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the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions
(fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step
size n) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations
driven by fBm with Hurst parameter H > 1/3 and its Malliavin derivatives.

1. Introduction

In this paper we are interested in the following stochastic differential equation driven by a d-dimensional fractional Brownian
motion (fBm in the sequel) x with Hurst parameter % < H< %:

dy, = Vo(ydt +V(ydx,, te€[0,T], 1.1)
Yo = a€R™

Throughout the paper we assume that the collection of vector fields V, = (V/,1 <i<m) € Cg (R™,R™) and V = (V/.i J<i<ml1<j
< d) all sit in the class Cg (R™, £(R4, R™)). Here Cg denotes the space of functions whose derivatives up to the third order exist and
are continuous and bounded. The existence and uniqueness of path-wise solution of Eq. (1.1) is guaranteed by the theory of rough
paths; see e.g. [10]. In addition, the unique solution y in the sense of [10] has y-Holder continuity forall0 <y < H.

The aim of this paper is to consider the numerical approximation of Eq. (1.1). It is well-known (see the introduction in [8] for
more details about this issue) that the classical Euler scheme is divergent under this setting. The simplest possible solution to this
problem is to use a second-order Euler (that is a Milstein type) scheme, which however involves iterated integrals of the fBm x and
is not implementable directly. Several contributions are made to tackle the implementation issue [8,9,12,18]; see also [13,14].

In this paper we will focus our attention on the (implementable) Euler scheme introduced in [12,18]. Take the uniform partition
7:0=ty<t < <t,=Ton|0,T], where for k =0,...,n we have 7, = kA with 4 = % The Euler scheme is recursively defined
as follows:

A

k+1

d
1
=y, H VoI A+V (8%, + 5 > v, Vi) a2 1.2)
j=1
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and yj = y), where we have used the notation

m
av,.vj=<2()fv,.kvf;k=1,...,m> 1.3)

=1

9

and 9; stands for the partial derivative in the y) direction: 9, = PR

order 1/n2H-1/2 in [18].

In this paper, we are interested in proving that the approximation y" defined by (1.2) is Malliavin differentiable under sufficient
smoothness assumption on the coefficients. More importantly, we will establish pathwise upper bounds estimates of the Malliavin
derivative which will be uniform in n. Our motivation for this endeavor is twofold:

The exact rate of convergence of y" to y is shown to be of

(i) The integrability of Malliavin derivatives for rough differential equations has been an important open problem a decade ago.
This is mostly due to the prominent role played by Malliavin calculus techniques in obtaining results about the density of random
variables like y, in (1.1). The integrability issue for the Malliavin derivatives Dy, has been solved completely in [5]. Subsequent
applications to the smoothness of densities of y, are contained in [2,4,11]. The corresponding question for numerical approximations
of y is thus in order. We propose to start a detailed answer to this natural problem in the current paper.

(ii) Upper bounds on Malliavin derivatives open the way to important results for numerical schemes. Among others, one can quote
weak convergence as well as convergence of densities. In our companion paper [17] we prove the weak convergence of y" defined
by (1.2) towards the solution to (1.1). The uniform bounds on Malliavin derivatives obtained in the current contribution are a crucial
ingredient in [17].

With those motivations in mind, our main result can be informally spelled out as follows. Please refer to Theorem 4.10,
Remark 4.11 and Theorem 4.15 for a more precise statement.

Theorem 1.1. Let y and y" be the solution of (1.1) and the corresponding Euler scheme (1.2), respectively. Take an integer L > 1. Let
DLy be the Lth Malliavin derivative of y" in the Cameron-Martin space H{ corresponding to the fBm x. Suppose that V € le+2. Then for
each n € N there is a functional G} of the fBm x which is almost surely finite and such that the following pathwise bound holds true:

D"y lzer <G, forallt=1, andk=1,....n. (1.4)
The explicit expression of G is given in Theorem 4.10. Furthermore, we have the uniform integrability of G} for n € N:

sup E[|C] |”] < 0.
neN

Remark 1.2. In Theorem 4.10 we will see that, roughly speaking, ¢} is the product of the values of a control function » over
the sequence of intervals: [sy, s;1, [}, 2], -... Here S := {sq,s;,... } C [0,T] is a discrete version of the so-called greedy sequence
introduced in [5] (the reader is referred to (4.36) for its precise definition). As far as the control function w is concerned, it will
be expressed as the addition of pth moments of a (discrete-version) of the p-variation of the fBm x, plus a quadratic functional of
x (see (4.35) below). While Q’i still depends on n we have shown (see [17]) that the moments of Q’i are uniformly bounded in the
variable n, due to the proper choice of the sequence .S.

