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We study a wave equation in dimension d € {1,2} with a multiplicative space-time
Gaussian noise. The existence and uniqueness of the Stratonovich solution is obtained
under some conditions imposed on the Gaussian noise. The strategy is to develop some
Strichartz-type estimates for the wave kernel in weighted Besov spaces, by which we
can prove the well-posedness of an associated Young-type equation. Those Strichartz

bounds are of independent interest.

1 Introduction

In [3], we have started a long-term project aiming at defining wave equations driven by
rough noises. More specifically, [3] focused on the following Skorohod-type equation on
R, x R4 ford e {1,2,3}:

%u

W(t,x) = Au(t,x) + u o W(t, x), (1.1)

where ¢ stands for the Wick product and where W is a centered Gaussian noise. In [3],

the covariance function for W was fractional in time with proper decay in space. That
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isfors,te R, and x,y ¢ R we had

E[W (s, )W(t,y)] = |s — t| 0y (x — y), (1.2)
where a € [0, 1) and y is a nonnegative and nonnegative definite (generalized) function

admitting a spectral measure . Then we obtained that under appropriate conditions

on the initial conditions, the following relation is necessary and sufficient in order to

1 37(10
/Rd(1+|§|) w(dg) < oo. (1.3)

Notice that (1.3) quantifies how irregular in space our noise can be according to its

solve (1.1):

regularity in time. In particular, if the function y in (1.2) satisfies the scaling property

y(cx) = ¢ %y (x) (1.4)

for some a € (0, d], then condition (1.3) can be recast as

ag+a<3. (1.5)
In the current paper, we will contrast the neat condition obtained in (1.3) with

the situation for a pathwise version of the wave equation (interpreted in the Young or
Stratonovich sense). Namely, we consider the following Stratonovich-type wave equation
onR, x R4 for d € {1,2},

%u

with initial conditions u(0,x) = uy(x) and %u(o,x) = u,(x). The Gaussian noise we
consider in (1.6) also has the covariance (1.2) with y being a nonnegative definite
(generalized) function. We prove the following result on the existence and uniqueness
of the Stratonovich solution to (1.6) (see Proposition 5.6 and Corollary 5.7 for a precise

account).

Theorem 1.1. Assume d < {1, 2} and the spectral measure u of W verifies

/ ( 1 Pd—ao—n
—_— w(dé) <oo forsomen >0, (1.7)
Rrd \1+ |§|)

where the parameter p; is such that p; = 1 and p, = 3. Then, under some regularity

conditions on u, and u,;, there exists a unique Stratonovich solution to (1.6) in a proper
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Hyperbolic Anderson Model 2 3

path space. If y has the scaling property (1.4), condition (1.7) is equivalent to

a,+a<1, ifd=1,
(1.8)
ay+a<j, ifd=2.

It is well known that Stratonovich solutions to stochastic PDEs demand a
more regular noisy input W than in the Skorohod setting. And indeed in our case,
it is readily checked that (1.5) is less restrictive than (1.8). In fact, for d € {1,2},
(1.5) is automatically fulfilled as soon as a; € [0, 1) and the covariance function y is
nonnegative (which implies a € (0,d], see [3, Remark 1.4]). Nevertheless, Theorem 1.1
gives the first condition on a; and u(d¢) in order to get a unique pathwise solution to
(1.6). In addition, as the reader will see, our main result also unifies the treatment for
d=1andd=2.

Let us mention some recent progress, obtained by methods that are completely
different from ours, towards the definition of the stochastic wave equation in a
pathwise sense.

(i) As far as we know, the first pathwise developments for a stochastic wave equation can
be found in [11], dealing with the one-dimensional case. Based on the specific expression
of the wave kernel for d = 1, the strategy therein relies on a natural preliminary rotation
of the model, which turns (1.6) into a more tractable equation in the plane R?. It is then
established that when one injects a noise of the form (1.2)—(1.4) within the new equation
(thus corresponding to a “rotated” noise for the original equation), the interpretation
and well-posedness can be obtained for all ay, a € (0, 1). Unfortunately, this preliminary
transform of the model—which will not occur in our direct approach—essentially rules
out the possibility to compare the interpretation in [11] with ours, and accordingly to
compare the conditions in [11] with those in (1.8).

(ii) The recent publication [1] focuses on the wave equation with a noise W independent

of time. The condition obtained in [1] is

1
/Rd Tl w(d€) < oo, (1.9

which is equivalent to a < 1 when y has the scaling property (1.4). A time-independent

noise being morally equivalent to a; = 0, in this situation our condition (1.8) can be read

1
a<1lford=1, and a<§ford:2.
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4 X. Chen et al.

Our condition on a is thus slightly suboptimal for d = 2 if one compares it to (1.9),
although our method is currently the only one accommodating for a time-dependent
noise (see Remark 3.8 for further details about the suboptimality issue). Let us also
mention that [1] relies on chaos expansions for Stratonovich integrals. This strategy is
interesting in its own right and very different from the pathwise considerations in the
current paper.

(iii) Some attention has been paid recently to models of wave equation with additive

noise and polynomial nonlinearities, that is, equations of the form

92u

W(t,x):Au:&:up—i-W, (1.10)

with an additive fractional noise W and an integer p > 1. In this context, renormal-
ization procedures are implemented for instance in [5, 7-9], yielding existence results
for (1.10) in case of a rough noise W (see Remark 4.6 for a quick comparison with the
present developments about (1.6)).

As one can see, the study of wave equations in a rough setting is still wide
open. Our contribution aims at a better understanding of the Young regime within this
landmark.

As mentioned above, instead of the Skorohod setting advocated in [3], the
stochastic differential in (1.6) is interpreted in the Stratonovich sense. This forces to a
totally different approach, which is based on pathwise-type considerations. We briefly
elaborate our strategy below.

We will solve the wave equation under its so-called mild form, which will be
properly introduced in (4.29). The main technical issue will thus be to understand the

meaning of integrals like
t .
/ G (U, dW,), (1.11)
0

where u is a candidate solution, G, stands for the wave operator at time ¢, and where w
is our noisy input. Since we wish to interpret (1.11) as a Young integral, we will see it as
the limit of a sequence of paths {Jt("); t € [0, T} defined by

m—1
(n) . _ ]
T =" Gogp (g 8Wynpn ), fort e ey, th], (1.12)
k=0
where t}}, = mT/2" for 0 < m < 2" and 5Wt£'t£'+1 = Wti’ﬂ - th- Our most important

endeavour is thus to quantify the smoothing effect of the operator Gegp in (1.12), through
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Hyperbolic Anderson Model 2 5

the exhibition of a specific control suited for our purpose. We will call such a control
a Strichartz-type inequality, in reference to the classical estimates on the action of the
wave operator (see e.g., [6]).

Our findings concerning Strichartz-type estimates, which are new and should be
considered as one of the main contributions of the current paper, blackare summarized
in Proposition 3.4 below. Roughly speaking, if 5* designates a weighted Besov space

with regularity ¢ < 0, we claim that

G, — Glflgese S1E—sI" ™ Ifllge, forall «el0,1], ifd=1, w13
1.13
and |{G; — G)fllgase <1t — 1Y ||flga, forall « €[0,1/2], ifd=2.

In contrast with the classical Strichartz estimates, these bounds feature two new
fundamental aspects. blackFirst, they offer a Holder-type control (in time) on the action
of G, a key ingredient toward a successful Young integration procedure. Secondly, they
involve Besov spaces with weights, which is crucial in order to deal with a noise like W
defined on the whole space. black

Our considerations are based on a weighted version of Littlewood-Paley analysis
introduced by Rychkov in [11]. This approach is convenient when one wishes to handle
kernels with polynomial decay in Fourier modes such as G,. This explains in particular
why we have decided to stick to [11] instead of using the more recent method advocated
in [4].

We close this section by highlighting some possible generalization of our work:
(i) In the current article, we have focused on a noisy term of the form uW in (1.6) for
sake of conciseness. We firmly believe that a noise term o (u)W with a smooth enough
o could also be covered by our approach, at the price of longer technical considerations
(see Remark 4.10 for further details).
(ii) The treatment of rougher noises is expected to rely on higher-order expansions of
the model, together with renormalization procedures. These challenging developments
may require the adaptation of some ideas from regularity structures theory or paracon-
trolled calculus in the wave setting.
(iii) The Strichartz-type estimate alluded to above are based on convolution estimates
for functions. In order to reach d = 3 or above, those estimates should be extended to
measures or distributions. At the moment, this is still an open problem for us.

The rest of this paper is organized as follows. In Section 2, we recall some
preliminaries on weighted Besov spaces. The smoothing effect of the wave kernel in

weighted Besov spaces is obtained in Section 3. It is then applied to study a Young-type
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6 X. Chen et al.

equation associated with (1.6) in Section 4, where we define Young wave integration
and prove the well-posedness of the Young-type equations. In Section 5, we apply the
result on the Young-type equation obtained in Section 4 to our wave equation (1.6) and
obtain the existence and uniqueness of the solution under condition (1.8). Finally, in

Appendix A, we provide details for some results used in the preceding sections.

Notation 1.2. Forr = (r,...,ry) withr; e Nand x = (xy, ..., x,) with x; € R%, we set

d 9 r 9 rd
r T
|r| = .El r;, r!:r‘l!...rd!, Xr:XII...de, Drf(X): (87) (—) .
i=

1 0xg

For a generic continuous function ¢ defined on RY, we set @;(x) = 2% p(2x). We use
By (x) to denote the open ball in R4 centered at x with radius R > 0, that is, Br(x)={ye
R%; |y — x| < R}, and in particular we set By := Bz (0). Finally, we denote by C° the set of

smooth and compactly-supported functions on R<.
2 Weighted Besov Spaces

Equation (1.6) will be solved in some properly weighted Besov spaces. In fact for a sharp
analysis of the wave kernel properties (in Section 3), we have found convenient to use
the general setting introduced by Rychkov in [11]. This setting has the advantage to
cover a large class of weights. The current section is mostly dedicated to recall the main

elements of the latter article.

2.1 Weighted Besov spaces

In this section, we construct and give some basic properties of the weighted Besov
spaces used for the wave equation.
Let us first recall the definition of the class A};’C of weights, which was

introduced in [10].

Definition 2.1. We call weight any locally integrable and strictly positive function w :

R% — R, . Next for every 1 < p < oo, we define A})"C as the set of weights w for which

p
1 _r v
Wllp,10c = lsIIuSI;W(/IW(X) dX)(/IW(X) P dx) < 00, (2.1)

where p’ refers to the Holder conjugate of p, I = [a,,b;] x --- x [ag, byl with a; < b; for
i=1,...,dand |I| = [[%, |a; — b;|.
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Hyperbolic Anderson Model 2 7

As pointed out in [10], this general class A%,OC of weights consists of the classical
A, weights (see e.g., [13]) and the locally regular weights that grow/decay at most
exponentially at infinity. In particular, for 1 < p < oo, A}DOC includes the following

exponential and polynomial weights that we will use in this paper:

w,(x):=e ¥ forueR, and P& :=(1+x/91)7". (2.2)

Remark 2.2. Throughout the study and for the sake of conciseness, we shall make a
slight abuse of terminology and call P in (2.2) a polynomial weight, as a shortcut for

inverse polynomial or rational-function type weight.

For a generic weight w, we introduce the notion of weighted LP space, which will

be at the heart of our analysis.

Definition 2.3. Let w be a weight function in the space A})OC for p > 1. For a function
f:Rd—>R,weset

1/p
Ifllze = (/ If )P w(x) dx) )
Rd

_ . . . . p L p
Whenever w, (x) = e #xl is an exponential weight, we write Ly, = Ly.

