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We study a wave equation in dimension d ∈ {1, 2} with a multiplicative space-time

Gaussian noise. The existence and uniqueness of the Stratonovich solution is obtained

under some conditions imposed on the Gaussian noise. The strategy is to develop some

Strichartz-type estimates for the wave kernel in weighted Besov spaces, by which we

can prove the well-posedness of an associated Young-type equation. Those Strichartz

bounds are of independent interest.

1 Introduction

In [3], we have started a long-term project aiming at defining wave equations driven by

rough noises. More specifically, [3] focused on the following Skorohod-type equation on

R+ × Rd for d ∈ {1, 2, 3}:

∂2u
∂t2 (t, x) = "u(t, x) + u $ Ẇ(t, x), (1.1)

where $ stands for the Wick product and where Ẇ is a centered Gaussian noise. In [3],

the covariance function for Ẇ was fractional in time with proper decay in space. That
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is for s, t ∈ R+ and x, y ∈ Rd we had

E[Ẇ(s, x)Ẇ(t, y)] = |s − t|−a0γ (x − y), (1.2)

where a0 ∈ [0, 1) and γ is a nonnegative and nonnegative definite (generalized) function

admitting a spectral measure µ. Then we obtained that under appropriate conditions

on the initial conditions, the following relation is necessary and sufficient in order to

solve (1.1):
∫

Rd

(
1

1 + |ξ |

)3−a0

µ(dξ) < ∞. (1.3)

Notice that (1.3) quantifies how irregular in space our noise can be according to its

regularity in time. In particular, if the function γ in (1.2) satisfies the scaling property

γ (cx) = c−aγ (x) (1.4)

for some a ∈ (0, d], then condition (1.3) can be recast as

a0 + a < 3 . (1.5)
In the current paper, we will contrast the neat condition obtained in (1.3) with

the situation for a pathwise version of the wave equation (interpreted in the Young or

Stratonovich sense). Namely, we consider the following Stratonovich-type wave equation

on R+ × Rd for d ∈ {1, 2},

∂2u
∂t2 (t, x) = "u(t, x) + uẆ(t, x), (1.6)

with initial conditions u(0, x) = u0(x) and ∂
∂tu(0, x) = u1(x). The Gaussian noise we

consider in (1.6) also has the covariance (1.2) with γ being a nonnegative definite

(generalized) function. We prove the following result on the existence and uniqueness

of the Stratonovich solution to (1.6) (see Proposition 5.6 and Corollary 5.7 for a precise

account).

Theorem 1.1. Assume d ∈ {1, 2} and the spectral measure µ of W verifies

∫

Rd

(
1

1 + |ξ |

)ρd−a0−η

µ(dξ) < ∞ for some η > 0, (1.7)

where the parameter ρd is such that ρ1 = 1 and ρ2 = 1
2 . Then, under some regularity

conditions on u0 and u1, there exists a unique Stratonovich solution to (1.6) in a proper
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Hyperbolic Anderson Model 2 3

path space. If γ has the scaling property (1.4), condition (1.7) is equivalent to





a0 + a < 1, if d = 1,

a0 + a < 1
2 , if d = 2.

(1.8)

It is well known that Stratonovich solutions to stochastic PDEs demand a

more regular noisy input Ẇ than in the Skorohod setting. And indeed in our case,

it is readily checked that (1.5) is less restrictive than (1.8). In fact, for d ∈ {1, 2},
(1.5) is automatically fulfilled as soon as a0 ∈ [0, 1) and the covariance function γ is

nonnegative (which implies a ∈ (0, d], see [3, Remark 1.4]). Nevertheless, Theorem 1.1

gives the first condition on a0 and µ(dξ) in order to get a unique pathwise solution to

(1.6). In addition, as the reader will see, our main result also unifies the treatment for

d = 1 and d = 2.

Let us mention some recent progress, obtained by methods that are completely

different from ours, towards the definition of the stochastic wave equation in a

pathwise sense.

(i) As far as we know, the first pathwise developments for a stochastic wave equation can

be found in [11], dealing with the one-dimensional case. Based on the specific expression

of the wave kernel for d = 1, the strategy therein relies on a natural preliminary rotation

of the model, which turns (1.6) into a more tractable equation in the plane R2. It is then

established that when one injects a noise of the form (1.2)–(1.4) within the new equation

(thus corresponding to a “rotated” noise for the original equation), the interpretation

and well-posedness can be obtained for all a0, a ∈ (0, 1). Unfortunately, this preliminary

transform of the model—which will not occur in our direct approach—essentially rules

out the possibility to compare the interpretation in [11] with ours, and accordingly to

compare the conditions in [11] with those in (1.8).

(ii) The recent publication [1] focuses on the wave equation with a noise Ẇ independent

of time. The condition obtained in [1] is

∫

Rd

1
1 + |ξ | µ(dξ) < ∞, (1.9)

which is equivalent to a < 1 when γ has the scaling property (1.4). A time-independent

noise being morally equivalent to a0 = 0, in this situation our condition (1.8) can be read

a < 1 for d = 1, and a <
1
2

for d = 2.
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Our condition on a is thus slightly suboptimal for d = 2 if one compares it to (1.9),

although our method is currently the only one accommodating for a time-dependent

noise (see Remark 3.8 for further details about the suboptimality issue). Let us also

mention that [1] relies on chaos expansions for Stratonovich integrals. This strategy is

interesting in its own right and very different from the pathwise considerations in the

current paper.

(iii) Some attention has been paid recently to models of wave equation with additive

noise and polynomial nonlinearities, that is, equations of the form

∂2u
∂t2 (t, x) = "u ± up + Ẇ, (1.10)

with an additive fractional noise Ẇ and an integer p ≥ 1. In this context, renormal-

ization procedures are implemented for instance in [5, 7–9], yielding existence results

for (1.10) in case of a rough noise Ẇ (see Remark 4.6 for a quick comparison with the

present developments about (1.6)).

As one can see, the study of wave equations in a rough setting is still wide

open. Our contribution aims at a better understanding of the Young regime within this

landmark.

As mentioned above, instead of the Skorohod setting advocated in [3], the

stochastic differential in (1.6) is interpreted in the Stratonovich sense. This forces to a

totally different approach, which is based on pathwise-type considerations. We briefly

elaborate our strategy below.

We will solve the wave equation under its so-called mild form, which will be

properly introduced in (4.29). The main technical issue will thus be to understand the

meaning of integrals like

∫ t

0
Gt−r(urdẆr), (1.11)

where u is a candidate solution, Gt stands for the wave operator at time t, and where Ẇ

is our noisy input. Since we wish to interpret (1.11) as a Young integral, we will see it as

the limit of a sequence of paths {J (n)
t ; t ∈ [0, T]} defined by

J (n)
t :=

m−1∑

k=0

Gt−tn
k
(utn

k
δẆtn

k tn
k+1

), for t ∈ (tn
m−1, tn

m] , (1.12)

where tn
m = mT/2n for 0 ≤ m ≤ 2n and δẆtn

k tn
k+1

= Ẇtn
k+1

− Ẇtn
k
. Our most important

endeavour is thus to quantify the smoothing effect of the operator Gt−tn
k

in (1.12), through

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad039/7109229 by guest on 06 April 2023



Hyperbolic Anderson Model 2 5

the exhibition of a specific control suited for our purpose. We will call such a control

a Strichartz-type inequality, in reference to the classical estimates on the action of the

wave operator (see e.g., [6]).

Our findings concerning Strichartz-type estimates, which are new and should be

considered as one of the main contributions of the current paper, blackare summarized

in Proposition 3.4 below. Roughly speaking, if B( designates a weighted Besov space

with regularity ( ≤ 0, we claim that

‖{Gt − Gs}f ‖B(+) ! |t − s|1−)‖f ‖B( , for all ) ∈ [0, 1], if d = 1,

and ‖{Gt − Gs}f ‖B(+) ! |t − s|1/2−)‖f ‖B( , for all ) ∈ [0, 1/2], if d = 2.
(1.13)

In contrast with the classical Strichartz estimates, these bounds feature two new

fundamental aspects. blackFirst, they offer a Hölder-type control (in time) on the action

of G, a key ingredient toward a successful Young integration procedure. Secondly, they

involve Besov spaces with weights, which is crucial in order to deal with a noise like Ẇ

defined on the whole space. black

Our considerations are based on a weighted version of Littlewood–Paley analysis

introduced by Rychkov in [11]. This approach is convenient when one wishes to handle

kernels with polynomial decay in Fourier modes such as Gt. This explains in particular

why we have decided to stick to [11] instead of using the more recent method advocated

in [4].

We close this section by highlighting some possible generalization of our work:

(i) In the current article, we have focused on a noisy term of the form uẆ in (1.6) for

sake of conciseness. We firmly believe that a noise term σ (u)Ẇ with a smooth enough

σ could also be covered by our approach, at the price of longer technical considerations

(see Remark 4.10 for further details).

(ii) The treatment of rougher noises is expected to rely on higher-order expansions of

the model, together with renormalization procedures. These challenging developments

may require the adaptation of some ideas from regularity structures theory or paracon-

trolled calculus in the wave setting.

(iii) The Strichartz-type estimate alluded to above are based on convolution estimates

for functions. In order to reach d = 3 or above, those estimates should be extended to

measures or distributions. At the moment, this is still an open problem for us.

The rest of this paper is organized as follows. In Section 2, we recall some

preliminaries on weighted Besov spaces. The smoothing effect of the wave kernel in

weighted Besov spaces is obtained in Section 3. It is then applied to study a Young-type
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6 X. Chen et al.

equation associated with (1.6) in Section 4, where we define Young wave integration

and prove the well-posedness of the Young-type equations. In Section 5, we apply the

result on the Young-type equation obtained in Section 4 to our wave equation (1.6) and

obtain the existence and uniqueness of the solution under condition (1.8). Finally, in

Appendix A, we provide details for some results used in the preceding sections.

Notation 1.2. For r = (r1, . . . , rd) with ri ∈ N and x = (x1, . . . , xd) with xi ∈ Rd, we set

|r| =
d∑

i=1

ri, r! = r1! . . . rd! , xr = xr1
1 . . . xrd

d , Drf (x) =
(

∂

∂x1

)r1

. . .

(
∂

∂xd

)rd

.

For a generic continuous function ϕ defined on Rd, we set ϕj(x) = 2djϕ(2jx). We use

BR(x) to denote the open ball in Rd centered at x with radius R > 0, that is, BR(x) = {y ∈
Rd; |y − x| < R}, and in particular we set BR := BR(0). Finally, we denote by C∞

c the set of

smooth and compactly-supported functions on Rd.

2 Weighted Besov Spaces

Equation (1.6) will be solved in some properly weighted Besov spaces. In fact for a sharp

analysis of the wave kernel properties (in Section 3), we have found convenient to use

the general setting introduced by Rychkov in [11]. This setting has the advantage to

cover a large class of weights. The current section is mostly dedicated to recall the main

elements of the latter article.

2.1 Weighted Besov spaces

In this section, we construct and give some basic properties of the weighted Besov

spaces used for the wave equation.

Let us first recall the definition of the class Aloc
p of weights, which was

introduced in [10].

Definition 2.1. We call weight any locally integrable and strictly positive function w :

Rd → R+. Next for every 1 < p < ∞, we define Aloc
p as the set of weights w for which

‖w‖p,loc := sup
|I|≤1

1
|I|p

( ∫

I
w(x) dx

)( ∫

I
w(x)

− p+
p dx

) p
p+

< ∞ , (2.1)

where p+ refers to the Hölder conjugate of p, I = [a1, b1] × · · · × [ad, bd] with ai < bi for

i = 1, . . . , d and |I| = ∏d
i=1 |ai − bi|.
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Hyperbolic Anderson Model 2 7

As pointed out in [10], this general class Aloc
p of weights consists of the classical

Ap weights (see e.g., [13]) and the locally regular weights that grow/decay at most

exponentially at infinity. In particular, for 1 < p < ∞, Aloc
p includes the following

exponential and polynomial weights that we will use in this paper:

wµ(x) := e−µ|x| for µ ∈ R, and P(x) :=
(
1 + |x|d+1)−1 . (2.2)

Remark 2.2. Throughout the study and for the sake of conciseness, we shall make a

slight abuse of terminology and call P in (2.2) a polynomial weight, as a shortcut for

inverse polynomial or rational-function type weight.

For a generic weight w, we introduce the notion of weighted Lp space, which will

be at the heart of our analysis.

Definition 2.3. Let w be a weight function in the space Aloc
p for p > 1. For a function

f : Rd → R, we set

‖f ‖Lp
w

:=
(∫

Rd
|f (x)|p w(x) dx

)1/p

.

Whenever wµ(x) = e−µ|x| is an exponential weight, we write Lp
wµ

:= Lp
µ.

We also label a notation for functions with centered moments in the definition

below.

Definition 2.4. For every integer L ≥ 0, we denote by DL the set of functions ϕ ∈ C∞
c

such that for each multi-index r with 0 ≤ |r| ≤ L, one has

∫

Rd
xrϕ(x) dx = 0 . (2.3)

The compatibility of weights with convolution products is a crucial and basic

feature for a proper Besov analysis. We state and prove a lemma in this sense.

Lemma 2.5. Fix two constants µ∗, K > 0. Then for all 0 ≤ µ ≤ µ∗ and ϕ ∈ C∞
c such that

Supp(ϕ) ⊂ BK , one has

∥∥ϕ ∗ f
∥∥

Lp
µ
!

∥∥|ϕ| ∗
[
w1/p

µ |f |
]∥∥

Lp , (2.4)
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8 X. Chen et al.

for some proportional constant that only depends on p, K, and µ∗. In particular, the

following compatibility relation holds true:

∥∥ϕ ∗ f
∥∥

Lp
µ
! ‖ϕ‖L1‖f ‖Lp

µ
. (2.5)

Proof. We start by writing the Lp
µ-norm of ϕ ∗ f according to Definition 2.3,

∥∥ϕ ∗ f
∥∥p

Lp
µ

=
∫

Rd
dx wµ(x)

∣∣∣∣

∫

Rd
dy ϕ(x − y)f (y)

∣∣∣∣
p

.

We now insert the weight wµ(y) in order to get

∥∥ϕ ∗ f
∥∥p

Lp
µ

=
∫

Rd
dx

∣∣∣∣

∫

Rd
dy

[(wµ(x)

wµ(y)

) 1
p
ϕ(x − y)

][
wµ(y)

1
p f (y)

]∣∣∣∣
p

≤
∫

Rd
dx

∣∣∣∣

∫

Rd
dy

∣∣∣∣

(wµ(x)

wµ(y)

) 1
p
ϕ(x − y)

∣∣∣∣
∣∣∣wµ(y)

1
p f (y)

∣∣∣
∣∣∣∣
p

. (2.6)

Recall that Supp(ϕ) is a subset of BK . Hence for all x, y ∈ Rd, we have

∣∣∣∣

(wµ(x)

wµ(y)

) 1
p
ϕ(x − y)

∣∣∣∣ ≤ eµK/p|ϕ(x − y)|.