As mentioned above, Theorem 1.1 is a crucial step in the analysis of weak convergence for the Euler type scheme (1.2). In
addition, the proof of our main estimate (1.4) relies on techniques which are interesting in their own right. Specifically, we will first
resort to rough paths type estimates (recalled in Section 2), and our Malliavin calculus setting will follow Inahama’s approach [15] for
all computations in the Cameron-Martin space. On top of those classical ingredients, our main technical tool will be a representation
of higher order Malliavin derivatives of y" in terms of a tree expansion (see Lemmas 3.8 and 3.18 below). This kind of expression
has to be contrasted with the standard form of higher order Malliavin derivatives, based on sums over partitions of the set {1, ..., n}
(see [20, Proposition 5]). We note that the advantage of our directed-tree notations is that it allows us to distinguish all terms in the
chain differentiations. We will benefit from this feature while proving an identities (3.26)-(3.27) in Lemma 3.18. We also believe
that the tree-based computations presented here can be usefully applied to other numerical schemes. We plan on developing this
line of research in subsequent publications.

The paper is organized as follows. In Section 2 we recall some basic material on rough paths and Malliavin calculus. We also
review results on the Euler scheme which will be used throughout the paper. In Section 3 we derive a representation of Malliavin
derivatives of the Euler scheme via tree notations. Finally, in Section 4 we prove the uniform upper-bound estimate for the Euler
scheme and its Malliavin derivatives.

Notation 1.3. In what follows, we take n € N and A = T /n, and consider the uniform partition: 0 = t; <t; < --- <t, =T on [0,T],
where t, = kA. We denote by [[s,t]] the discrete interval: [[s,t] = {t, € [s,f] : k =0,...,n}. For u € [t;,1,,), we denote n(u) = t,. For
an interval [s,t] C [0, T] we define the simplex S,([s,1]) = {(u,v) : s <u < v < t}. For a vector a = (a', ..., a") € RY we define the norm
la| = max;_; ., la;|. Throughout the paper, we use C and K to represent constants that are independent of n and whose values may change
from line to line.



J.A. Lebn et al. Stochastic Processes and their Applications 175 (2024) 104412

2. Preliminary results

In this section we recall some basic notions of rough paths theory and their application to fractional Brownian motion, which
allows a proper definition of Eq. (1.1). We also give the necessary elements of Malliavin calculus in order to estimate densities of
random variables.

2.1. Elements of rough paths and fractional Brownian motion

This subsection is devoted to introduce some basic concepts of rough paths theory. We are going to restrict our analysis to a
generic Holder regularity of the driving path of order % <y< %, in order to keep expansions to a reasonable size. We also fix a
finite time horizon T > 0. The following notation will prevail until the end of the paper: for a Banach space V (which can be either

finite or infinite dimensional) and two functions f € C([0,T],V) and g € C(S,([0,T]), V) we set

6fu=fi—fe and 8gy =8;—8u—8um  O<s<u<t<T. 21

Let us introduce the analytic requirements in terms of Holder regularity which will be used in the sequel. Namely consider two
paths x € C([0,T],R%) and x? € C(S,([0, T]), (R?)®?). Then we denote

16, I,

sup 7 (2.2)
(W,0)ES, ([s.1]) 1uzv [v—ul

. 2 .
1xll gy = X752, =

sup _—
w)eSy([s4) uv |0 —ul?
When the semi-norms in (2.2) are finite we say that x and x> are respectively in C”([s,?],R?) and C?(S,([s,?]), R¢)®2). For

convenience, we denote [|x||, := ||x|ljoz;, and ||x2||27 = ”x2”[0,T1,27' With this preliminary notation in hand, we can now turn
to the definition of rough path.