We also label a notation for functions with centered moments in the definition

below.

Definition 2.4. For every integer L > 0, we denote by D; the set of functions ¢ € C°

such that for each multi-index r with 0 < |r| < L, one has
/ x"p(x)dx =0. (2.3)
Rd

The compatibility of weights with convolution products is a crucial and basic

feature for a proper Besov analysis. We state and prove a lemma in this sense.

Lemma 2.5. Fix two constants u,,K > 0. Then for all 0 < u < p, and ¢ € C° such that
Supp(¢) C By, one has

o % £l < Nl [P P (2.4)
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8 X. Chen et al.

for some proportional constant that only depends on p, K, and u,. In particular, the

following compatibility relation holds true:

lo*fllip < lelpfilz- (2.5)

Proof. We start by writing the Lﬂ—norm of ¢ x f according to Definition 2.3,

p

lo (% =/ dXWM(X)'/ dy p(x — y)f ()
w R4 R4

We now insert the weight w, (y) in order to get

1
w,(x)\?r 1
/Rd dy [(WM(Y)) px — y)} [W,L(Y)pf(Y)]

w, (%) ’ 1 p
/dy'( )w(x—y)‘]wﬂ(y)pf<y>( :
Rd w, (¥)

p

b _
loxsly = [ | ax

s/dx
]Rd

Recall that Supp(e) is a subset of Bg. Hence for all x,y € R%, we have

w,, (x) 5
‘(wu(w)p‘”(x_”)
%

(2.6)

< e'®/Plpx —p)l.

Plugging this inequality into (2.6), we immediately get (2.4), which ends our proof. |

In order to implement the partition of unity necessary for a proper definition of

Besov spaces, we state a technical lemma about convolutions of rescaled functions.

Lemma 2.6. Fix an integer L > 0. Let ¢, ¥ € CJ° and suppose ¢ € D;, where we recall
that D; is introduced in Definition 2.4. Next for every j > 1, recall from Notation 1.2 that
we have set @j(x) = Zdj(p(ZjX), V;(x) = 2%+ (27x). Then for all 0 <j<t¢and1l <r<oo,it
holds that

loy 5 el < 29077 220, (2.7)

Proof. In order to ease our notation, let us agree on the following convention:
For the sake of clarity, we assume from now on that the supports of functions in C

are all included in the unit ball B,.
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Hyperbolic Anderson Model 2 9

We first prove inequality (2.7) for the case 1 < r < oco. Writing the definition of the
convolution product and performing the change of variables 2y — y and 2/x — x,

one gets

r

loy ol = [ ax| [ ay2¥oeio—prataty

=2dj(r—1)/ dx
B,

Next invoke the fact that i € D; in order to write

r

A dy v ()e(x — 2~ Dy)
1

oy el

_odjr-1) / dx
By

Furthermore, thanks to classical considerations on remainders for Taylor expansions,

r

. k )
dyxp(y)[go(x—z—“—f)y)— > DkaX)(—z—“—”y)"} 2.9

0<[k|<L-1

B;

for x,y € B,, we have

k

‘w(X—Z‘“_j)y)— > B iy
|
0<|k|<L—-1 k!

< 7LD, (2.9)

Plugging (2.9) into (2.8), this proves (2.7) for 1 < r < ooc.

For the case r = oo in (2.7), we have similarly
grv@in = [ay2dip@eix-pnzityey =29 | ayvemeec- 2y
B

. . k .
= 20 [ dryplox-2p - 3 PRk,
B oszt1

and (2.7) follows from (2.9). This finishes the proof. |

Eventually, we will define a bump-type function adapted to the construction of

our Besov-type spaces.

Notation 2.7. Pick an arbitrary function ¢, € C;°. Then we denote by ¢ the function
defined for x € R% by

0 () 1= 9o 0) — 2%, (3.
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10 X. Chen et al.

Also recall that, for every continuous function g : R — R and j > 1, we set gi(x) =
2djg(2jx) for all x e R.

We are now ready to give a precise definition of the Besov spaces considered in

this article, which is borrowed from [11, Definition 2.4].

Definition 2.8. Consider a function ¢, € CJ° and the corresponding ¢ as in Notation
2.7. For any fixed length L, we assume that [pq ¢y(x) dx # 0 and ¢ € D;. Otherwise stated

we have,
/ ¢o(x)dx #0, and / x"¢(x)dx =0, for |r| < L. (A,)
Rd R4

Then forall —co <s<1,alll <p <o00,and 1 < g < oo, we define the space Bf,’,’é(wo) as

the completion of CJ° with respect to the norm

N5 (g0) = (szsquwj *szﬁ)q. (2.10)

j=0

At first sight, it seems that the spaces Bf,’fé(goo) depend on the specific function
¢o we have chosen. The following Proposition, borrowed from [10, Corollary 2.7], shows

that the Besov spaces do not exhibit this kind of dependence.

Proposition 2.9. Let ¢y, ¢ € C¢° be two functions satisfying Assumption (A ), and fix

i, > 0. Then there exist two constants CooGotis’ Cwo,q?o,u* > 0 such that forall —oco <s <1,
all0 <p <p,,and 1 < p,q < oo, we have
Cooio, e IS | B (o) = 171l B3 o) = Cooiion Il B3 (o) * (2.11)

Since Proposition 2.9 states that the Besov spaces do not depend on the
particular choice of ¢, one might just fix a particular ¢, and consider the corresponding

spaces B. This convention is labeled below.

Notation 2.10. From now on, we fix a function ¢y € C° satisfying (Aw) and consider

the scale of spaces By := Byla(gg), for1 <p < oo, 1 <g<o0, —oo <s=<1,and u € R.
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Hyperbolic Anderson Model 2 11
2.2 A few properties of the weighted Besov spaces

We now collect a few basic facts about Besov spaces, whose role for our existence and
uniqueness result will be crucial.

First, most of our weights w in the sequel are exponential. However, we also
deal occasionally with polynomial weights. The lemma below gives a link between those

classes.

Lemma 2.11. Let u, > 0 be a fixed constant. Consider the polynomial weight P(x) and
the family {w,,0 < u < u,} of exponential weights given in (2.2). Then, for 1 < p <
00,1 < g <ooands e R, we have

d+1

Il g < =7 [ F g

where the multiplicative constant on the right-hand side depends on ., only.

Proof. Invoking the fact that 0 < p < u,, it is readily checked that

_ 1 P(x) d+1
e SP(X)[I{XRI} + Wl{lle}] & W{“f +1}.

Inserting this inequality into the definition (2.10) of Besov norms, our claim is achieved

in a straightforward way. ]

Interpolation inequalities are part of the basic toolkit of Besov spaces. In our

weighted context, we can state the following result.

Lemma 2.12. Consider nine parameters s,sy,s; € (—oo,1l, p,pg,p; € (1,00) and

4.4y, q; € (1, 00]. We suppose that there exists 6 € [0, 1] such that

1 1-6 0 1 1-6 0
s=(1-0)sy+0sy, - = + —, ~ = + —.
p Po )4 q 4o q:
Then for every u € R, it holds that
-6 0
Ul = L Vi L7 212

Proof. The proof is achieved by standard Hélder-type inequalities. It is left to the

reader for the sake of conciseness. black [ |
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12 X. Chen et al.

We next move to an embedding property, which will be an important step in our

analysis.

Lemma 2.13. We consider six parameters 1 < p < p’ < o0, —o0 < k¥’ < « < 1, and

0 <u < <pu,. Assume that the following relation holds true,

1 1 !
K:K’—i—d(———), and u’:g,u. (2.13)
p p

/

Then for the Besov spaces introduced in Definition 2.8, it holds that
e = 18 s, - (2.14)

for some proportional constant that only depends on p, (as far as weight parameters

are concerned).

Proof. Consider an integer L > 1, the exact value of which will be determined later on
(namely we will see that L = L(x, «") depends on («, ') only). Recall that we have defined
our Besov spaces based on a function ¢, as in Notation 2.10. By Theorem A.1 in the

Appendix, we know that there exist ¢, € C3° and € D; such that

g xf =D (@ V) * (9, % f) . (2.15)

=0

Observe that we have assumed the supports of the ¢ and y functions to be
subsets of By, and so we have Supp (¢; x ¥,) C B, for all j,¢ > 0. Hence, we can use
(2.4) to assert that

[ % w0 % (e x )] < gy 5 el % (Wil (@ )

for some proportional constant that only depends on u,. We can then invoke the

classical Young inequality for convolution products to derive

[ v % @+ D)l < Ny Vel W @+ Dl S loy* Vel loe = Fllp 2.16)
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Hyperbolic Anderson Model 2 13

where r is defined through the relation % + % =1+ i/ Going back to (2.15), we deduce
that for every j > 0,

le; *f||Lp/, S Neg el ee p S Ifllsge, D27 o vl -

W >0 >0

We now split the sum above into £ < j and £ > j. We also assume ¢ € D; in
Definition 2.8. Then we apply Lemma 2.6 in two different ways according to those two

cases (recall that (2.7) is valid for j < ¢). This yields,

loj+fl,p < ||f||B;;go[ 2 27 el + 227 gy 0 ||Lr] :
o

O=t<j >
—klodt(1—1)n—L(j—t i(1—1 il —L(l—i
Sllfllgg;go[ZZ"zd( P2 00 4 di1-0) 3 gtp ]):|.
0=ts<j L>j

Performing the change of variables j — ¢ — ¢ and ¢ — j — ¢ in the two sums above, we

thus get

_1 —(L— _1 i(ke— _1 _
lo 517 S Wl [z Sie=d1=}) § p=etd(- Pt | pie-d-1) §" 5 <L+K>€].

0<e<j >0
Now remember that 1 — % = 111 - 1%’ so that x — d(1 — %) = k" according to (2.13). We thus
have obtained that
'j L—k")e (Ltk)E
2KJ||(pj*f||Li// < ||f||B;:go[ Z A D } (2.17)

0<t<j >0

Let us now pick L > max(—«,«’) in (2.17). We have obtained
2 ¢; *f”Li’/ S Ifllggs, .

where the proportional constant depends on (L,«,«’) only. To conclude, we simply

recall that
IF e = sup 2”||¢] “Fly

from which our claim is easily deduced. |
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14 X. Chen et al.

In order to handle the wave equation (1.6), we will have to multiply the candidate
solution u with the distribution-valued noise W. The lemma below ensures a proper
definition of this kind of product in the Young sense. Its proof is deferred to the

Appendix (Section A.2).

Lemma 2.14. Fix p, > 0. Let o, 8 € (0,1], p,py.p, € (1,00) and u, uy, puy € [0, 1,1 be
such that

w<p, Lol loang Aotagta (2.18)
P P11 D2 b DP1 D
Consider f € By, '4' and g € Bg;‘&,. Then it holds that
17Ol < I Nl g - 219

for some proportional constant that only depends on u,.

We close this section by rephrasing relation (2.19) in a way that turns out to be

more convenient for our later computations.

Corollary 2.15. Fix u, > 0. Consider some parameters u,v € [0, u], o, « € (0,1] and

p > 2 such that

2
0O<p—v=< e

Then setting ¢ := & (u —v) € (0, u,], we have

Hf-9||327y S ||f||35;;o 9”6;;';' (2.20)
for some proportional constant that only depends on p,.

V=< WUy.