Plugging this inequality into (2.6), we immediately get (2.4), which ends our proof. "

In order to implement the partition of unity necessary for a proper definition of

Besov spaces, we state a technical lemma about convolutions of rescaled functions.

Lemma 2.6. Fix an integer L ≥ 0. Let ϕ, ψ ∈ C∞
c and suppose ψ ∈ DL, where we recall

that DL is introduced in Definition 2.4. Next for every j ≥ 1, recall from Notation 1.2 that

we have set ϕj(x) := 2djϕ(2jx), ψj(x) := 2djψ(2jx). Then for all 0 ≤ j ≤ - and 1 ≤ r ≤ ∞, it

holds that

∥∥ϕj ∗ ψ-

∥∥
Lr ! 2

dj
(
1− 1

r

)

2−L(-−j) . (2.7)

Proof. In order to ease our notation, let us agree on the following convention:

For the sake of clarity, we assume from now on that the supports of functions in C∞
c

are all included in the unit ball B1.
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Hyperbolic Anderson Model 2 9

We first prove inequality (2.7) for the case 1 ≤ r < ∞. Writing the definition of the

convolution product and performing the change of variables 2-y → y and 2jx → x,

one gets

∥∥ϕj ∗ ψ-

∥∥r
Lr =

∫
dx

∣∣∣∣

∫
dy 2djϕ(2j(x − y))2d-ψ(2-y)

∣∣∣∣
r

= 2dj(r−1)

∫

B2

dx
∣∣∣∣

∫

B1

dy ψ(y)ϕ(x − 2−(-−j)y)

∣∣∣∣
r

.

Next invoke the fact that ψ ∈ DL in order to write

∥∥ϕj ∗ ψ-

∥∥r
Lr

=2dj(r−1)

∫

B2

dx
∣∣∣∣

∫

B1

dy ψ(y)

[
ϕ(x − 2−(-−j)y) −

∑

0≤|k|≤L−1

Dkϕ(x)

k!
(−2−(-−j)y)k

]∣∣∣∣
r

. (2.8)

Furthermore, thanks to classical considerations on remainders for Taylor expansions,

for x, y ∈ B2, we have

∣∣∣∣ϕ(x − 2−(-−j)y) −
∑

0≤|k|≤L−1

Dkϕ(x)

k!
(−2−(-−j)y)k

∣∣∣∣ ! 2−L(-−j). (2.9)

Plugging (2.9) into (2.8), this proves (2.7) for 1 ≤ r < ∞.

For the case r = ∞ in (2.7), we have similarly

ϕj ∗ ψ-(2
−jx) =

∫
dy 2djϕ(2j(2−jx − y))2d-ψ(2-y) = 2dj

∫

B1

dy ψ(y)ϕ(x − 2−(-−j)y)

= 2dj
∫

B1

dy ψ(y)

[
ϕ(x − 2−(-−j)y) −

∑

0≤|k|≤L−1

Dkϕ(x)

k!
(−2−(-−j)y)k

]
,

and (2.7) follows from (2.9). This finishes the proof. "

Eventually, we will define a bump-type function adapted to the construction of

our Besov-type spaces.

Notation 2.7. Pick an arbitrary function ϕ0 ∈ C∞
c . Then we denote by ϕ the function

defined for x ∈ Rd by

ϕ(x) := ϕ0(x) − 2−dϕ0

(x
2

)
.
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10 X. Chen et al.

Also recall that, for every continuous function g : Rd → R and j ≥ 1, we set gj(x) :=
2djg(2jx) for all x ∈ R.

We are now ready to give a precise definition of the Besov spaces considered in

this article, which is borrowed from [11, Definition 2.4].

Definition 2.8. Consider a function ϕ0 ∈ C∞
c and the corresponding ϕ as in Notation

2.7. For any fixed length L, we assume that
∫

Rd ϕ0(x) dx -= 0 and ϕ ∈ DL. Otherwise stated

we have,

∫

Rd
ϕ0(x) dx -= 0, and

∫

Rd
xrϕ(x) dx = 0 , for |r| ≤ L . (Aϕ)

Then for all −∞ < s ≤ 1, all 1 < p < ∞, and 1 < q ≤ ∞, we define the space Bs,µ
p,q(ϕ0) as

the completion of C∞
c with respect to the norm

‖f ‖Bs,µ
p,q(ϕ0) :=

( ∑

j≥0

2jsq∥∥ϕj ∗ f
∥∥q

Lp
µ

) 1
q

. (2.10)

At first sight, it seems that the spaces Bs,µ
p,q(ϕ0) depend on the specific function

ϕ0 we have chosen. The following Proposition, borrowed from [10, Corollary 2.7], shows

that the Besov spaces do not exhibit this kind of dependence.

Proposition 2.9. Let ϕ0, ϕ̃0 ∈ C∞
c be two functions satisfying Assumption (Aϕ ), and fix

µ∗ > 0. Then there exist two constants cϕ0,ϕ̃0,µ∗ , Cϕ0,ϕ̃0,µ∗ > 0 such that for all −∞ < s ≤ 1,

all 0 ≤ µ ≤ µ∗, and 1 < p, q < ∞, we have

cϕ0,ϕ̃0,µ∗‖f ‖Bs,µ
p,q(ϕ̃0) ≤ ‖f ‖Bs,µ

p,q(ϕ0) ≤ Cϕ0,ϕ̃0,µ∗‖f ‖Bs,µ
p,q(ϕ̃0) . (2.11)

Since Proposition 2.9 states that the Besov spaces do not depend on the

particular choice of ϕ0, one might just fix a particular ϕ0 and consider the corresponding

spaces B. This convention is labeled below.

Notation 2.10. From now on, we fix a function ϕ0ϕ0ϕ0 ∈ C∞
c satisfying (Aϕ ) and consider

the scale of spaces Bs,µ
p,q := Bs,µ

p,q(ϕ0ϕ0ϕ0), for 1 < p < ∞, 1 < q ≤ ∞, −∞ < s ≤ 1, and µ ∈ R.
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Hyperbolic Anderson Model 2 11

2.2 A few properties of the weighted Besov spaces

We now collect a few basic facts about Besov spaces, whose role for our existence and

uniqueness result will be crucial.

First, most of our weights w in the sequel are exponential. However, we also

deal occasionally with polynomial weights. The lemma below gives a link between those

classes.

Lemma 2.11. Let µ∗ > 0 be a fixed constant. Consider the polynomial weight P(x) and

the family {wµ, 0 < µ ≤ µ∗} of exponential weights given in (2.2). Then, for 1 < p <

∞, 1 < q ≤ ∞ and s ∈ R, we have

∥∥f
∥∥

Bs,wµ
p,q

! µ
− d+1

p
∥∥f

∥∥
Bs,P

p,q
,

where the multiplicative constant on the right-hand side depends on µ∗ only.

Proof. Invoking the fact that 0 < µ ≤ µ∗, it is readily checked that

e−µ|x| ! P(x)

{
1{|x|<1} + 1

µd+1
1{|x|≥1}

}
! P(x)

µd+1

{
µd+1

∗ + 1
}

.

Inserting this inequality into the definition (2.10) of Besov norms, our claim is achieved

in a straightforward way. "

Interpolation inequalities are part of the basic toolkit of Besov spaces. In our

weighted context, we can state the following result.

Lemma 2.12. Consider nine parameters s, s0, s1 ∈ (−∞, 1], p, p0, p1 ∈ (1, ∞) and

q, q0, q1 ∈ (1, ∞]. We suppose that there exists . ∈ [0, 1] such that

s = (1 − .)s0 + .s1 ,
1
p

= 1 − .

p0
+ .

p1
,

1
q

= 1 − .

q0
+ .

q1
.

Then for every µ ∈ R, it holds that

∥∥f
∥∥

Bs,µ
p,q

≤
∥∥f

∥∥1−.

Bs0,µ
p0,q0

∥∥f
∥∥.

Bs1,µ
p1,q1

. (2.12)

Proof. The proof is achieved by standard Hölder-type inequalities. It is left to the

reader for the sake of conciseness. black "
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12 X. Chen et al.

We next move to an embedding property, which will be an important step in our

analysis.

Lemma 2.13. We consider six parameters 1 < p < p+ < ∞, −∞ < ) + < ) ≤ 1, and

0 ≤ µ < µ+ ≤ µ∗. Assume that the following relation holds true,

) = ) + + d
(

1
p

− 1
p+

)
, and µ+ = p+

p
µ . (2.13)

Then for the Besov spaces introduced in Definition 2.8, it holds that

∥∥f
∥∥

B)+ ,µ+
p+ ,∞

!
∥∥f

∥∥
B),µ

p,∞
, (2.14)

for some proportional constant that only depends on µ∗ (as far as weight parameters

are concerned).

Proof. Consider an integer L ≥ 1, the exact value of which will be determined later on

(namely we will see that L = L(), ) +) depends on (), ) +) only). Recall that we have defined

our Besov spaces based on a function ϕ0 as in Notation 2.10. By Theorem A.1 in the

Appendix, we know that there exist ψ0 ∈ C∞
c and ψ ∈ DL such that

ϕj ∗ f =
∑

-≥0

(ϕj ∗ ψ-) ∗ (ϕ- ∗ f ) . (2.15)

Observe that we have assumed the supports of the ϕ and ψ functions to be

subsets of B1, and so we have Supp (ϕj ∗ ψ-) ⊂ B2 for all j, - ≥ 0. Hence, we can use

(2.4) to assert that

∥∥(ϕj ∗ ψ-) ∗ (ϕ- ∗ f )
∥∥

Lp+
µ+

!
∥∥|ϕj ∗ ψ-| ∗ |w

1
p
µ (ϕ- ∗ f )|

∥∥
Lp+ ,

for some proportional constant that only depends on µ∗. We can then invoke the

classical Young inequality for convolution products to derive

∥∥(ϕj ∗ ψ-) ∗ (ϕ- ∗ f )
∥∥

Lp+
µ+

!
∥∥ϕj ∗ ψ-

∥∥
Lr

∥∥w
1
p
µ (ϕ- ∗ f )

∥∥
Lp !

∥∥ϕj ∗ ψ-

∥∥
Lr

∥∥ϕ- ∗ f
∥∥

Lp
µ

(2.16)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad039/7109229 by guest on 06 April 2023



Hyperbolic Anderson Model 2 13

where r is defined through the relation 1
r + 1

p = 1 + 1
p+ . Going back to (2.15), we deduce

that for every j ≥ 0,

∥∥ϕj ∗ f
∥∥

Lp+
µ+

!
∑

-≥0

∥∥ϕj ∗ ψ-

∥∥
Lr

∥∥ϕ- ∗ f
∥∥

Lp
µ
! ‖f ‖B),µ

p,∞

∑

-≥0

2−)-
∥∥ϕj ∗ ψ-

∥∥
Lr .

We now split the sum above into - ≤ j and - > j. We also assume ϕ ∈ DL in

Definition 2.8. Then we apply Lemma 2.6 in two different ways according to those two

cases (recall that (2.7) is valid for j ≤ -). This yields,

∥∥ϕj ∗ f
∥∥

Lp+
µ+

! ‖f ‖B),µ
p,∞

[ ∑

0≤-≤j

2−)-
∥∥ϕj ∗ ψ-

∥∥
Lr +

∑

->j

2−)-
∥∥ϕj ∗ ψ-

∥∥
Lr

]
,

! ‖f ‖B),µ
p,∞

[ ∑

0≤-≤j

2−)-2d-(1− 1
r )2−L(j−-) + 2dj(1− 1

r )
∑

->j

2−)-2−L(-−j)
]

.

Performing the change of variables j − - → - and - − j → - in the two sums above, we

thus get

∥∥ϕj ∗ f
∥∥

Lp+
µ+

! ‖f ‖B),µ
p,∞

[
2−j()−d(1− 1

r ))
∑

0≤-≤j

2−(L−)+d(1− 1
r ))- + 2−j()−d(1− 1

r ))
∑

->0

2−(L+))-

]
.

Now remember that 1 − 1
r = 1

p − 1
p+ , so that ) − d(1 − 1

r ) = ) + according to (2.13). We thus

have obtained that

2) +j∥∥ϕj ∗ f
∥∥

Lp+
µ+

! ‖f ‖B),µ
p,∞

[ ∑

0≤-≤j

2−(L−) +)- +
∑

->0

2−(L+))-

]
. (2.17)

Let us now pick L > max(−), ) +) in (2.17). We have obtained

2) +j∥∥ϕj ∗ f
∥∥

Lp+
µ+

! ‖f ‖B),µ
p,∞ ,

where the proportional constant depends on (L, ), ) +) only. To conclude, we simply

recall that

‖f ‖B)+ ,µ+
p+ ,∞

= sup
j≥0

2) +j∥∥ϕj ∗ f
∥∥

Lp+
µ+

,

from which our claim is easily deduced. "

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad039/7109229 by guest on 06 April 2023



14 X. Chen et al.

In order to handle the wave equation (1.6), we will have to multiply the candidate

solution u with the distribution-valued noise Ẇ. The lemma below ensures a proper

definition of this kind of product in the Young sense. Its proof is deferred to the

Appendix (Section A.2).

Lemma 2.14. Fix µ∗ > 0. Let (, / ∈ (0, 1], p, p1, p2 ∈ (1, ∞) and µ, µ1, µ2 ∈ [0, µ∗] be

such that

( < /,
1
p

= 1
p1

+ 1
p2

, and
µ

p
= µ1

p1
+ µ2

p2
. (2.18)

Consider f ∈ B−(,µ1
p1,∞ and g ∈ B/,µ2

p2,∞. Then it holds that

∥∥f · g
∥∥

B−(,µ
p,∞

!
∥∥f

∥∥
B−(,µ1

p1,∞

∥∥g
∥∥

B/,µ2
p2,∞

, (2.19)

for some proportional constant that only depends on µ∗.

We close this section by rephrasing relation (2.19) in a way that turns out to be

more convenient for our later computations.

Corollary 2.15. Fix µ∗ > 0. Consider some parameters µ, ν ∈ [0, µ∗], (, ) ∈ (0, 1] and

p > 2 such that

0 < µ − ν ≤ 2µ∗
p

, ν ≤ µ∗
(
1 − 2

p

)
, ) > ( + d

p
.

Then setting ε := p
2 (µ − ν) ∈ (0, µ∗], we have

∥∥f · g
∥∥

B−(,µ
2,∞

!
∥∥f

∥∥
B),ν

2,∞

∥∥g
∥∥

B−(,ε
p,∞

, (2.20)

for some proportional constant that only depends on µ∗.

Proof. Set )̄ := ) − d
p , and consider r > 2 such that 1

r + 1
p = 1

2 . We also set ν̄ := r
2ν ≤ µ∗.

Since )̄ > (, we can first apply Lemma 2.14 to assert that

∥∥f · g
∥∥
B−(,µ

2,∞
!

∥∥f
∥∥

B)̄,ν̄
r,∞

∥∥g
∥∥

B−(,ε
p,∞

.

