

1 Nitrogen induced soil carbon gains are resistant to loss after the cessation of excess
2 nitrogen inputs

3 Emel Kangi¹, Joanna R. Ridgeway², Hannah D. DeHetre¹, Edward R. Brzostek¹

4 ¹ Department of Biology, West Virginia University, West Virginia, USA.

5 ² Department of Biological Sciences, Dartmouth College, New Hampshire, USA.

6 Abstract

7 Nitrogen (N) deposition has increased soil carbon (C) storage across eastern US
8 temperate forests by reducing microbial decomposition. However, the fate of these N-induced
9 soil C gains are uncertain given strong declines in N-deposition rates and rising soil
10 temperatures. As N deposition has reduced soil pH and plant C investments into the rhizosphere,
11 we compared the extent to which removing limitations to microbial decomposition by increasing
12 soil pH, adding artificial root exudates, or elevating soil temperature would increase microbial
13 decomposition in soils that have and have not received excess N inputs. We hypothesized that
14 alleviating these microbial decomposition limitations would prime soil C losses from soils that
15 have received excess N inputs. To test this hypothesis, we conducted a soil microcosm
16 experiment where we compared microbial respiration, microbial biomass, and soil enzyme
17 activity in soils from an unfertilized watershed and a previously N-fertilized watershed 4 years
18 after the end of a 30-year N deposition experiment at the Fernow Experimental Forest in West
19 Virginia. In both watersheds, we found that removing pH, plant carbon, or temperature
20 limitations to decomposition stimulated microbial respiration. However, microbial
21 decomposition and soil C losses were consistently lower in the previously N-fertilized watershed
22 across all treatments. This response, coupled with a lack of differences in microbial biomass
23 between watersheds and treatments, suggests that long-term N fertilization has fundamentally

24 altered soil microbial communities and has led to a sustained impairment of the ability of the
25 microbial community to decompose soil organic matter. Collectively, our results indicate that the
26 legacy effect of N deposition on microbial communities may influence the persistence of soil C
27 stocks in the face of global change.

28 Introduction

29 Nitrogen (N) deposition has facilitated the land carbon (C) sink by increasing soil C
30 storage across eastern temperate forests in the US (Averill et al., 2018; Bowden et al., 2019;
31 Janssens et al., 2010; Pregitzer et al., 2008). N fertilization experiments suggest that soil C
32 increases are driven by reductions in microbial decomposition (Fog, 1988; Frey et al., 2014; Zak
33 et al., 2008). However, different mechanisms may drive the suppression of microbial
34 decomposition by N inputs, including reductions in soil pH, base cations, and total belowground
35 C flux, such as root exudates and C investments to rhizosphere microbes (Carrara et al., 2021;
36 Carrara et al., 2018; Eastman et al., 2021; Lovett et al., 2015; Treseder, 2004). Moreover,
37 evidence from N fertilization studies suggests that N inputs may alter the temperature sensitivity
38 of soil organic matter (SOM) by increasing the accumulation of more temperature-sensitive and
39 recalcitrant C (Cotrufo et al., 2019; Eastman et al., 2022; Georgiou et al., 2024; Lugato et al.,
40 2021). Addressing this uncertainty is critical to understand whether this “bonus C” will persist,
41 given both the fading N deposition in the region and rising global temperatures (Benish et al.,
42 2022; Gilliam et al., 2019; IPCC, 2022).

43 Reductions in microbial decomposition may control the persistence of C gained from
44 historical N deposition through soil acidification and base cation leaching. Soil acidification
45 brought on by N-deposition can directly impact microbial growth, limit organic matter
46 decomposition, and lower the availability of base cations, such as calcium (Ca) and magnesium
47 (Mg), which are necessary to maintain microbial stoichiometry and fitness (Fernandez et al.,
48 2003; Hemkemeyer et al., 2021; Horn et al., 2021; Johnson et al., 2014; Rousk et al., 2010). At
49 the Fernow Experimental Forest in West Virginia, a 30-year whole-watershed N fertilization
50 experiment resulted in increased leaching of base cations coupled with reductions in soil

51 respiration and soil pH in the N-fertilized watershed (Adams et al., 2007; Gilliam et al., 2020).
52 While the bioavailability of these base cations may recover as soil pH incrementally increases,
53 their losses during N fertilization may indefinitely inhibit microbial growth and activity.
54 Similarly, there is the potential for declines in pH to have a persistent effect on microbial activity
55 as soil pH is a master variable on microbial decomposition that is reduced by many N
56 fertilization experiments in forests (Averill et al., 2018).

57 N inputs may also suppress microbial decomposition by lowering plant C inputs into the
58 rhizosphere. These plant C inputs can prime SOM decomposition by subsidizing microbial
59 enzyme production (Cheng et al., 2014). However, unlike N-induced reductions in soil pH and
60 base cations, which may recover more slowly, plants may be able to dynamically shift
61 belowground C allocation over much shorter timescales (Hutchinson et al., 1998). Under
62 elevated N availability, plants reduce their C investments to free-living soil microbes and
63 symbionts, resulting in a reduction in microbial decomposition. These reductions in microbial
64 decomposition subsequently lead to the accumulation of C that is stored in the particulate organic
65 matter (POM) which is thought to be more vulnerable to microbial decomposition than C stored
66 in other soil fractions because POM is physically accessible to microbes (Carrara et al., 2023;
67 Chen et al., 2019; Cotrufo et al., 2019; Eastman et al., 2021; Eastman et al., 2022; Gregorich et
68 al., 2006; Treseder, 2004). However, N fertilization studies have shown that as N inputs decline,
69 plants rapidly resume their C investments belowground (Carrara et al., 2022). This increase in C
70 transfer to the rhizosphere may enhance microbial decomposition and prime losses of POM
71 (Cardon et al., 2001; Chen et al., 2019; Olayemi et al., 2022). Given that the mechanism by
72 which N fertilization inhibits decomposition could determine whether soil C retained during N

73 deposition will become a C source to the atmosphere, identifying the primary limitation on
74 microbial decomposition in forest soils recovering from elevated N inputs remains critical.

75 N-induced soil C gains may be more vulnerable to loss with rising temperatures due to
76 increases in the ratio of C stored in POM to the C stored in mineral associated organic matter
77 (MAOM) (Eastman et al., 2022; Jenkinson et al., 1991). While the decomposition of the
78 physically protected MAOM is limited by microbial access, the decomposition of POM is
79 limited by the high activation energy of microbial decomposition (Cotrufo et al., 2019).

80 Microbes often lack the necessary energy to decompose the complex structure of POM, leading
81 to its persistence in the soil. However, temperature increases can alleviate the energetic
82 limitations of microbial SOM decomposition, magnifying POM losses in N fertilized soils
83 (Lloyd et al., 1994; McHale et al., 1998; Peterjohn et al., 1994; Raich et al., 1992; Rustad et al.,
84 2001). Therefore, higher POM:MAOM ratios as well as the increases in soil C:N ratio in N-
85 fertilized soils have likely made the C stored in the Eastern temperate forests more susceptible to
86 loss with predicted increases in soil temperature (Georgiou et al., 2024; Lugato et al., 2021).
87 Moreover, this loss will likely be exacerbated if warming is coupled with a removal of
88 stoichiometric limitations on decomposition or a recovery of plant-microbial interactions.

89 To better understand the potential future persistence of N-induced soil C gains, we tested
90 the extent to which the addition of artificial root exudates, increases in pH and base cation
91 availability, and temperature limit microbial decomposition after long-term N fertilization. To
92 this end, we performed a lab microcosm experiment using soils sampled from an experimental
93 watershed and a reference watershed four years after the end of a 30-year N fertilization
94 experiment in the Fernow Experimental Forest near Parsons, WV. As a result of heavy N
95 fertilization, soils in the previously N-fertilized watershed store more C and have a greater

96 POM:MAOM ratio than the soils in the reference watershed (Eastman et al., 2021; Eastman et
97 al., 2022). To uncover the N-induced limitations on microbial decomposition, we incubated the
98 soils sampled from these watersheds with and without the addition of artificial root exudates or
99 dolomitic lime (i.e., increasing pH and base cation availability) at three different temperatures
100 (i.e., 15, 20, and 25 °C). We measured cumulative CO₂ respiration to quantify soil C losses,
101 microbial biomass, and the potential activities of hydrolytic and ligninolytic oxidative enzymes.
102 We tested the following hypotheses:

103 1. The experimental removal of microbial limitations, such as soil pH and belowground C
104 investments, will increase C losses more in soils from the previously N-fertilized
105 watershed than the unfertilized watershed.

106 2. Warming will increase C losses more in soils from the previously-N fertilized watershed
107 than the unfertilized watershed.

108 3. When microbial limitations, such as soil pH and belowground C investments, are
109 removed, the temperature-induced boosts in C losses will be greater in the soils from the
110 previously-N fertilized watershed than the unfertilized watershed.

111 Methods

112 *Site Description*

113 Our study leverages a thirty-year, whole-watershed N fertilization experiment located in
114 the Fernow Experimental Forest (herein Fernow) in the Appalachian Mountains in Parsons, West
115 Virginia (39.03°N, 79.67°W). This work builds off of decades of research at the Fernow that has
116 examined the impacts of N fertilization on forest ecosystem processes (summarized in Eastman
117 et al., 2021). We collected soils from two adjacent watersheds at the Fernow: a 34 ha watershed
118 that was fertilized at an annual rate of 35 kg N ha⁻¹ in the form of ammonium sulfate
119 ((NH₄)₂SO₄) between the years of 1989 and 2019 (previously N-fertilized), and a 24 ha reference
120 watershed that received only ambient N deposition (reference) (Adams et al., 2006). These
121 watersheds receive similar rates of precipitation (1425–1484 mm · yr⁻¹), and are at similar
122 elevation, which range from 731 to 860 m (Adams et al., 2006; Edwards et al., 2011). They
123 contain well-drained, coarse-textured inceptisols formed from a sandstone and shale parent
124 material, which have been classified as loamy-skeletal, mixed mesic Typic Dystrochrepts of the
125 Berks and Calvin series (Adams et al., 2006; Gilliam et al., 1994). The dominant tree species
126 found in these watersheds include *Acer rubrum*, *Prunus serotina*, and *Liriodendron tulipifera*, but
127 other tree species (*Fagus grandifolia*, *Betula lenta* and *Quercus rubra*) are also present (Carrara
128 et al., 2023; Eastman et al., 2021). As a result of 30-years of N fertilization, soils in the
129 previously N-fertilized watershed have significantly lower pH and fewer base cations (Ca²⁺,
130 Mg²⁺, K⁺), but more C and N than soils in the reference watershed (Eastman et al., 2021; Gilliam
131 et al., 2020). N fertilization also increased N mineralization and nitrification in the organic
132 horizon of the fertilized watershed relative to the reference watershed (Carrara et al., 2018).

133 *Experimental Design*

134 We performed a 15-week incubation study where we compared the respiration, potential
135 enzyme activity, and microbial biomass C, in soils sampled from two watersheds (previously N-
136 fertilized vs. reference), three treatments (artificial root exudates, dolomitic lime, and control),
137 and three incubation temperatures (15, 20, and 25 °C). Our experimental design was 2
138 watersheds × 3 temperatures × 3 treatments × 6 replicates for a total of 108 microcosms.