NI~

Proof. Seti :=«k — %, and consider r > 2 such that % + Il? = % We also set v :=

Since i > «, we can first apply Lemma 2.14 to assert that

1F - 9l gen < 11 gz 9] s -

It now only remains to apply Lemma 2.13, which yields ”f”BE& < ”fHBZ’;o' |
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Hyperbolic Anderson Model 2 15
3 Smoothing Effect of the Wave Kernel

The wave kernel plays a fundamental role in the mild formulation of (1.6). In this section,
we investigate Strichartz-type inequalities for this kernel in the weighted Besov spaces

defined in Section 2.

3.1 Definition of the wave kernel

In the sequel, we will write G, for the wave operator on R?, generated by 8% — A. The
corresponding kernel will be denoted by G,. For d = 1, 2, the kernel G, has the following

explicit expression:

%1[|X|<t] ifdz ].,
Gx)=1{ 1 1 (3.1)

It is often easier to express G, in Fourier modes. Namely for a function g(t,x) we set

Fg(t, &) or g(t, &) for the spatial Fourier transform, defined by

9t &) = / e~ %€ gt x) dt
Rd

Then the expression for the Fourier transform of G, is

sin(t|§])

i £ eRE. (3.2)

G,() =

3.2 Strichartz-type estimates

The aim of this section is to quantify the smoothing effects of the operator introduced
in Section 3.1. We start by two propositions giving some information about the behavior
in time. Note that we are restricted to a spatial dimension d = 1, 2 for this section. We

first state a regularity estimate in dimension 1.

Proposition 3.1. Assume d = 1. Let u, > 0 be a given constant, and recall that G,
designates the wave operator. Consider 1 € [0, u,] and 0 <s <t < 1. Then, forall f € P,

we have

G = Gsif iy S 1t = slilf Nz (3.3)
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16 X. Chen et al.

where the proportional constant only depends on u, and p. As a consequence, for all

—co<a<landl <p,q< oo,

H{G; — gg}fllzgg;g Sle— Slllfllgg;g ' (3.4)
where the proportional constant only depends on n,, p, and q.

Proof. As in the proof Lemma 2.5, we write Definition 2.3 for the LP norm and recall
that G, admits the kernel G, given by (3.1). We get

p

4G, = 9 Iz = /R dx w, (x)

/}Rdy{Gt - Gx=y»fy)

Still like in Lemma 2.5, we insert the weight w, (y) and invoke the fact that Supp (G, —
G,) C [-2,2]. This yields

@)\ » 1P
/]R dy(w" - )p{Gt -~ Gs}<x—y>[wﬂ<y>5f(y>]‘

MG = GIfIEp = /R dx @)
" n

1 p
5/RdX’/RdyHGt—GS}(X—Y)HWM(Y)pf(Y)” ,

where the proportional constant only depends on p, and p.

Taking into account the expression (3.1) for d = 1, it is readily checked that
1G; — Gglipi ) < It —sl. (3.5)
Therefore, a direct application of Young's inequality (see also relation (2.5)) leads to

1{G: = G5\ Iy S G, = Gl IF Iy < 18 = sIPIFI, (3.6)

p D
Ly, ~ Ly,

which proves our claim (3.3).

As for (3.4), it now suffices to observe that for every ¢ > 0,

2N, # (G, = Golfllpp = 2“I(G, — Goh @y * Nl S 218 = slllgg + fllp -

Inserting this expression into the definition (2.10) of Besov norm, the desired inequality

is achieved. n
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Hyperbolic Anderson Model 2 17
We now turn to the corresponding property in the 2-dimensional case. We start
with a lemma that summarizes the distinction between the 1-d and the 2-d cases. To get
a quick understanding of this, recall from (3.5) that for d = 1
IG, — Gyl < It —sl,

while the same result for d = 2 reads

Lemma 3.2. Assume d = 2 and consider the kernel G, defined by (3.1). Then for all

0<s<t<1,wehave
1
”Gt_GSHLl Slt—slz. (3.7)
Proof. According to relation (3.1), for d = 2, we have

e

1 / ' 1 1
= — dx | —=1 -1
sHLl 21 Jg2 fe2 — 1x|2 Ix|2 {Ix|<t} /2 _ x|2 Ix|2 {Ix|<s}

1

dx 1
By _ |
s<lxl<t V2 — |x|2  Jixl<s | V/t2 —|x12 /52— |x|2

2

Next we use a polar change of coordinates and set r := = in order to get

6, - G / rdr [ arr _ !
¢ L~ 0 V2 —r2  Js2—r2
#q s? 1 1
- / ol L |
2 Vt2—r Jo Jt2—r Js2—r

Furthermore, since s < t, we have (s> — r)"1/2 > (t2 — r)~1/2 for r € [0, s%]. This yields

|G, — G”LIN/ / («/sz—r «/tzl—r).

We now simply integrate the right-hand side above in order to get (recall that we assume

s,t € [0, 1] for this lemma)
16— Gyl S (E+9)?2 = ¢=9) -9 St -7,

which proves our claim (3.7). |
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18 X. Chen et al.

As a direct consequence, we have the following result parallel to Proposition 3.1.

Proposition 3.3. Assume d = 2. Let 4, > 0 be a given constant, and recall that G,
designates the wave operator. Consider 4 € [0, u,] and 0 < s <t < 1. Then, forall f € I?,

we have

1Ge = Golf iy S 1E=s121f (3.8)

where the proportional constant only depends on u, and p. As a consequence, for all

—co<a<landl <p,q=< o0,
1
G = Gl llgsy S 1= 12 If sz 3.9
where the proportional constant only depends on u,, p, and q.

Proof. The proof follows exactly that of Proposition 3.1, except for replacing (3.5) by
relation (3.7). |

We now present our main result for this section, quantifying the smoothing

effect of G, in our Besov scale.

Proposition 3.4. In this proposition, the dimension parameter takes the values 1 or
2. As in Proposition 3.1, we consider a constant u, > 0 and the wave operator G,. Let

o, 1, p,q be four parameters with

-0 <a <0, 0<u<up, 1 <p<oo, 1 <qg<oo. (3.10)

Recall that the weighted Besov spaces are introduced in Definition 2.8. Then for all
t € [0, 1], it holds that

1 ifd=1
|Gaf 1 g zoan S Wf sz with pg o= (3.11)

ifd=2

N|—

and where the proportional constant only depends on p, g, and pu,.

Before starting the proof of Proposition 3.4, we label a technical lemma about

integrals of the wave kernel.
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Hyperbolic Anderson Model 2 19

Lemma 3.5. In the setting of Proposition 3.4, and for all t € [0,1],j > 0, y € R%, define
the quantity

ICg)(y) = 21'/’«1/ dz|G,(y — 272) — G,(y)|. (3.12)
: B,
Then it holds that
Supp ICE‘;) CB,,, and sup sup HIC;‘? |, < oo (3.13)
- j>0 telo,1] "
Proof. See Appendix. u

Remark 3.6. The presence of a 2/7¢ term in front of the integral in (3.12) is what will

guarantee a smoothing effect from B* to a B*™?4 space.

Proof of Proposition 3.4. We begin this proof like in Lemma 2.13. Namely, we introduce
a parameter L > 0 whose exact value is to be determined later on. Then we assume that
the construction of our weighted Besov spaces hinges on a function ¢, such that ¢ € D;
(where ¢ is defined along Notation 2.7).

Thanks to Theorem A.1 in the Appendix, we know that there exist two functions

Yo, ¥ € CF such that € D; and for every £ > 1 we have

‘Pe*g;fZ(Pe*Gt*f:Z(Gt*w*‘ﬁj)*(fpj*f), (3.14)

Jj=0

where we recall that G, is the wave kernel given by (3.1). In relation (3.14), recall that
we have assumed the supports of ¢, ¢, ¥, and ¥ to be all included in the unit ball B;.
However, the arguments could be easily extended to any supporting ball Bx. Let us now

split the above sum (3.14) into

D (Gyxgp )« (0pf) = D (Gpxpy k) % (9 %) + (G % @y %) x (9 % f)

Jj=0 O=j<t

+ Z(Gt * Qg k(@ f) =1, + I, + I, . (3.15)
j>t
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20 X. Chen et al.

Our inequality (3.11) is now easily seen to be reduced to prove

1/q
Z(a+pd)q q q q < vpn
(202 (12t + 112, + ||111@||Lﬁ)) < Wl - (3.16)

We will handle the 3 terms on the left-hand side of (3.16) separately.
Step 1: Bound on I,. With (3.11) and (3.16) in mind, our aim is to prove an inequality of

the form

(Zze(awd)q”IE”Zﬁ) < ”f”BZié" (3.17)

=0

Our first claim is that for 0 <j < ¢, we can write

_ - Yy ifj=0
Qg * 1//}- = (¥ * (ﬂg_j)j , Wwhere = . (3.18)
yoifj>1

Indeed, relation (3.18) is trivial whenever j = 0 (note that we have used the convention
go = g for any given g € C° in the right-hand side of (3.18)). For j > 1, the left-hand side

of (3.18) can be expressed as

(0 % ¥ () = 249 /R @ - @y dy, 3.19)
while the right-hand side of (3.18) has the form

@ #9);(0) = 2° /]R p@'x — 2y ) dy. (3.20)
Then an elementary change of variable z = 27y shows that (3.19) and (3.20) are equal.

Invoking (3.18), together with the change of variable 2/z — z, it is then readily
checked that for 0 <j < £ and y € R the term G, * ¢, * ¥; in (15) can be decomposed as

Grpx U = [ A2 wp @Gy =2 = [ dz (i g @Gy —272). 321

Let us take advantage of some cancellations in the right-hand of (3.21). Indeed, owing to
the fact that f]Rd ¢ (x)dx = 0 for all k > 0, we also have

Gt(Y)/ dz (¥ * ¢;)(2) = 0.
Rd
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Hyperbolic Anderson Model 2 21

Subtracting the above quantity to the right-hand side of (3.21), we get that for all £ > j,
(G * @ *x Y)(y) = /lR LAz g @Gy - 2772) - Gy}

In addition, observing Supp (¥ * ®¢—j) C By, we have that

Gy 9 % V) () = /B dz (J * 9,_)(@{G,(y — 2772) — G,(»)}. (3.22)

2
With (3.22) in hand, the key point now is that due to (2.3) one has easily, forall 0 <j < ¢,
19 % @p_jlloo S 2727, (3.23)

which follows from Lemma 2.6 directly. Therefore, using the notation introduced in
(3.12), we have obtained that

Gy gy % Y ()| < 270D 27IPa D (). (3.24)

Let us insert (3.24) in I, in order to upper bound this term. That is according to the

definition (15) of I,, it is obvious that

Lol < > /Rd dy (G, * ¢, * ¥ (V)1(; % ) (x — p)

0<j<¢t

—LU—=o—J (@
SOZZ2 72 “’d/Rdint,j W)l(gj +Hx =P
<j<

_ ) ~—1T d
< > 27k de[IC;J.)*l(pj*ﬂ](X). (3.25)
0<j<¢t

We are now ready to analyze the weighted LP norms of the function I,. To this
aim, we multiply (3.25) by 2¢©*#4) and compute the L] -norm given in Definition 2.3 for

w =< u,. We get

a+pq) Ua+pa) 9—Lt—)) g—jpag—je| gje || jo (@
olla+pg A < Z ol(a+pa)g Do—irdg Ja[zja”]CtJ *|‘pj*f|||L{j]
0<j<¢t

< Z 9=j)la+pa—L) [zja HICE,CJD % |(pj * f) ”Lﬁ] (3.26)
0<j<¢
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At this point, we can combine the results of Lemma 2.5, Lemma 3.5, and Young's

inequality to assert that

155 % ley 5 £l 2 S NKCET 1+ wid Pl 2 £1] o
d
= K57 1 w1y 5 £1] o

S e £l (3.27)

for some proportional constant that depends neither on j nor on t. Injecting this uniform

bound into (3.26), we deduce

tlat E=Platpa—L)| 9j
2 (o pd)”IZ”LIIi 5 Z 2( J)(e+pg )[2]0( ||(pj *f”LlIi:I i (328)
0<j<¢t

We shall recast the right-hand side of (3.28) as a discrete convolution. Namely,

if we set

. ojla+pg—L . oJ
u; =2/t and v, =2l % fllpLj=0)

and if %, refers to the discrete convolution in Z, then (3.28) can be written as
2tered) || S WUz V), (3.29)

The inequality above enables the application of Young’s inequality, similarly to what we
did in (2.16). We end up with

€ 25CHPDNL,Np | gy < I > ZOHPE7E g 1 > 2200y % £l ay - (3.30)

Let us finally pick L > p; + «, so that the above estimate yields

1/q
(Zze(awd)q”Ilngz) < ||f||zsg;:;f (3.31)

£>0

which is our claim (3.17) and the first part of relation (3.16).
Step 2: Bound on II,. Recall from (15) that I, = (G, * ¢, * ¥,) * (¢, * f). Our aim for this
step is to obtain inequality (3.31) for the sequence {II,, £ > 0}. Whenever £ = 0, we appeal
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again to Lemma 2.5 in order to write

1Mol p < Gy * 9o * Vol llwg * fllp S WG l@ollzy 1ol llgo * flige -

Furthermore, ||ggli;1, |Yoll;1 above are finite quantities. Since ¢ < 1, the norm ||G,||;1 is

also bounded, along the same lines as for (3.3). We thus get

Ioliz < ligo * flige s (3.32)

where the proportional constant only depends on p and u,.