It now only remains to apply Lemma 2.13, which yields ‖f ‖B)̄,ν̄
r,∞

! ‖f ‖B),ν
2,∞

. "
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3 Smoothing Effect of the Wave Kernel

The wave kernel plays a fundamental role in the mild formulation of (1.6). In this section,

we investigate Strichartz-type inequalities for this kernel in the weighted Besov spaces

defined in Section 2.

3.1 Definition of the wave kernel

In the sequel, we will write Gt for the wave operator on Rd, generated by ∂2
tt − ". The

corresponding kernel will be denoted by Gt. For d = 1, 2, the kernel Gt has the following

explicit expression:

Gt(x) =






1
21[|x|<t] if d = 1,
1

2π

1
√

t2 − |x|2
1[|x|<t] if d = 2.

(3.1)

It is often easier to express Gt in Fourier modes. Namely for a function g(t, x) we set

Fg(t, ξ) or ĝ(t, ξ) for the spatial Fourier transform, defined by

ĝ(t, ξ) =
∫

Rd
e−ıx·ξ g(t, x) dt .

Then the expression for the Fourier transform of Gt is

Ĝt(ξ) = sin(t|ξ |)
|ξ | , ξ ∈ Rd . (3.2)

3.2 Strichartz-type estimates

The aim of this section is to quantify the smoothing effects of the operator introduced

in Section 3.1. We start by two propositions giving some information about the behavior

in time. Note that we are restricted to a spatial dimension d = 1, 2 for this section. We

first state a regularity estimate in dimension 1.

Proposition 3.1. Assume d = 1. Let µ∗ > 0 be a given constant, and recall that Gt

designates the wave operator. Consider µ ∈ [0, µ∗] and 0 ≤ s < t ≤ 1. Then, for all f ∈ Lp
µ,

we have

‖{Gt − Gs}f ‖Lp
µ
! |t − s|‖f ‖Lp

µ
, (3.3)
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16 X. Chen et al.

where the proportional constant only depends on µ∗ and p. As a consequence, for all

−∞ < ( ≤ 1 and 1 < p, q ≤ ∞,

‖{Gt − Gs}f ‖B(,µ
p,q

! |t − s|‖f ‖B(,µ
p,q

, (3.4)

where the proportional constant only depends on µ∗, p, and q.

Proof. As in the proof Lemma 2.5, we write Definition 2.3 for the Lp norm and recall

that Gt admits the kernel Gt given by (3.1). We get

‖{Gt − Gs}f ‖p
Lp

µ
=

∫

R
dx wµ(x)

∣∣∣∣

∫

R
dy {Gt − Gs}(x − y)f (y)

∣∣∣∣
p

.

Still like in Lemma 2.5, we insert the weight wµ(y) and invoke the fact that Supp (Gt −
Gs) ⊂ [−2, 2]. This yields

‖{Gt − Gs}f ‖p
Lp

µ
=

∫

R
dx

∣∣∣∣

∫

R
dy

(wµ(x)

wµ(y)

) 1
p
{Gt − Gs}(x − y)

[
wµ(y)

1
p f (y)

]∣∣∣∣
p

!
∫

R
dx

∣∣∣∣

∫

R
dy

∣∣{Gt − Gs}(x − y)
∣∣∣∣wµ(y)

1
p f (y)

∣∣
∣∣∣∣
p

,

where the proportional constant only depends on µ∗ and p.

Taking into account the expression (3.1) for d = 1, it is readily checked that

‖Gt − Gs‖L1(R) ≤ |t − s| . (3.5)

Therefore, a direct application of Young’s inequality (see also relation (2.5)) leads to

‖{Gt − Gs}f ‖p
Lp

µ
! ‖Gt − Gs‖

p
L1‖f ‖p

Lp
µ
! |t − s|p‖f ‖p

Lp
µ

, (3.6)

which proves our claim (3.3).

As for (3.4), it now suffices to observe that for every - ≥ 0,

2-(‖ϕϕϕ- ∗ {Gt − Gs}f ‖Lp
µ

= 2-(‖{Gt − Gs}(ϕϕϕ- ∗ f )‖Lp
µ
! 2-(|t − s|‖ϕϕϕ- ∗ f ‖Lp

µ
.

Inserting this expression into the definition (2.10) of Besov norm, the desired inequality

is achieved. "
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Hyperbolic Anderson Model 2 17

We now turn to the corresponding property in the 2-dimensional case. We start

with a lemma that summarizes the distinction between the 1-d and the 2-d cases. To get

a quick understanding of this, recall from (3.5) that for d = 1

‖Gt − Gs‖L1(R) ≤ |t − s| ,

while the same result for d = 2 reads

Lemma 3.2. Assume d = 2 and consider the kernel Gt defined by (3.1). Then for all

0 ≤ s < t ≤ 1, we have

∥∥Gt − Gs
∥∥

L1 ! |t − s| 1
2 . (3.7)

Proof. According to relation (3.1), for d = 2, we have

∥∥Gt − Gs
∥∥

L1 = 1
2π

∫

R2
dx

∣∣∣∣
1

√
t2 − |x|2

1{[x|<t} − 1
√

s2 − |x|2
1{[x|<s}

∣∣∣∣

!
∫

s<|x|<t

dx
√

t2 − |x|2
+

∫

|x|<s
dx

∣∣∣∣
1

√
t2 − |x|2

− 1
√

s2 − |x|2

∣∣∣∣ .

Next we use a polar change of coordinates and set r := r2 in order to get

∥∥Gt − Gs
∥∥

L1 !
∫ t

s

r dr√
t2 − r2

+
∫ s

0
dr r

∣∣∣∣
1√

t2 − r2
− 1√

s2 − r2

∣∣∣∣

!
∫ t2

s2

dr√
t2 − r

+
∫ s2

0
dr

∣∣∣∣
1√

t2 − r
− 1√

s2 − r

∣∣∣∣ .

Furthermore, since s < t, we have (s2 − r)−1/2 > (t2 − r)−1/2 for r ∈ [0, s2]. This yields

∥∥Gt − Gs
∥∥

L1 !
∫ t2

s2

dr√
t2 − r

+
∫ s2

0
dr

(
1√

s2 − r
− 1√

t2 − r

)
.

We now simply integrate the right-hand side above in order to get (recall that we assume

s, t ∈ [0, 1] for this lemma)

‖Gt − Gs‖L1 !
(
(t + s)

1
2 − (t − s)

1
2

)
(t − s)

1
2 ! (t − s)

1
2 ,

which proves our claim (3.7). "
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18 X. Chen et al.

As a direct consequence, we have the following result parallel to Proposition 3.1.

Proposition 3.3. Assume d = 2. Let µ∗ > 0 be a given constant, and recall that Gt

designates the wave operator. Consider µ ∈ [0, µ∗] and 0 ≤ s < t ≤ 1. Then, for all f ∈ Lp
µ,

we have

‖{Gt − Gs}f ‖Lp
µ
! |t − s| 1

2 ‖f ‖Lp
µ

, (3.8)

where the proportional constant only depends on µ∗ and p. As a consequence, for all

−∞ < ( ≤ 1 and 1 < p, q ≤ ∞,

‖{Gt − Gs}f ‖B(,µ
p,q

! |t − s| 1
2 ‖f ‖B(,µ

p,q
, (3.9)

where the proportional constant only depends on µ∗, p, and q.

Proof. The proof follows exactly that of Proposition 3.1, except for replacing (3.5) by

relation (3.7). "

We now present our main result for this section, quantifying the smoothing

effect of Gt in our Besov scale.

Proposition 3.4. In this proposition, the dimension parameter takes the values 1 or

2. As in Proposition 3.1, we consider a constant µ∗ > 0 and the wave operator Gt. Let

(, µ, p, q be four parameters with

− ∞ < ( ≤ 0, 0 ≤ µ ≤ µ∗, 1 < p < ∞, 1 < q ≤ ∞. (3.10)

Recall that the weighted Besov spaces are introduced in Definition 2.8. Then for all

t ∈ [0, 1], it holds that

∥∥Gtf
∥∥

B(+ρd,µ
p,q

! ‖f ‖B(,µ
p,q

, with ρd :=





1 if d = 1

1
2 if d = 2

, (3.11)

and where the proportional constant only depends on p, q, and µ∗.

Before starting the proof of Proposition 3.4, we label a technical lemma about

integrals of the wave kernel.
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Lemma 3.5. In the setting of Proposition 3.4, and for all t ∈ [0, 1], j ≥ 0, y ∈ Rd, define

the quantity

K(d)
t,j (y) := 2jρd

∫

B2

dz
∣∣Gt(y − 2−jz) − Gt(y)

∣∣ . (3.12)

Then it holds that

Supp K(d)
t,j ⊂ Bt+2, and sup

j≥0
sup

t∈[0,1]

∥∥K(d)
t,j

∥∥
L1 < ∞. (3.13)

Proof. See Appendix. "

Remark 3.6. The presence of a 2jρd term in front of the integral in (3.12) is what will

guarantee a smoothing effect from B( to a B(+ρd space.

Proof of Proposition 3.4. We begin this proof like in Lemma 2.13. Namely, we introduce

a parameter L ≥ 0 whose exact value is to be determined later on. Then we assume that

the construction of our weighted Besov spaces hinges on a function ϕ0 such that ϕ ∈ DL

(where ϕ is defined along Notation 2.7).

Thanks to Theorem A.1 in the Appendix, we know that there exist two functions

ψ0, ψ ∈ C∞
c such that ψ ∈ DL and for every - ≥ 1 we have

ϕ- ∗ Gtf = ϕ- ∗ Gt ∗ f =
∑

j≥0

(Gt ∗ ϕ- ∗ ψj) ∗ (ϕj ∗ f ) , (3.14)

where we recall that Gt is the wave kernel given by (3.1). In relation (3.14), recall that

we have assumed the supports of ϕ0, ϕ, ψ , and ψ0 to be all included in the unit ball B1.

However, the arguments could be easily extended to any supporting ball BK . Let us now

split the above sum (3.14) into

∑

j≥0

(Gt ∗ ϕ- ∗ ψj) ∗ (ϕj ∗ f ) =
∑

0≤j<-

(Gt ∗ ϕ- ∗ ψj) ∗ (ϕj ∗ f ) + (Gt ∗ ϕ- ∗ ψ-) ∗ (ϕ- ∗ f )

+
∑

j>-

(Gt ∗ ϕ- ∗ ψj) ∗ (ϕj ∗ f ) := I- + II- + III- . (3.15)
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20 X. Chen et al.

Our inequality (3.11) is now easily seen to be reduced to prove

( ∑

-≥0

2-((+ρd)q
(
‖I-‖

q
Lp

µ
+ ‖II-‖

q
Lp

µ
+ ‖III-‖

q
Lp

µ

))1/q

! ‖f ‖B(,µ
p,q

. (3.16)

We will handle the 3 terms on the left-hand side of (3.16) separately.

Step 1: Bound on I-. With (3.11) and (3.16) in mind, our aim is to prove an inequality of

the form

( ∑

-≥0

2-((+ρd)q‖I-‖
q
Lp

µ

) 1
q
! ‖f ‖B(,µ

p,q
. (3.17)

Our first claim is that for 0 ≤ j < -, we can write

ϕ- ∗ ψj = (ψ̄ ∗ ϕ-−j)j , where ψ̄ :=





ψ0 if j = 0

ψ if j ≥ 1
. (3.18)

Indeed, relation (3.18) is trivial whenever j = 0 (note that we have used the convention

g0 = g for any given g ∈ C∞
c in the right-hand side of (3.18)). For j ≥ 1, the left-hand side

of (3.18) can be expressed as

(ϕ- ∗ ψj)(x) = 2-+j
∫

Rd
ϕ(2-(x − y))ψ(2jy) dy , (3.19)

while the right-hand side of (3.18) has the form

(ϕ-−j ∗ ψ)j(x) = 2-

∫

Rd
ϕ(2-x − 2-−jy)ψ(y) dy . (3.20)

Then an elementary change of variable z = 2−jy shows that (3.19) and (3.20) are equal.

Invoking (3.18), together with the change of variable 2jz → z, it is then readily

checked that for 0 ≤ j < - and y ∈ R the term Gt ∗ ϕ- ∗ ψj in (15) can be decomposed as

(Gt ∗ ϕ- ∗ ψj)(y) =
∫

Rd
dz (ψ̄ ∗ ϕ-−j)j(z)Gt(y − z) =

∫

Rd
dz (ψ̄ ∗ ϕ-−j)(z)Gt(y − 2−jz) . (3.21)

Let us take advantage of some cancellations in the right-hand of (3.21). Indeed, owing to

the fact that
∫

Rd ϕk(x)dx = 0 for all k > 0, we also have

Gt(y)

∫

Rd
dz (ψ̄ ∗ ϕk)(z) = 0.
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Subtracting the above quantity to the right-hand side of (3.21), we get that for all - > j,

(Gt ∗ ϕ- ∗ ψj)(y) =
∫

Rd
dz (ψ̄ ∗ ϕ-−j)(z)

{
Gt(y − 2−jz) − Gt(y)

}
.

In addition, observing Supp (ψ̄ ∗ ϕ-−j) ⊂ B2, we have that

(Gt ∗ ϕ- ∗ ψj)(y) =
∫

B2

dz (ψ̄ ∗ ϕ-−j)(z)
{
Gt(y − 2−jz) − Gt(y)

}
. (3.22)

With (3.22) in hand, the key point now is that due to (2.3) one has easily, for all 0 ≤ j < -,

‖ψ̄ ∗ ϕ-−j‖∞ ! 2−L(-−j) , (3.23)

which follows from Lemma 2.6 directly. Therefore, using the notation introduced in

(3.12), we have obtained that

|(Gt ∗ ϕ- ∗ ψj)(y)| ≤ 2−L(-−j)2−jρdK(d)
t,j (y) . (3.24)

Let us insert (3.24) in I- in order to upper bound this term. That is according to the

definition (15) of I-, it is obvious that

|I-(x)| ≤
∑

0≤j<-

∫

Rd
dy |(Gt ∗ ϕ- ∗ ψj)(y)||(ϕj ∗ f )(x − y)|

≤
∑

0≤j<-

2−L(-−j)2−jρd

∫

R
dy K(d)

t,j (y)|(ϕj ∗ f )(x − y)|

≤
∑

0≤j<-

2−L(-−j)2−jρd
[
K(d)

t,j ∗ |ϕj ∗ f |
]
(x). (3.25)

We are now ready to analyze the weighted Lp norms of the function I-. To this

aim, we multiply (3.25) by 2-((+ρd) and compute the Lp
µ-norm given in Definition 2.3 for

µ ≤ µ∗. We get

2-((+ρd)‖I-‖Lp
µ
!

∑

0≤j<-

2-((+ρd)2−L(-−j)2−jρd2−j(
[
2j(∥∥K(d)

t,j ∗ |ϕj ∗ f |
∥∥

Lp
µ

]

!
∑

0≤j<-

2(-−j)((+ρd−L)
[
2j(∥∥K(d)

t,j ∗ |ϕj ∗ f |
∥∥

Lp
µ

]
. (3.26)
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At this point, we can combine the results of Lemma 2.5, Lemma 3.5, and Young’s

inequality to assert that

∥∥K(d)
t,j ∗ |ϕj ∗ f |

∥∥
Lp

µ
!