139 *Soil Collection and Processing*

140 We sampled soils from a network of 6 previously established 10 × 10 m plots (Carrara et
141 al., 2023) in each watershed at the Fernow in July 2023, 4 years after the end of N fertilization
142 treatments. We collected the top 20 cm of mineral soil using a 5 cm diameter core, combining
143 the soils collected from all the plots within each watershed to provide one composite mineral soil
144 sample for each watershed.

145 We processed soils within one week of collection and stored soils at 4 °C prior to the
146 microcosm incubation. We removed roots and homogenized the soils by sieving to 2 mm. We
147 determined gravity-drained soil water holding capacity by saturating soil subsamples (n = 6) over
148 a Whatman #1 filter and measuring water content (Nelson et al., 2023). We also measured soil
149 gravimetric water content by drying subsamples (n = 3) from each watershed at 65 °C for 72
150 hours.

151 *Microcosm Setup*

152 We established our microcosms in a closed system consisting of wide mouth glass mason
153 jars (930 mL), to which we added 50.0 ± 0.05 g of soil collected from either the previously N-
154 fertilized (n = 54) or the reference watershed (n = 54). We adjusted these soils to 40%

155 gravimetric water content with deionized water (Mushinski et al., 2020). We added deionized
156 water to the microcosms after weekly measurements using mass to keep the soils at 40%
157 gravimetric soil water content. We incubated the microcosms at 15 °C, 20 °C, or 25 °C in dark,
158 climate-controlled chambers (Model: I-41VL, Percival Scientific Inc., Perry, IA, USA) for 15
159 weeks.

160 *Treatments*

161 We applied an artificial root exudate solution to a third of our samples (n = 36) at the rate
162 of 800 ug of C per g dry soil distributed over the first two weeks of the incubation. Glucose,
163 fructose, and sucrose each contributed 25% of the C in the solution, while succinic and malic
164 acids contributed to 12.5% (Dang et al., 2024; Griffiths et al., 1998). For our lime treatment (n =
165 36), we added 4 mg of finely ground dolomitic lime (calcium magnesium carbonate) (Greenway
166 Biotech Inc., Santa Fe Springs, CA) per g dry soil, which brought the pH of the soils sampled
167 from the previously N-fertilized watershed from 3.65 ± 0.05 to 4.97 ± 0.09 . We measured soil
168 pH using 5 g (dry weight equivalent) of fresh soil mixed with 10 mL of deionized water and 0.1
169 mL of 1 M CaCl₂ (Fisherbrand™ accumet™ AB15 Basic pH meter, Thermo Fisher Scientific,
170 Waltham, MA, USA).

171 *Respiration Measurements*

172 We measured microbial respiration by sampling the microcosm headspace CO₂ and
173 injecting 15 mL gas samples into an infrared gas analyzer (LI-850, LI-Cor Biosciences Inc.,
174 Lincoln, NE). We made these measurements on days 1, 3 and 7 of the incubation and weekly
175 thereafter. We equilibrated the microcosms with ambient lab air for 1 hour after each
176 measurement to facilitate gas exchange. As lime-derived abiotic CO₂ production would be

177 negligible under the conditions used in our experiment, we ignored the contribution of this
178 process to our respiration measurements (Wu et al., 2021).

179 *Extracellular Enzyme Activity*

180 At the end of the 15 week incubation, we assayed the potential hydrolytic enzyme
181 activities of nitrogen, phosphorus, and simple carbon releasing enzymes: N-
182 acetylglucosaminidase (NAG), acid phosphatase (AP), and β -glucosidase (BG) using a
183 fluorometric microplate method and 4-methylumbelliferyl-derived substrates measured at
184 365 nm excitation and 450 nm emission (Carrara et al., 2023; Saiya-Cork et al., 2002). We also
185 assayed the potential oxidative enzyme activities of phenol oxidase and peroxidase in our soil
186 samples using a colorimetric microplate method using 3,4-L-dihydroxyphenylalanine quantified
187 at 460 nm (Carrara et al., 2023; Saiya-Cork et al., 2002). For the enzyme assays, all of the plates
188 were incubated at lab temperature (20 °C).

189 *Microbial Biomass C*

190 We extracted microbial biomass C from a subsample of our microcosm soils using a
191 modified chloroform fumigation extraction method (Witt et al., 2000). Briefly, we made soil
192 slurries in a potassium sulfate (K₂SO₄) solution with and without chloroform to lyse microbial
193 cell membranes and extract microbial biomass in our soil samples. We then oxidized the
194 dissolved C in the extracts to CO₂ by incubating the extracts overnight at 75 °C with a potassium
195 persulfate (K₂S₂O₈) buffer (pH = 8.2) (Doyle et al., 2004). We measured the headspace CO₂
196 using a LI-Cor LI-850 infrared gas analyzer. We calculated microbial biomass C by subtracting
197 the C in non-fumigated samples from the C in chloroform-fumigated samples and scaled our data
198 by 2.64 to correct for extraction efficiency (Vance et al., 1987).

199 *Data Analysis*

200 To measure the effects of watershed (previously N-fertilized vs. reference), incubation
201 temperature (15, 20, and 25 °C), treatment (control, artificial root exudates, and dolomitic lime),
202 and their interaction on soil respiration, potential extracellular enzyme activities, and microbial
203 biomass C, we used a three-way analysis of variance (ANOVA) using R version 4.3.1 (R Core
204 Team, 2023). For soil respiration and microbial biomass C, we also performed post hoc tests
205 (Tukey-Kramer HSD) to compare the responses of each group. For soil respiration, we adjusted
206 our values using the ideal gas law, after which we used cumulative respiration at the end of the
207 15-week incubation for our analysis. In order to determine if adding C to our microcosms
208 through artificial root exudates would produce a priming effect, we also calculated mean-scaled
209 respiration C using the following formula:

210 Mean-Scaled Respired C = $R_{ws,T} - Exudate\ C - \text{mean} (Control\ R_{ws,T})$, where “ $R_{ws,T}$ ” is
211 cumulative endpoint respiration in a given microcosm with soil from a specific watershed that
212 has been incubated at a specific temperature, “Exudate C” is the amount of C that has been added
213 to that microcosm via artificial root exudates, and “mean (Control $R_{ws,T}$)” is the mean respiration
214 from all of the control (i.e. no exudate addition) microcosms with the same treatment
215 combination (watershed and temperature) as the corresponding exudate microcosm.

216 To highlight the differences in enzyme profiles (AP, NAG, BG, phenol oxidase, and
217 peroxidase) between the two watersheds at each incubation temperature (15, 20, and 25 °C) and
218 soil treatment (control, artificial root exudates, and dolomitic lime), we used nonmetric
219 multidimensional scaling (NMDS) ordination plots using Bray-Curtis dissimilarity index in R
220 package 'vegan' (Oksanen et al., 2022). We also performed a permutational multivariate analysis
221 of variance (PERMANOVA) using the function adonis to compare the enzyme profiles of the

222 two watersheds. Enzyme activities (means \pm standard error) and the ANOVA tables for the
223 enzyme activities can be found in the supplementary data (SI Table 1, SI Table 2). Data used in
224 this study is publicly available on the ESS-DIVE repository (doi: 10.15485/2466174).

225 Results

226 *Soil Respiration*

227 Overall, microbial respiration increased with temperature and the addition of dolomitic
228 lime and artificial root exudates (Figure 1, SI Figure 1). Soils incubated at 25 °C respired 143%
229 more than soils incubated at 15 °C ($F = 577.273, p < 0.001$, SI Figure 2B). The effects of adding
230 artificial root exudates and dolomitic lime on soil respiration were similar, with a 51% increase
231 in soil respiration with exudates and a 58% increase with dolomitic lime compared to the control
232 ($F = 166.041, p < 0.001$, SI Figure 2C). However, regardless of temperature or treatment
233 microbial respiration was always greater in the reference watershed than in the previously N-
234 fertilized watershed. At the end of the 15-week incubation, the cumulative soil respiration was
235 41% greater in the soils sampled from the reference watershed than the previously N-fertilized
236 watershed ($F = 271.942, p < 0.001$, SI Figure 2A).

237 There were also significant interactions between temperature, watershed, and treatment
238 on soil respiration. We observed a significant interaction of watershed and incubation
239 temperature on soil respiration ($F = 14.117, p < 0.001$) where the effect of watershed on
240 microbial respiration increased with incubation temperature. The difference in soil respiration
241 between the two watersheds at 25 °C was 105% greater than at 15 °C (SI Figure 2D). There was
242 also a significant interaction of treatment and incubation temperature on soil respiration ($F =$
243 9.439, $p < 0.001$). For soils incubated at 25 °C, dolomitic lime addition increased soil respiration
244 to a greater extent than the artificial exudate addition, with dolomitic lime promoting a 52%
245 increase and artificial root exudates promoting a 32% increase compared to the control (SI
246 Figure 2E).

247 We also found differences between the previously fertilized watershed and the reference
248 watershed in the ability of the artificial root exudates to prime soil organic matter decomposition
249 at different incubation temperatures (Figure 2). To calculate this effect, we first subtracted the
250 amount of C that we added to soils in the form of root exudates from the microbially respired C
251 for each watershed at each temperature treatment. We then scaled this value using the mean of
252 the control treatment of the corresponding incubation temperature and watershed to determine a
253 priming effect. We observed a significant interaction of watershed and incubation temperature on
254 our calculated priming effect ($F = 20.31, p < 0.001$) where at higher incubation temperatures,
255 priming of soil organic matter was greater in the reference watershed than in the previously N-
256 fertilized watershed (Figure 2). For the previously N-fertilized watershed we found that there
257 was a significant positive priming effect at 15 °C ($F = 6.885, p = 0.028$, SI Figure 3). However,
258 for the reference watershed, we observed a positive priming effect at 25 °C ($F = 4.168, p =$
259 0.081, SI Figure 3).

260 *Extracellular Enzymes*

261 The soil enzyme profiles of the previously N-fertilized watershed and the reference
262 watershed differed in 6 out of 9 treatment combinations (Figure 3). For both the control soils and
263 the soils supplemented with artificial exudates, extracellular soil enzyme profiles were
264 significantly different between the previously N-fertilized watershed and the reference watershed
265 at 15 and 20 °C incubation ($F_A = 3.347, p_A = 0.059, F_B = 6.463, p_B = 0.004, F_D = 5.795, p_D =$
266 0.007, $F_E = 5.280, p_E = 0.007$, Figure 3A, B, D, E). However, soil enzyme profiles were not
267 different between the two watersheds at 25 °C for either treatment (Figure 3C, F). For soils
268 treated with dolomitic lime, soil enzyme profiles were different between the two watersheds at

269 both the lowest (15 °C) and the highest (25 °C) incubation temperature ($F_G = 21.488, p_G = 0.005$,
270 $F_I = 6.125, p_I = 0.014$, Figure 3G, I).

271 *Microbial Biomass*

272 There were no differences in microbial biomass between the previously N-fertilized
273 watershed and the reference watershed (Figure 4). We only found a significant effect of
274 incubation temperature on microbial biomass in our soils, where microbial biomass increased
275 with temperature ($F = 6.946, p = 0.002$, Figure 4). Compared to the soils incubated at 15 °C,
276 microbial biomass was 72% higher in soils incubated at 25 °C.