Definition 2.1. Let x € C([0,T],RY), x> € C(S,([0, T]), (R¥)®?), and % <y < % For (s,1) € S,([0,T]) we denote x!, = éx,,. We call
X 1= 85,(x) := (x!, x?) a (second-order) y-rough path if ||x!||, < co and [|x?||,, < oo, and if the following algebraic relation holds true:

2 _ 22 2 _ .1 1
6x5ur =X T X T X = X ® Xt sSust, (2.3)

where we have invoked (2.1) for the definition of 6x2. For a y-rough path S,(x), we define a y-Hélder semi-norm as follows:

1
15,60, <= Il + 1315, - 2.4)

An important subclass of rough paths are the so-called geometric y-Hélder rough paths. A geometric y-Holder rough path is a y-rough
path (x, x?) such that there exists a sequence of smooth R?-valued paths (x", x>") verifying:

llx = x"[l, + [Ix* = x*"|l, > 0, as n— oo. (2.5)
We will mainly consider geometric rough paths in the remainder of the article.

Let x be a rough path as given in Definition 2.1. We shall interpret equation (1.1) in a way introduced by Davie in [7], which
is conveniently compatible with numerical approximations.

Definition 2.2. Let (x,x?) be a y-rough path with y > 1/3. We say that y is a solution of (1.1) on [0, T] if y, = a and there exists a
constant K > 0 and u > 1 such that

t d B
|67, - / Vo) du=V(y)xl, = 3 oViVir)xg,| < Klt = s1* (2.6)
§ i,j=1

for all (s,1) € S,([0,T1), where we recall that 6y is defined by (2.1) and the notation dV;¥; is introduced in (1.3).

According to [7] there exists a unique RDE solution to equation (1.1), understood as in Definition 2.2.

In the following we recall a sewing map lemma with respect to discrete control functions. It is an elaboration of [18, Lemma
2.5] and proves to be useful in the analysis of the numerical scheme. Let # : 0 = ¢, < t; < -+ <1,y <t, = T be a generic
partition of the interval [0, 7] for n € N. We denote by [[s,¢] the discrete interval {7, : s <1, <t} for 0 < s <t < T. In this paper,
a two variable function @ : S,([0,T]) — [0, c0) is called a control on [0, 7] if it satisfies the super-additivity condition. That is,
w(s,u) + o(u,t) < w(s,t) for s,u,t € [0,T] such that s <u <t.

Lemma 2.3. Suppose that  is a control on [0, T]. Consider a Banach space B and an increment R : S,([0,T]) — B. Suppose that
IR, | < ot ti ¥ for all ;. € [0,T] and that |6Ry,| < a(s,n* with an exponent u > 1, where recall that 6Ry,; = Ry — Ry, — Ry,
Then the following relation holds:

0
IR, | < K,o(s.0)", where K, =2" Zr”. 2.7)
I1=1
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We now specialize our setting to a path x = (x!, ..., x?) defined as a standard m-dimensional fBm on [0, T] with Hurst parameter
H e (%, %). This fBm is defined on a complete probability space (£2, F,P), and we assume that the cs-algebra F is generated by x. In
this situation, recall that the covariance function of each coordinate of x is defined on S,([0,T]) by:

R(s,1) = % [1s12# + |02 — |2 = s]2H]. (2.8)

It is established in [10, Chapter 15] that the geometric rough path S,(x) of x via the piecewise linear approximation is well defined
for % <y < H in the sense of Definition 2.1.

2.2. Malliavin calculus for x

In this subsection we recall some concepts of Malliavin calculus which will be used later in the paper. Recall that R is the
covariance function of the fBm x defined in (2.8). Denote by & the set of step functions on the interval [0, T']. We define the Hilbert
space H as the closure of £ with respect to the scalar product

(Lpops Ls )2 = R, 0], [s,1]) = R(v, 1) = R(v, 5) — R(u, 1) + R(u, s). (2.9)

The space H is very useful in order to define Wiener integrals with respect to x. However, in the current paper we also need to
introduce the Cameron-Martin space H related to our driving process. The latter space is the one allowing to identify pathwise
derivatives with respect to x and Malliavin derivatives. In order to construct H, let first R be the linear operator on & such that

R(1pp,) = R@, ), (2.10)
and we also set £ = R(£). Then we can define the Cameron-Martin space H as the closure of £ with respect to the inner product

(R, RApo )i = Mo,sp Lo

It is clear that R is an isometry between the two Hilbert spaces # and H. Note that according to (2.10) we have
R(h)(1) = (h,11g )3 (2.11)

for h € £. By the isometry property of R we see that (2.11) holds for all ~ € H. We refer to [1,20] for more details about the spaces
H,H.