∥∥|K(d)
t,j | ∗ w1/p

µ |ϕj ∗ f |
∥∥

Lp

≤
∥∥K(d)

t,j

∥∥
L1

∥∥w1/p
µ |ϕj ∗ f |

∥∥
Lp

!
∥∥ϕj ∗ f

∥∥
Lp

µ
, (3.27)

for some proportional constant that depends neither on j nor on t. Injecting this uniform

bound into (3.26), we deduce

2-((+ρd)‖I-‖Lp
µ
!

∑

0≤j<-

2(-−j)((+ρd−L)
[
2j(∥∥ϕj ∗ f

∥∥
Lp

µ

]
. (3.28)

We shall recast the right-hand side of (3.28) as a discrete convolution. Namely,

if we set

uj := 2j((+ρd−L)1{j≥1} , and vj := 2j(‖ϕj ∗ f ‖Lp
µ
1{j≥0} ,

and if ∗Z refers to the discrete convolution in Z, then (3.28) can be written as

2-((+ρd)‖I-‖Lp
µ
! (u ∗Z v)- . (3.29)

The inequality above enables the application of Young’s inequality, similarly to what we

did in (2.16). We end up with

∥∥- /→ 2-((+ρd)‖I-‖Lp
µ

∥∥
-q(N)

!
∥∥j /→ 2j((+ρd−L)

∥∥
-1(N)

∥∥j /→ 2j(‖ϕj ∗ f ‖Lp
µ

∥∥
-q(N)

. (3.30)

Let us finally pick L > ρd + (, so that the above estimate yields

( ∑

-≥0

2-((+ρd)q‖I-‖
q
Lp

µ

)1/q

! ‖f ‖B(,µ
p,q

, (3.31)

which is our claim (3.17) and the first part of relation (3.16).

Step 2: Bound on II-. Recall from (15) that II- = (Gt ∗ ϕ- ∗ ψ-) ∗ (ϕ- ∗ f ). Our aim for this

step is to obtain inequality (3.31) for the sequence {II-, - ≥ 0}. Whenever - = 0, we appeal
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again to Lemma 2.5 in order to write

‖II0‖Lp
µ
! ‖Gt ∗ ϕ0 ∗ ψ0‖L1‖ϕ0 ∗ f ‖Lp

µ
! ‖Gt‖L1‖ϕ0‖L1‖ψ0‖L1‖ϕ0 ∗ f ‖Lp

µ
.

Furthermore, ‖ϕ0‖L1 , ‖ψ0‖L1 above are finite quantities. Since t ≤ 1, the norm ‖Gt‖L1 is

also bounded, along the same lines as for (3.3). We thus get

‖II0‖Lp
µ
! ‖ϕ0 ∗ f ‖Lp

µ
, (3.32)

where the proportional constant only depends on p and µ∗.

For - ≥ 1, observe that similarly to (3.18) we have ϕ- ∗ ψ- = (ϕ ∗ ψ)-. We can then

use the same arguments as in (3.21)–(3.24) (replace ϕ-−j with ϕ, ψ̄ with ψ and j with -) to

derive that for all y ∈ R,

∣∣(Gt ∗ ϕ- ∗ ψ-)(y)
∣∣ ! ‖ϕ ∗ ψ‖∞2−-ρdK(d)

t,- (y) .

Just as in Step 1 (see (3.26)–(3.27)), this entails that for - ≥ 1,

2-((+ρd)‖II-‖Lp
µ
! 2-(‖K(d)

t,- ‖L1‖ϕ- ∗ f ‖Lp
µ
! 2-(‖ϕ- ∗ f ‖Lp

µ

for some proportional constant that only depends on p and µ∗. Summing the above

inequality over - and applying Definition 2.8, we have shown the second part of relation

(3.16), that is,

( ∑

-≥0

2-((+ρd)q‖II-‖
q
Lp

µ

)1/q

!
( ∑

-≥0

2-(q‖ϕ- ∗ f ‖q
Lp

µ

)1/q

! ‖f ‖B(,µ
p,q

. (3.33)

Step 3: Bound on III-. We now treat the term III- in (15). This will be done along the same

lines as for the other steps, and we thus skip some details of computation. First, since

III- involves a sum over j > -, we replace (3.18) by

ϕ- ∗ ψj = (ϕ̄ ∗ ψj−-)- , where ϕ̄ :=





ϕ0 if - = 0

ϕ if - ≥ 1
.

Thus, for all j > - and y ∈ R, the equivalent of (3.21) is

(Gt ∗ ϕ- ∗ ψj)(y) =
∫

Rd
dz (ϕ̄ ∗ ψj−-)-(z)Gt(y − z) =

∫

Rd
dz (ϕ̄ ∗ ψj−-)(z)Gt(y − 2−-z) .
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24 X. Chen et al.

Just as in Step 1, it holds that
∫

R dz (ϕ̄ ∗ ψj−-)(z) = 0 and Supp (ϕ̄ ∗ ψj−-) ⊂ B2 for

all j > -. Accordingly, relation (3.22) for the case j > - becomes

(Gt ∗ ϕ- ∗ ψj)(y) =
∫

B2

dz (ϕ̄ ∗ ψj−-)(z)
{
Gt(y − 2−-z) − Gt(y)

}
.

Next using the notation in (3.12), we obtain that for all j > - and y ∈ R,

∣∣(Gt ∗ ϕ- ∗ ψj)(y)
∣∣ ! ‖ϕ̄ ∗ ψj−-‖∞2−-ρdK(d)

t,- (y) .

In addition for the same reasons as for (3.23) and owing to the fact that ψ ∈ DL, we have

‖ϕ̄ ∗ ψj−-‖∞ ! 2−L(j−-) .

Following the arguments in (3.26)–(3.28), we derive

2-((+ρd)‖III-‖Lp
µ
!

∑

j>-

2-((+ρd)2−L(j−-)2−-ρd2−j(
[
2j(∥∥K(d)

t,- ∗ |ϕj ∗ f |
∥∥

Lp
µ

]

!
∑

j>-

2−(L+()(j−-)
[
2j(∥∥ϕj ∗ f

∥∥
Lp

µ

]
!

∑

j≥1

2−(L+()j
[
2(j+-)(

∥∥ϕj+- ∗ f
∥∥

Lp
µ

]
. (3.34)

At this point, remember that the pair (L, ϕ0) has been arbitrarily chosen. Therefore, we

can a posteriori pick (L, ϕ0) such that L > max(−(, ρd + () (which is also consistent with

the conditions exhibited in Step 1). Going back to (3.34), this puts us in a position to

apply Jensen inequality and assert that

∑

-≥0

2-((+ρd)q‖III-‖
q
Lp

µ
!

∑

-≥0

(∑

j≥1

2−(L+()j
[
2(j+-)(

∥∥ϕj+- ∗ f
∥∥

Lp
µ

])q

!
∑

-≥0

∑

j≥1

2−(L+()j
[
2(j+-)(

∥∥ϕj+- ∗ f
∥∥

Lp
µ

]q

!
∑

-≥0

[
2-(

∥∥ϕ- ∗ f
∥∥

Lp
µ

]q
! ‖f ‖q

B(,µ
p,q

.

Accordingly, we have obtained

(∑

-≥0

2-((+ρd)q‖III-‖
q
Lp

µ

)1/q

! ‖f ‖B(,µ
p,q

. (3.35)
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Step 4: Conclusion. By injecting (3.31), (3.33), and (3.35) into (3.14)–(15), we deduce that

for some suitable ϕ0 ∈ C∞
c satisfying Assumption (Aϕ ),

∥∥- /→ 2-((+ρd)‖ϕ- ∗ Gtf ‖Lp
µ

∥∥
-q(N)

! ‖f ‖B(,µ
p,q

.

We are therefore in a position to apply the definition (2.10) of Besov norm and

assert that

‖Gtf ‖
B

(+ρd,µ
p,q (ϕ0)

=
∥∥- /→ 2-((+ρd)‖ϕ- ∗ Gtf ‖Lp

µ

∥∥
-q(N)

! ‖f ‖B(,µ
p,q (ϕ0) .

The desired inequality (3.11) is now a straightforward consequence of the equivalence

property stated in Proposition 2.9. "

We close this section by combining the previous results in order to obtain an

appropriate regularity result for the operator Gt.

Corollary 3.7. We work under the same conditions as for Proposition 3.4. Namely,

consider the wave operator Gt, a constant µ∗ > 0, and set

ρd :=





1 if d = 1

1
2 if d = 2.

(3.36)

Let (, µ, p, q be parameters such that (3.10) is fulfilled. Let ) be an additional coefficient

in [0, ρd]. Then it holds that for all 0 ≤ s < t ≤ 1,

‖{Gt − Gs}f ‖B(+),µ
p,q

! |t − s|ρd−)‖f ‖B(,µ
p,q

, (3.37)

for some proportional constant that depends only on µ∗.

Proof. The proof of this result, which is a standard application of interpolation

properties, is included here for the sake of completeness. Indeed, write ( + ) = (1 −
)
ρd

)( + )
ρd

(( + ρd). Then apply inequality (2.12) with s0 = (, s1 = ( + ρd, . = )
ρd

, p0 = p1 =
p, q0 = q1 = q. We obtain

‖(Gt − Gs)f ‖B(+),µ
p,q

≤ ‖(Gt − Gs)f ‖
1− )

ρd
B(,µ

p,q
‖(Gt − Gs)f ‖

)
ρd

B(+ρd ,µ
p,q

. (3.38)
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Next, for the first term on the right-hand side of (3.38), we apply (3.4) (for d = 1) or (3.8)

(for d = 2), while for the second term, we invoke (3.11) to write

‖(Gt − Gs)f ‖B(+ρd ,µ
p,q

≤ ‖Gtf ‖B(+ρd,µ
p,q

+ ‖Gsf ‖B(+ρd ,µ
p,q

! ‖f ‖B(,µ
p,q

.

Going back to (3.38), our conclusion easily follows. "

Remark 3.8. In light of (3.37), the parameter ρd can somehow be interpreted as the

maximal regularization effect one can obtain through G in either the time or the space

direction. On the one hand, maximizing time (i.e., Hölder) regularity in (3.37) reduces

to taking ) = 0, which indeed provides us with a ρd-Hölder control. On the other hand,

maximizing space regularity in (3.37) clearly consists in taking ) maximal, that is, ) =
ρd. The regularization effect of G will naturally be one of the key ingredients of the

subsequent analysis, and the value of ρd in (3.36) will turn out to be the main reason

behind our restriction (1.8) on the noise.

Remark 3.9. The value of ρd in (3.36) is undoubtedly optimal when d = 1. Indeed,

by taking ) = ρ1 = 1, p = q = 2, and µ = 0 in (3.37), one recovers the classical

+1 regularization effect of the wave operator. This optimality argument cannot be

extended to d = 2, since in this case ρ2 = 1
2 < 1. Namely owing to our separation

of convolutions procedure borrowed from [10], our estimates are eventually reduced

to an upper bound for spatial increments of G contained in (3.13). Let us read this

estimate as

∫

B2

dz
∣∣Gt(y − 2−jz) − Gt(y)

∣∣ ! 1
2jρd

. (3.39)

The fact that ρd = 1/2 in (3.39) for d = 2 is then due to the (t2−|x|2)−1/2 singularity of the

wave kernel in (3.1), as explained in the Appendix. Therefore, the relation ρ2 = 1
2 cannot

be avoided if one follows Rychkov’s approach to smoothing of the wave kernel. In the

next future, we plan on exploring other strategies to Strichartz-type estimates, which

could possibly improve ρd to 1 for d = 2 (although this improvement is not completely

clear to us at this stage). This being said, one should not forget that in contrast with the

classical Strichartz inequalities (see [6, Proposition 3.1]), the estimate (3.37) holds true

for a general class of weighted Besov spaces, which may account for the limited value

of ρ2 in the statement.
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4 Young Wave Equation

This section aims to develop the Young-type integration theory that will allow us to

interpret and solve (1.6) pathwise in Section 5. For this goal, we will introduce an appro-

priate space of processes and define the Young wave integral in Section 4.1. Then we will

prove the well-posedness of the corresponding Young wave equation in Section 4.2.

4.1 Young wave integral

This subsection is devoted to introducing a convenient space of processes u, allowing

the definition of noisy integrals weighted by the wave operator. We start by giving a

new piece of notation.

Notation 4.1. Throughout the section, we fix two parameters a ≥ 0 and b > 0. We then

set µt = a + bt.

Next we introduce the set of space-time functions, which will allow a proper

integration theory in our noisy context.

Definition 4.2. Fix T > 0 and let (µt)t∈[0,T] be a time-dependent weight as in Notation

4.1. Consider two parameters γ , ) ∈ [0, 1]. Then we define Eγ ,)
2,∞(T) as the set of functions

u : [0, T] × R → R for which the following norm is finite:

‖u‖Eγ ,)
2,∞(T) := sup

s∈[0,T]
‖us‖B),µs

2,∞
+ sup

0≤s<t≤T

‖ut − us‖B),µt
2,∞

|t − s|γ . (4.1)

For processes u in a space of the form Eγ ,)
2,∞, let us define some Riemann sum

approximation of the integral
∫ t

0

∫
R Gt−s(x, y)us(y)Ẇ(ds, dy). This definition is given

below.

Definition 4.3. Let P(x) = (1 + |x|2)−1 be the polynomial given in (2.2) for d = 1. We

consider two regularity parameters (, . ∈ (0, 1) and an integrability parameter p > 2. Let

Ẇ be a noisy input that is .-Hölder continuous in time with values in the weighted space

B−(,P
p,∞ ; that is, Ẇ ∈ C. ([0, T]; B−(,P

p,∞ ). In addition, let 3n be the regular dyadic partition of

[0, T], whose generic element is tn
m = mT/2n for all 0 ≤ m ≤ 2n. For u regular enough,

we define the following Riemann sum based on 3n,

J (n)
t :=

m−1∑

k=0

Gt−tn
k
(utn

k
δẆtn

k tn
k+1

), for t ∈ (tn
m−1, tn

m] , (4.2)

where we recall that δẆtn
k tn

k+1
stands for Ẇtn

k+1
− Ẇtn

k
.
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We now state a proposition giving natural conditions such that the Riemann

sums (4.2) converge in the Young sense. This result will be the basic brick towards

a proper well-posedness of equation (1.6). For this statement we set, just as in

Corollary 3.7,

ρd :=





1 if d = 1

1
2 if d = 2.

(4.3)

Proposition 4.4. Fix two times 0 < T ≤ T0. Let γ , . be two time regularity parameters

and ), ( be two space regularity parameters. Also consider p > d + 1. We assume the

following conditions.

(i) The coefficients γ , . , ), ( all sit in the interval [0, 1], and we have

) + ( + γ + (1 − ρd) < . , γ + . > 1, ) > ( + d
p

, γ < 1 − d + 1
p

. (4.4)

(ii) The process u is an element of Eγ ,)
2,∞(T) as introduced in Definition 4.2, and

Ẇ belongs to C. ([0, T]; B−(,P
p,∞ ).