277 Discussion

278 Given the declining rates of N deposition and the rising global temperatures, identifying
279 the limitations on microbial decomposition in Eastern temperate forests recovering from elevated
280 N inputs is critical to uncovering the fate of the soil C in the region (Benish et al., 2022; Gilliam
281 et al., 2019; IPCC, 2022). Here, we show that even with the removal of chemical and energetic
282 constraints on microbes, microbial respiration was still lower in soils from the previously N-
283 fertilized watershed than soils from the reference watershed (Figure 1). Soil enzyme profiles
284 mirrored this result with overall enzyme investment differing between the previously N-fertilized
285 watershed and the reference watershed for the majority of treatment combinations (Figure 3). In
286 contrast to microbial respiration and enzyme profiles, we found no difference in microbial
287 biomass between the two watersheds (Figure 4). This result indicates that the differences we
288 observed in microbial respiration and extracellular enzyme activity are likely caused by a shift in
289 microbial community structure and function that impairs their ability to decompose SOM even
290 four years after fertilization has ended (Carrara et al., 2021; Fierer et al., 2012; Piñeiro et al.,
291 2023). Thus, our results suggest that there is a sustained legacy effect of excess N inputs on
292 microbial community composition and function, which at a broader scale may act to preserve the
293 "bonus" soil C in eastern US temperate forests that have received historically high rates of
294 atmospheric N deposition.

295 Our first hypothesis that raising soil pH and adding in artificial root exudates would result
296 in a greater increase in microbial decomposition in the previously N-fertilized watershed
297 compared to the reference watershed was not supported (Figure 1). Several mechanisms can
298 explain the absence of a stronger priming effect with exudates or greater C losses with lime in
299 the previously N-fertilized watershed. While N inputs can change the composition of SOM in

300 favor of the more vulnerable POM, N additions in our fertilized watershed may have resulted in
301 the accumulation of very recalcitrant POM. Therefore, despite our experimental treatments
302 lowering the activation energy required for the decomposition of recalcitrant compounds,
303 microbial communities may have still been unable to overcome the energetic requirements of
304 decomposition in the previously N-fertilized watershed. Indeed, during ongoing N-fertilization at
305 the Fernow, SOM in the fertilized watershed was observed to be more recalcitrant, having a
306 higher C:N ratio than the reference watershed (Eastman et al., 2021). N inputs may have also
307 resulted in a general suppression of microbial biomass, or a microbial community shift resulting
308 in loss of function. However, we did not find support for a N-induced suppression of microbial
309 biomass in our study. Microbial biomass did not differ between the watersheds or with the
310 addition of dolomitic lime or root exudates (Figure 4). As such, similar to the findings of
311 previous studies at the Fernow, the increases in soil respiration that we observed in our
312 microcosm study were not linked to concomitant increases in microbial biomass (Piñeiro et al.,
313 2023). Therefore, the mechanism behind the lack of support for our first hypothesis is likely a
314 legacy effect of N fertilization on the microbial community composition that led to a persistent
315 loss of the ability of soil microbes to decompose soil organic matter (Fierer et al., 2012; Ramirez
316 et al., 2010). In support, previous work at the Fernow has shown that N fertilization led to strong
317 shifts in the microbial community composition of bacteria and fungi that resulted in declines in
318 enzyme activity, C and N uptake, and priming (Carrara et al., 2018; Piñeiro et al., 2023). As
319 such, our observation that the previously N-fertilized watershed had consistently lower soil
320 respiration than the reference watershed suggests that these microbial community shifts may
321 persist even 4 years after N fertilization has ended, which may have important implications for
322 predicting the trajectories of soil C gains after N deposition declines. Future studies should

323 evaluate the taxonomic and functional composition of soil microbial communities in these
324 watersheds several years post N fertilization to understand the degree to which microbial
325 community shifts drive the watershed differences in SOM decomposition at the Fernow.

326 The lack of a strong positive priming effect in the previously N-fertilized watershed at
327 higher incubation temperatures (Figure 2, SI Figure 3) suggests that the legacy of N fertilization
328 impeded the ability of microbes to leverage root exudates to fuel decomposition (Allison et al.,
329 2013; Carrara et al., 2018; Leff et al., 2015; Liu et al., 2017). In the previously N-fertilized
330 watershed, the addition of artificial root exudates led to an increase in soil respiration that was
331 less than the amount of carbon that we added. As such, it appears that the additional C led
332 primarily to waste metabolism instead of growth and enhanced decomposition by the soil
333 microbial community in the previously N-fertilized watershed. This response is usually seen
334 when microbes are limited by N (Schimel et al., 2003). While observed increases in the soil C:N
335 ratio in the previously N-fertilized watershed at the Fernow (Eastman et al., 2022) suggest that
336 microbial N limitation may play a role in the lower priming effect we observed in this watershed
337 (Piñeiro et al., 2023), it is more likely that the legacy of N fertilization gave rise to a microbial
338 community that is unable to use root exudates to fuel growth and decomposition. During ongoing
339 N-fertilization at the Fernow, plant belowground C investments were found to be lower in the
340 fertilized watershed (Carrara et al., 2023; Eastman et al., 2021). Our findings suggest that there is
341 a continued N-induced suppression of microbial ability to leverage root exudates to drive
342 decomposition. If this legacy effect of N fertilization holds, decomposition in the previously N-
343 fertilized watershed may not surpass the rates observed in reference watershed even after trees
344 resume investing C belowground to gain N.

345 Interestingly, temperature had opposing effects on priming in the two watersheds. In the
346 reference watershed, the increase in priming with increasing temperatures follows theory (Figure
347 2). At warmer temperatures, carbon additions stimulate more microbial activity likely due to
348 temperature enhancing the activity of microbial enzymes (Baath, 2018; Stone et al., 2011;
349 Walker et al., 2018). On the other hand, in the previously fertilized watershed, we observed the
350 opposite pattern. At higher temperatures, we observed more negative priming (Figure 2). While
351 the mechanism driving this result is highly uncertain, the implications are less so. It appears that
352 the legacy of N fertilization reduces the susceptibility of C loss at higher temperatures even with
353 the addition of artificial root exudates.

354 The enzyme data provides further support that there is a decline of microbial ability to
355 decompose SOM or leverage root exudates in the previously N-fertilized watershed. We found
356 that the majority of the extracellular enzyme profiles differed by watershed across the various
357 treatments, particularly for the incubations at 15 °C and 20 °C (Figure 3). This result suggests
358 that microbial enzyme investment in the previously N-fertilized watershed is still largely
359 different from the reference watershed (Carrara et al., 2023). As such, it appears that the legacy
360 of N fertilization may have led to a microbial community that has entered a new state in the
361 previously N-fertilized watershed where they either lack the resources or capability to produce
362 enzymes at the same level as the reference watershed. In support, several previous long-term N
363 fertilization experiments have also observed strong effects on soil microbes, such as shifts in
364 microbial community composition after N additions (Carrara et al., 2018; Fierer et al., 2012;
365 Freedman et al., 2015). As such, microbial communities that have been altered by N fertilization
366 may have decreased ability to decompose complex C compounds (Carrara et al., 2018). This idea
367 that N fertilization lowers the ligninolytic potential of soil microbial communities and thereby

368 hinders the decomposition of complex C compounds is also supported at the Fernow as the SOM
369 in the N-fertilized watershed has greater C:N than reference soils (Eastman et al., 2021).

370 Despite the lack of support for our first hypothesis, the effect of the dolomitic lime
371 addition on microbial respiration exceeded the effect of the root exudate treatment for both
372 watersheds. However, the lack of a greater stimulation in the previously fertilized watershed than
373 the reference watershed suggests that pH was not the primary driver of the consistent suppression
374 of soil respiration that we observed. N fertilization studies in other sites have often shown that
375 soil pH is a master regulator of microbial growth, community composition, and activity (Fierer et
376 al., 2012; Johnson et al., 2014; Kaiser et al., 2016; Rousk et al., 2010). By contrast, at the
377 Fernow, the lack of a stronger dolomitic lime response in the previously N-fertilized watershed
378 likely reflects that 30-years of ammonium sulfate addition only led to a marginal decrease in pH
379 in the previously N-fertilized watershed (3.65 ± 0.05) compared to the reference watershed (3.78 ± 0.02). In support, previous research during ongoing N-fertilization in these watersheds has
380 shown that oxidative soil enzyme activity (i.e., phenol oxidase and peroxidase) was largely
381 insensitive to pH manipulations in the lab (Carrara et al., 2018).

383 Given the greater C:N ratio and POM:MAOM ratio of SOM in the previously N-
384 fertilized watershed (Eastman et al., 2021; Eastman et al., 2022), we expected the decomposition
385 of soil organic matter in this watershed to be more responsive to the temperature treatments than
386 the reference watershed (Fierer et al., 2005). Our expectation reflected the C quality-temperature
387 hypothesis which suggests the decomposition of lower quality and more chemically complex
388 organic matter is more temperature sensitive (Bosatta et al., 1999; Davidson et al., 2006).
389 However, in our study, warming did not induce larger increases in microbial decomposition in
390 the previously N-fertilized watershed compared to the reference watershed. This finding

391 indicates that when energetic limitations are removed, microbes in the previously N-fertilized
392 watershed were still unable to accelerate the decomposition of chemically complex POM. At a
393 broader scale, this finding also raises the possibility that the soil C gains resulting from excess N
394 inputs to temperate forest ecosystems in the eastern US may persist despite predictions of
395 warmer temperatures for the region.

396 We acknowledge that this microcosm study has some limitations inherent to our
397 experimental design and methodology. However, microcosm experiments can be instrumental in
398 providing a mechanistic understanding of responses otherwise difficult to observe in field
399 settings, such as SOM priming, pH, and temperature effects (Benton et al., 2007; Teuben et al.,
400 1992). While we performed our soil incubations in controlled temperature and moisture
401 conditions in the absence of living roots or mycorrhizal symbionts, we added root exudates to
402 simulate the presence of roots in this controlled environment (Phillips et al., 2007). Although we
403 acknowledge that a controlled addition of artificial root exudates is unlikely to fully mimic the
404 more dynamic root exudation process that occurs in the field, this treatment likely simulated a
405 similar effect in our microcosm study. In addition, although we did not measure soil organic
406 matter pools in our soils prior to conducting our incubations, we used heterotrophic respiration as
407 a proxy of soil organic matter decomposition and C losses. Finally, while our data indicates that
408 shifts in microbial community and function are an important driver, we did not assess the
409 taxonomic or functional composition of the microbial communities in our soils. Nonetheless, our
410 results identify this as an important avenue of future research that could connect the responses
411 that we observed in this microcosm study to shifts in microbial community composition and
412 functional traits.

413 Research at the Fernow and across the US has shown that N deposition increased soil C
414 storage through reductions in microbial decomposition (Averill et al., 2018; Eastman et al., 2021;
415 Eastman et al., 2022). Here, we show that these soil C gains may be resistant to loss after excess
416 N inputs to forests decline. Our results suggest that four years after the end of N-fertilization, the
417 C gains in the fertilized soils were not more sensitive to loss from priming by root exudates or
418 soil warming. Mechanistically, these findings point to a legacy effect of long-term N-fertilization
419 on soil microbial communities, which likely experience strong losses of functional traits that
420 impair their ability to decompose SOM. Broadly, our study suggests that the N-induced
421 microbial community shifts may lead to the persistence of N-induced soil C gains across Eastern
422 temperate forests of the US.