For £ > 1, observe that similarly to (3.18) we have ¢, % ¥, = (¢ * ¥),. We can then
use the same arguments as in (3.21)—(3.24) (replace Po_j with ¢, ¥ with ¢ and j with ) to
derive that for all y € R,

— d
Gy %0 x Y)W S llo * Yllo2 4K ().
Just as in Step 1 (see (3.26)—(3.27)), this entails that for £ > 1,
d
24PN, | S 2K g e % Fllp S 2 Ngg * Fllge

for some proportional constant that only depends on p and p,. Summing the above
inequality over ¢ and applying Definition 2.8, we have shown the second part of relation
(3.16), that is,

1/q

1/q
(ZZE(W‘HOd)QHH[”Zﬂ) < (ZZ““ZIIW *f“Zﬁ) S W lisg - (3.33)

>0 >0

Step 3: Bound on IIl,. We now treat the term I, in (15). This will be done along the same
lines as for the other steps, and we thus skip some details of computation. First, since

II, involves a sum over j > £, we replace (3.18) by

- _ (po 1f€:0
@ *Yj = (@ *xY;_y),, where ¢ := )
o ife>1

Thus, for all j > ¢ and y € R, the equivalent of (3.21) is

Gy %9 % Y (y) = /R L d2@ 5 ;) (@)Gy(y — 2) = /R L dz@ vy @G,y —27'2).
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24 X. Chen et al.

Just as in Step 1, it holds that fR dz (¢ * Vi_)(2) =0 and Supp (¢ * Vi) CB, for

all j > ¢. Accordingly, relation (3.22) for the case j > ¢ becomes
(Gy* @ * Y)(y) = /Bz dz (¢ * ¥j_)(@){Gy(y — 272) - G,(»)}.
Next using the notation in (3.12), we obtain that for all j > £ and y € R,
(G @y x D) S 16 % ¥y ll02” T ().
In addition for the same reasons as for (3.23) and owing to the fact that ¢ € D;, we have
16 % Vj_plloo S 272070

Following the arguments in (3.26)—(3.28), we derive

I i . d
23(0(+ﬂd)||ﬂ[£”Lz < Zze(aJrﬂd)z LG—=0) 9—Lpa g—ja |:2J01 ”’Ci,z) * |(p], *f|||Lﬁ]

j>t
< T 02y« flyy] £ 225 oy e flyg] - 030
j>t Jj>1

At this point, remember that the pair (L, ¢;) has been arbitrarily chosen. Therefore, we
can a posteriori pick (L, ¢y) such that L > max(—«, pg + ) (which is also consistent with
the conditions exhibited in Step 1). Going back to (3.34), this puts us in a position to

apply Jensen inequality and assert that

25(a+0d)11||111' ”qp < o~ L4a)j| o(+0a 0% f|p !
¢ 74 J+e Ly,

>0 >0 “j>1

— il q
$ 2 22 2 gy o f g

£>0 j>1

q
<2 (2o Flig | S 11

£=0

Accordingly, we have obtained

1/q
(Zzi(a-i'pd)qnmellzﬁ) < ||f||zs;;g- (3.35)
£>0
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Step 4: Conclusion. By injecting (3.31), (3.33), and (3.35) into (3.14)—(15), we deduce that

for some suitable ¢, € C¢° satisfying Assumption (A ),

L(a+pa)
[ 252D, % Gif llp || oy S Il -

We are therefore in a position to apply the definition (2.10) of Besov norm and

assert that

_ L(a+
1Gef gt ram gy = €1 2 D0y % Gof lp | jaqey S Il (oo -

The desired inequality (3.11) is now a straightforward consequence of the equivalence

property stated in Proposition 2.9. |

We close this section by combining the previous results in order to obtain an

appropriate regularity result for the operator G,.

Corollary 3.7. We work under the same conditions as for Proposition 3.4. Namely,

consider the wave operator G;, a constant u, > 0, and set

1 ifd=1
Py = (3.36)
ifd=2.

N[

Let o, u, p, g be parameters such that (3.10) is fulfilled. Let « be an additional coefficient
in [0, pg4l. Then it holds thatforall0 <s <t <1,

1Ge = Gef g S 18 =1~ If sy (3.37)

for some proportional constant that depends only on p,.

Proof. The proof of this result, which is a standard application of interpolation
properties, is included here for the sake of completeness. Indeed, write « + x = (1 —
K K
2% T pa

P, qp = q; = q. We obtain

(o + pg)- Then apply inequality (2.12) with sy = o, 5, = a+p4,60 = l’)‘—d,p0 =p, =

1— s
1Ge = G ll g = 11(Gy = gs)f||35:§d 1(G; — Qs)fllg‘éw,ﬂ : (3.38)

p.q
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Next, for the first term on the right-hand side of (3.38), we apply (3.4) (for d = 1) or (3.8)

(for d = 2), while for the second term, we invoke (3.11) to write
(G — gg)f”B;‘;/’d'/‘ = ”gpf”Bgz/’dr“ + ”gsf”B;l‘;/’dr/‘ S Il

Going back to (3.38), our conclusion easily follows. [ |

Remark 3.8. In light of (3.37), the parameter p; can somehow be interpreted as the
maximal regularization effect one can obtain through G in either the time or the space
direction. On the one hand, maximizing time (i.e., Hélder) regularity in (3.37) reduces
to taking ¥ = 0, which indeed provides us with a p;-H&lder control. On the other hand,
maximizing space regularity in (3.37) clearly consists in taking « maximal, that is, x =
pg- The regularization effect of G will naturally be one of the key ingredients of the
subsequent analysis, and the value of p; in (3.36) will turn out to be the main reason

behind our restriction (1.8) on the noise.

Remark 3.9. The value of p; in (3.36) is undoubtedly optimal when d = 1. Indeed,
by taking «k = p, = 1, p = q = 2, and u = 0 in (3.37), one recovers the classical
+1 regularization effect of the wave operator. This optimality argument cannot be
extended to d = 2, since in this case p, = % < 1. Namely owing to our separation
of convolutions procedure borrowed from [10], our estimates are eventually reduced
to an upper bound for spatial increments of G contained in (3.13). Let us read this

estimate as

. 1
— 277 — <
/Bz dz |G,y —2772) — G,(y)| < TR (3.39)

The fact that p; = 1/2 in (3.39) for d = 2 is then due to the (t—|x|?)~!/2 singularity of the
wave kernel in (3.1), as explained in the Appendix. Therefore, the relation p, = % cannot
be avoided if one follows Rychkov's approach to smoothing of the wave kernel. In the
next future, we plan on exploring other strategies to Strichartz-type estimates, which
could possibly improve p; to 1 for d = 2 (although this improvement is not completely
clear to us at this stage). This being said, one should not forget that in contrast with the
classical Strichartz inequalities (see [6, Proposition 3.1]), the estimate (3.37) holds true
for a general class of weighted Besov spaces, which may account for the limited value

of p, in the statement.
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4 Young Wave Equation

This section aims to develop the Young-type integration theory that will allow us to
interpret and solve (1.6) pathwise in Section 5. For this goal, we will introduce an appro-
priate space of processes and define the Young wave integral in Section 4.1. Then we will

prove the well-posedness of the corresponding Young wave equation in Section 4.2.

4.1 Young wave integral

This subsection is devoted to introducing a convenient space of processes u, allowing
the definition of noisy integrals weighted by the wave operator. We start by giving a

new piece of notation.

Notation 4.1. Throughout the section, we fix two parameters a > 0 and b > 0. We then
set u; = a + bt.

Next we introduce the set of space-time functions, which will allow a proper

integration theory in our noisy context.

Definition 4.2. Fix T > 0 and let (i) 17 be a time-dependent weight as in Notation
4.1. Consider two parameters y,« € [0, 1]. Then we define €gI§O(T) as the set of functions
u:[0,T] x R — R for which the following norm is finite:

lu, — uS”BZgO‘

lullgys ) == sup lluglgns +  sup (4.1)

s€l0,T] 0<s<t<T [t —s|¥
For processes u in a space of the form ngo, let us define some Riemann sum
approximation of the integral fot Jg Gi_s(x, y)us(y)W(ds,dy). This definition is given

below.

Definition 4.3. Let P(x) = (1 + |x|?)~! be the polynomial given in (2.2) for d = 1. We
consider two regularity parameters «,6 € (0, 1) and an integrability parameter p > 2. Let
W be a noisy input that is #-Holder continuous in time with values in the weighted space
B;f;f; that is, W e ¢?([0, T); B;gf). In addition, let TT1" be the regular dyadic partition of
[0, T], whose generic element is t}}, = mT/2" for all 0 < m < 2". For u regular enough,
we define the following Riemann sum based on I17,

m—1

T = Gogp(ug Wy ), fort e (a1, th], (4.2)
k=0

where we recall that 3Wtﬂtﬂ+1 stands for Wtz“ - th.

€202 Iudy 90 U0 1s8n6 Aq 62260 | L/6E0PEUL/UIWIEEOL 0 L/I0P/S[OIHE-80UBAPE/UIWI/WOY"ANO"OILISPEDE//:SARY WO, PAPEOIUMOC



28 X. Chen et al.

We now state a proposition giving natural conditions such that the Riemann
sums (4.2) converge in the Young sense. This result will be the basic brick towards
a proper well-posedness of equation (1.6). For this statement we set, just as in

Corollary 3.7,

1 ifd=1
ifd = 2.

N|—

Proposition 4.4. Fix two times 0 < T < T,. Let y,0 be two time regularity parameters
and «, o be two space regularity parameters. Also consider p > d + 1. We assume the

following conditions.

(i) The coefficients y, 0, «,« all sit in the interval [0, 1], and we have

d a+1
k+a+y+A—pg) <0, y+0=>1, K>0l+5, J/<1—T- (4.4)

(ii) The process u is an element of S%’,'C';(T) as introduced in Definition 4.2, and
W belongs to C?([0, T7; B;f;ép).
Let now {7™;n > 1} be the sequence defined by (4.2). Then we have that 7™

converges in &) % (T). We denote

t
lim 7" =: / G, (u, dW,). (4.5)
0

n—oo

Moreover, the Young integral (4.5) verifies

H /0 G_,(u,dw,) = [19.(eo W = Wo) [ gy () + Cx, IWlleo o 7y, 1wl g )

350D
. (4.6)
where ¢r, >0 does not depend on T, u, and W.