Let now {J (n); n ≥ 1} be the sequence defined by (4.2). Then we have that J (n)

converges in Eγ ,)
2,∞(T). We denote

lim
n→∞ J (n)

t =:
∫ t

0
Gt−r(ur dẆr) . (4.5)

Moreover, the Young integral (4.5) verifies

∥∥∥∥

∫ .

0
G.−r(ur dẆr)

∥∥∥∥
Eγ ,)

2,∞(T)

≤
∥∥G.(u0 (ẆT − Ẇ0))

∥∥
Eγ ,)

2,∞(T)
+ cT0

‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

‖u‖Eγ ,)
2,∞(T) ,

(4.6)
where cT0

> 0 does not depend on T, u, and Ẇ.

Remark 4.5. As the reader will see, we will in fact prove a slightly stronger version of

relation (4.6): there exists a finite constant q = q(γ , ), . , (, p) ≥ 1 such that

∥∥∥∥

∫ .

0
G.−r(ur dẆr)

∥∥∥∥
Eγ ,)

2,∞(T)

≤
∥∥G.(u0 (ẆT − Ẇ0))

∥∥
Eγ ,)

2,∞(T)
+ cT0

‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

( ∫ T

0
‖u‖q

Eγ ,)
2,∞(r)

dr
) 1

q , (4.7)
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where cT0
> 0 does not depend on T, u and Ẇ. Inequality (4.7) will be crucial in

our fixed point argument for the existence-uniqueness of a solution to (1.6).

Proof of Proposition 4.4. We shall prove the convergence of J (n) thanks to an upper

bound on the difference J (n+1) − J (n). To this aim, let us denote δfst for the increment

ft − fs of a function f . Furthermore, for the sake of clarity, consider two dyadic points

s = tn
- and t = tn

m for - ≤ m. Then an elementary manipulation on the expression (4.2)

for J (n) reveals that

δJ (n+1)
st − δJ (n)

st = I(n)
st + II(n)

st + III(n)
st + IV(n)

st , (4.8)

where the terms I(n)
st , . . . , IV(n)

st are defined by (writing tj = tn+1
j for notational sake),

I(n)
st =

m−1∑

k=-

Gt−t2k

(
δut2kt2k+1

δẆt2k+1t2k+2

)
;

II(n)
st =

m−1∑

k=-

{
Gt−t2k+1

− Gt−t2k

}(
ut2k+1

δẆt2k+1t2k+2

)
;

III(n)
st =

-−1∑

k=0

{
Gt−t2k

− Gs−t2k

}(
δut2kt2k+1

δẆt2k+1t2k+2

)
;

IV(n)
st =

-−1∑

k=0

{
Gt−t2k+1

− Gt−t2k
− Gs−t2k+1

+ Gs−t2k

}(
ut2k+1

δẆt2k+1t2k+2

)
.

We now upper bound the four terms above.

Step 0: A general bound on products. Recall that the (fixed) parameters a and b have

been introduced in Notation 4.1. Setting

µ∗ = µ∗(T0, p) := max
(

a + bT0

1 − 2
p

,
pbT0

2

)
,

it is readily checked that for all 0 ≤ s < t ≤ T,

µs ≤ µ∗
(
1 − 2

p

)
and

p
2

(µt − µs) ≤ µ∗. (4.9)
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Consider our noisy input Ẇ and a function f ∈ B),µs
2,∞ for 0 ≤ s < t < T. Then we

claim that for s ≤ r < v ≤ t we have

∥∥f · δẆrv
∥∥

B−(,µt
2,∞

!
∥∥f

∥∥
B),µs

2,∞

|v − r|.

|t − s|
d+1

p

∥∥Ẇ
∥∥

C. ([0,T];B−(,P
p,∞ )

, (4.10)

for some proportional constant that depends only on µ∗, that is only on T0 and p (note

that we will no longer explicitly indicate such a dependence on (T0, p) for the constants

arising in the rest of the proof).

To prove (4.10), observe first that, owing to (4.9), we are in a position to apply

our product rule (2.20) and assert that

∥∥f · δẆrv
∥∥

B−(,µt
2,∞

!
∥∥f

∥∥
B),µs

2,∞

∥∥δẆrv
∥∥

B−(,εst
p,∞

,

where we have set εst = p
2 (µt − µs) ≤ µ∗. Next we invoke Lemma 2.11 for the right-hand

side above, which allows to write

∥∥f · δẆrv
∥∥

B−(,µt
2,∞

!
∥∥f

∥∥
B),µs

2,∞

1

(µt − µs)
d+1

p

∥∥δẆrv
∥∥

B−(,P
p,∞

,

from which (4.10) is easily deduced.

Step 1: Bound for I(n)
st . For the term I(n)

st in the right-hand side of (4.8), let us first simply

write

∥∥I(n)
st

∥∥
B),µt

2,∞
≤

m−1∑

k=-

∥∥Gt−t2k

(
δut2kt2k+1

δẆt2k+1t2k+2

)∥∥
B),µt

2,∞
. (4.11)

Then we apply (3.37), interpolating from a regularity (−() to a regularity ) and

considering the times t := t − t2k and s := 0 (recall that G0 = 0 owing to (3.1)). This

yields

∥∥I(n)
st

∥∥
B),µt

2,∞
!

m−1∑

k=-

|t − t2k|ρd−()+()
∥∥δut2kt2k+1

δẆt2k+1t2k+2

∥∥
B−(,µt

2,∞
. (4.12)
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We are now in a position to resort to our general estimate (4.10), which gives

∥∥I(n)
st

∥∥
B),µt

2,∞
!

m−1∑

k=-

|t − t2k+1|ρd−()+()
∥∥δut2kt2k+1

∥∥
B

),µt2k+1
2,∞

2−n.

|t − t2k+1|
d+1

p

‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

.

(4.13)

Invoking the Definition (4.1) for the norm in Eγ ,µ
2,∞ and rearranging terms, we thus get

∥∥I(n)
st

∥∥
B),µt

2,∞
! 2−n(γ+.−1)‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

(
2−n

m−1∑

k=-

|t − t2k+1|ρd−()+()− d+1
p ‖u‖Eγ ,)

2,∞(t2k+1)

)
.

(4.14)

The last expression in the right-hand side above can be upper bounded by the

continuous integral

∫ t

s
(t − v)

ρd−()+()− d+1
p ‖u‖Eγ ,)

2,∞(v) dv. (4.15)

Therefore, (4.14) can be recast as

∥∥I(n)
st

∥∥
B),µt

2,∞
! 2−n(γ+.−1)‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

∫ t

s
(t − v)

ρd−()+()− d+1
p ‖u‖Eγ ,)

2,∞(v) dv . (4.16)

We now wish to apply Hölder’s inequality to the integral term (4.15) above. Namely, for

r1, q1 such that 1
r1

+ 1
q1

= 1, we write

∫ t

s
(t − v)

ρd−()+()− d+1
p ‖u‖Eγ ,)

2,∞(v) dv

≤
(∫ t

s
(t − v)

r1(ρd−()+()− d+1
p ) dv

) 1
r1

(∫ t

s
‖u‖q1

Eγ ,)
2,∞(v)

dv
) 1

q1
. (4.17)

In order to make the right-hand side of (17) finite, we need to have r1(ρd−()+()− d+1
p ) >

−1. Now observe that thanks to the conditions in (4.4) we can successively guarantee

that

γ − ρd + ) + ( + d + 1
p

< . −
(

1 − d + 1
p

)
< . − γ ≤ 1.
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As a result, we can pick r1 > 1 such that

γ − ρd + ) + ( + d + 1
p

<
1
r1

0⇒ r1

(
ρd − () + () − d + 1

p

)
> −1 + r1γ . (4.18)

With this set of parameters in hand, inequality (17) reads

∫ t

s
(t − v)

ρd−()+()− d+1
p ‖u‖Eγ ,)

2,∞(v) dv ! |t − s|ρd−()+()− d+1
p + 1

r1

( ∫ T

0
‖u‖q1

Eγ ,)
2,∞(v)

dv
) 1

q1

! |t − s|γ
( ∫ T

0
‖u‖q1

Eγ ,)
2,∞(v)

dv
) 1

q1
,

where we have invoked (4.18) to derive the second step above. Plugging this inequality

into (4.16) and setting ε1 := γ + . − 1 > 0 (thanks to (4.4)), we end up with

∥∥I(n)
st

∥∥
B),µt

2,∞
! 2−nε1 |t − s|γ ‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

(∫ T

0
‖u‖q1

Eγ ,)
2,∞(v)

dv
) 1

q1
. (4.19)

Step 2: Bound for II(n)
st . The computations are similar to those of Step 1, and we will just

highlight the main differences. First the equivalent of (4.11) is

∥∥II(n)
st

∥∥
B),µt

2,∞
≤

m−1∑

k=-

∥∥{
Gt−t2k+1

− Gt−t2k

}(
ut2k+1

δẆt2k+1t2k+2

)∥∥
B),µt

2,∞
.

Then we invoke the regularity property (3.37) and the fact that t2k+1 − t2k = 2−(n+1) in

order to get

∥∥II(n)
st

∥∥
B),µt

2,∞
! 2−n(ρd−()+())

m−1∑

k=-

∥∥ut2k+1
δẆt2k+1t2k+2

∥∥
B−(,µt

2,∞
,

which is parallel to (4.12). We now repeat the arguments in (4.13)–(4.14), which yields

∥∥II(n)
st

∥∥
B),µt

2,∞

! 2−n(.+ρd−1−()+())‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

(
2−n

m−1∑

k=-

1

|t − t2k+1|
d+1

p

‖u‖Eγ ,)
2,∞(t2k+1)

)
. (4.20)

The Riemann-type sum in (20) can be upper bounded by
∫ t

s (t − v)
− d+1

p ‖u‖Eγ ,)
2,∞(v) dv.

Besides, recall from (4.4) that we have assumed 1 − d+1
p > γ , and so there exists r2 > 1
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such that 1
r2

− d+1
p > γ . Denoting by q2 the (finite) conjugate of r2, we can go back to (20)

and deduce

∥∥II(n)
st

∥∥
B),µt

2,∞
! 2−n(.+ρd−1−()+())‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

∫ t

s
(t − v)−

d+1
2 ‖u‖Eγ ,)

2,∞(v) dv

! 2−n(.+ρd−1−()+())‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

( ∫ t

s
(t − v)

− r2(d+1)
p dv

) 1
r2

( ∫ t

s
‖u‖q2

Eγ ,)
2,∞(v)

dv
) 1

q2

! 2−n(.+ρd−1−()+())‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

|t − s|
1
r2

− d+1
p

( ∫ T

0
‖u‖q2

Eγ ,)
2,∞(v)

dv
) 1

q2
,

which finally yields

∥∥II(n)
st

∥∥
B),µt

2,∞
! 2−nε2‖u‖Eγ ,)

2,∞
‖Ẇ‖C. ([0,T];B−(,P

p,∞ )
|t − s|γ

( ∫ T

0
‖u‖q2

Eγ ,)
2,∞(v)

dv
) 1

q2
, (4.21)

where ε2 := . + ρd − 1 − () + () > γ ≥ 0 (thanks to (4.4)).

Step 3: Bound for III(n)
st . The term III(n)

st in the right-hand side of (4.8) is treated again as

in Step 1 and Step 2. Namely, applying once again (3.37), we get

∥∥III(n)
st

∥∥
B),µt

2,∞
! |t − s|ρd−()+()

-−1∑

k=0

∥∥δut2kt2k+1
δẆt2k+1t2k+2

∥∥
B−(,µt

2,∞
.

Then we invoke the fact that µt < µt2k+1
for all k < - − 1 and we take advantage of the

time regularity of u and Ẇ, mimicking again (4.13)–(4.14). This allows to write

∥∥III(n)
st

∥∥
B),µt

2,∞

! 2−n(.+γ−1)‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

|t − s|ρd−()+()

(
2−n

-−1∑

k=0

1

|t − t2k+1|
d+1

p

‖u‖Eγ ,)
2,∞(t2k+1)

)
.

Proceeding as in Step 2, we can upper bound the quantity into brackets by

∫ t

0
(t − r)−

d+1
2 ‖u‖Eγ ,)

2,∞(r)dr ≤ T
1
r2

− d+1
p

( ∫ T

0
‖u‖q3

Eγ ,)
2,∞(v)

dv
) 1

q3

where q3 = q2. We end up with

∥∥III(n)
st

∥∥
B),µt

2,∞
! 2−nε3 |t − s|γ ‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

( ∫ T

0
‖u‖q3

Eγ ,)
2,∞(v)

dv
) 1

q3
, (4.22)

where ε3 := γ + . − 1 > 0.
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Step 4: Bound for IV(n)
st . For the term IV(n)

st , we will bound the increment of G in two

different ways. Specifically, alleviate notations by setting

Vk
st :=

{
Gt−t2k+1

− Gt−t2k
− Gs−t2k+1

+ Gs−t2k

}(
ut2k+1

δẆt2k+1t2k+2

)
.

Then on the one hand we have

∥∥Vk
st

∥∥
B),µt

2,∞
≤

∥∥{
Gt−t2k+1

− Gs−t2k+1

}(
ut2k+1

δẆt2k+1t2k+2

)∥∥
B),µt

2,∞

+
∥∥{

Gt−t2k
− Gs−t2k

}(
ut2k+1

δẆt2k+1t2k+2

)∥∥
B),µt

2,∞

! |t − s|ρd−()+()‖ut2k+1
δẆt2k+1t2k+2

∥∥
B−(,µt

2,∞
, (4.23)

where we have invoked (3.37) for the second inequality. On the other hand, still using

(3.37), we also have

∥∥Vk
st

∥∥
B),µt

2,∞
≤

∥∥{
Gt−t2k+1

− Gt−t2k

}(
ut2k+1

δẆt2k+1t2k+2

)∥∥
B),µt

2,∞

+
∥∥{

Gs−t2k+1
− Gs−t2k

}(
ut2k+1

δẆt2k+1t2k+2

)∥∥
B),µt

2,∞

! 2−n(ρd−()+())‖ut2k+1
δẆt2k+1t2k+2

∥∥
B−(,µt

2,∞
. (4.24)

We now introduce an additional parameter / ∈ (0, 1), whose exact value will be specified

later on. Combining (4.23) and (4.24), we get

∥∥IV(n)
st

∥∥
B),µt

2,∞
!

-−1∑

k=0

[
|t − s|ρd−()+()

]/[
2−n(ρd−()+())

]1−/∥∥ut2k+1
δẆt2k+1t2k+2

∥∥
B−(,µt

2,∞
.