423 Acknowledgements

424 The authors would like to thank Jess Burke and Ronnie Schartiger for their assistance
425 with this project. This work was supported by the U.S. Department of Energy award DE-
426 SC0019472, National Science Foundation 2312514, National Science Foundation Graduate
427 Research Fellowship under Grant No. DGE-1102689, the Troast Family Graduate Scholarship,
428 and West Virginia University.

429 Literature Cited

430

431 Adams, M. B., DeWalle, D. R., & Hom, J. L. (Eds.). (2006). *The Fernow Watershed Acidification*
432 *Study* (1 ed., Vol. 11). Springer Dordrecht. <https://doi.org/10.1007/978-1-4020-4615-5>.

433

434 Adams, M. B., Kochenderfer, J. N., & Edwards, P. J. (2007). The Fernow Watershed
435 Acidification Study: Ecosystem Acidification, Nitrogen Saturation and Base Cation
436 Leaching. *Water, Air, & Soil Pollution: Focus*, 7(1-3), 267-273.
437 <https://doi.org/10.1007/s11267-006-9062-1>

438

439 Allison, S. D., Lu, Y., Weihe, C., Goulden, M. L., Martiny, A. C., Treseder, K. K., & Martiny, J. B.
440 (2013, Mar). Microbial abundance and composition influence litter decomposition
441 response to environmental change. *Ecology*, 94(3), 714-725. <https://doi.org/10.1890/12-1243.1>

442

443

444 Averill, C., & Waring, B. (2018, Apr). Nitrogen limitation of decomposition and decay: How can it
445 occur? *Glob Chang Biol*, 24(4), 1417-1427. <https://doi.org/10.1111/gcb.13980>

446

447 Baath, E. (2018, Jul). Temperature sensitivity of soil microbial activity modeled by the square
448 root equation as a unifying model to differentiate between direct temperature effects and
449 microbial community adaptation. *Glob Chang Biol*, 24(7), 2850-2861.
450 <https://doi.org/10.1111/gcb.14285>

451

452 Benish, S. E., Bash, J. O., Foley, K. M., Appel, K. W., Hogrefe, C., Gilliam, R., & Pouliot, G.
453 (2022). Long-term regional trends of nitrogen and sulfur deposition in the United States
454 from 2002 to 2017. *Atmospheric Chemistry and Physics*, 22(19), 12749-12767.
455 <https://doi.org/10.5194/acp-22-12749-2022>

456

457 Benton, T. G., Solan, M., Travis, J. M., & Sait, S. M. (2007, Oct). Microcosm experiments can
458 inform global ecological problems. *Trends Ecol Evol*, 22(10), 516-521.
459 <https://doi.org/10.1016/j.tree.2007.08.003>

460

461 Bosatta, E., & Ågren, G. I. (1999). Soil organic matter quality interpreted thermodynamically.
462 *Soil Biology and Biochemistry*, 31(13), 1889-1891. [https://doi.org/10.1016/s0038-0717\(99\)00105-4](https://doi.org/10.1016/s0038-0717(99)00105-4)

464

465 Bowden, R. D., Wurzbacher, S. J., Washko, S. E., Wind, L., Rice, A. M., Coble, A. E., Baldauf,
466 N., Johnson, B., Wang, J. J., Simpson, M., & Lajtha, K. (2019). Long-term Nitrogen
467 Addition Decreases Organic Matter Decomposition and Increases Forest Soil Carbon.
468 *Soil Science Society of America Journal*, 83(S1).
469 <https://doi.org/10.2136/sssaj2018.08.0293>

470

471 Cardon, Z. G., Hungate, B. A., Cambardella, C. A., Chapin, F. S., Field, C. B., Holland, E. A., &
472 Mooney, H. A. (2001). Contrasting effects of elevated CO₂ on old and new soil carbon
473 pools. *Soil Biology and Biochemistry*, 33(3), 365-373. [https://doi.org/10.1016/s0038-0717\(00\)00151-6](https://doi.org/10.1016/s0038-0717(00)00151-6)

475

476 Carrara, J. E., Fernandez, I. J., & Brzostek, E. R. (2022). Mycorrhizal type determines root-
477 microbial responses to nitrogen fertilization and recovery. *Biogeochemistry*, 157(2), 245-
478 258. <https://doi.org/10.1007/s10533-021-00871-y>

479
480 Carrara, J. E., Raczka, N. C., & Brzostek, E. R. (2023). Long-term nitrogen fertilization impacts
481 plant-microbial interactions differently in arbuscular and ectomycorrhizal trees.
482 *Biogeochemistry*, 166(2), 109-122. <https://doi.org/10.1007/s10533-023-01099-8>
483
484 Carrara, J. E., Walter, C. A., Freedman, Z. B., Hostetler, A. N., Hawkins, J. S., Fernandez, I. J.,
485 & Brzostek, E. R. (2021, May). Differences in microbial community response to nitrogen
486 fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizal-
487 dominated soils. *Glob Chang Biol*, 27(10), 2049-2060. <https://doi.org/10.1111/gcb.15523>
488
489 Carrara, J. E., Walter, C. A., Hawkins, J. S., Peterjohn, W. T., Averill, C., & Brzostek, E. R.
490 (2018, Jun). Interactions among plants, bacteria, and fungi reduce extracellular enzyme
491 activities under long-term N fertilization. *Glob Chang Biol*, 24(6), 2721-2734.
492 <https://doi.org/10.1111/gcb.14081>
493
494 Chen, L., Liu, L., Qin, S., Yang, G., Fang, K., Zhu, B., Kuzyakov, Y., Chen, P., Xu, Y., & Yang,
495 Y. (2019, Nov 8). Regulation of priming effect by soil organic matter stability over a
496 broad geographic scale. *Nat Commun*, 10(1), 5112. <https://doi.org/10.1038/s41467-019-13119-z>
497
498 Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S., McNickle, G. G.,
499 Brzostek, E., & Jastrow, J. D. (2014, Jan). Synthesis and modeling perspectives of
500 rhizosphere priming. *New Phytol*, 201(1), 31-44. <https://doi.org/10.1111/nph.12440>
501
502 Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil carbon storage
503 informed by particulate and mineral-associated organic matter. *Nature Geoscience*,
504 12(12), 989-994. <https://doi.org/10.1038/s41561-019-0484-6>
505
506 Dang, C., & Morrissey, E. M. (2024, May). The size and diversity of microbes determine carbon
507 use efficiency in soil. *Environ Microbiol*, 26(5), e16633. <https://doi.org/10.1111/1462-2920.16633>
508
509
510 Davidson, E. A., & Janssens, I. A. (2006, Mar 9). Temperature sensitivity of soil carbon
511 decomposition and feedbacks to climate change. *Nature*, 440(7081), 165-173.
512 <https://doi.org/10.1038/nature04514>
513
514 Doyle, A., Weintraub, M. N., & Schimel, J. P. (2004). Persulfate Digestion and Simultaneous
515 Colorimetric Analysis of Carbon and Nitrogen in Soil Extracts. *Soil Science Society of
516 America Journal*, 68(2), 669-676. <https://doi.org/10.2136/sssaj2004.6690>
517
518 Eastman, B. A., Adams, M. B., Brzostek, E. R., Burnham, M. B., Carrara, J. E., Kelly, C.,
519 McNeil, B. E., Walter, C. A., & Peterjohn, W. T. (2021, May). Altered plant carbon
520 partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen
521 additions. *New Phytol*, 230(4), 1435-1448. <https://doi.org/10.1111/nph.17256>
522
523 Eastman, B. A., Adams, M. B., & Peterjohn, W. T. (2022). The path less taken: Long-term N
524 additions slow leaf litter decomposition and favor the physical transfer pathway of soil
525 organic matter formation. *Soil Biology and Biochemistry*, 166.
526 <https://doi.org/10.1016/j.soilbio.2022.108567>
527
528

529 Edwards, P. J., & Wood, F. (2011). *Fernow Experimental Forest daily precipitation*
530 <https://doi.org/10.2737/rds-2011-0014>

531

532 Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S., & Cosby, B. J. (2003). Experimental
533 Acidification Causes Soil Base-Cation Depletion at the Bear Brook Watershed in Maine.
534 *Soil Science Society of America Journal*, 67(6), 1909-1919.
535 <https://doi.org/10.2136/sssaj2003.1909>

536

537 Fierer, N., Craine, J. M., McLauchlan, K., & Schimel, J. P. (2005, Feb). Litter quality and the
538 temperature sensitivity of decomposition. *Ecology*, 86(2), 320-326. <https://doi.org/10.1890/04-1254>

539

540 Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., & Knight, R. (2012,
541 May). Comparative metagenomic, phylogenetic and physiological analyses of soil
542 microbial communities across nitrogen gradients. *ISME J*, 6(5), 1007-1017.
543 <https://doi.org/10.1038/ismej.2011.159>

544

545 Fog, K. (1988). The Effect of Added Nitrogen on the Rate of Decomposition of Organic Matter.
546 *Biological Reviews*, 63(3), 433-462. <https://doi.org/10.1111/j.1469-185X.1988.tb00725.x>

547

548 Frey, S. D., Ollinger, S., Nadelhoffer, K., Bowden, R., Brzostek, E., Burton, A., Caldwell, B. A.,
549 Crow, S., Goodale, C. L., Grandy, A. S., Finzi, A., Kramer, M. G., Lajtha, K., LeMoine, J.,
550 Martin, M., McDowell, W. H., Minchak, R., Sadowsky, J. J., Templer, P. H., & Wickings,
551 K. (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon
552 in temperate forests. *Biogeochemistry*, 121(2), 305-316. <https://doi.org/10.1007/s10533-014-0004-0>

553

554

555 Georgiou, K., Koven, C. D., Wieder, W. R., Hartman, M. D., Riley, W. J., Pett-Ridge, J., Bouskill,
556 N. J., Abramoff, R. Z., Slessarev, E. W., Ahlström, A., Parton, W. J., Pellegrini, A. F. A.,
557 Pierson, D., Sulman, B. N., Zhu, Q., & Jackson, R. B. (2024). Emergent temperature
558 sensitivity of soil organic carbon driven by mineral associations. *Nature Geoscience*,
559 17(3), 205-212. <https://doi.org/10.1038/s41561-024-01384-7>

560

561 Gilliam, F. S., Adams, M. B., & Peterjohn, W. T. (2020, Jul). Response of soil fertility to 25 years
562 of experimental acidification in a temperate hardwood forest. *J Environ Qual*, 49(4), 961-
563 972. <https://doi.org/10.1002/jeq2.20113>

564

565 Gilliam, F. S., Burns, D. A., Driscoll, C. T., Frey, S. D., Lovett, G. M., & Watmough, S. A. (2019,
566 Jan). Decreased atmospheric nitrogen deposition in eastern North America: Predicted
567 responses of forest ecosystems. *Environ Pollut*, 244, 560-574.
568 <https://doi.org/10.1016/j.envpol.2018.09.135>

569

570 Gilliam, F. S., Turrill, N. L., Aulick, S. D., Evans, D. K., & Adams, M. B. (1994). Herbaceous
571 Layer and Soil Response to Experimental Acidification in a Central Appalachian
572 Hardwood Forest. *Journal of Environmental Quality*, 23(4), 835-844.
573 <https://doi.org/10.2134/jeq1994.00472425002300040032x>