Remark 4.5. As the reader will see, we will in fact prove a slightly stronger version of

relation (4.6): there exists a finite constant g = q(y,«,0,«,p) > 1 such that

H / G, di,)
0

35T

T 1
. . . q a7
=< ||g(u0 (WT - WO)) ||g;,go(T) + CTO ”W”CG([O,T],'BE,K;&P)(A ”u”g%/,;(o(r) dr) ’ (47)
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where ¢y, > 0 does not depend on T, u and W. Inequality (4.7) will be crucial in

our fixed point argument for the existence-uniqueness of a solution to (1.6).

Proof of Proposition 4.4. We shall prove the convergence of 7" thanks to an upper
bound on the difference J ™+ — 7. To this aim, let us denote §f;, for the increment
fi — f; of a function f. Furthermore, for the sake of clarity, consider two dyadic points
s =t} and t = t}}, for £ < m. Then an elementary manipulation on the expression (4.2)
for 7™ reveals that

ST =50y =L+ @9
where the terms I, ..., IV\"” are defined by (writing t;= t}”’l for notational sake),
m—1
n) _ y .
Iq~ = Z gt—tZk (autzkt2k+l 8Wt2k+1t2k+2)’
k=t
m—1
n) _ 7 .
Iy = Z {gt*tzkﬂ o gt*tZk}(utzkﬂ 8Wt2k+1t2k+2)’
k=t
-1
(n) _ _ 7 .
oy~ = Z {gt*tzk gsftzk}((sutzktzkﬂ 5T/Vtzkﬂtszrz)’
k=0
-1
(n) _ 2
IVSt - Z {gt*tzkﬂ - gt*tzk - gS*t2k+1 + gS*tZk}(utZk-H 8Wt2k+1t2k+2)'
k=0

We now upper bound the four terms above.
Step 0: A general bound on products. Recall that the (fixed) parameters a and b have

been introduced in Notation 4.1. Setting

a+bT, pro)
_z ’ 2 ’
1-5

/’L* = M*(T():p) = max (

it is readily checked that forall0 <s <t < T,

2
Mg < M*(l - 1—9) and g(ut — Ug) =< My (4.9)
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s

Consider our noisy input W and a function f € B; w for0 <s <t < T. Then we

claim that for s <r < v <t we have

”f : SWTV”BZ’;’” ”f”B" s ™41 |d+1 ” W||09 (o, T];Bl;"c‘,gp) ' (4.10)
! — S

for some proportional constant that depends only on u,, that is only on Ty and p (note
that we will no longer explicitly indicate such a dependence on (T, p) for the constants
arising in the rest of the proof).

To prove (4.10), observe first that, owing to (4.9), we are in a position to apply

our product rule (2.20) and assert that

1F - 8W s 00 5 1 gy [ s

where we have set g, = g(ut — ng) < i, Next we invoke Lemma 2.11 for the right-hand

side above, which allows to write

. 1 .
1 - W | e S F ns ————z 18 Wi | g
' Ty — g) P

from which (4.10) is easily deduced.
Step 1: Bound for I} For the term I.}” in the right-hand side of (4.8), let us first simply

write

25"

m—1
ngo” = ; ”gt*tzk (Sutzkhkﬂ 8Wt2k+1t2k+2) ”Bg’o‘ot : (4.11)

Then we apply (3.37), interpolating from a regularity (—«) to a regularity « and
considering the times t := ¢t — ¢y, and s := 0 (recall that G; = 0 owing to (3.1)). This
yields

m—1

B ut 5 It — t2k|pd7(K+a) ||8ut2kt2k+1 W

“I(n tok+1toks2 H B;’ig‘t
k=¢

(4.12)
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We are now in a position to resort to our general estimate (4.10), which gives

m— —no
(n) pa—(k+a) A
1167 g S 20 1= g1 (LY ST ax Wles o, mimpa) -
’ k=t ot =ty ] P
(4.13)

Invoking the Definition (4.1) for the norm in £} and rearranging terms, we thus get

m—1

n(y+6-1) -n pd—(k+a)—
g S 270 ||W||c9<[o,T1;B;‘é§><2 It = tor sl o luell gy« (t2k+1))
k=t

I

(4.14)

The last expression in the right-hand side above can be upper bounded by the

continuous integral
! pa—(cta)— L1
/ (t—v) 2 lullgrx o) dv. (4.15)
s 0
Therefore, (4.14) can be recast as

sy

st

t d+1
— - . — + 2T
B;,’O‘ot S 2 n(y+o l)”W”CQ([O,T];B;gf) /S (t— V)pd (K +a) D ||u||££g(o(v) dv. (4.16)

We now wish to apply Holder’s inequality to the integral term (4.15) above. Namely, for

r1,q; such that % + % = 1, we write

t d+1
— + =1
/ (& =) T ul gy dv
) |

t
< (/ (t—v)”“’“““’d;l)dv) (/ ||u||gw() ) ‘. 4.17)
S

In order to make the right-hand side of (17) finite, we need to have r; (o — (k +a) — %) >
—1. Now observe that thanks to the conditions in (4.4) we can successively guarantee
that

d+1 d+1
y—,od+/c+a+%<9—(1—%)<9—y§1.
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As a result, we can pick r; > 1 such that

d+1 1 d+1
y—pd+K+a+T<r— = n pd_(K+a)_T >—14+ry. (4.18)
1

With this set of parameters in hand, inequality (17) reads

1

t (k) dtL ety atiy 1T ar
(t =T gy gy dv S fe—s O () . dv
s 2,00 0 &™)

T 1
q1
t—sl|” @ d ,
| | (/0 ”u”(g;roo(v) v

where we have invoked (4.18) to derive the second step above. Plugging this inequality
into (4.16) and setting ¢, := ¥ + 6 — 1 > 0 (thanks to (4.4)), we end up with

N

1

q1

T
||Is(?) ”ng < 27 e S|y”W”09([o,T];B,;‘§5P) (/0 ”u”%;(v) dV) . (4.19)

Step 2: Bound for II;?). The computations are similar to those of Step 1, and we will just

highlight the main differences. First the equivalent of (4.11) is

m—1
”Hs(?) HBQO"O‘ = Z ”{gt—t2k+1 o gt—tzk}(utzk+1 8Wt2k+1tzk+z)HB§l’g‘C‘ :
k=¢

Then we invoke the regularity property (3.37) and the fact that t,;,; — ty = 27" in
order to get
m—1
(n) —n(pg—(k+a)) i
”Hst ”3'2(0“3 S 27mpaTeTe Z ”ut2k+1 5Wt2k+1t2k+2 “B;‘;’” !
k=¢ '

which is parallel to (4.12). We now repeat the arguments in (4.13)—(4.14), which yields

(n)
s | g e
m—1 1
—n . . —
<2 n@+pq (K+a))||W||CH([0,T];BEOO¢6P) (2 n Z — ||u||5;/,;(t2k+l)) . (4.20)
k=t |t —top gl P

+1

da
The Riemann-type sum in (20) can be upper bounded by fst(t —v) P ||u||52w W) dv.

+

Besides, recall from (4.4) that we have assumed 1 — % > y, and so there exists r, > 1
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such that L — £L ~ 5 Denoting b the (finite) conjugate of r,, we can go back to (20)
7D g by q, 2

and deduce

t
(n) —n(@+pg—1—(c+a) | 73 —44
”Hst HB;'gj < 2 n0+pa—1-(k a))||W“C"([0,T];B;,‘§'QP)/S t—v)y 2 ||u||€y,x w dv

—n@+pg—1—K+a)) | 17 ¢ — 2D
S 2 pd ”W”CQ([O,T],‘B;(;}P) (/ (t - V) p dV) (/ ”u”g}/ K ( ) )
! S

1 _d+l T
< 92— n(@+pg—1— (K+<X))”W”ce([0 1155 aP)|t—S|r2 3 (/0 ||u||gy,((v) dV) ,

which finally yields

, T %
5 | e < 272 ull gy, ||W||cg([0,ﬂ;8;;;)|t—sv( /0 ||u||gw()dv) : (4.21)

where e, :=0+p5 — 1 — (k + @) > y > 0 (thanks to (4.4)).
Step 3: Bound for ZZIS(;‘). The term IZIS(?) in the right-hand side of (4.8) is treated again as
in Step 1 and Step 2. Namely, applying once again (3.37), we get

-1
HIZTS(? H Byl Sl S|pd_(K+a) Z ’|8ut2kt2k+1 8Wt2k+1t2k+2 HBE‘&“‘ ’
. o .

Then we invoke the fact that u; < u, , forall k < ¢ —1 and we take advantage of the

time regularity of u and W, mimicking again (4.13)—(4.14). This allows to write

| s

<10t
BZ,oo
-1

S 27w,

(0,115, aP)lt — s|Pa— (o) (2_

d+1 ||u||£r (t2k+1))
k=0 |t — topiql P

Proceeding as in Step 2, we can upper bound the quantity into brackets by

t Cdn 1 _dunf (T %
/O(t—r) 2 llullgys ndr < T2 P /0 ||u||€”()dv

where g3 = g,. We end up with

lusg e

T 1
a3
KMt S 2" n€3|t - S|y”WI|CQ([O T].BPOKVP)(/ ”u”gl/'( ) dV) ’ (422)
11 Bp,0 0

wherees ' =y +6 -1 > 0.
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Step 4: Bound for V.. For the term IV\"”, we will bound the increment of G in two

different ways. Specifically, alleviate notations by setting

k ._ _ _
VSt T {gt—t2k+1 gt—tzk gS—t2k+1 + gS—tzk}(utzk-H 8Wﬂ2k+1t2k+2) '

Then on the one hand we have

”Vft H Byt = ” {gt—tzk+1 o gs_t2k+1}(ut2k+1 8Wt2k+1t2k+z) H Byt

+ ” {gtftZk - gsftzlc}(utzk_,_l 5Wt2k+1t2k+2)|

By
<t — P FO gy, ST, [ (4.23)
~ t2k+1 tok+1toky2 Bz,oém ' :

where we have invoked (3.37) for the second inequality. On the other hand, still using

(3.37), we also have

[Vsilggre = 1HGe-tan = Gr-end (Reners W) [ 350
+ ” {gs_tszr1 - gs—tzk}(utszr] 5Wt2k+1t2k+z) | ng‘;
< 27 Mpam ke ”ut2k+1 8Wt2k+1t2k+2 ”BZ_;M ) (4.24)

We now introduce an additional parameter 8 € (0, 1), whose exact value will be specified

later on. Combining (4.23) and (4.24), we get

tok+1t2k+2 ”B;‘;W :

-1
||IVS(';) ”ng < Z [|t _ Slﬂd‘(K-ﬁ-a)]ﬂ[z—n(l)d_(K-ﬁ—a))]l*ﬁ ” Usy ., S
' k=0

Along the same lines as for (4.13)—(4.14), we then let the reader check that we have

|V | g S 27 Pa—HaNA=P) |1 _ g|(pa=(c+a)p
2,00

-1

. 1
—n@-1) -n
x ”W”C*’([O,T];Bg,‘éf)z (2 Z dr1 ”u||€{,'§o(tzk+1)) - (429
k=0 |t — topq| P

We choose 8 € (0,1) such that (p; — (¢ + @))8 = y, which is compatible with our

assumption (4.4). Bounding the Riemann sum in (4.25) just as in Step 3, that is by