For the sake of conciseness, we refer to [19] for a proper definition of Malliavin derivatives in the Hilbert space H and related
Sobolev spaces in Gaussian analysis. Let us just mention that for a functional F of x we will denote its Malliavin derivative by DF,
the Sobolev spaces by D*” and the corresponding norms by || F|l;, -

As mentioned above, in this paper we will mainly focus on a more pathwise Malliavin derivative taking values in 7. Namely we
define the Malliavin derivative in the Cameron-Martin 7 space via the isometry R. Precisely, we define D such that DF = R(DF).
In other words, for h € H and a functional F of x we have

DryF 1= (DF,R(h))j; = (DF,h)y =: D,F.

This Malliavin derivative can be expressed easily for cylindrical functionals of x. Namely suppose that F = f(x;,...,x,) for
fe Cp' (R?). According to the definition of D, for h € H we have

14

(DF,R(h))z = (DF,h)y = ¥ 0, Cxs e, X1po 1 A
i=1

14
=3 0, (xyyn e x, JROANE,). (2.12)
i=1

Notice that the computation in (2.12) shows that (DF, R(h));; can be interpreted as an extension in the Fréchet derivative of F of
the R(h) direction. Indeed, for the quantity in the right-hand side of (2.12) we have

14
j—g FGq, + R, - x,, + SR(h)(tf))L:O = ; 0,f (X - %, IR(A)(E,). (2.13)

This pathwise interpretation of Malliavin derivatives is also the one adopted in [10].

In this paper, we denote by DX F the kth iteration of the Malliavin derivative D applied on F. Also notice that we are considering
a d-dimensional fBm x = (x!, ..., x?). Therefore, we shall consider partial Malliavin derivatives with respect to each coordinate x’
in the sequel. Those partial derivatives will be denoted by D®. Then for h = (h',...,h?) € 7t we write DF = ¥ (DO F,h').
For L > 2 we denote by Dg the iterated versions of Dj. Namely we set

DJ'F = Do - oD F. (2.14)

The Sobolev spaces related to the Malliavin derivatives in the Cameron-Martin space are denoted by D*? and the corresponding
norms are written || - ||z.,.
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Let us now review some results on the Malliavin differentiability of Eq. (1.1). In the following we assume that the vector fields
Vo, ..., Vy are at least in CE(R’”) (bounded together with their derivatives up to order 3), although later on we will have to introduce
further smoothness conditions in order to estimate higher order Malliavin derivatives. We shall express the first order Malliavin

derivative of y, in terms of the Jacobian @ of the equation, which is defined by the relation tpij = 0aj_ yii). Setting dV; for the

Jacobian of V; seen as a function from R" to R”", let us recall that @ is the unique solution to the linear equation

t d t
o, =1d, +/ WV (y,) D, ds + Z/ IV (y,) @, dx’, (2.15)
0 =1Jo
The following result (for which we refer to [3]) holds true:

Proposition 2.4. Let y be the solution to Eq. (1.1). Then for every i = 1,...,m, t > 0, and a € R™, we have ygi) € D(H) and
Dy, = ((I)S_th(yS),j =1,... ,d) , 0<s<t,
where @, = 9d,y, solves Eq. (2.15) and &, = &, .

Let us now quote the result [5], which gives a useful estimate for moments of the Jacobian of rough differential equations driven
by Gaussian processes. Note that this result is expressed in terms of p-variations, for which we refer to [10].