Along the same lines as for (4.13)–(4.14), we then let the reader check that we have

∥∥IV(n)
st

∥∥
B),µt

2,∞
! 2−n(ρd−()+())(1−/)|t − s|(ρd−()+())/

× ‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

2−n(.−1)

(
2−n

-−1∑

k=0

1

|t − t2k+1|
d+1

p

‖u‖Eγ ,)
2,∞(t2k+1)

)
. (4.25)

We choose / ∈ (0, 1) such that (ρd − () + ())/ = γ , which is compatible with our

assumption (4.4). Bounding the Riemann sum in (4.25) just as in Step 3, that is by

∫ t

0
(t − r)−

d+1
2 ‖u‖Eγ ,)

2,∞(r)dr ≤ T
1
r2

− d+1
p

( ∫ T

0
‖u‖q4

Eγ ,)
2,∞(v)

dv
) 1

q4
,
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where q4 = q3, we obtain

∥∥IV(n)
st

∥∥
B),µt

2,∞
! 2−nε4 |t − s|γ ‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

( ∫ T

0
‖u‖q4

Eγ ,)
2,∞(v)

dv
) 1

q4
, (4.26)

with the notation ε4 = ρd − () + () − γ + . − 1. Notice that ε4 > 0 thanks to (4.4).

Step 5: Conclusion. Recall the decomposition (4.8). Then owing to (4.19), (4.21), (4.22),

and (4.26), we have obtained that for all 0 ≤ s < t ≤ T,

∥∥∥δJ (n+1)
st − δJ (n)

st

∥∥∥
B),µt

2,∞
! 2−nε|t − s|γ ‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

(∫ T

0
‖u‖q

Eγ ,)
2,∞(v)

dv
) 1

q
, (4.27)

where ε := mini=1,...,4 εi > 0 and q := maxi=1,...,4 qi. Using the fact that J (n)
0 = 0, the

bound (4.27) also allows us to assert that for all 0 ≤ s ≤ T,

∥∥∥J (n+1)
s − J (n)

s

∥∥∥
B),µs

2,∞
! 2−nε‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

( ∫ T

0
‖u‖q

Eγ ,)
2,∞(v)

dv
) 1

q
,

Recalling the definition (4.1) of the norm ‖ · ‖Eγ ,)
2,∞(T), we have thus established that

‖J (n+1) − J (n)‖Eγ ,)
2,∞(T) ! 2−nε‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

( ∫ T

0
‖u‖q

Eγ ,)
2,∞(v)

dv
) 1

q
. (4.28)

This shows that J (n) is a Cauchy sequence in Eγ ,)
2,∞(T), which concludes the proof of the

convergence statement.

Moreover, denoting (temporarily) the limit of J (n) by J , we can use again (4.28)

to deduce

‖J ‖Eγ ,)
2,∞(T) ≤ ‖J (0)‖Eγ ,)

2,∞(T) + cT0
‖Ẇ‖C. ([0,T];B−(,P

p,∞ )

( ∫ T

0
‖u‖q

Eγ ,)
2,∞(v)

dv
) 1

q
,

for some constant cT0
> 0, which exactly corresponds to the desired inequality (4.7). Also

remember that (4.7) is stronger than (4.6), and thus (4.6) holds as well. This finishes the

proof. "

Remark 4.6. To some extent, our search for a suitable interpretation of the integral
∫ t

0 Gt−r(ur dẆr) in (4.5) can be compared with one of the main issues raised by the

analysis of the nonlinear model (1.10) in rough regimes (see e.g., [5, 7–9]). Indeed, by

applying the so-called Da Prato–Debussche trick to the dynamics in (1.10), one is almost

immediately led to the consideration of the integral
∫ t

0 Gt−r(ur 4r) dr, where 4 refers to
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the solution of the underlying “linear” problem ∂2
t 4 = "4 + Ẇ. In case Ẇ is irregular

enough, the process 4 can only be regarded as a negative-order distribution in the space

variable, which makes the problem of interpreting
∫ t

0 Gt−r(ur 4r) dr of a similar nature

as the one for
∫ t

0 Gt−r(ur dẆr) in (4.5). It should be observed, however, that the time

structure of 4 strongly differs from the one of dẆ: while 4 can be treated as a function

in time (see e.g., the proof of [7, Proposition 3.5]), dẆ only makes sense as a negative-

order distribution. This essential feature prevents us from using the classical Strichartz

estimates and fully justifies our above Young-type construction.

4.2 Well-posedness of the Young wave equation for d = 1, 2

Recall that the wave operator Gt has been introduced in Section 3.1. With the prelimi-

nary results of Section 4.1 in hand, equation (1.6) with initial conditions u0, u1 will now

be written in the following mild sense:

ut := (∂tG)tu0 + Gtu1 +
∫ t

0
Gt−r(ur dẆr), (4.29)

In (4.29), the integral is interpreted in the Young sense, that is via Proposition 4.4.

The initial conditions in (4.29) have to satisfy some standard smoothness

conditions. Those conditions will be expressed in the usual Sobolev scale, for which

we introduce a new notation.

Notation 4.7. For every s ≥ 0, we denote by Hs = Hs(Rd) the usual Sobolev space of

order s, that is the set of functions f ∈ L2(Rd) such that

‖f ‖2
Hs :=

∫

Rd
dξ {1 + |ξ |2}s|f̂ (ξ)|2 < ∞.

We now turn to our main abstract existence and uniqueness result. Let us recall

that we have set

ρd :=





1 if d = 1

1
2 if d = 2.

Theorem 4.8. Assume d ∈ {1, 2}. Fix an arbitrary time T > 0, as well as parameters

γ , . , ), ( ∈ [0, 1] and p > 2 satisfying the conditions in (4.4). Assume that Ẇ belongs

to C. ([0, T]; B−(,P
p,∞ ) and pick (u0, u1) ∈ H1+) × H) . Then equation (4.29) admits a unique

solution u in the space Eγ ,)
2,∞(T) introduced in Definition 4.2.
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Before proving Theorem 4.8, we start with a technical lemma giving a control on

the terms related to the initial conditions.

Lemma 4.9. Under the assumptions of Theorem 4.8 and for all t ∈ [0, T], set

u(0)
t := (∂tG)tu0 + Gtu1. (4.30)

Then u(0) is an element of Eγ ,)
2,∞(T) and we have

∥∥u(0)
∥∥

Eγ ,)
2,∞(T)

!
∥∥u0

∥∥
H1+) +

∥∥u1
∥∥

H) . (4.31)

Proof. Let ϕ ∈ D1 denote the function involved in our definition of the spaces B),µ
p,q

(see Definition 2.8 and Notation 2.10). As a preliminary step, observe that owing to

assumption (Aϕ ) and the fact that ϕ has compact support, one has

|ϕ̂(ξ)| =
∣∣∣∣

∫

Rd
dx e−ıξ ·xϕ(x)

∣∣∣∣ =
∣∣∣∣

∫

Rd
dx {e−ıξ ·x − 1}ϕ(x)

∣∣∣∣ ! |ξ |) ,

where we have used the fact that ) ∈ (0, 1). Hence for every j ≥ 1,

|ϕ̂j(ξ)| = |ϕ̂(2−jξ)| ! 2−j) |ξ |) . (4.32)

Now the weight w = e−µ|x| is smaller than 1. Thus, one can trivially bound the norm in

L2
µt

by the usual norm in L2(Rd). Hence, invoking (3.2), we get

∥∥ϕj ∗ {(∂tG)t − (∂tG)s}u0
∥∥

L2
µt

!
∥∥(

ϕj ∗ ({(∂tG)t − (∂tG)s} ∗ u0
)∥∥

L2

!
( ∫

Rd
dξ

∣∣ϕ̂j(ξ)
∣∣2∣∣ cos(t|ξ |) − cos(s|ξ |)

∣∣2∣∣û0(ξ)
∣∣2

) 1
2

.

Combining this inequality with (4.32), this yields

∥∥ϕj ∗ {(∂tG)t − (∂tG)s}u0
∥∥

L2
µt

! 2−j) |t − s|
( ∫

Rd
dξ |ξ |2+2)

∣∣û0(ξ)
∣∣2

) 1
2

! 2−j) |t − s|γ ‖u0‖H1+) . (4.33)

Plugging (4.33) into the definition (2.10) of Besov norm, we end up with

∥∥{(∂tG)t − (∂tG)s}u0
∥∥

B),µt
2,∞

! |t − s|γ ‖u0‖H1+) . (4.34)
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In the same way, we have

∥∥ϕj ∗ (∂tG)su0
∥∥

L2
µs

!
(∫

Rd
dξ

∣∣ϕ̂j(ξ)
∣∣2∣∣ cos(s|ξ |)

∣∣2∣∣û0(ξ)
∣∣2

) 1
2
! 2−j)

( ∫

Rd
dξ |ξ |2)

∣∣û0(ξ)
∣∣2

) 1
2
! 2−j)‖u0‖H1+) .

Therefore, resorting to (2.10) again, we get sups∈[0,T]
∥∥(∂tG)su0

∥∥
B),µs

2,∞
! ‖u0‖H1+) . Gather-

ing this inequality with (4.34), we have thus shown that

∥∥(∂tG)u0
∥∥

Eγ ,)
2,∞(T)

!
∥∥u0

∥∥
H1+) . (4.35)

Let us now handle the term Gtu1 in (4.30). It is treated similarly to (∂tG)tu0 in

(4.33)–(4.35), and we omit the details for sake of conciseness. Let us just mention that

(4.33) is replaced by

∥∥ϕj ∗ {Gt − Gs}u1
∥∥

L2
µt

!
(∫

Rd
dξ

∣∣ϕ̂j(ξ)
∣∣2 | sin(t|ξ |) − sin(s|ξ |)|2

|ξ |2
∣∣û1(ξ)

∣∣2
) 1

2

! 2−j) |t − s|
( ∫

Rd
dξ |ξ |2)

∣∣û1(ξ)
∣∣2

) 1
2
.

Following the same steps as before, we then get

∥∥Gu1
∥∥

Eγ ,)
2,∞(T)

!
∥∥u1

∥∥
H) . (4.36)

Plugging together (4.35) and (4.36), we have thus proved our claim (4.31). "

With Lemma 4.9 in hand, we now turn to the proof of our existence-uniqueness

result.

Proof of Theorem 4.8. Due to the expression (4.31) for the initial condition u(0),

we will not use a standard argument based on patching solutions defined on small

intervals. Instead of that, our method will be based on Picard iterations. In other

words, we consider the sequence of processes (u(-))-≥0 defined as: for every t ∈ [0, T],

u(0)
t := (∂tG)tu0 + Gtu1 and

u(-+1)
t := (∂tG)tu0 + Gtu1 +

∫ t

0
Gt−r(u

(-)
r dẆr). (4.37)
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By combining the results of Proposition 4.4 and Lemma 4.9, we can immediately

guarantee that u(-) is well defined in the space Eγ ,)
2,∞(T), for every - ≥ 0. We now divide

our proof into the existence and the uniqueness parts.

Existence. In order to show the convergence of u(-) in Eγ ,µ
2,∞(T), let us consider the

difference v(-) := u(-+1) − u(-). Owing to (4.37), it is clear that for every - ≥ 0 we have

v(-)
0 = 0 and v(-) satisfies

v(-)
t :=

∫ t

0
Gt−r(v

(-−1)
r dẆr). (4.38)

We are here in a position to apply the estimate (4.7) and assert that, for all t ∈ [0, T]

‖v(-)‖q
Eγ ,)

2,∞(t)
≤ cT

∫ t

0
‖v(-−1)‖q

Eγ ,)
2,∞(t1)

dt1 ,

where cT only depends on T and ‖Ẇ‖C. ([0,T];B−(,P
p,∞ )

, and q is the (finite) parameter provided

by Proposition 4.4. Iterating this inequality, we deduce

‖v(-)‖q
Eγ ,)

2,∞(T)
≤ (cT)-

∫ T

0

∫ t1

0
. . .

∫ t-

0
‖v(0)‖q

Eγ ,)
2,∞(t-)

dt1 · · · dt- ≤ ‖v(0)‖q
Eγ ,)

2,∞(T)

(cTT)-

-!
,

which can naturally be recast as

‖u(-+1) − u(-)‖Eγ ,)
2,∞(T) ≤ ‖u(1) − u(0)‖Eγ ,)

2,∞(T)

(
cTT

) -
q

(-! )
1
q

.

This proves that (u(-)) is a Cauchy sequence in Eγ ,)
2,∞(T), and accordingly it converges to

some limit u. Letting - tend to infinity in (4.37), a standard procedure reveals that u is

the desired solution to equation (4.29).

Uniqueness. The argument is essentially the same as above. Namely, if u, v are two

solutions, we have for all - ≥ 1,

‖u − v‖q
Eγ ,)

2,∞(T)
≤ (cT)-

∫ T

0

∫ t1

0
. . .

∫ t-

0
‖u − v‖q

Eγ ,)
2,∞(t-)

dt1 · · · dt- ≤ ‖u − v‖q
Eγ ,)

2,∞(T)

(cTT)-

-!
,

and we get the conclusion by letting - tend to infinity. "
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Remark 4.10. With the above Young-type analysis of equation (4.29) in mind, it

becomes clear that the extension of our considerations to the nonlinear model

ut := (∂tG)tu0 + Gtu1 +
∫ t

0
Gt−r(σ (ur) dẆr) (4.39)

should essentially reduce to a stabilization issue for the map u /→ σ (u) in the space

Eγ ,)
2,∞(T). In other words, given σ : R → R regular enough, the problem would here consist

in the exhibition of a suitable control function Fσ : R+ → R+ such that

‖σ (u)‖Eγ ,)
2,∞(T) ≤ Fσ

(
‖u‖Eγ ,)

2,∞(T)

)
. (4.40)

However, the derivation of such an estimate for the composition (or Nemytzkij) operator

turns out to be a highly nontrivial task in any fractional Sobolev setting (see for instance

the developments and results in [12, Chapter 5] for non-weighted Sobolev spaces).

Therefore, in order not to deviate from the objectives raised in [3], we have preferred

to postpone the analysis of the nonlinear model (4.39) to a future study.

5 Application to Gaussian Noises

In this section, we prove that the Gaussian noise whose covariance is defined by (1.2) is

an appropriate input for the wave equation. This amounts to prove that Ẇ sits in a space

of the form C. ([0, T], B−(,P
p,∞ ) as in Proposition 4.4. Before proceeding to the proof, we first

characterize the space B−(,P
p,∞ thanks to simple properties of the Fourier transform. Let

us start by defining a useful Fourier-type operator.

Definition 5.1. Let f be a smooth enough function defined on Rd, and recall that its

Fourier transform is denoted by Ff . For an arbitrary constant c > 0 and s ∈ (−∞, 1],

we set

J s
c f := F−1(

{1 + c | · |2} s
2 Ff

)
.

We now upper bound norms in some weighted Besov spaces B thanks to the

Fourier operator J . This is summarized in the following Lemma.

Lemma 5.2. Consider p ≥ 2 and s ∈ (−∞, 1]. Recall that the spaces Lp
w are given in

Definition 2.3 and the weighted Besov spaces Bs,µ
p,q are introduced in Definition 2.8. Let

us also recall that we are working with the polynomial weight P(x) = (1 + |x|1+d)−1 and

the related Besov spaces Bs,P
p,q as in Lemma 2.11. Then there exists a constant cp > 0
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depending on p and d only such that

‖f ‖Bs,P
p,∞

!
∥∥∥J s

cp
f
∥∥∥

Lp
P

, (5.1)

where the operator J s
c has been introduced in Definition 5.1.