¢ T L
_d+l %7@ qa q4
/O(t—m Pllullgy ydr < 77270 (/0 ||u||52y’,;(v)dv) ,
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where q, = g3, we obtain

T
(n) —nea 1t |V ITA qa 4
|1V ”szgg <27t — ||W||cg([0,T];Bpgp)( /0 luligs dV) , (4.26)

with the notation ¢, = p; — (k + @) — y + 6 — 1. Notice that ¢, > 0 thanks to (4.4).
Step 5: Conclusion. Recall the decomposition (4.8). Then owing to (4.19), (4.21), (4.22),
and (4.26), we have obtained that forall0 <s <t < T,

T l
1 _ . q
HSJS(? ) sgm e 52 na|t—s|y||W||cg([0'T];Bp(é,op)(/o ||u||‘,§2y,K w dv) , (4.27)
2,00 ' ,00

..........

bound (4.27) also allows us to assert that forall0 <s < T,

T
m+1) _ () < o—ne| T q 4
|7 Je \B;,gng ||W||Cg([0,ﬂ;3pg;)( /O Iy, dv) ,

Recalling the definition (4.1) of the norm || - ||52y,x (1) We have thus established that

T
(n+l) _ sy —ney q 1
7 J ||52V"OO(T) <2 ”W”ce([o,T];Bpf;f)(/O ”ungzy,';(V) dV) . (4.28)

This shows that 7" is a Cauchy sequence in S;’C':O

(T), which concludes the proof of the
convergence statement.
Moreover, denoting (temporarily) the limit of 7™ by 7, we can use again (4.28)

to deduce

T =
) . q q
”‘7”5;,;(7’) =IJ ”5;';(0(1') +Cr, ”W”C"([O,T];BI;‘&P) (/0 ||u||gg’go(v) dV) '

for some constant ¢z, > 0, which exactly corresponds to the desired inequality (4.7). Also
remember that (4.7) is stronger than (4.6), and thus (4.6) holds as well. This finishes the
proof. |

Remark 4.6. To some extent, our search for a suitable interpretation of the integral
fot G, ,(u,dW,) in (4.5) can be compared with one of the main issues raised by the
analysis of the nonlinear model (1.10) in rough regimes (see e.g., [5, 7-9]). Indeed, by
applying the so-called Da Prato-Debussche trick to the dynamics in (1.10), one is almost

immediately led to the consideration of the integral fot G, ,(u,¥,)dr, where W refers to
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the solution of the underlying “linear” problem 3?¥ = AW + W. In case W is irregular
enough, the process ¥ can only be regarded as a negative-order distribution in the space
variable, which makes the problem of interpreting fot G,_,(u,¥,)dr of a similar nature
as the one for fot G, .(u,dW,) in (4.5). It should be observed, however, that the time
structure of ¥ strongly differs from the one of dW: while ¥ can be treated as a function
in time (see e.g., the proof of [7, Proposition 3.5]), dw only makes sense as a negative-
order distribution. This essential feature prevents us from using the classical Strichartz

estimates and fully justifies our above Young-type construction.

4.2 Well-posedness of the Young wave equation ford = 1,2

Recall that the wave operator G, has been introduced in Section 3.1. With the prelimi-
nary results of Section 4.1 in hand, equation (1.6) with initial conditions uy, u; will now

be written in the following mild sense:
t .
u; == (8,9),ug + G,uy +/ G, .(u,.dw,), (4.29)
0

In (4.29), the integral is interpreted in the Young sense, that is via Proposition 4.4.
The initial conditions in (4.29) have to satisfy some standard smoothness
conditions. Those conditions will be expressed in the usual Sobolev scale, for which

we introduce a new notation.

Notation 4.7. For every s > 0, we denote by H* = H5(R%) the usual Sobolev space of
order s, that is the set of functions f € L?(R%) such that

If 355 o= /Rd dg {1+ E 2P < oo

We now turn to our main abstract existence and uniqueness result. Let us recall

that we have set

1 ifd=1
ifd = 2.

Pg =

N[

Theorem 4.8. Assume d € {1,2}. Fix an arbitrary time T > 0, as well as parameters
y,0,k,a € [0,1] and p > 2 satisfying the conditions in (4.4). Assume that w belongs
to C?(lo, T],'B;éép) and pick (ug, u;) € H!™ x H*. Then equation (4.29) admits a unique

solution u in the space S%"K (T) introduced in Definition 4.2.

,00
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Before proving Theorem 4.8, we start with a technical lemma giving a control on

the terms related to the initial conditions.

Lemma 4.9. Under the assumptions of Theorem 4.8 and for all ¢ € [0, T], set

ul? = (9,9),uq + G,u,. (4.30)

Then u'® is an element of £} (T) and we have

,00

[ eyx oy S ol + lua s (4.31)

Proof. Let ¢ € D; denote the function involved in our definition of the spaces By
(see Definition 2.8 and Notation 2.10). As a preliminary step, observe that owing to

assumption (A ) and the fact that ¢ has compact support, one has

PE)] = ‘ / dx 6% (x)
Rd

= ‘/ dx {e™5% — 1}p(x)| < [£]¥,
Rd

where we have used the fact that « € (0,1). Hence for every j > 1,
15;6)| = [P78)| S 2777~ (4.32)

Now the weight w = e **| is smaller than 1. Thus, one can trivially bound the norm in

leu by the usual norm in L2 (Rd). Hence, invoking (3.2), we get

ey 1@9)e = @Dshuoll < (g% (©,6) = B G)sh#uo) |

< (/Rd de }@(s)}2| cos(t|&|) — cos<s|s|)}2|fo(é)|2) .

Combining this inequality with (4.32), this yields

1

lo; # ((3:9); — 0 Dhugl, S 27t —s] dé 1242 |ay ) [2)
1227 RA

<27t — s gl - (4.33)
Plugging (4.33) into the definition (2.10) of Besov norm, we end up with

113,6); — (3,9)s}uo|

g S 1= sI7 gl e - (4.34)
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In the same way, we have
”wj * (0,9)5Uq ”Lﬁs

1

< —~ 2 2~ 2 % < o—jk 2 |~ 2\ 2 < o—Jjk
< dé |9;(6)]"| cos(slED T[T @®)|7) <2 dé 151G (®)]") < 277 llugliggree.
R4 R4

Therefore, resorting to (2.10) again, we get supy.(o 7 || (3;9)suo| gons S lugllgaee. Gather-
4 2,00

ing this inequality with (4.34), we have thus shown that

” (8,9 uqg HE;;(T) S ” Ug ”HHK- (4.35)

Let us now handle the term G,u; in (4.30). It is treated similarly to (9,9);u, in

(4.33)-(4.35), and we omit the details for sake of conciseness. Let us just mention that
(4.33) is replaced by

2| sin(tl€]) — sin(s|£])|? A(§)|z)5

231
€12

o+ (G = Gw |5, S (/Rd ds |7(6)|

1

—JK 2 |~ 2?2

S 274t — s dg |&]| |u1(§)| .

Rd
Following the same steps as before, we then get

(22 HSZV,;(T) < HHK . (4.36)
Plugging together (4.35) and (4.36), we have thus proved our claim (4.31). ]

With Lemma 4.9 in hand, we now turn to the proof of our existence-uniqueness

result.

Proof of Theorem 4.8. Due to the expression (4.31) for the initial condition u©,
we will not use a standard argument based on patching solutions defined on small
intervals. Instead of that, our method will be based on Picard iterations. In other
words, we consider the sequence of processes (u(l))gZO defined as: for every t € [0, T1,
ugo) = (0,9);uo + G;u; and

t
ult = (8,0),up + G,uy + /0 G, @ dw,). (4.37)
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By combining the results of Proposition 4.4 and Lemma 4.9, we can immediately
guarantee that u'® is well defined in the space £} (T), for every £ > 0. We now divide
our proof into the existence and the uniqueness parts.

Existence. In order to show the convergence of u'® in &) (T), let us consider the
difference v\¥ := u“+) — y®, Owing to (4.37), it is clear that for every ¢ > 0 we have

V((f) = 0 and v¥ satisfies

t
O / G, W am,). (4.38)
0
We are here in a position to apply the estimate (4.7) and assert that, for all ¢ € [0, T]

"o (t—1)
WU o = 0p [ IV, der

where c; only depends on T and || W|| o and q is the (finite) parameter provided

(10,T1:B8,%5)"
by Proposition 4.4. Iterating this inequality, we deduce
t1 (C T)E
(©) ¢ ©0) ©) T
v ||5yK(T) = (cp) / / / v ||€yk(t) -dt, < |lv ”5”(7') T

which can naturally be recast as

(crT)7

Y = u Ol gy gy < 1u® = u@llgpe )=
' e

This proves that (u') is a Cauchy sequence in &} (T), and accordingly it converges to
some limit u. Letting ¢ tend to infinity in (4.37), a standard procedure reveals that u is
the desired solution to equation (4.29).

Uniqueness. The argument is essentially the same as above. Namely, if u,v are two

solutions, we have for all ¢ > 1,

. , (T te q (crT)*
”u_V”g;gco(T) < (CT) /0 /0 /0 “u_VHSZV";(te) dtl ”.dte = lu- VHSVK(T) VA

and we get the conclusion by letting ¢ tend to infinity. |
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Remark 4.10. With the above Young-type analysis of equation (4.29) in mind, it

becomes clear that the extension of our considerations to the nonlinear model

t
Uy = @) io + Gt + | Gyl uy) di (4.39)
0

should essentially reduce to a stabilization issue for the map u +— o(u) in the space
Eg’go(T). In other words, given o : R — R regular enough, the problem would here consist

in the exhibition of a suitable control function F, : R, — R, such that

lo @llegs 2y = Fo (Iullggs zy)- (4.40)

However, the derivation of such an estimate for the composition (or Nemytzkij) operator
turns out to be a highly nontrivial task in any fractional Sobolev setting (see for instance
the developments and results in [12, Chapter 5] for non-weighted Sobolev spaces).
Therefore, in order not to deviate from the objectives raised in [3], we have preferred

to postpone the analysis of the nonlinear model (4.39) to a future study.

5 Application to Gaussian Noises

In this section, we prove that the Gaussian noise whose covariance is defined by (1.2) is
an appropriate input for the wave equation. This amounts to prove that W sits in a space
of the form €?([0, T1, B;gf) as in Proposition 4.4. Before proceeding to the proof, we first
characterize the space Bp; *P thanks to simple properties of the Fourier transform. Let

us start by defining a useful Fourier-type operator.

Definition 5.1. Let f be a smooth enough function defined on R?, and recall that its
Fourier transform is denoted by Ff. For an arbitrary constant ¢ > 0 and s € (—o0, 1],

we set
If i=F (1 +c| B2 Ff).

We now upper bound norms in some weighted Besov spaces B thanks to the

Fourier operator J. This is summarized in the following Lemma.

Lemma 5.2. Consider p > 2 and s € (—oo, 1. Recall that the spaces L%, are given in
Definition 2.3 and the weighted Besov spaces Bls,'f; are introduced in Definition 2.8. Let
us also recall that we are working with the polynomial weight P(x) = (1 4 |x|'*9)~! and

the related Besov spaces BIS,',Z as in Lemma 2.11. Then there exists a constant ¢, > 0
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depending on p and d only such that

gz, S |76F (5.1)

p !
LP

where the operator 7} has been introduced in Definition 5.1.

