepsis3 [7], and an analogous composite definition based
on Sepsis3 and Sepsisl. Our baselines, Naive Average, Voting
Average, and Independent, adapted work from classification
[8]-[13] to survival analysis. Both averaging baselines aggre-
gated the noisy labels at preprocessing time, and Independent
aggregated at inference time. We considered three metrics
[16]: 1) For TTE prediction accuracy, we measured the signed
difference between the predicted TTE and ground truth TTE
(i.e., € —e). 2) We measured discriminative performance with
the time-dependent C-index [27]. 3) We measured calibration
error on the synthetic data with the integrated mean squared
error (IMSE) between the predicted and ground truth survival
curves. For MIMIC-III, we used the distributional divergence
for calibration (DDC) [20]. More detail about the implemen-
tation and experimental setup can be found with the code.

We conducted sensitivity analyses and ablation studies on
synthetic data where we tested the following hypotheses:

« our approach can learn in the presence of partial censor-
ship more effectively than the baselines and

866

« our approach is effective when the assumed aggregation
function is misspecified through Steps 1b and 2.

To test these hypotheses, we varied 1) the amount of partial
censorship in the dataset and 2) the amount by which the
assumed and ground truth aggregation functions differed.
Then, we evaluated performance of the approaches on sepsis
onset prediction in MIMIC-IIIL.

A. Experiments on Synthetic Data

For robustness to censorship, we compared the proposed
approach to the baselines, since we expect that some of the
limitations of the baselines stem from a lack of robustness to
partial censorship. For robustness to deviations from the as-
sumed aggregation function, we compared to ablations of our
proposed approach since we expect that Steps 1b and 2 make
our approach effective in this setting. For both experiments,
ground truth labels were uncensored at test time.

Robustness to Censorship. We varied the rate of partial
censorship in the synthetic dataset during training from 0% to
80% while fixing the rate of full censorship during training at
10%. Here, the ground truth TTE was the average of the noisy
TTEs so we did not use the error prediction component of the
proposed approach (i.e., we trained 6 and ¢ with Steps la and
2). Proposed was robust across all three metrics, consistently
showing the best performance as the rate of partial censorship
increased (Figure 3). Both of the averaging baselines per-
formed well in low censorship settings (i.e., partial censorship
rate = 0% at training) but degraded as the amount increased. In
addition, at high rates of partial censorship, the distribution of
results across replications became skewed. This is because,
during training, there was sometimes a trade-off between
TTE prediction accuracy and discriminative performance. As
a result, for a few splits at high rates of censorship, these
baselines had a high C-index at the cost of an extremely biased
TTE estimate. Independent had TTE prediction errors that
were more consistent and did not degrade to the extent of the
averaging baselines. However, the discriminative performance
and calibration error of this approach was noticeably worse
than Proposed, even at low rates of censorship. This is in line
with expectations, since our synthetic dataset was constructed
such that the ground truth and noisy TTE distributions did
not match, and Independent did not have a re-calibration step
like our approach. At low rates of censorship, both averaging
approaches had a slightly higher C-index than Proposed, likely
because they were more sample efficient.

Robustness to Misspecified Aggregation Function.  Here,
we relaxed the setting where the ground truth and assumed
aggregation function matched on the synthetic dataset and
compared to ablations of the proposed approach while varying
the expected difference between the averaged noisy TTEs
and ground truth TTE (i.e., the noise mean). We fixed the
rates of full and partial censorship at training to 0.1 and
0.4, respectively. Here, Proposed -Recalibration implemented
Steps la and 1b of the approach and obtained predictions
of the ground truth TTE distribution through convolution
of the predictions from these steps, while Proposed -Error
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Fig. 3: We varied the rate of partial censorship while keeping the rate of full censorship at 10% during training. The proposed
approach degraded the least as the rate of censorship increased. At each point along the x-axis, we plot the median and
distribution of values for each approach across all replications. We show the C-index results as a bar plot for clarity with error
bars representing the range in values across 10 runs. The outer plots have jitter along the x-axis for clarity.
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Fig. 4: We varied the TTE noise mean. Our approach maintained good performance across all metrics, while its ablations did
not. At each point along the x-axis, we plot the median and distribution of values for each approach across all replications.

implemented Steps la and 2 and did not learn the error pattern
among labelers. Proposed and Proposed -Recalibration were
able to accurately predict the TTE across a variety of noise
means, while Proposed -Error was not (Figure 4). Proposed
-Recalibration suffered with respect to both discriminative
performance and calibration error, with C-index values
between 0.83-0.88 and IMSE values between 0.055-0.060,
while those of Proposed were 0.92-0.95 and 0.011-0.019,
respectively. This highlights the limitation of Proposed
-Recalibration of assuming that the noisy and ground truth
TTE distributions match.

B. Performance on Sepsis Prediction

Finally, we examined the proposed approach and baselines
on the clinical task of predicting sepsis onset in the intensive
care unit. Here, 62.44% of patients with noisy TTEs were
administratively censored for at least one of them and the
‘ground truth’ TTE was not the average of the noisy TTEs.
This dataset contained many false negative patients, so noisy
TTEs were biased to indicating that the event did not occur.
The results are shown in Table I. The proposed approach
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achieved the best performance relative to the baselines with
respect to all metrics. However, it is important to note that,
although the proposed approach outperformed the baselines,
there is still significant room for improvement. For example,
the proposed approach predicted sepsis onset 14.5 hours too
late, which would not be sufficient in a hospital setting. This
is because sepsis onset is difficult to predict, especially with
the high false negative rates of our noisy proxies. In addition,
the composite definition we used as ground truth based on
the CDC and CMS definitions is itself a noisy proxy, since a
consensus on how to label ground truth sepsis onset has not
yet been reached. Despite these limitations, the improvement
of our approach over the baselines is promising.

IV. CONCLUSION

We tackled the problem of multiple noisy labels in survival
analysis. We highlight the limitations of existing approaches
(adapted from the classification setting with multiple noisy
labels) and propose a novel approach tailored to survival
analysis. Leveraging a small reference set of expertly-labeled
examples, our approach predicts the distribution of noisy
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TABLE I: Sepsis prediction in MIMIC-III. The proposed
approach achieves the best performance across all metrics.
Here, TTE error corresponds to the ‘Median Predicted TTE -
Ground Truth TTE’. Entries are of the form: median [IQR].

[ Approach [ TTE Error (Hours) | C-Index (1) | DDC () |
Naive Average 17.50 [16.25-18.00] | 0.48 [0.45-0.52] 1.14 [1.08-1.29]
Voting Average | 17.50 [16.25-18.00] | 0.45 [0.42-0.48] 1.13 [1.08-1.23]

Independent
Proposed

18.50 [17.25-19.00]
14.50 [13.25-15.75]

0.48 [0.46-0.50]
0.59 [0.54-0.62]

0.91 [0.84-1.12]
0.86 [0.82-1.23]

TTEs and their errors and then maps that to a prediction
of the ground truth TTE. Going forward our work could be
extended to consider a setting in which you have multiple
noisy non-overlapping labelers - that is not all labelers label
all examples. In addition, one could also consider cases where
the reference set is biased (i.e., not representative of the target
population) or absent altogether. In assuming that the reference
set was selected at random, we implicitly assumed that it
was unbiased. Finally, future work could consider cases of
dependent censoring [28]. Overall, our work brings together
concepts from the noisy labels literature in classification and
survival analysis to address an important problem.
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