574

575

576 Gregorich, E. G., Beare, M. H., McKim, U. F., & Skjemstad, J. O. (2006). Chemical and
577 Biological Characteristics of Physically Uncomplexed Organic Matter. *Soil Science
578 Society of America Journal*, 70(3), 975-985. <https://doi.org/10.2136/sssaj2005.0116>

579

580 Griffiths, B. S., Ritz, K., Ebblewhite, N., & Dobson, G. (1998). Soil microbial community
581 structure: Effects of substrate loading rates. *Soil Biology and Biochemistry*, 31(1), 145-
582 153. [https://doi.org/10.1016/s0038-0717\(98\)00117-5](https://doi.org/10.1016/s0038-0717(98)00117-5)

583

584 Hemkemeyer, M., Schwalb, S. A., Heinze, S., Joergensen, R. G., & Wichern, F. (2021, Nov).
585 Functions of elements in soil microorganisms. *Microbiol Res*, 252, 126832.
586 <https://doi.org/10.1016/j.micres.2021.126832>

587

588 Horn, E. L., Cooledge, E. C., Jones, D. L., Hoyle, F. C., Brailsford, F. L., & Murphy, D. V. (2021).
589 Addition of base cations increases microbial carbon use efficiency and biomass in acidic
590 soils. *Soil Biology and Biochemistry*, 161. <https://doi.org/10.1016/j.soilbio.2021.108392>

591

592 Hutchinson, T. C., Watmough, S. A., Sager, E. P. S., & Karagatzides, J. D. (1998). Effects of
593 excess nitrogen deposition and soil acidification on sugar maple (*Acer saccharum*) in
594 Ontario, Canada: an experimental study. *Canadian Journal of Forest Research*, 28(2),
595 299-310. <https://doi.org/10.1139/x97-215>

596

597 IPCC. (2022). *Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of
598 Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on
599 Climate Change*. C. U. Press.

600

601 Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R.,
602 Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D.,
603 Tang, J., & Law, B. E. (2010). Reduction of forest soil respiration in response to nitrogen
604 deposition. *Nature Geoscience*, 3(5), 315-322. <https://doi.org/10.1038/ngeo844>

605

606 Jenkinson, D. S., Adams, D. E., & Wild, A. (1991). Model estimates of CO₂ emissions from soil
607 in response to global warming. *Nature*, 351(6324), 304-306.
608 <https://doi.org/10.1038/351304a0>

609

610 Johnson, C. E., Driscoll, C. T., Blum, J. D., Fahey, T. J., & Battles, J. J. (2014). Soil Chemical
611 Dynamics after Calcium Silicate Addition to a Northern Hardwood Forest. *Soil Science
612 Society of America Journal*, 78(4), 1458-1468.
613 <https://doi.org/10.2136/sssaj2014.03.0114>

614

615 Kaiser, K., Wemheuer, B., Korolkow, V., Wemheuer, F., Nacke, H., Schonning, I., Schrumpf, M.,
616 & Daniel, R. (2016, Sep 21). Driving forces of soil bacterial community structure,
617 diversity, and function in temperate grasslands and forests. *Sci Rep*, 6, 33696.
618 <https://doi.org/10.1038/srep33696>

619

620 Leff, J. W., Jones, S. E., Prober, S. M., Barberan, A., Borer, E. T., Firn, J. L., Harpole, W. S.,
621 Hobbie, S. E., Hofmockel, K. S., Knops, J. M., McCulley, R. L., La Pierre, K., Risch, A.
622 C., Seabloom, E. W., Schutz, M., Steenbock, C., Stevens, C. J., & Fierer, N. (2015, Sep
623 1). Consistent responses of soil microbial communities to elevated nutrient inputs in
624 grasslands across the globe. *Proc Natl Acad Sci U S A*, 112(35), 10967-10972.
625 <https://doi.org/10.1073/pnas.1508382112>

626

627 Liu, C., Yao, M., Stegen, J. C., Rui, J., Li, J., & Li, X. (2017, Dec 13). Long-term nitrogen
628 addition affects the phylogenetic turnover of soil microbial community responding to
629 moisture pulse. *Sci Rep*, 7(1), 17492. <https://doi.org/10.1038/s41598-017-17736-w>

630

631 Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. *Functional*
632 *Ecology*, 8(3). <https://doi.org/10.2307/2389824>

633

634 Lovett, G. M., Arthur, M. A., & Crowley, K. F. (2015). Effects of Calcium on the Rate and Extent
635 of Litter Decomposition in a Northern Hardwood Forest. *Ecosystems*, 19(1), 87-97.
636 <https://doi.org/10.1007/s10021-015-9919-0>

637

638 Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., & Cotrufo, M. F. (2021). Different
639 climate sensitivity of particulate and mineral-associated soil organic matter. *Nature*
640 *Geoscience*, 14(5), 295-300. <https://doi.org/10.1038/s41561-021-00744-x>

641

642 McHale, P. J., Mitchell, M. J., & Bowles, F. P. (1998). Soil warming in a northern hardwood
643 forest: trace gas fluxes and leaf litter decomposition. *Canadian Journal of Forest*
644 *Research*, 28(9), 1365-1372. <https://doi.org/10.1139/x98-118>

645

646 Mushinski, R. M., Payne, Z. C., Raff, J. D., Craig, M. E., Pusede, S. E., Rusch, D. B., White, J.
647 R., & Phillips, R. P. (2020, Dec 15). Nitrogen cycling microbiomes are structured by plant
648 mycorrhizal associations with consequences for nitrogen oxide fluxes in forests. *Glob*
649 *Chang Biol*, 27(5), 1068-1082. <https://doi.org/10.1111/gcb.15439>

650

651 Nelson, J. T., Adjuik, T. A., Moore, E. B., VanLoocke, A. D., Ramirez Reyes, A., & McDaniel, M.
652 D. (2023). A Simple, Affordable, Do-It-Yourself Method for Measuring Soil Maximum
653 Water Holding Capacity. *Communications in Soil Science and Plant Analysis*, 55(8),
654 1190-1204. <https://doi.org/10.1080/00103624.2023.2296988>

655

656 Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R.,
657 Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B.,
658 Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.,
659 FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D.,
660 Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter, B. C., & Weedon, J. (2022).
661 *vegan: Community Ecology Package*. In (Version R package 2.6-4) <https://CRAN.R-project.org/package=vegan>

662

663

664 Olayemi, O. P., Kallenbach, C. M., & Wallenstein, M. D. (2022). Distribution of soil organic
665 matter fractions are altered with soil priming. *Soil Biology and Biochemistry*, 164.
666 <https://doi.org/10.1016/j.soilbio.2021.108494>

667

668 Peterjohn, W. T., Melillo, J. M., Steudler, P. A., Newkirk, K. M., Bowles, F. P., & Aber, J. D.
669 (1994). Responses of Trace Gas Fluxes and N Availability to Experimentally Elevated
670 Soil Temperatures. *Ecological Applications*, 4(3), 617-625.
671 <https://doi.org/10.2307/1941962>

672

673 Phillips, R. P., & Fahey, T. J. (2007). Fertilization effects on fineroot biomass, rhizosphere
674 microbes and respiratory fluxes in hardwood forest soils. *New Phytol*, 176(3), 655-664.
675 <https://doi.org/10.1111/j.1469-8137.2007.02204.x>

676

677 Piñeiro, J., Dang, C., Walkup, J. G. V., Kuzniar, T., Winslett, R., Blazewicz, S. J., Freedman, Z.
678 B., Brzostek, E., & Morrissey, E. M. (2023, Jan). Shifts in bacterial traits under chronic
679 nitrogen deposition align with soil processes in arbuscular, but not ectomycorrhizal-
680 associated trees. *Glob Chang Biol*, 30(1), e17030. <https://doi.org/10.1111/qcb.17030>

681

682 Pregitzer, K. S., Burton, A. J., Zak, D. R., & Talhelm, A. F. (2008). Simulated chronic nitrogen
683 deposition increases carbon storage in Northern Temperate forests. *Global Change
684 Biology*, 14(1), 142-153. <https://doi.org/10.1111/j.1365-2486.2007.01465.x>

685

686 R Core Team. (2023). *R: A Language and Environment for Statistical Computing*. In (Version
687 4.3.1 (2023-06-16)) R Foundation for Statistical Computing. <https://www.R-project.org/>

688

689 Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and
690 its relationship to vegetation and climate. *Tellus B: Chemical and Physical Meteorology*,
691 44(2). <https://doi.org/10.3402/tellusb.v44i2.15428>

692

693 Ramirez, K. S., Lauber, C. L., Knight, R., Bradford, M. A., & Fierer, N. (2010, Dec). Consistent
694 effects of nitrogen fertilization on soil bacterial communities in contrasting systems.
695 *Ecology*, 91(12), 3463-3470; discussion 3503-3414. <https://doi.org/10.1890/10-0426.1>

696

697 Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., &
698 Fierer, N. (2010, Oct). Soil bacterial and fungal communities across a pH gradient in an
699 arable soil. *ISME J*, 4(10), 1340-1351. <https://doi.org/10.1038/ismej.2010.58>

700

701 Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., Cornelissen, J.,
702 Gurevitch, J., & Gcte, N. (2001, Feb). A meta-analysis of the response of soil respiration,
703 net nitrogen mineralization, and aboveground plant growth to experimental ecosystem
704 warming. *Oecologia*, 126(4), 543-562. <https://doi.org/10.1007/s004420000544>

705

706 Saiya-Cork, K. R., Sinsabaugh, R. L., & Zak, D. R. (2002, Sep). The effects of long term
707 nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil.
708 *Soil Biology & Biochemistry*, 34(9), 1309-1315. [https://doi.org/10.1016/S0038-0717\(02\)00074-3](https://doi.org/10.1016/S0038-0717(02)00074-3)

710 Doi 10.1016/S0038-0717(02)00074-3

711

712 Schimel, J., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial
713 carbon and nitrogen limitation in soil: a theoretical model. *Soil Biology and Biochemistry*,
714 35(4), 549-563. [https://doi.org/10.1016/S0038-0717\(03\)00015-4](https://doi.org/10.1016/S0038-0717(03)00015-4)

715

716 Stone, M. M., Weiss, M. S., Goodale, C. L., Adams, M. B., Fernandez, I. J., German, D. P., &
717 Allison, S. D. (2011). Temperature sensitivity of soil enzyme kinetics under N-fertilization
718 in two temperate forests. *Global Change Biology*, 18(3), 1173-1184.
719 <https://doi.org/10.1111/j.1365-2486.2011.02545.x>

720

721 Teuben, A., & Verhoef, H. A. (1992). Relevance of micro- and mesocosm experiments for
722 studying soil ecosystem processes. *Soil Biology and Biochemistry*, 24(11), 1179-1183.
723 [https://doi.org/10.1016/0038-0717\(92\)90069-a](https://doi.org/10.1016/0038-0717(92)90069-a)

724

725 Treseder, K. K. (2004, Nov). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus,
726 and atmospheric CO₂ in field studies. *New Phytol*, 164(2), 347-355.
727 <https://doi.org/10.1111/j.1469-8137.2004.01159.x>