Proposition 2.5. Consider a fractional Brownian motion x with Hurst parameter H € (1/4,1/2) and p > 1/H. Then for any n > 1, there
exists a finite constant c, such that the Jacobian @ defined by (2.15) satisfies:

n —
E (1217 grio| = (2.16)

3. Malliavin derivatives of the Euler scheme

The estimates for the derivatives of the Euler scheme approximation y" require a substantial amount of algebraic and analytic
efforts. In this section we focus on the algebraic aspect of the problem. Precisely, we apply a tree argument to derive a representation
for Malliavin derivatives of y". This will be useful for our main bound of the derivatives of y" in the next section (see Theorem 4.10).

3.1. A directed rooted tree

The higher order Malliavin derivatives of the Euler scheme y” are better understood thanks to a tree type encoding. We introduce
the necessary notation in this section. Let us start with the definition of rooted trees which will be used in the sequel.

Definition 3.1. In the remainder of the paper we consider rooted trees .4, of height N defined recursively as follows:
(i) A, contains one branch with length 1 and with root labeled 1. Namely, A, = {(1)}.

(ii) For each N € N we define Ay, such that its first N generations coincides with A . Its (N + 1)th generation is defined as
follows: Take a branch i in A,. We call # 11 the number of 1’s in i and we also set a; = ¢ 'l + 1. Then Ay, is constructed by adding
the branches (i, 1), ..., (i,a;) to Ay. Specifically, one can also define Ay, recursively as

{(i,r) Li€ Ay, = l,...,ai}.

Example 3.2. As an example of what Definition 3.1 can produce, we draw the A, tree in the figure below:

In the following we introduce some additional notation about the trees .4 which will be useful for our future computations.
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Notation 3.3. With a slight abuse of notation, we will write Ay for both the tree A, and the collection of its branches. For each branch
i in Ay we denote |i| the number of vertices in i and denote i, the tth label in the branch i. We set

O=#i,=1:r=1..0i} and fl=#{i,=r:v=1_l|iI}+1 forr=2,..,1]i

Also recall that we denote a; = £} + 1.

Remark 3.4. In the sequel we shall use the relation

i £i=N, (B.1)
r=2

valid for every tree Ay from Definition 3.1. Let us give a brief proof of this fact. According to the definition of .4, for each branch
i the vertices of i are labeled by the numbers 1,2, ..., ;. No vertex of i is labeled a number «; + 1 or larger. Therefore, for all r > «;
we have

#i,=r:7=1,..}=0, and ¢ =1
Moreover, by construction every branch i in .4, has length |i| = N. Thus
&
Z#{ifzr:T=1,.~-,|i|}=|i|:N~
r=1
Because o; = f’i +1=#{i,=1:7=1,....|i|]} + 1, the above becomes
@ a;
Y (#ip=rir=1o,lil})+ (e —1)=Y (#i,=r:t=1.li}+1)=N.
r=2 r=2

Otherwise stated, according to Notation 3.3 we obtain relation (3.1).

Example 3.5. Let us follow up on Example 3.2, and see how Notation 3.3 works on A,. Namely (1,2, 1,3) and (1,2,1,1) are both
branches in A,. For those branches, the reader can easily check that we have

fil,Z,LS) ) f§1’2’1'3) =2, Lpgl,Z,l,S) =2,

ai213) =3

]

fil,Z,l,l) =3, Z/,(21,2,1,1) =2, fgl,Z,l,l) =1, {‘(‘1,2,1,1) =1, Aot = 4.

It is easily checked that the identity (3.1) holds for these two branches. Namely we have f<21,2,1,3) +f§1‘2’1’3) =4 and f;"2’1")+fél’2‘l‘”+
PUESRIIY
4

In order to state our differentiation rule for Malliavin derivatives, let us also label some notation about partial differentiation in
R™.

Notation 3.6. For a constant
A= (AP py =1, m) € RO =R™,

and for a, ..., a® € R™ we set
m

D @ab) := ®) ... (1) AP1-sPk
(A,dV ® - ®a™) : Z lapk ap]A .