Proof. The proof of this Lemma is basically borrowed from [10], to which we will refer

for further details. First going back to the definition (2.10) of Besov norms and invoking

the fact that ‖ · ‖-∞(N) ≤ ‖ · ‖-p(N) for 1 ≤ p < ∞, we easily get that

‖f ‖Bs,P
p,∞

! ‖f ‖Bs,P
p,p

.

Next, write equation (2.10), which gives

‖f ‖p
Bs,P

p,p
=

∑

j≥0

2sjp
∫

Rd
dx P(x)|(ϕϕϕj ∗ f )(x)|p

=
∫

Rd
dx P(x)

( ∑

j≥0

2sjp|(ϕϕϕj ∗ f )(x)|p
)

=
∫

Rd
dx P(x)

∥∥∥j /→ 2sj|(ϕϕϕj ∗ f )(x)|
∥∥∥

p

-p(N)
.

Owing to the fact that ‖ · ‖-p(N) ≤ ‖ · ‖-2(N) for p ≥ 2, we obtain

‖f ‖p
Bs,P

p,p
≤

∫

Rd
dx P(x)

( ∑

j≥0

22sj|(ϕϕϕj ∗ f )(x)|2
) p

2
. (5.2)

Note that the right-hand side of (5.2) is exactly ‖f ‖p
Fs,P

p,2
(see (2.2) in [10] for the definition

of ‖ · ‖Fs,P
p,q

). Hence, (5.2) can be rephrased as

‖f ‖Bs,P
p,p

≤ ‖f ‖Fs,P
p,2

.

The estimate (5.1) now stems from the combination of [10, Theorem 2.18] and [10,

Theorem 1.10], which allows us to assert that for some suitable cp > 0,

∥∥f
∥∥

Fs,P
p,2

!
∥∥J s

cp
f
∥∥

Lp
P

,

for some proportional constant that only depends on p and d. "

We now turn to a definition of our Gaussian noise allowing some proper

couplings for approximations. Namely, we will define Ẇ through a harmonizable
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representation of the form

Ẇt(x) := ca0

∫

λ∈R

∫

/∈Rd

eıλt − 1

|λ|
3−a0

2

eı/·x B̂(dλ, d/) . (5.3)

Here we use a parameter a0 ∈ (0, 2), ca0
is some proper positive constant, and B̂ is a

complex-valued Gaussian random measure on B(R × Rd) such that for any I1, I2 ∈ B(R)

and A1, A2 ∈ B(Rd),

E[B̂(I1 × A1)] = 0, E[B̂(I1 × A1)B̂(I2 × A2)] = m(I1 ∩ J1)µ(A1 ∩ A2), (5.4)

where m is the Lebesgue measure on R and µ(d/) is the spectral measure of a

nonnegative definite (generalized) function γ (x). In order to get a real-valued noise, we

also assume that the Gaussian measure B̂ is such that

B̂(I1 × A1) = B̂
(
−

(
I1 × A1

))
. (5.5)

It is readily checked from (5.4)–(5.5) that for an appropriate value of ca0
, the covariance

of Ẇ is (formally) given by

E[Ẇt(x)Ẇs(y)] = Ra0
(t, s)γ (x − y), (5.6)

with

Ra0
(t, s) := 1

2

{
|t|2−a0 + |s|2−a0 − |t − s|2−a0

}
.

The definition (5.3) of Ẇ comes with a natural approximation by smooth

functions. Namely for n ≥ 1 we define

Ẇn
t (x) := ca0

∫

λ∈R

∫

/∈B2n

B̂(dλ, d/)
eıλt − 1

|λ|
3−a0

2

eı/·x , (5.7)

where we recall that the balls BR are introduced in Notation 1.2. We shall show that Ẇn

converges to Ẇt(x) given in (5.3) in a proper space.

Theorem 5.3. Let a0 ∈ (0, 2) and consider . ∈ (0, 1 − a0
2 ). Let {Ẇn, t ∈ [0, T], x ∈ R} be

the field defined by (5.7). We assume the existence of a threshold parameter (d > 0 such
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that the measure µ satisfies

∫

Rd

(
1

1 + |/|

)2(d+ε

µ(d/) < ∞ , for every ε > 0 . (5.8)

Then for all ( > (d and p large enough, {Ẇn, n ≥ 1} forms a Cauchy sequence in the

space

Lp(
6; C.

(
[0, T], B−(,P

p,∞
))

,

with the limit denoted by Ẇ. The noisy input Ẇ satisfies the following properties:

(i) Almost surely we have Ẇ ∈ C. ([0, T], B−(,P
p,∞ ).

(ii) The covariance function of Ẇ is given by (5.6).

Proof. In the sequel we will write δẆn
st = Ẇn

t − Ẇn
s to alleviate notations. We will

reduce our proof to moment computations thanks to two standard steps: (1) Invoking a

telescoping sum argument, the convergence of the sequence {Ẇn; n ≥ 1} is implied by

the convergence of the series

∞∑

n=1

(
E

[∥∥Ẇn+1 − Ẇn∥∥p
C. ([0,T],B−(,P

p,∞ )

])1/p
. (5.9)

(2) Owing to a standard application of Garsia’s lemma the following holds true: if we

assume that for each summand in (5.9) and for p ≥ 1
1− a0

2 −.
, there exists ε > 0 such that

E
[∥∥δẆn+1

st − δẆn
st

∥∥p
B−(,P

p,∞

]
! |t − s|(1− a0

2 )p

2εnp , (5.10)

then we also have

E
[∥∥Ẇn+1 − Ẇn∥∥p

C. ([0,T],B−(,P
p,∞ )

]
! 1

2εnp . (5.11)

Putting together (5.9) and (5.11), we are now reduced to prove (5.10).
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In order to upper bound the right-hand side of (5.10), we invoke (5.1), which can

be read

E
[∥∥∥δẆn+1

st − δẆn
st

∥∥∥
p

B−(,P
p,∞

]

!
∫

Rd+1

dx
1 + |x|1+d

E
[∣∣∣F−1

(
{1 + | · |2}− (

2 F
(
δẆn+1

st − δẆn
st

))
(x)

∣∣∣
p]

. (5.12)

In addition, Ẇn+1−Ẇn is a Gaussian process and F is a linear transform. Hence, we get

E
[∥∥∥δẆn+1

st − δẆn
st

∥∥∥
p

B−(,P
p,∞

]
!

∫

Rd

dx
1 + |x|1+d

(
Qn

st(x)
)p/2 , (5.13)

where we have set

Qn
st(x) := E

[∣∣∣F−1
(
{1 + | · |2}− (

2 F
(
δẆn+1

st − δẆn
st

))
(x)

∣∣∣
2]

.

Let us focus our attention on the evaluation of Qn above, defined for 0 ≤ s < t ≤ T and

x ∈ Rd. To this aim, by simply writing the definition of Fourier transform, we get

Qn
st(x) =

∫

Rd

∫

Rd
dξdξ̃ eıx·(ξ−ξ̃){1 + |ξ |2}− (

2 {1 + |ξ̃ |2}− (
2

×
∫

Rd

∫

Rd
dy dỹ e−ıξ ·yeıξ̃ ·ỹ E

[{
δẆn+1

st − δẆn
st

}
(y)

{
δẆn+1

st − δẆn
st

}
(ỹ)

]
. (5.14)

In addition, invoking relation (5.7) and the covariance structure of a complex valued

white noise, we obtain

E
[{

δẆn+1
st − δẆn

st
}
(y)

{
δẆn+1

st − δẆn
st

}
(ỹ)

]
= c |t − s|2−a0

∫

B2n+1\B2n

eı/·(y−ỹ)µ(d/) ,

for some constant c. Plugging this inequality into (14) and carefully computing the

Fourier transforms reveals that

Qn
st(x) = c |t − s|2−a0

∫

B2n+1\B2n

µ(d/)

{1 + |/|2}( . (5.15)

We now bound the right-hand side of (5.15): by setting ε := ( − (d > 0, we get

∫

B2n+1\B2n

µ(d/)

{1 + |/|2}( =
∫

B2n+1\B2n

{1 + |/|2}− ε
2

µ(d/)

{1 + |/|2}(d+ ε
2
! 2−nε, (5.16)
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where the inequality follows from the assumption (5.8). Reporting (5.16) into (5.15), we

have thus obtained

Qn
st(x) ! 2−nε|t − s|2−a0 .

Plugging this information into (5.13), this trivially yields our claim (5.10). Since we have

argued that the convergence of Ẇn could be reduced to (5.10), we have proved that Ẇn

converges in Lp(6; C. ([0, T], B−(,P
p,∞ )) for p ≥ 1

1− a0
2 −.

. In particular, this proves item (i) in

our Theorem.

Finally, item (ii) in our Theorem can be proved by a standard procedure on

covariance functions from (5.7) to (5.6). The proof is concluded. "

Remark 5.4. For the special cases γ (x) = ∏d
i=1 |xi|−ai and γ (x) = |x|−a with ai ∈

(0, 2), a ∈ (0, 2d), the spectral measures are µ(d/) = ∏d
i=1 |/i|−(1−ai) d/ and µ(d/) =

|/|−(d−a) d/, respectively (Here we use the convention that for x ∈ R, |x|−1 := δ(x)

where δ(x) is the Dirac delta function and |x|−a := (|x|−a+2)++ for a ∈ (1, 2) where the

second derivative is taken in the distributional sense. Similar convention also applies

for x ∈ Rd.). If we use the notation a = ∑d
i=1 ai, condition (5.8) is verified for the optimal

threshold (d = a
2 .

Remark 5.5. In the current paper, we have chosen the harmonic representation (5.7) to

approximate the Gaussian noise, which is convenient in our setting. We could also have

used, similarly to what is done in [2], a sequence of mollifications Ẇn = ϕn ∗ Ẇ. This

second approach might be closer in spirit to our previous work [3], but is slightly more

cumbersome.

Let us recall that we have denoted by ρd the regularization parameter exhibited

in Proposition 3.4, with explicit value

ρd :=





1 if d = 1

1
2 if d = 2.

Proposition 5.6. Assume that d ∈ {1, 2}. Under the same setting as for Theorem 5.3,

assume that a0 < ρd and that condition (5.8) is satisfied for (d such that

0 < (d <
1
2

(ρd − a0). (5.17)
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Then there exist coefficients 0 < ), (, γ , . < 1 and p > d + 1 that satisfy (4.4) and such

that Ẇ ∈ C. ([0, T]; B−(,P
p,∞ ) almost surely. In particular Theorem 4.8 can be applied to the

noise Ẇ and equation (4.29) admits a unique solution in Eγ ,)
2,∞(T).

Proof. Thanks to condition (5.17), we can fix ε > 0 small enough so that (d < 1
2 (ρd −

a0) − 2ε, . := 1 − a0
2 − ε ∈ [0, 1] and ( := (d + ε ∈ [0, 1]. By Theorem 5.3, we know that

Ẇ ∈ C. ([0, T]; B−(,P
p,∞ ). Besides, observe that

. − ( = 1 − a0

2
− (d − 2ε > 1 − ρd

2
.

We can thus pick two parameters p large enough and δ > 0 small enough so that

. − ( > 1 − ρd

2
+ d

2p
+ δ . (5.18)

We now consider ), γ such that the second and third conditions in (4.4) are

fulfilled, of the form

) = ( + d
p

+ δ, and γ = 1 − . + δ , (5.19)

for δ > 0 small enough and p ≥ 1 large enough. Notice that since we have (, . ∈ [0, 1], we

also have ), γ ∈ [0, 1] whenever p is large and δ is small. Moreover, for γ as in (5.19), the

last condition in (4.4) is verified:

1 − d + 1
p

> γ .

It remains to prove that the first condition in (4.4) holds true. Towards this aim,

consider ), γ as in (5.19) and compute

) + ( + γ + (1 − ρd) = 2( + d
p

+ 1 − . + 2δ + (1 − ρd) = 2 − ρd − 2(. − () + d
p

+ 2δ + . .

(5.20)

In addition, resorting to (5.18), we have 2(. − () > 2 − ρd + d
p + 2δ. Plugging this relation

into (5.20), we get

) + ( + γ + (1 − ρd) < . .

This shows that the set of conditions (4.4) is satisfied and that Ẇ is an element of

C. ([0, T]; B−(,P
p,∞ ). Our proof is achieved. "
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Our final result draws on Proposition 5.6 and gives conditions on a0, a when the

covariance function γ (x) satisfies the scaling property (1.4).

Corollary 5.7. Assume that d ∈ {1, 2}. Under the same setting as in Remark 5.4, assume

that

a0 + a < ρd . (5.21)

Then there exist coefficients 0 < ), (, γ , . < 1 and p > d + 1 that satisfy (4.4) and such

that Ẇ ∈ C. ([0, T]; B−(,P
p,∞ ) almost surely. In particular Theorem 4.8 can be applied to the

noise Ẇ and equation (4.29) admits a unique solution in Eγ ,)
2,∞(T).

Proof. As noticed in Remark (5.4), condition (5.8) is satisfied by (d = a
2 in this

situation. The desired result then follows from a straightforward verification that (5.21)

is equivalent to (5.17) when (d = a
2 . "

A

This Appendix summarizes some technical computations, which play a prominent role

in our Besov space considerations.

A.1 A local reproducing formula

We start by labelling a Theorem borrowed from [10, Theorem 1.6]:

Theorem A.1 (Rychkov). Let ϕ0 ∈ C∞
c be such that

∫
Rd ϕ0(x) dx -= 0. Then for any integer

L ≥ 0, there exist two functions ψ0, ψ ∈ C∞
c such that:

(i) The function ψ is an element of DL, where we recall that DL is introduced in

Definition 2.4

(ii) For every distribution f ∈ D+, the following decomposition holds true in D+:

f =
∑

j≥0

ϕj ∗ ψj ∗ f .

A.2 Proof of Lemma 2.14

Recall that ϕϕϕ0,ϕϕϕj stand for the test-functions introduced in Notation 2.10, and consider

an arbitrary number L ≥ 2. By Theorem A.1, there exist two functions ψ0, ψ ∈ C∞
c such
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that ψ ∈ DL and for every h ∈ D+,

h =
∑

-≥0

ψ- ∗ ϕϕϕ- ∗ h . (A.1)

As in Lemma 2.6, for the sake of clarity, we will assume in the sequel that the supports

of ϕϕϕ0, ϕϕϕ, ψ and ψ0 are all included in the interval B1, but the arguments could be easily

extended to any supporting interval BK .

For all -, k ≥ 0, let us set δ-f := ψ- ∗ϕϕϕ- ∗ f and δkg := ψk ∗ϕϕϕk ∗ g. Owing to formula

(A.1), one can proceed similarly to (15) and split ϕj ∗ (f · g) as

ϕϕϕj ∗ (f · g) =
∑

-,k≥0

ϕϕϕj ∗ (δ-f · δkg) =: Ij + IIj , (A.2)

where the terms Ij and IIj are defined by

Ij =
∑

-,k≥0
0≤-≤max(j,k)

ϕϕϕj ∗ (δ-f · δkg) , IIj =
∑

-,k≥0
->max(j,k)

ϕϕϕj ∗ (δ-f · δkg) . (A.3)

We now bound Ij and IIj in two different steps.