Proof. The proof of this Lemma is basically borrowed from [10], to which we will refer
for further details. First going back to the definition (2.10) of Besov norms and invoking

the fact that || - [|yeqy) < Il - llppy) for 1 < p < 0o, we easily get that
S, < s,P .
sz, < W g
Next, write equation (2.10), which gives

1P, =D 2%P /R L AxP)I(@; )P
j=0

Byp
=/dde(x)(ZzsfPKsoj*f)(an) :/ddxpoo i = 291y prc0n,
R =0 R
Owing to the fact that || - lepayy < I llez vy for p > 2, we obtain
p
||f||‘;;,§ < /R ) de(x)(ZzZSf I(¢j*f)(x)|2)2 : (5.2)

j=0

Note that the right-hand side of (5.2) is exactly ||f||§srp (see (2.2) in [10] for the definition
p.2
of || - || zs»). Hence, (5.2) can be rephrased as
p4q

P =< P .
I hgge, < I ps

The estimate (5.1) now stems from the combination of [10, Theorem 2.18] and [10,

Theorem 1.10], which allows us to assert that for some suitable ¢, >0,

1Fllese < 17815z -
for some proportional constant that only depends on p and d. m

We now turn to a definition of our Gaussian noise allowing some proper

couplings for approximations. Namely, we will define W through a harmonizable
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representation of the form

X el)»t -1 Bx
Wy (x) := cq, s—— €7 B(dA,dp) . (5.3)
reR Jperd 3772

Here we use a parameter a, € (0,2), c, is some proper positive constant, and B is a

ap
complex-valued Gaussian random measure on B(R x R4) such that for any I, I, € B(R)

and A, 4, € B[RY),
E[B(I; x A1 =0, EIBUI, x A)BI, x Ayl =m(; NJ)u(A; NA,), (5.4)
where m is the Lebesgue measure on R and w(dp) is the spectral measure of a

nonnegative definite (generalized) function y (x). In order to get a real-valued noise, we

also assume that the Gaussian measure B is such that
B(I; x A)) =B (—(I; x A)) . (5.5)

It is readily checked from (5.4)—(5.5) that for an appropriate value of ¢, , the covariance

of W is (formally) given by
EIW,(x)W,(y)] = Ry, (t,9)y (x — y), (5.6)
with
R, (t,s) = %{mz—“o +[s|27%0 — |t — 5|20},

The definition (5.3) of W comes with a natural approximation by smooth

functions. Namely for n > 1 we define

. . etkt -1
Wi (%) 1= ¢, / / B(dh, dB) —5— e, (5.7)
AER J BEByn A2

where we recall that the balls By are introduced in Notation 1.2. We shall show that W"

converges to Wt(x) given in (5.3) in a proper space.

Theorem 5.3. Let gy € (0,2) and consider 6 € (0,1 — %). Let {W",t € [0, T),x € R} be

the field defined by (5.7). We assume the existence of a threshold parameter «; > 0 such
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that the measure u satisfies

20q+e¢
dB) < oo, foreverye > 0. (5.8)
/Rd(1+|ﬂ|) ndp Y

Then for all « > «,4 and p large enough, {W”,n > 1} forms a Cauchy sequence in the

space
1P(2:¢°(10, 71, B,22)),

with the limit denoted by W. The noisy input W satisfies the following properties:
(i) Almost surely we have W € C?([0, T],B;,‘éf).

(ii) The covariance function of W is given by (5.6).

Proof. In the sequel we will write sWZ = W} — WP to alleviate notations. We will
reduce our proof to moment computations thanks to two standard steps: (1) Invoking a
telescoping sum argument, the convergence of the sequence {W";n > 1} is implied by

the convergence of the series

S (& )" 59
Co([0,71,8,%) ' '

n=1

(2) Owing to a standard application of Garsia's lemma the following holds true: if we

assume that for each summand in (5.9) and for p > ﬁ, there exists ¢ > 0 such that
.

_ q1=2)p
i+l rim ([P lt—s|" 2
EI:HSW;lt _8W3‘|B£%P] 5 25—an (510)
then we also have
E[||Wn+1 _ Wn”P ] < 1 (5.11)
Co([0,71,8,%") 1 ~ 2¢enp :

Putting together (5.9) and (5.11), we are now reduced to prove (5.10).
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In order to upper bound the right-hand side of (5.10), we invoke (5.1), which can

be read

E [H(SW;;“ — W™

p
By

S /RM 1+ xiid +(|1;|1+d EHF‘I(U 1By F(WR - 3Wg))(x)‘p]_ (5.12)

In addition, W"*! —W™" is a Gaussian process and F is a linear transform. Hence, we get

. }5/ e (@r)P'?, (5.13)
R

ByuP a1+ |x|ttd

E [H(SW;;“ — W
where we have set
Ql(x) 1= EHFI ({1 +1 2 F(WET — SW;’;))(x))Z] .

Let us focus our attention on the evaluation of Q" above, defined for0 <s <t < T and

x € R%. To this aim, by simply writing the definition of Fourier transform, we get

Qs ) =/ / dedE e E9(1 4 |£2)72 (1 + )2} %
R2 JRd

x/d/ddydye—'s'ye'g'?E[{(sWs’;“ — SWi ) {swit! —(SW;}(f/)J. (5.14)
R JR

In addition, invoking relation (5.7) and the covariance structure of a complex valued

white noise, we obtain

E[{sW5"! — s Wi} () (W3t — SWEN@)] = et — 5270 / PV p(dp),

Byn+1\Ban

for some constant c. Plugging this inequality into (14) and carefully computing the

Fourier transforms reveals that

Qlk(x) = c|t—s|2*“0/ H(dp) (5.15)

Byn1\Byn {1+ 1BI12e

We now bound the right-hand side of (5.15): by setting ¢ := o — a; > 0, we get

u(dp) / 9 _¢ u(dp) “ne
e 1+ — <277, (5.16)
/an+1\an {1+ |'3|2}oz an+1\an{ P {1+ |/3|2}Otd+7
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where the inequality follows from the assumption (5.8). Reporting (5.16) into (5.15), we

have thus obtained

Qpx) S 27t — s[>,

Plugging this information into (5.13), this trivially yields our claim (5.10). Since we have
argued that the convergence of W" could be reduced to (5.10), we have proved that W"
converges in LP(; C?([0, T, Bp%)) for p > @. In particular, this proves item (i) in
our Theorem.

Finally, item (ii) in our Theorem can be proved by a standard procedure on

covariance functions from (5.7) to (5.6). The proof is concluded. [ |

Remark 5.4. For the special cases y(x) = ]_[f-i:1 |x;|7% and y(x) = |x|7% with q; €
(0,2),a € (0,2d), the spectral measures are u(dp) = ]_[?:1 1B;I~1=%) dB and u(dp) =
|BI~@=2 dg, respectively (Here we use the convention that for x € R, |x|~! := §(x)
where §(x) is the Dirac delta function and |x|~¢ := (|x|~%*2)” for a € (1,2) where the
second derivative is taken in the distributional sense. Similar convention also applies
for x € RZ.). If we use the notation a = Z?:l a;, condition (5.8) is verified for the optimal
threshold oy = 7.

Remark 5.5. In the current paper, we have chosen the harmonic representation (5.7) to
approximate the Gaussian noise, which is convenient in our setting. We could also have
used, similarly to what is done in [2], a sequence of mollifications wn = @, * W. This
second approach might be closer in spirit to our previous work [3], but is slightly more

cumbersome.

Let us recall that we have denoted by p; the regularization parameter exhibited

in Proposition 3.4, with explicit value

1 ifd=1
Pd =
ifd=2.

N|—

Proposition 5.6. Assume that d € {1,2}. Under the same setting as for Theorem 5.3,

assume that a; < p; and that condition (5.8) is satisfied for «; such that

1
0<ay < E(pd—ao). (5.17)
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Then there exist coefficients O < «,«,y,0 < 1 and p > d + 1 that satisfy (4.4) and such
that W e C?([0, T1; B;gép) almost surely. In particular Theorem 4.8 can be applied to the

noise I and equation (4.29) admits a unique solution in £} (T).

Proof. Thanks to condition (5.17), we can fix ¢ > 0 small enough so that ag < (pg —
ag) — 26,60 :=1-— % —¢e€l0,1] and « := a4 + ¢ € [0,1]. By Theorem 5.3, we know that
w e c¢?([o, T]; B;gép). Besides, observe that

a
9—a=1——0—ad—28>1—p—d.
2 2

We can thus pick two parameters p large enough and § > 0 small enough so that

d
f—a>1-PL2 L % L5 (5.18)
2 2p

We now consider «,y such that the second and third conditions in (4.4) are
fulfilled, of the form

d
K=a+1—9+8, andy=1—-0+34, (5.19)

for § > 0 small enough and p > 1 large enough. Notice that since we have «, 6 € [0, 1], we
also have «, y € [0, 1] whenever p is large and § is small. Moreover, for y as in (5.19), the

last condition in (4.4) is verified:

d+1

1— ==

It remains to prove that the first condition in (4.4) holds true. Towards this aim,

consider «, y as in (5.19) and compute
d d
K+Ol+)/+(1—,Od)=20t+5+1—9+23+(1—pd)=2—pd—2(9—01)+5+23+9.

(5.20)

In addition, resorting to (5.18), we have 2(6 —«) > 2 — p; + % + 26. Plugging this relation
into (5.20), we get

k+a+y+(1—pg) <.

This shows that the set of conditions (4.4) is satisfied and that W is an element of
c? (o, T); B;,‘&P). Our proof is achieved. [
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Our final result draws on Proposition 5.6 and gives conditions on ay, a when the

covariance function y (x) satisfies the scaling property (1.4).

Corollary 5.7. Assume that d € {1,2}. Under the same setting as in Remark 5.4, assume
that

a0+a<,0d. (521)

Then there exist coefficients 0 < «,«,y,0 < 1 and p > d + 1 that satisfy (4.4) and such
that W e ¢? ([0, T; B;,‘&',P) almost surely. In particular Theorem 4.8 can be applied to the

noise W and equation (4.29) admits a unique solution in Sé'lfo(T).

Proof. As noticed in Remark (5.4), condition (5.8) is satisfied by «; = % in this
situation. The desired result then follows from a straightforward verification that (5.21)
is equivalent to (5.17) when ay = 5. |
A

This Appendix summarizes some technical computations, which play a prominent role

in our Besov space considerations.

A.1 A local reproducing formula

We start by labelling a Theorem borrowed from [10, Theorem 1.6]:

Theorem A.1 (Rychkov). Let ¢, € C3° be such that [pa ¢(x) dx # 0. Then for any integer

L > 0, there exist two functions ¥, ¥ € C° such that:

(i) The function ' is an element of D;, where we recall that D; is introduced in
Definition 2.4

(ii) For every distribution f € D’, the following decomposition holds true in D’

F=2¢ix¥jxf.

j=0
A.2 Proof of Lemma 2.14

Recall that ¢, ¢; stand for the test-functions introduced in Notation 2.10, and consider

an arbitrary number L > 2. By Theorem A.1, there exist two functions v, ¥ € C° such
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that ¢ € D; and for every h € D/,

£>0

As in Lemma 2.6, for the sake of clarity, we will assume in the sequel that the supports
of 9o, ¢, ¥ and Yy are all included in the interval B;, but the arguments could be easily
extended to any supporting interval By.