Notation 3.7. Let f : y — f(¥) be a continuous function from R™ to R. We denote by 0 the differential operator from C'(R™) to
L@®R™,R) = L(R™). That is for a = (ay, ..., a,) € R", we define (3f.a) = Y\, ai%. Note that the space L(R™) can also be identified with
R™. Namely, we can write
o _ (9 of
Of = (0, f+....0,f) 1= <W’ s W) .
One can generalize this notation to higher order derivatives. Specifically, we denote by 0% the differential operator from C*(R™) to
L(R™®k R). Otherwise stated for aV, ..., a® € R™ and y € R™ we define a vector
CAFAS))
oy®k) .. 9yP1)
so that one can write

a"f(y)={ ;pl,...,pk=1...,m},

m

k
(@D @ @a®)= Y o g LIV

_ (3.2)
P Pk Py ay(Pk) ay(Pl)

2
Notice that for k = 2, 0> f can also be identified with the matrix (W)/J:me'

6



J.A. Lebn et al. Stochastic Processes and their Applications 175 (2024) 104412

3.2. A differentiation rule

With the preparation in the previous subsection, we are now ready to state a lemma allowing to compute iterated Malliavin
derivatives for a functional of the form f(F), with a smooth enough function f and random variable F. Recall that the Malliavin
derivative operator D in the Cameron-Martin space # is introduced in Section 2.2.

Lemma 3.8. Let f,g be continuous functions in CN (R™) and let F € DV2(R™), where the space DV-2 is introduced in Section 2.2. Then
we have the following identity:

_ i _7! _¢
DYf(F)= ) (0" /(F),D;’F ® -~ ® D," F) (3.3)
i€EAN
for h € H™, where the sum in the right side of (3.3) runs over the branches of A as specified in Notations 3.3-3.7. As far as the product
f(F)g(F) is concerned, we get the following differentiation rule:

DY (f - §)(F) = M (N) + My(N), (3.4

where

i _¢! _th

M (N = Y <(af1f~g><F), DF®--®D, 'F>
i€EAN

&

MyN)= ) Z<a‘”‘1f<F) F®®Dg(F)® - ®D“’F>

i€EAN r=2

Remark 3.9. Let us check the dimension compatlblhtles in the right side of (3. 3) Since F 1s R™-valued, according to Notation 3.7

we have 9’1 f(F) € L(R™ )®f| R). Next each term Dh F sits in R™. Therefore, D FQ- ®D Ca F € L((R™®@~D), The compatibility
of dimensions in (3.3) thus stems from the relation ¢; = f’ +1 (see Notation 3. 3) Similar con51derat10ns are also valid for Eq. (3.4),

taking into account the fact that D ’F € R™ and D g(F )eR.

Remark 3.10. In order to get a formula for D}f;’ f(F), we could have invoked some multivariate elaboration of Faa Di Bruno’s
formula; see [6,16]. However, our tree type formulation is required in order to handle the computations in Lemma 3.18 below.

Remark 3.11. Lemma 3.8 can easily be generalized in three directions:

(i) We have stated (3.3) using the directional derivative D;,. The same formula holds true for the function-valued derivative
D, f(F).

(i) Instead of the Malliavin derivative, we could have obtained (3.3) as a chain rule for any operator A satisfying a Leibniz type
rule of the form A(f(F)) = f/(F)AF.

(iii) Instead of considering iterations of the same operation A, that is a formula for AN (f(F)), one can obtain a formula like (3.3)
for quantities of the form Ao --- oAy (f(F)), where each of the operators A; satisfies A;(f(F)) = f'(F)A;F.

Proof of Lemma 3.8. We first show by induction that (3.3) is true. To this aim, note that Dy, f(F) = (df(F), D F). On the other
hand, by Definition 3.1 we have A; = {(1)} and according to Notation 3.3 we have #; = ¢, = 1 and «(;, = 2. This concludes (3.3)
for N = 1.

Now suppose that (3.3) is true for N = L. This means that D;]: f(F) is equal to the summation over i € Ay of quantities of

_ _ly . . . . - s
the form (071 f(F), DZZF ® -+ ® D_“ F) which are one-to-one corresponding to the branches in A;. Consider a generic term in this
summation and differentiate it in a direction » € H. Dropping the superscript i in £/ for notational sake, we get

By (01 £(F).5*F @ ® D" F))

= (01* f(F), DfZF ® - ® D:"" F ® D;,F)

£r+1

+(0" fF). D F @ ® DI F) + 4 (0 f(F). D F @ @ D" F). (3.5)