728

729 Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring
730 soil microbial biomass C. *Soil Biology and Biochemistry*, 19(6), 703-707.
731 [https://doi.org/10.1016/0038-0717\(87\)90052-6](https://doi.org/10.1016/0038-0717(87)90052-6)

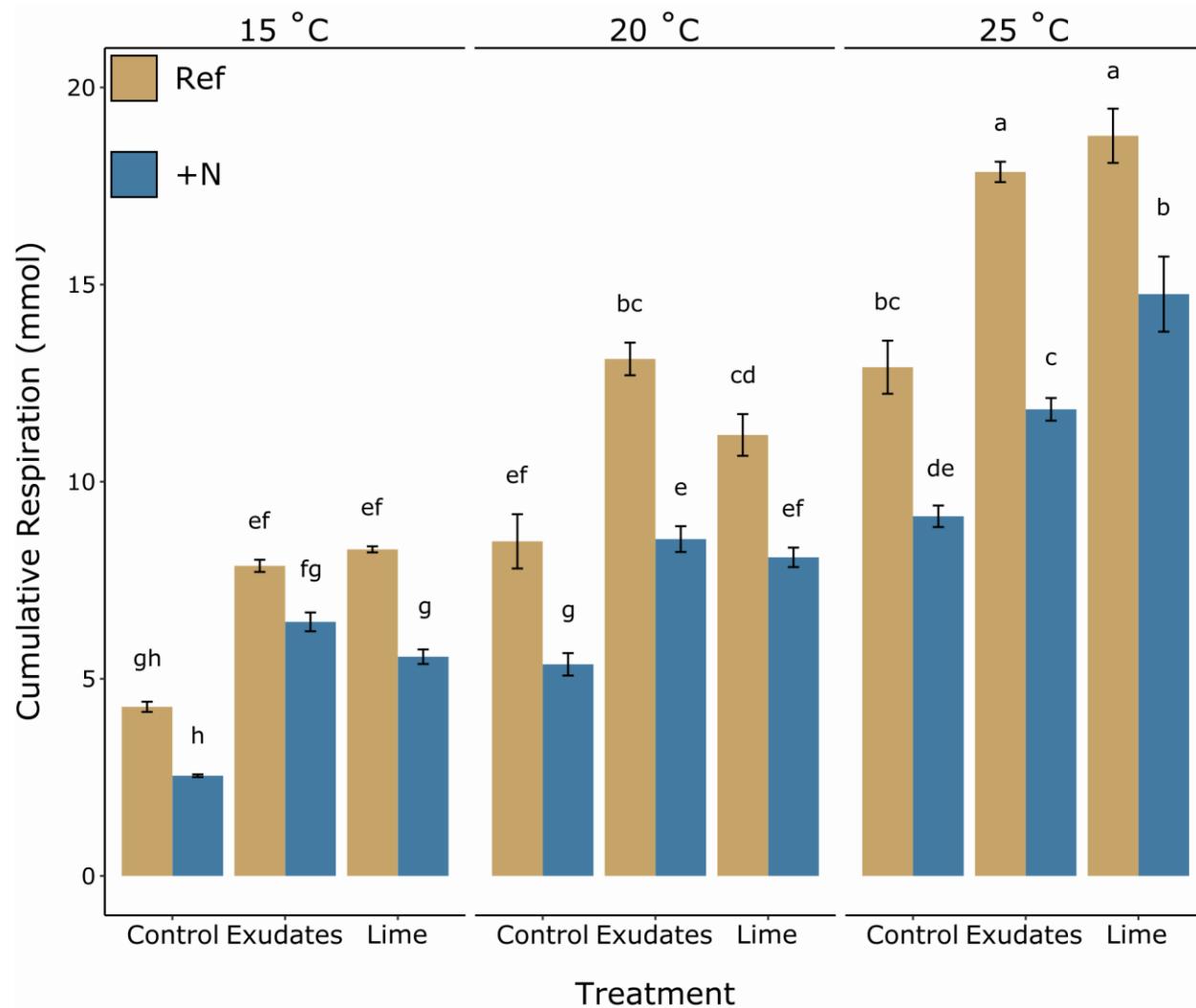
732

733 Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I. W., Woebken, D.,
734 Janssens, I. A., Sigurdsson, B. D., & Richter, A. (2018, Oct). Microbial temperature
735 sensitivity and biomass change explain soil carbon loss with warming. *Nat Clim Chang*,
736 8(10), 885-889. <https://doi.org/10.1038/s41558-018-0259-x>

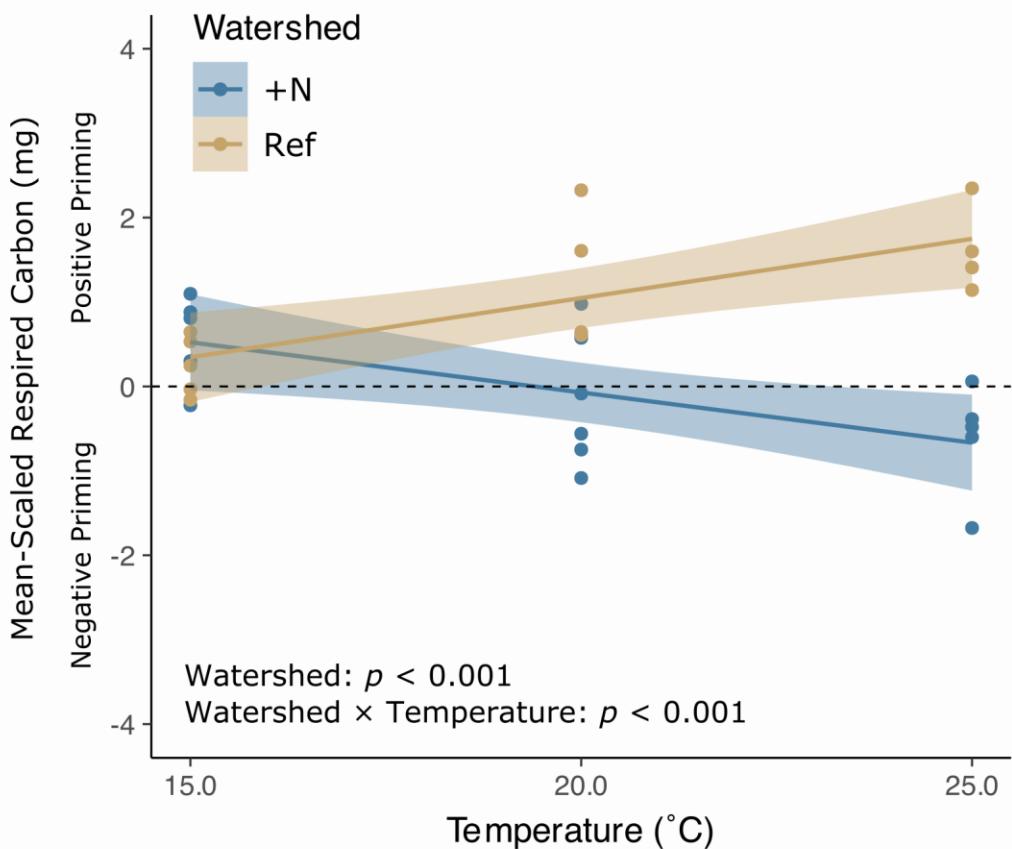
737

738 Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C. G., & Neue, H. U. (2000). A rapid chloroform-
739 fumigation extraction method for measuring soil microbial biomass carbon and nitrogen
740 in flooded rice soils. *Biology and Fertility of Soils*, 30(5-6), 510-519.
741 <https://doi.org/10.1007/s003740050030>

742

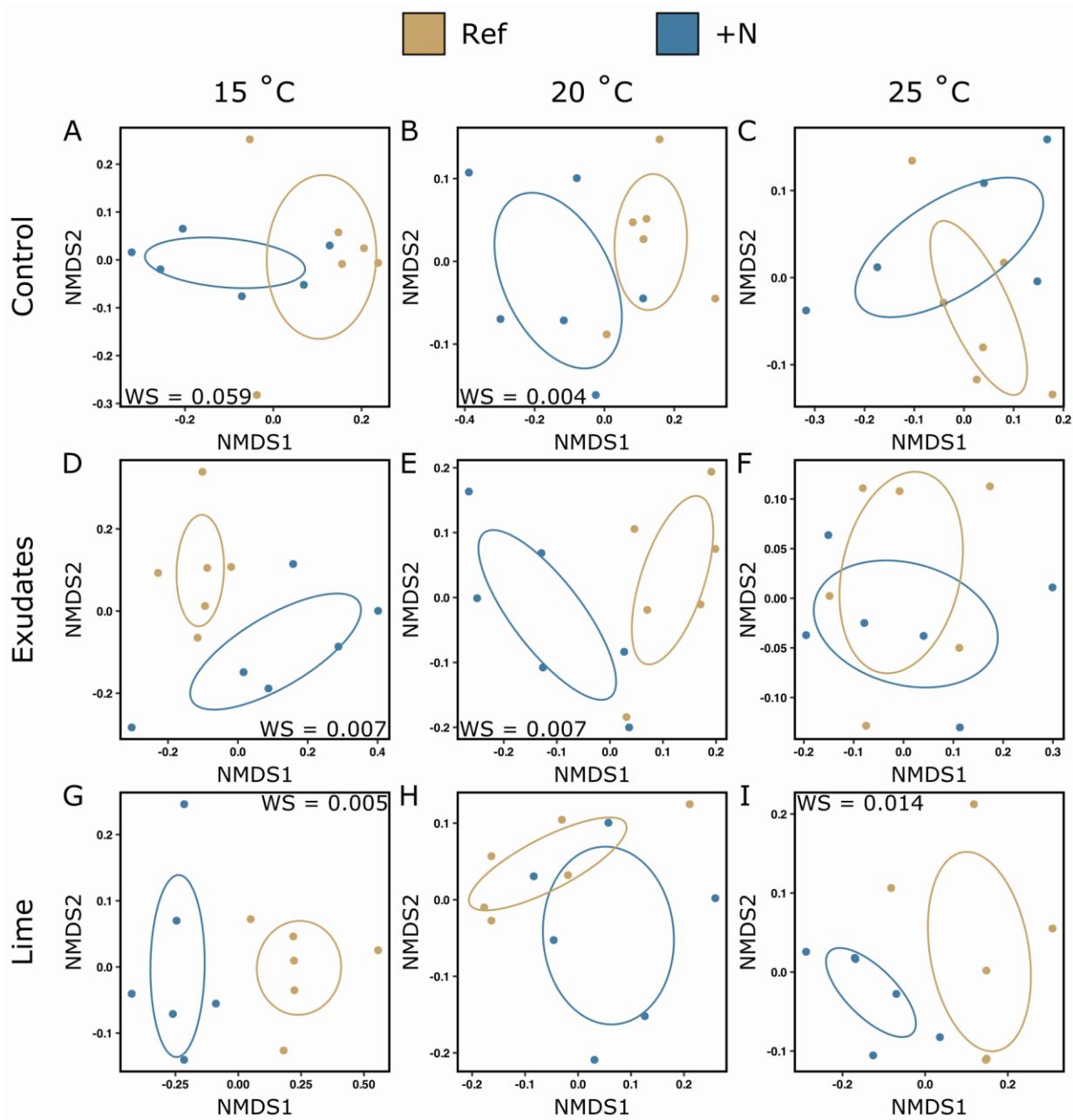

743 Wu, H., Hu, J., Shaaban, M., Xu, P., Zhao, J., & Hu, R. (2021). The effect of dolomite
744 amendment on soil organic carbon mineralization is determined by the dolomite size.
745 *Ecological Processes*, 10(1). <https://doi.org/10.1186/s13717-020-00278-x>