Forall £,k > 0, let us set §,f := ¥, x¢p, xf and §; g := VY * ¢y *g. Owing to formula
(A.1), one can proceed similarly to (15) and split ¢; * (f-g) as

0ix(f-9 =D ¢;xGf -89 = L+1I;, (A.2)
£,k>0

where the terms I; and I; are defined by

L= > @xGf 89, L= > @ *@f 89. (A.3)
£,k>0 £,k>0
0<¢{<max(j,k) ¢>max(j,k)

We now bound I; and II; in two different steps.
Treatment of I;. We first bound each term ¢; x (§,f - §;9) in the sum defining I; in (A.3).
That is, resorting to (2.5) together with the fact that ¢; is bounded in L', we get

Io; * 5ef - 5kl S 18 - 519l zp -

Let us now consider p;,p,.it;, ity as in (2.18). A standard application of Holder's

inequality shows that

18ef - 8 gllzp, = 18uF Nl 22 18kl ez -

Next for each block §,f, §,g, we use the fact that v, is bounded in L! (uniformly in ¢), the

expression (2.10) for the norm in Besov spaces, and Young's inequality. We get
. < galo—pBk w
18f 8kg||Lﬁ S22 ”f”Bpl,'g‘ol ”g”Bﬁ’;&' (A.4)
Summarizing our considerations so far, we have obtained
ok (8,f -8 < 2927 Pk| £, o
lp; * (oS kg)lng S ”f”Bpl,o@ ”9”552%

for a proportional constant that only depends on u,. Reporting this estimate into the

sum (A.3) defining I;, we end up with

Lo—Bk
150, S Wl gl gpz > 2viahk, (A.5)
£,k>0
0<¢{<max(j,k)
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Let us upper bound the sum in the right-hand side of (A.5). Splitting the summation in

a straightforward way, we get

DI IERD IS I I
£,k>0 0<k<j 0=<t<j k>j 0=<(<k
0<{<max(j,k)

<200 27k L N gk < g g <2
k>0 k>0
where we have used the fact that 8§ > « (see (2.18)). Going back to (A.5), we have thus

obtained
17' P <2 J —a,p By - (A.6)

Treatment of II;. As in the previous step, we first analyze a single term ¢; x (8,f - §;9).
In the regime ¢ > max(j, k), we write the definition of convolution product and apply

Fubini in order to get

(¢ * [8ef - 8r9]) (%) = / dy ¢;(x — y) [ * (@ )]0 [V * @k * 9] (¥)

- / dz / dv (@, * £)(2) @ * 9) (VK (x, v, 2), (A.7)

where we have set
Kige(x,v,2) 1= / dy¢;(x — )V (y — 2y — v). (A.8)

Let us further investigate the term K;;, defined in (A.8). Resorting to a change of

variable y := y — z and expressing the scalings in the functions ¢ and , we have
Ko (x,v,2) = / dy ¥, (V)9 ((x — 2) — PPy + (2 — V)
= 240 / dy v (2'p)e@ (x — 2) - Zy)y 2'y + 28z - v))

= 240+0 / dy v (e (x —2) — 27Dy @ Py + 2%z - vy,

where the last identity stems from another elementary change of variable y := 2%y. For
m > 0, we now introduce the indicator function y,, = le—m+1' Thanks to the fact that

the support of both ¢ and v is a subset of B, for £ > max(j, k), we end up with
K (x,v,2) = 2900y (x — 2) 3. (2 — v)

X / dy v (e@(x —z) — 27 Dy)yy 2Py 4 25z —v)). (A.9)

We now proceed as for (2.8)—(2.9), invoking the fact that v € D; and using a Taylor
expansion for y — ¢(2/(x — z) — 2= Dy)y (2K (z — v) + 2P y). We let the reader check
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that we get

‘ / Ay y (e (x — 2) = 27D y)y 25z —v) + 27 Py g 27 Km0,

for some proportional constant that does not depend on j,k, ¢. Taking the above

inequality into account in (A.9), this leads to

K (x, v, 2)| S 200HO-LEmmaxGRD s (x — 2) iy (2 — v) . (A.10)
Let us go back to (A.7) with (A.10) in hand. This allows to write
’(goj 5 [8,f - 5kg])(x)( < 2 HmaxG RGO R, (), (A.11)
where the function ffjke can be expressed as
B0 = [ dz [ avi0,+ @11+ 91y~ 20tz = v).

We now express Izjkg as a convolution product thanks to elementary changes of variable.
Specifically, setting z:=x —zand v =x — z — v, we get

Ko (x) = / dz |, * ) (x — 2)|x;(2) / dv | (@) * 9)(x — 2 — V) (V).
Hence it is easily seen that

Ky () :/dz|(¢£*f)(X_Z)|Xj(Z)[Xk* oy * gl](x — 2)

= [Xj * [|‘Pz 1+ [xx * oy *QI]H(X) :

We plug the above formula into (A.11). Then our expression with convolutions

allows the application of (2.5), as in the previous step. We first get
loj % [8F - 819l 5 274G (2 14) 2% kg, 5 £1 - [t b % 1]

Then thanks to Holder's inequality, we obtain

p-
Ly

o+ 8 - 8x9] 1 < 270D lgy s | 1 (2% i * ooy 91 122) -
Then owing to (2.5) again and similarly to (A.4), this yields
—L(¢—max(j,k —pk
;% [8ef - 8g)lp S 27 M TmexGAD 2t 1l 19 g (A.12)
where the proportional constants only depend on pu,.

We can now proceed as in (A.5)—-(A.6). That is we plug (A.12) into the definition
(A.3) of I;. This yields

) —L(¢t—max(j,k)) nal o—pk
1l S W e Il e D 2 2002~ Pk, (A.13)

£,k>0
¢{>max(j, k)
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Then we split the sum in the right-hand side above and take into account the fact that

B > a,L > «a in order to obtain

z 2—L((Z—max(]',k))2a£2—ﬁk — Z z—ﬂk Z 2—L(Z—j)2a£ + z z—ﬂk z 2—L(Z—k)2a5

£,k=0 0<k<j £>j k>j >k
{>max(j k)
— 20(] Z zfﬂk Z 27(L7<x)€ + Z 27(/370()]6 Z 27(L70l)£
0<k<j >0 k>j >0

<20 4 2= (B=ef < 29
Resorting to this inequality in (A.13), we have obtained
Il 2 S 2aj||f||lg;1a&1 ||g”l35'2’f§o . (A.14)
Conclusion. We simply gather (A.6) and (A.14) into (A.3) and (A.2). This yields
g% - Dl S 271f 5 eam 19N g -

Owing to the definition (2.10) of norms in Besov spaces, we thus easily get the fact that
f - g sits in By o)" and that (2.19) holds. This finishes the proof.

A.3 Proof of Lemma 3.5

Case d = 1. Invoking the definition (3.1), one has here
_i 1
Gy =272 = G) = S{1 122120 — Lyyi<n} - (A.15)

Whenever |z| < min{2/t1t, 2}, a careful analysis of the intervals at stake reveals that

Liy-2z<0 = Lipi=n| S Liy-az2-sien + Liy+oi=2diz)
S Yy—tz2st) T Ljpag<ainy - (A.16)

Furthermore, if 2!t < |z| < 2, then t < 27 and

y—2iz120 — Lipi=a| S Liy-2-9z1=0 + L= S Liyizzov2) - (A.17)

Combining the bounds (A.16)-(A.17) with the expression (A.15), we obtain
Pl =2 [ar [ asley -2 e
R |z]<2
s? /R dy {1y—g<a-i+1) + Lipreczn) + Lipp<zreny}

S ZJ/Rdyluy\szﬂ”} < ZJ/Rdyl{\szszl} S /R dy 1iyi<ayr

which naturally corresponds to the desired uniform bound.
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Case d = 2. Let us denote the difference within the integral as

A, (¥) =Gy —2772) — G,(y)
1 1

= ; Ly \y2-iz=0) — ———175 Lit—|y|~0) - (A.18)
(t2 _ Iy—Z*lez)l/z {t=ly—2772|>0} (t2 _ |Y|2)1/2 {t=ly|>0}
For every z € B,, we can write
/ dy |A;; (0| = / , dy |A;;, (¥ + / - dylAg i, (¥)l
R? {ly—277z|<|yl} {lyl<ly—27Jzl}
= / , dylAy; (Wl + / , dy IAt,j,Z(y+2‘jz)I
{ly—277z|<|yl} {ly+277z|<|yl}
=1;;(2) + 1 j(—2), (A.19)
where we have set
It,j(z) ::/ ) dY |At,j,z(Y)|-
{ly=27z|<|yl}
Let us split the latter expression into
It'j(z) =/ ) dY |At,jlz(Y)|
{t<ly—277z|<|yl}
+ / , dy |A;;, (¥ + / , dy |4, (V)
{ly—277z|<t<|yl} {ly—277z|<|yl<t}
= It(;.) (2) + It(j.) (2) + It(?j) (2). (A.20)

We will now treat those three terms separately.
Given the expression (A.18) of At (V) it is readily checked that It(}.) (z) = 0. Next

for the term It(? (2), we notice that for every z € B,,

dy dy

@
T .(z)=/ : =/ —— (A2]1)
" (y—2-z<t=lyl) (82 — |y — 27212)"%  Jupi<izipr2izy (2 — |y12)"?

dy

< . r
/{max(O,tZ_j+1)<|Y|<t} (tz - |Y|2)1/2

<1 /t rdr 1 /t rdr
~ 0 2-Jj+1 - __1/9 2—j+1 . 3179
{0<t< Yo (2 - 742)1/2 {t> " (t2 _ 7‘2)1/2

t2

<1 / ds +1 /tz ds
~ —j+1 E———T —j+1 —_—
{0§t§2 7 } 0 (tz _ S)1/2 {t>2 7 } (t—27j+1)2 (tz _ S)I/Z

S Ligegegitny b+ Lpoggin (82 — (£ — 270TH)2)1/2 < 2774l 4 (77 Hgl/2)
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which immediately entails that

2)

HOEE RS (A.22)

sup sup It(
z€Bj tel0,1]

Finally, for every z € B,,
1 1
78(z) = / dy' _
tJj {ly—2-7z|<|y|<t} (tz — |y — 2_JZ|2)1/2 (tz _ |y|z)1/2

o I o
{ly—277z|<|y|<t} (tZ _ |y|2)1/2 (t2 _ |Y _ 2—jz|2)1/2

_ / dy / dy
(y-2z<lyl<t) (€2 — y|2)"?  Jupi<iy+2zi<n (82 — |p|2)"/?
dy
= /]RZ @ 172" [Liy—2z1<ip1<t) = Lyi<iy+2z1<a]- (A.23)

At this point, the key observation is that

Liy—2z1<iyi<ty = Yiyi<iy+29z1<t) = Yyi<t=iy+2-92))- (A.24)
Indeed, the difference 1(,_s-j, < \yj<s} — Liyi<iy+2-z1<y I8 strictly positive if and only if
ly—27z <yl <t and (yl=ly+27z or |y+27z >¢)

It turns out that we cannot have simultaneously |y —277z| < |y| and |y| > |y +27z|, since
it would imply that —2 7ty .z + 27%|z2 < 0 and 27 *ly . z 4+ 27%|z% < 0, leading to an
immediate contradiction. Thus, the difference 1y, _5-j, - |yj<t) = L{y|<|p+2-7z < 1S strictly

positive if and only if
ly—27z <|y| <t and |y+27z >t

which immediately yields (A.24).
Injecting (A.24) into (A.23), we obtain for every z € B,,

@) dy
7P (z) < S S— i
tj @ = /Rz (2 |p2) 2 ri<tslys2 el

We are here in the same position as in (A.21), and so we can use the same estimates as

above to derive that uniformly over z € B, and t € [0, 1],
102 S 278, (A.25)
Plugging (A.22) and (A.25) into (A.20), we see that
sup sup 7, ;(2) < 2_%,
z€By te(0,1]

which, going back to decomposition (A.19), easily leads us to the assertion (3.13).
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