One can relate relation (3.5) to our tree Definition 3.1 in the following way. Namely in the recursive step (ii) in Definition 3.1, from
A; we have created a new tree by adding labeled offsprings to the branch i. Specifically we add the branches (i, 1), (i,2), ..., (i, a;),
and we set ;) = o; + | and a;; ) = a; for r = 2,..., a;. This shows that after differentiation, the term corresponding to the branch i
is replaced by «; terms corresponding to the branches: (i, 1), (i,2),..., (i, ;). These are exactly the branches in A;,; which overlap
with i in the first |i| vertices. Here the sum (3.5) can also be written as

3 @ F (). D) 2F® ®D F),

JEK;
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where the branches ; sit in a set K; defined by
K, ={Gr):1<r<o}.
Summing all those contributions we get
AL+ ¢l 73 A f'{j
DI f(Fy= Y, D01 f(F).DF @ ® D7 F), (3.6)
i€A; jek;
from which it is easily seen that (3.3) holds up to order L + 1. This finishes our induction procedure for (3.3).

Let us now consider (3.4). First, it is easy to verify that (3.4) holds for N = 1. Next suppose that (3.4) is true for N = L. Let us
now differentiate the terms in M, (L) on the right-hand side of (3.4). Still writing ¢, instead of 7/ for notational sake, we get:

A A e i i
D5, (0711 9)(F). D} F ® @ D) F) ) = H} + H], 3.7)
where the term H ; takes care of the differentiation of g(F) in the left side of (3.7), while Hé corresponds to the differentiation of
0% f(F) and Dg’F. Specifically, we get
) _ _7, _
H}{ = (0" f(F), D> F ® - ® D" F) - Dyg(F),
while Hﬁ is obtained similarly to (3.5) as

; _ _ty _
Hy = ((0*!f - g)(F), D> F ® + ® D." F ® - ® D;F)

+(@1 f - )(F), D"

Now we follow the same argument as the one leading to (3.6) to get

F®® D) F)+ -+ (0" [ - )(F), D F @~ ® D" F).

S Hi= Y (@ F).DF @@ D" F)= M(L+1). (3.8)

€Ay €A 4|
In order to complete the induction proof it remains to show that
Y Hi+ DpMy(L) = My(L +1). (3.9)
€Ay
For this purpose we consider the map from i € A, to (i, 1). It is clear that this is a one-to-one mapping. We conclude from this
one-to-one correspondence that

. _l _fi., _h
SHi= Y (E.DF®-®D " F®D" g(F), (3.10)
€Ay j=Gi1): ieAy
where we recall that according to Notation 3.3 we have f{,l =1 for j =(,1).
We turn to the second summation M,(L) in (3.4). Note that each term in (3.4) corresponds to a couple (i; ) where i is a branch

in A; and r € {2,...,a;} denotes the position for which a term of the form D;’ g(F) shows up. By differentiating M,(L) we see that
the term corresponding to the couple (i; r) is replaced by the terms corresponding to ((i, 1);r), ((i,2);r), ..., ((i, @;); r). Precisely, we
have

D = 71-1 H?2 e 5
DpMy(L)= ), (97" f(F),D)?F ® - ® D}g(F)® - ® D," F), (3.11)
UineEBy

where
L

By = |J Ut 1. @200, o (i)

i€EAp r=2
Observe that in a similar way we can also write (3.10) as
i j _¢l £ .
Y= Y (@TE.DIF@- 8D, F® D, s(F), (312)
€Ay UinEBy 1,

where

Bip=[J (@ a+ D)= (J (G Diag )

€Ay €Ay
On the other hand, note that a5 = - = (4, = @, and «,;) = a; + 1. Therefore, we can express the tree A, as follows:
&
U U{(i;r)} =B, UB ;. (3.13)
€A ) r=2

Observe that B, ; and B,; corresponds to the terms in H} and D;M,(L) thanks to (3.12) and (3.11), while the set
Uie A Uf’zz{(i ;r)} corresponds to the terms in M,(L + 1). We conclude from identity (3.13) that relation (3.9) holds. The proof is
now complete. []
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3.3. An expression for the Malliavin derivatives of the Euler scheme