Treatment of Ij. We first bound each term ϕϕϕj ∗ (δ-f · δkg) in the sum defining Ij in (A.3).

That is, resorting to (2.5) together with the fact that ϕϕϕj is bounded in L1, we get

‖ϕϕϕj ∗ (δ-f · δkg)‖Lp
µ
! ‖δ-f · δkg‖Lp

µ
.

Let us now consider p1, p2, µ1, µ2 as in (2.18). A standard application of Hölder’s

inequality shows that

‖δ-f · δkg‖Lp
µ

≤ ‖δ-f ‖L
p1
µ1

‖δkg‖L
p2
µ2

.

Next for each block δ-f , δkg, we use the fact that ψ- is bounded in L1 (uniformly in -), the

expression (2.10) for the norm in Besov spaces, and Young’s inequality. We get

‖δ-f · δkg‖Lp
µ
! 2(-2−/k‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞
. (A.4)

Summarizing our considerations so far, we have obtained

‖ϕϕϕj ∗ (δ-f · δkg)‖Lp
µ
! 2(-2−/k‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞
,

for a proportional constant that only depends on µ∗. Reporting this estimate into the

sum (A.3) defining Ij, we end up with

∥∥Ij
∥∥

Lp
µ
! ‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞

∑

-,k≥0
0≤-≤max(j,k)

2(-2−/k . (A.5)
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Let us upper bound the sum in the right-hand side of (A.5). Splitting the summation in

a straightforward way, we get
∑

-,k≥0
0≤-≤max(j,k)

2(-2−/k !
∑

0≤k≤j

2−/k
∑

0≤-≤j

2(- +
∑

k>j

2−/k
∑

0≤-≤k

2(-

! 2(j
∑

k≥0

2−/k +
∑

k≥0

2−(/−()k ! 2(j + 1 ! 2(j ,

where we have used the fact that / > ( (see (2.18)). Going back to (A.5), we have thus

obtained

‖Ij‖Lp
µ
! 2(j‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞
. (A.6)

Treatment of IIj. As in the previous step, we first analyze a single term ϕϕϕj ∗ (δ-f · δkg).

In the regime - > max(j, k), we write the definition of convolution product and apply

Fubini in order to get
(
ϕϕϕj ∗

[
δ-f · δkg

])
(x) =

∫
dy ϕϕϕj(x − y)

[
ψ- ∗ (ϕϕϕ- ∗ f )

]
(y)

[
ψk ∗ (ϕϕϕk ∗ g)

]
(y)

=
∫

dz
∫

dv (ϕϕϕ- ∗ f )(z)(ϕϕϕk ∗ g)(v)Kjk-(x, v, z) , (A.7)

where we have set

Kjk-(x, v, z) :=
∫

dy ϕϕϕj(x − y)ψ-(y − z)ψk(y − v) . (A.8)

Let us further investigate the term Kjk- defined in (A.8). Resorting to a change of

variable y := y − z and expressing the scalings in the functions ϕϕϕ and ψ , we have

Kjk-(x, v, z) =
∫

dy ψ-(y)ϕϕϕj((x − z) − y)ψk(y + (z − v))

= 2d(-+j+k)

∫
dy ψ(2-y)ϕϕϕ(2j(x − z) − 2jy)ψ(2ky + 2k(z − v))

= 2d(j+k)

∫
dy ψ(y)ϕϕϕ(2j(x − z) − 2−(-−j)y)ψ(2−(-−k)y + 2k(z − v)) ,

where the last identity stems from another elementary change of variable y := 2-y. For

m ≥ 0, we now introduce the indicator function χm := 1B2−m+1
. Thanks to the fact that

the support of both ϕϕϕ and ψ is a subset of B1, for - > max(j, k), we end up with

Kjk-(x, v, z) = 2d(j+k)χj(x − z)χk(z − v)

×
∫

dy ψ(y)ϕϕϕ(2j(x − z) − 2−(-−j)y)ψ(2−(-−k)y + 2k(z − v)) . (A.9)

We now proceed as for (2.8)–(2.9), invoking the fact that ψ ∈ DL and using a Taylor

expansion for y /→ ϕϕϕ(2j(x − z) − 2−(-−j)y)ψ(2k(z − v) + 2−(-−k)y). We let the reader check
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that we get
∣∣∣∣

∫
dy ψ(y)ϕϕϕ(2j(x − z) − 2−(-−j)y)ψ(2k(z − v) + 2−(-−k)y)

∣∣∣∣ ! 2−L(-−max(j,k)) ,

for some proportional constant that does not depend on j, k, -. Taking the above

inequality into account in (A.9), this leads to

|Kjk-(x, v, z)| ! 2d(j+k)−L(-−max(j,k))χj(x − z)χk(z − v) . (A.10)

Let us go back to (A.7) with (A.10) in hand. This allows to write
∣∣∣
(
ϕϕϕj ∗

[
δ-f · δkg

])
(x)

∣∣∣ ! 2−L(-−max(j,k))+d(j+k)K̃jk-(x) , (A.11)

where the function K̃jk- can be expressed as

K̃jk-(x) =
∫

dz
∫

dv |(ϕϕϕ- ∗ f )(z)||(ϕϕϕk ∗ g)(v)|χj(x − z)χk(z − v) .

We now express K̃jk- as a convolution product thanks to elementary changes of variable.

Specifically, setting z := x − z and v = x − z − v, we get

K̃jk-(x) =
∫

dz |(ϕϕϕ- ∗ f )(x − z)|χj(z)

∫
dv |(ϕϕϕk ∗ g)(x − z − v)|χk(v) .

Hence it is easily seen that

K̃jk-(x) =
∫

dz |(ϕϕϕ- ∗ f )(x − z)|χj(z)
[
χk ∗ |ϕϕϕk ∗ g|

]
(x − z)

=
[
χj ∗

[
|ϕϕϕ- ∗ f | ·

[
χk ∗ |ϕϕϕk ∗ g|

]]]
(x) .

We plug the above formula into (A.11). Then our expression with convolutions

allows the application of (2.5), as in the previous step. We first get
∥∥ϕϕϕj ∗

[
δ-f · δkg

]∥∥
Lp

µ
! 2−L(-−max(j,k))

(
2dj‖χj‖L1

)
2dk

∥∥∥|ϕϕϕ- ∗ f | ·
[
χk ∗ |ϕϕϕk ∗ g|

]∥∥∥
Lp

µ

.

Then thanks to Hölder’s inequality, we obtain

∥∥ϕϕϕj ∗
[
δ-f · δkg

]∥∥
Lp

µ
! 2−L(-−max(j,k))

∥∥ϕϕϕ- ∗ f
∥∥

L
p1
µ1

(
2dk∥∥χk ∗ |ϕϕϕk ∗ g|

∥∥
L

p2
µ2

)
.

Then owing to (2.5) again and similarly to (A.4), this yields
∥∥ϕϕϕj ∗

[
δ-f · δkg

]∥∥
Lp

µ
! 2−L(-−max(j,k))2(-2−/k‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞
, (A.12)

where the proportional constants only depend on µ∗.

We can now proceed as in (A.5)–(A.6). That is we plug (A.12) into the definition

(A.3) of IIj. This yields

‖IIj‖Lp
µ
! ‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞

∑

-,k≥0
->max(j,k)

2−L(-−max(j,k))2(-2−/k . (A.13)
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Then we split the sum in the right-hand side above and take into account the fact that

/ > (, L > ( in order to obtain
∑

-,k≥0
->max(j,k)

2−L(-−max(j,k))2(-2−/k =
∑

0≤k≤j

2−/k
∑

->j

2−L(-−j)2(- +
∑

k>j

2−/k
∑

->k

2−L(-−k)2(-

= 2(j
∑

0≤k≤j

2−/k
∑

->0

2−(L−()- +
∑

k>j

2−(/−()k
∑

->0

2−(L−()-

! 2(j + 2−(/−()j ! 2(j .

Resorting to this inequality in (A.13), we have obtained

‖IIj‖Lp
µ
! 2(j‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞
. (A.14)

Conclusion. We simply gather (A.6) and (A.14) into (A.3) and (A.2). This yields

‖ϕj ∗ (f · g)‖Lp
µ
! 2(j‖f ‖B−(,µ1

p1,∞
‖g‖B/,µ2

p2,∞
.

Owing to the definition (2.10) of norms in Besov spaces, we thus easily get the fact that

f · g sits in B−(,µ
p,∞ and that (2.19) holds. This finishes the proof.

A.3 Proof of Lemma 3.5

Case d = 1. Invoking the definition (3.1), one has here

Gt(y − 2−jz) − Gt(y) = 1
2

{
1{|y−2−jz|≤t} − 1{|y|≤t}

}
. (A.15)

Whenever |z| ≤ min{2j+1t, 2}, a careful analysis of the intervals at stake reveals that
∣∣1{|y−2−jz|≤t} − 1{|y|≤t}

∣∣ ! 1{|y−t|≤2−j|z|} + 1{|y+t|≤2−j|z|}

! 1{|y−t|≤2−j+1} + 1{|y+t|≤2−j+1} . (A.16)

Furthermore, if 2j+1t < |z| < 2, then t ≤ 2−j and
∣∣1{|y−2−jz|≤t} − 1{|y|≤t}

∣∣ ! 1{|y−2−jz|≤t} + 1{|y|≤t} ! 1{|y|≤2−j+2} . (A.17)

Combining the bounds (A.16)–(A.17) with the expression (A.15), we obtain
∥∥K(1)

t,j

∥∥
L1 ≤ 2j

∫

R
dy

∫

|z|<2
dz

∣∣Gt(y − 2−jz) − Gt(y)
∣∣

! 2j
∫

R
dy

{
1{|y−t|≤2−j+1} + 1{|y+t|≤2−j+1} + 1{|y|≤2−j+2}

}

! 2j
∫

R
dy 1{|y|≤2−j+2} ! 2j

∫

R
dy 1{|2jy|≤4} !

∫

R
dy 1{|y|≤4},

which naturally corresponds to the desired uniform bound.
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Case d = 2. Let us denote the difference within the integral as

At,j,z(y) := Gt(y − 2−jz) − Gt(y)

= 1
(
t2 − |y − 2−jz|2

)1/2 1{t−|y−2−jz|>0} − 1
(
t2 − |y|2

)1/2 1{t−|y|>0} . (A.18)

For every z ∈ B2, we can write
∫

R2
dy |At,j,z(y)| =

∫

{|y−2−jz|≤|y|}
dy |At,j,z(y)| +

∫

{|y|≤|y−2−jz|}
dy |At,j,z(y)|

=
∫

{|y−2−jz|≤|y|}
dy |At,j,z(y)| +

∫

{|y+2−jz|≤|y|}
dy |At,j,z(y + 2−jz)|

= It,j(z) + It,j(−z), (A.19)

where we have set

It,j(z) :=
∫

{|y−2−jz|≤|y|}
dy |At,j,z(y)|.

Let us split the latter expression into

It,j(z) =
∫

{t≤|y−2−jz|≤|y|}
dy |At,j,z(y)|

+
∫

{|y−2−jz|<t≤|y|}
dy |At,j,z(y)| +

∫

{|y−2−jz|≤|y|<t}
dy |At,j,z(y)|

=: I(1)
t,j (z) + I(2)

t,j (z) + I(3)
t,j (z). (A.20)

We will now treat those three terms separately.

Given the expression (A.18) of At,j,z(y), it is readily checked that I(1)
t,j (z) = 0. Next

for the term I(2)
t,j (z), we notice that for every z ∈ B2,

I(2)
t,j (z) =

∫

{|y−2−jz|<t≤|y|}

dy
(
t2 − |y − 2−jz|2

)1/2 =
∫

{|y|<t≤|y+2−jz|}

dy
(
t2 − |y|2

)1/2 (A.21)

≤
∫

{max(0,t−2−j+1)<|y|<t}

dy
(
t2 − |y|2

)1/2

! 1{0≤t≤2−j+1}

∫ t

0

r dr
(
t2 − r2

)1/2 + 1{t>2−j+1}

∫ t

t−2−j+1

r dr
(
t2 − r2

)1/2

! 1{0≤t≤2−j+1}

∫ t2

0

ds
(
t2 − s

)1/2 + 1{t>2−j+1}

∫ t2

(t−2−j+1)2

ds
(
t2 − s

)1/2

! 1{0≤t≤2−j+1}t + 1{t>2−j+1}(t
2 − (t − 2−j+1)2)1/2 ! 2−j+1 + (2−j+1t)1/2,
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which immediately entails that

sup
z∈B2

sup
t∈[0,1]

I(2)
t,j (z) ! 2− j

2 . (A.22)

Finally, for every z ∈ B2,

I(3)
t,j (z) =

∫

{|y−2−jz|<|y|<t}
dy

∣∣∣∣
1

(
t2 − |y − 2−jz|2

)1/2 − 1
(
t2 − |y|2

)1/2

∣∣∣∣

=
∫

{|y−2−jz|<|y|<t}
dy

[
1

(
t2 − |y|2

)1/2 − 1
(
t2 − |y − 2−jz|2

)1/2

]

=
∫

{|y−2−jz|<|y|<t}

dy
(
t2 − |y|2

)1/2 −
∫

{|y|<|y+2−jz|<t}

dy
(
t2 − |y|2

)1/2

=
∫

R2

dy
(
t2 − |y|2

)1/2

[
1{|y−2−jz|<|y|<t} − 1{|y|<|y+2−jz|<t}

]
. (A.23)

At this point, the key observation is that

1{|y−2−jz|<|y|<t} − 1{|y|<|y+2−jz|<t} ≤ 1{|y|<t≤|y+2−jz|}. (A.24)

Indeed, the difference 1{|y−2−jz|<|y|<t} − 1{|y|<|y+2−jz|<t} is strictly positive if and only if

|y − 2−jz| < |y| < t and
(
|y| ≥ |y + 2−jz| or |y + 2−jz| ≥ t

)

It turns out that we cannot have simultaneously |y −2−jz| < |y| and |y| ≥ |y +2−jz|, since

it would imply that −2−j+1y · z + 2−2j|z|2 < 0 and 2−j+1y · z + 2−2j|z|2 ≤ 0, leading to an

immediate contradiction. Thus, the difference 1{|y−2−jz|<|y|<t} − 1{|y|<|y+2−jz|<t} is strictly

positive if and only if

|y − 2−jz| < |y| < t and |y + 2−jz| ≥ t,

which immediately yields (A.24).

Injecting (A.24) into (A.23), we obtain for every z ∈ B2,

I(3)
t,j (z) ≤

∫

R2

dy
(
t2 − |y|2

)1/2 1{|y|<t≤|y+2−jz|}.

We are here in the same position as in (A.21), and so we can use the same estimates as

above to derive that uniformly over z ∈ B2 and t ∈ [0, 1],

I(3)
t,j (z) ! 2− j

2 . (A.25)

Plugging (A.22) and (A.25) into (A.20), we see that

sup
z∈B2

sup
t∈[0,1]

It,j(z) ! 2− j
2 ,

which, going back to decomposition (A.19), easily leads us to the assertion (3.13).
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