746

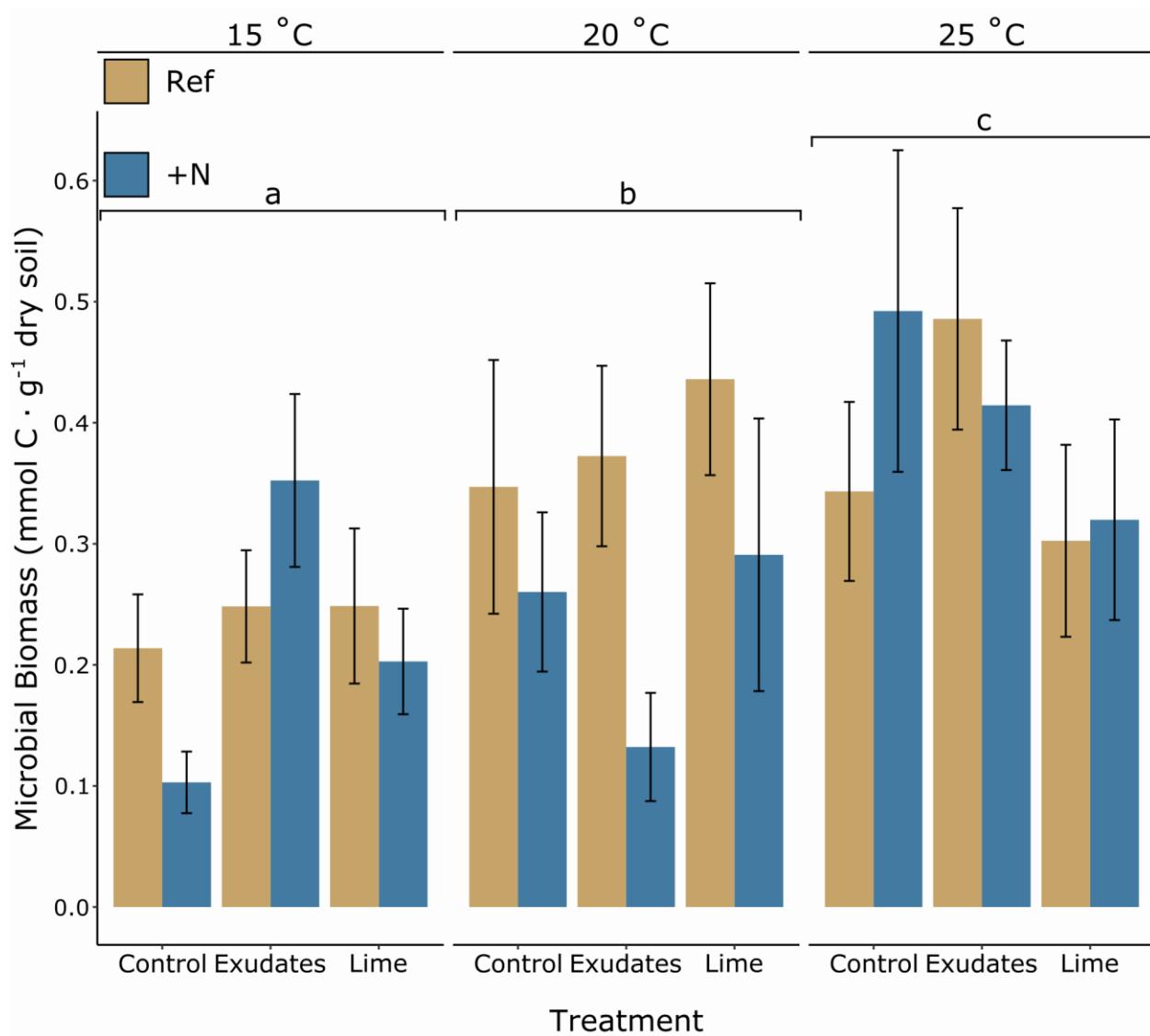

747 Zak, D. R., Holmes, W. E., Burton, A. J., Pregitzer, K. S., & Talhelm, A. F. (2008, Dec).
748 Simulated atmospheric NO₃- deposition increases soil organic matter by slowing
749 decomposition. *Ecol Appl*, 18(8), 2016-2027. <https://doi.org/10.1890/07-1743.1>

750

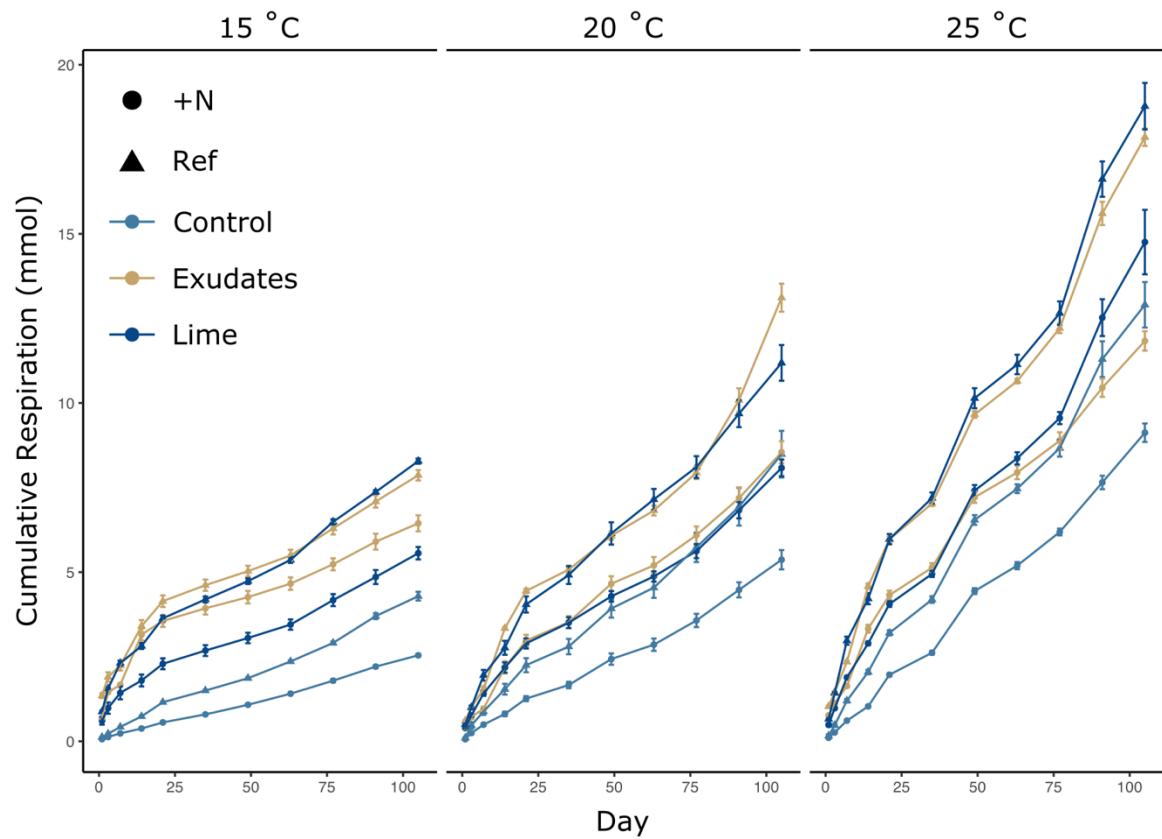
751



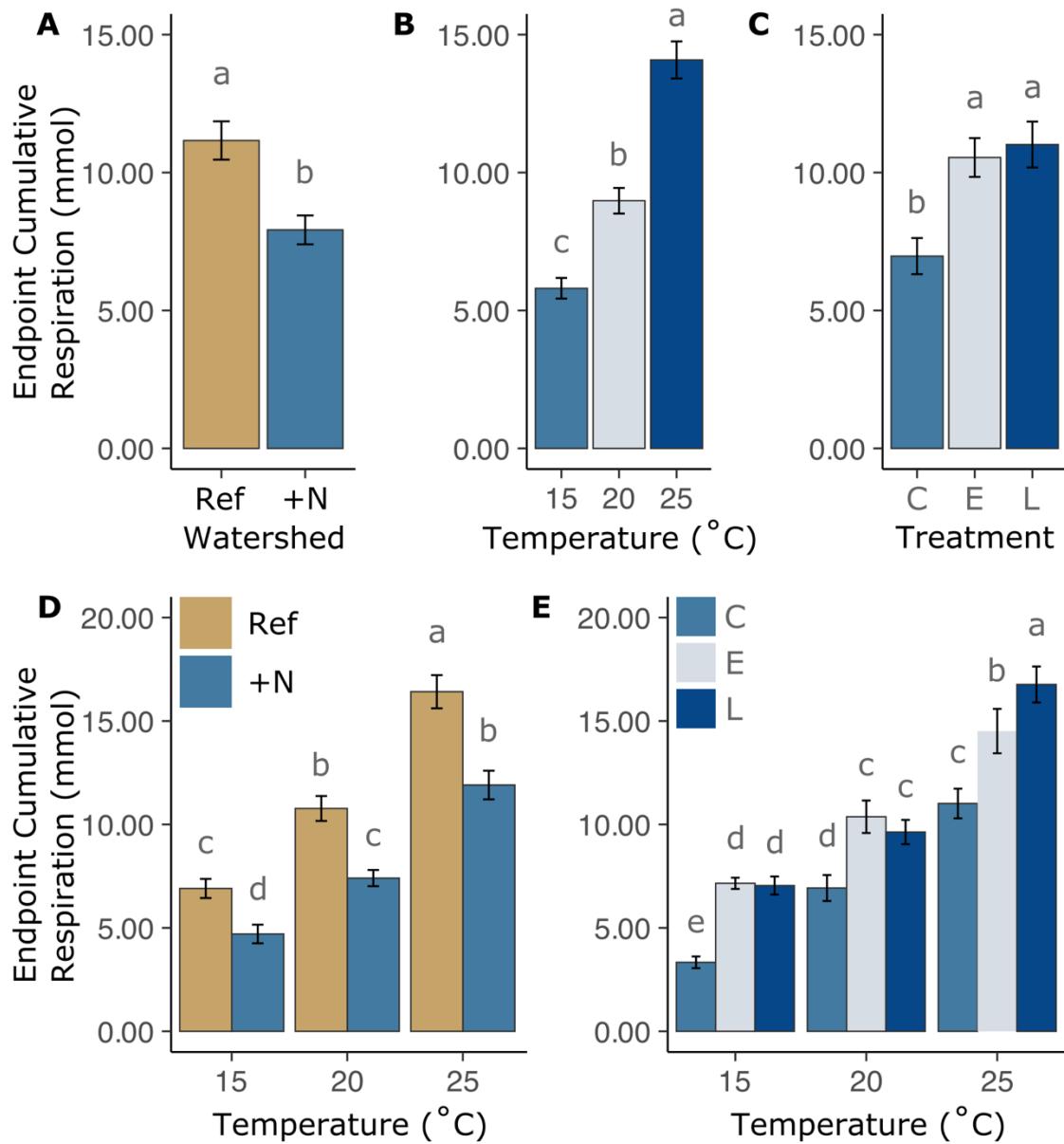
754 *Figure 1.* Endpoint cumulative respiration (mmol) of soils incubated at 15, 20, and 25 °C with
 755 and without the addition of artificial root exudates and lime in the reference (yellow) and
 756 previously N-fertilized (blue) watersheds. Error bars represent \pm standard error. Treatment
 757 groups connected by overlapping letters are not significantly different ($p < 0.05$, Tukey-Kramer
 758 HSD). Respiration was consistently lower in the previously N-fertilized watershed.


759

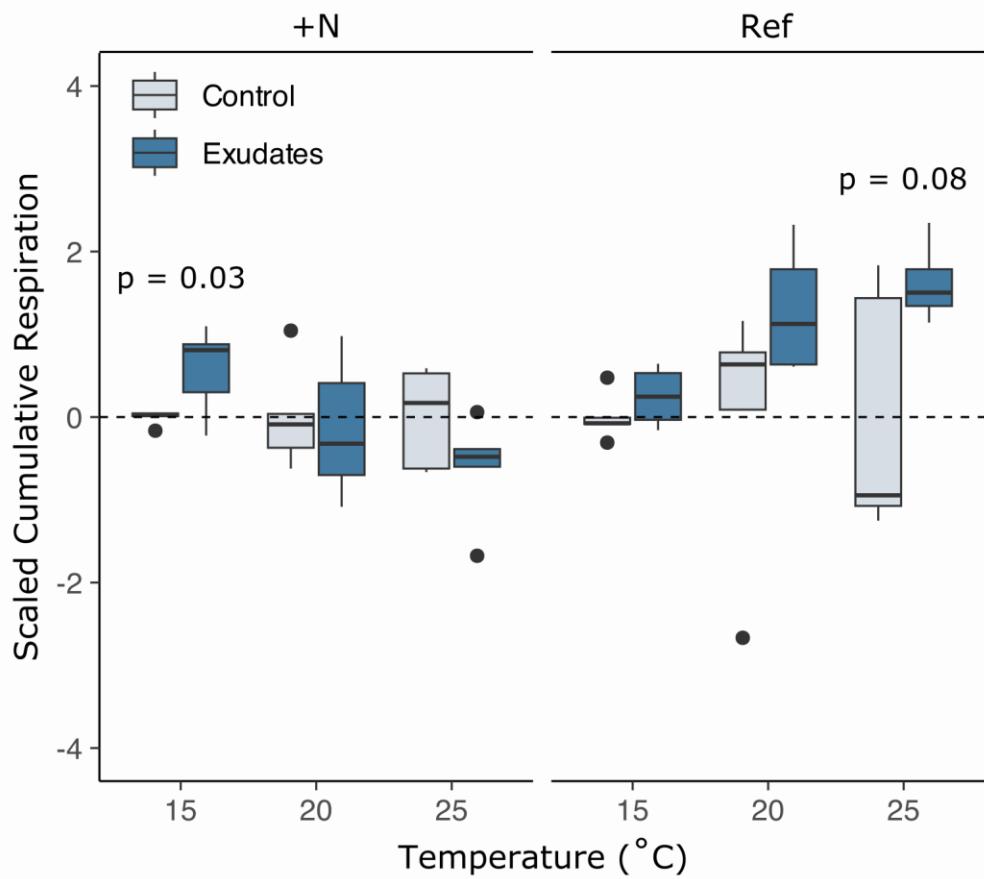
760 *Figure 2.* Respired carbon (mg) after artificial exudate additions, adjusted for the added C and
 761 scaled by means, in the previously N-fertilized (+N, blue, adjusted $R^2 = 0.324$, $p = 0.013$) and
 762 reference (Ref, yellow, adjusted $R^2 = 0.502$, $p = 0.004$) watersheds incubated at 15, 20, and 25
 763 °C. At higher incubation temperatures, priming of soil organic matter is greater in the reference
 764 watershed.


765

766 *Figure 3.* NMDS of the enzyme profiles of soils from the reference (yellow) and previously N-
767 fertilized (blue) watersheds incubated at 15 (left column), 20 (middle column), and 25 °C (right
768 column). Different treatments are shown on different rows: control (top row), exudate treatment
769 (middle row) and lime treatment (bottom row). PERMANOVA results of the watershed (WS)
770 effect is shown for each plot where $p < 0.1$. Enzyme profiles of the two watersheds were
771 significantly different in 6 out of 9 treatments.


772

773 *Figure 4.* Microbial biomass (mmol C · g⁻¹ dry soil) of soils incubated at 15, 20, and 25 °C with
 774 and without the addition of artificial root exudates and lime in the reference (yellow) and
 775 previously N-fertilized (blue) watersheds. Error bars represent ± standard error. Treatment
 776 groups connected by overlapping letters are not significantly different ($p < 0.05$, Tukey-Kramer
 777 HSD). Microbial biomass only varied by temperature across different treatments.


778

779 *SI Figure 1.* Cumulative respiration (mmol) of soils incubated at 15, 20, and 25 °C with and
 780 without the addition of artificial root exudates and lime in the reference and previously N-
 781 fertilized watersheds over time. Error bars represent \pm standard error.

782

783 *SI Figure 2.* Mean endpoint cumulative respiration (mmol) by (A) watershed (Ref, yellow =
784 reference, and +N, blue = previously N-fertilized), (B) temperature, (C) treatment (C = control, E
785 = exudates, L = lime), (D) temperature × watershed (Ref, yellow = reference, and +N, blue =
786 previously N-fertilized), and (E) temperature × treatment (C = control, E = exudates, L = lime).
787 Error bars represent \pm standard error. Treatment groups connected by overlapping letters are not
788 significantly different ($p < 0.05$, Tukey-Kramer HSD).

789

790 *SI Figure 3.* Scaled cumulative soil respiration in the previously N-fertilized (+N) and reference
 791 (Ref) watersheds, after incubation at 15, 20, and 25 °C with (blue) and without (gray) the
 792 addition of artificial root exudates. Differences between the control and the exudate treatments
 793 are only shown for $p < 0.1$ within each treatment group (watershed \times temperature). Priming
 794 effect is greatest in the microcosms incubated at 15 °C for the previously N-fertilized soils, and
 795 25 °C for the reference soils.

SI Table 1. Extracellular enzyme activities (mean \pm standard error) across three incubation temperatures (15, 20, and 25 °C) and three treatments (control, exudates and lime) in soils sampled from the previously N-fertilized watershed and the reference watershed.

Extracellular enzymes	Temp (°C)	Control		Exudates		Lime	
		Reference Watershed	Prev. N-Fertilized	Reference Watershed	Prev. N-Fertilized	Reference Watershed	Prev. N-Fertilized
Acid phosphatase ($\mu\text{mol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)	15	0.59 \pm 0.10	0.53 \pm 0.05	1.01 \pm 0.08	0.74 \pm 0.09	1.31 \pm 0.11	0.45 \pm 0.08
	20	0.54 \pm 0.05	0.38 \pm 0.05	0.86 \pm 0.11	0.49 \pm 0.04	0.90 \pm 0.11	0.79 \pm 0.08
	25	0.54 \pm 0.07	0.45 \pm 0.05	0.38 \pm 0.04	0.42 \pm 0.05	0.47 \pm 0.03	0.28 \pm 0.01
β -glucosidase ($\mu\text{mol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)	15	0.08 \pm 0.00	0.06 \pm 0.00	0.09 \pm 0.00	0.06 \pm 0.01	0.09 \pm 0.01	0.06 \pm 0.00
	20	0.21 \pm 0.01	0.19 \pm 0.01	0.24 \pm 0.02	0.15 \pm 0.02	0.26 \pm 0.02	0.22 \pm 0.01
	25	0.18 \pm 0.01	0.12 \pm 0.01	0.17 \pm 0.01	0.14 \pm 0.01	0.18 \pm 0.01	0.13 \pm 0.01
N-acetyl- β - glucosaminidase ($10^{-1} \mu\text{mol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)	15	0.34 \pm 0.08	0.15 \pm 0.01	0.30 \pm 0.02	0.14 \pm 0.02	1.33 \pm 0.35	0.32 \pm 0.11
	20	0.05 \pm 0.00	0.04 \pm 0.00	0.09 \pm 0.01	0.03 \pm 0.00	0.12 \pm 0.01	0.05 \pm 0.01
	25	0.07 \pm 0.01	0.05 \pm 0.01	0.06 \pm 0.01	0.05 \pm 0.00	0.05 \pm 0.00	0.02 \pm 0.00
Phenol Oxidase ($\text{mmol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)	15	1.26 \pm 0.09	0.86 \pm 0.09	0.96 \pm 0.09	0.89 \pm 0.10	1.04 \pm 0.08	0.84 \pm 0.03
	20	0.96 \pm 0.06	1.17 \pm 0.15	0.98 \pm 0.05	0.82 \pm 0.09	0.88 \pm 0.03	0.85 \pm 0.08
	25	0.83 \pm 0.06	0.76 \pm 0.05	0.75 \pm 0.07	0.65 \pm 0.04	0.89 \pm 0.07	0.70 \pm 0.02
Peroxidase ($\text{mmol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)	15	1.08 \pm 0.09	1.02 \pm 0.10	0.64 \pm 0.04	1.18 \pm 0.18	0.74 \pm 0.08	0.98 \pm 0.08
	20	1.04 \pm 0.09	1.63 \pm 0.16	0.80 \pm 0.06	0.83 \pm 0.08	0.74 \pm 0.10	1.04 \pm 0.12
	25	0.05 \pm 0.05	0.12 \pm 0.12	0.06 \pm 0.06	0.10 \pm 0.10	0.10 \pm 0.10	0.07 \pm 0.07

SI Table 2. Significant main effects of watershed, temperature, treatment, and their interactions are shown for each extracellular enzyme ($p < 0.5$, ANOVA).

Effects	AP ($\mu\text{mol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)		BG ($\mu\text{mol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)		NAG ($\mu\text{mol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)		Phenol Oxidase ($\text{mmol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)		Peroxidase ($\text{mmol} \cdot \text{g}^{-1} \cdot \text{hr}^{-1}$)	
	F	p	F	p	F	p	F	p	F	p
Watershed	46.433	< 0.001	50.614	< 0.001	16.918	< 0.001	10.140	0.002	11.557	0.001
Temperature	36.782	< 0.001	173.740	< 0.001	34.470	< 0.001	13.688	< 0.001	7.681	< 0.001
Treatment	11.895	< 0.001	4.232	0.018	10.277	< 0.001	4.936	0.009	10.672	< 0.001
Watershed × Temperature	7.350	0.001	2.424	0.094	10.965	< 0.001	3.558	0.033	6.280	0.003
Watershed × Treatment	5.857	0.004	0.882	0.418	5.341	0.006	0.180	0.835	0.489	0.615
Temperature × Treatment	8.504	< 0.001	1.929	0.112	9.518	< 0.001	0.933	0.449	4.324	0.003
Watershed × Temperature × Treatment	6.939	< 0.001	2.423	0.054	4.621	0.002	2.705	0.035	4.808	0.001