In this subsection we come back to the solution y of our rough differential equation (1.1). However, for notational sake, we shall
omit from now the drift term ¥}, in (1.1). Therefore we are reduced to an equation of the form

d t
yi=a+ Z/ Vi(y)dx . (3.14)
=170

The corresponding Euler scheme y" (given by (1.2)) can now be expressed as:

6y:’kfk+] V(y" )

d
1 n o\ A2H
it 5 Z‘; WV, (3.15)
=
where we recall that 4 = T'/n and t, = k4, where the notation x' = éx is introduced in Definition 2.1, and where we have used the
notation in (1.3) for the quantities aV;V;(y). Notice that for ¢ € [0, T], the approximation y; can also be written as

W=yt Y VO, 1 3 ZaVV(y,k a2 (3.16)

fkfk+1 2
0<ty <t 0Lty <t j=

Remark 3.12. In the general case taking V|, into account, Eq. (1.1) can be written as
ye=Vpds,  y=a

where V(y,) = (Vy(3,), V(y,)) and %, = (¢, x,). Similarly, the Euler scheme (3.15) becomes:

d
” < 1 28
8y = VL85, + 5 2, 0V,V,07)4
Jj=1
Therefore, our discussions in this paper stays unchanged except that the products V (y,)dx, and V' ( y,k )éx,,,,,, are replaced by V(y)d%,
and V(yt LA

The aim of this section is to find a proper expression for the Malliavin derivatives of y".

Remark 3.13. In order to show upper bounds on Malliavin derivatives || DX V/llzer of the Euler scheme we borrow Inamaha’s
approach in [15]. However, a very special attention to combinatoric issues will have to be paid, due to the fact that we are
considering a discrete equation. We have prepared the ground for this in Sections 3.1 and 3.2. Furthermore, note that the uniform
continuity in »n of Lyons-It6’s map fails in our discrete context. Hence the upper-bound estimates for Eq. (3.15) have to be treated
differently for small and large step sizes of the Euler scheme; see Section 4.2.

Remark 3.14. Note that since the Euler scheme y” is the result of a finite iteration, the existence of Malliavin derivatives is easily
obtained via an induction argument. Precisely, assuming that v, € DE2, then by relation (3.15) we have:

d
Lon  _ pLon L sl 1 L 2H
Dy, =Dty + DIV )X, 1+ 5 Z‘TD [0V, V(147 (3.17)
iz
Given that V and its derivatives up to order L are continuous and bounded, the right-hand side of (3.17) also belongs to D2, It
follows that we have Y., € DL2,

One of the basic ideas in [15] is to use an independent copy b of the fBm x in order to obtain norms in the Cameron—-Martin
space H. With this consideration in mind, we now define a family of processes which will be at the heart of our computations of
Malliavin derivatives. We start by introducing a family of operators which will be useful for our future definitions.

Notation 3.15. Let y" be the numerical scheme defined in (3.15). Let f : R™ — R be a smooth function. For each | = 1,..., L, we let
!, 1 € [0,T] be a process with values in R™. We denote the process & = (£}, ..., &Ly e RL™, 1 € [0,T1.

Recall that the trees A; are introduced in Definition 3.1. For each i € A; we denote by c; ; and ¢; ; some constant depending on L
and i. Also recall our Notations 3.6-3.7. For ¢| = fi corresponding to a branch i € A;, we have to consider 9’1 f(y) as an element of
L(R™®1;R). In addition, stll for a branch i € A;, owing to the relation £, = a; — 1 we have 552 R ® ff“" € (R™M®@—1) = (Rm)®71,
With these elementary algebra considerations in mind, we define the following notation

LSO = Y e ). E @ @)

€Ay
il oM f ()
o
= T X g o (3.18)
i€AL 1o =1 9y e gylpy)
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Moreover, for smooth functions f : R" - R and g : R" — R™ we set

LLOS 00 = X, (@ Ui E @ 8 E)

€A
Ly
+ ) Zcu(a”lf(y,k): ®®LIE)®®E") (3.19)
€A r=2
i
£,-1
LL O -9 = Y e 0 fW).E2 @@L g ) ® - ®E ™), (3.20)
€Ay r=2 k k
where
m
af1+l »)
ab”[-*—lf.g(y): z %gﬂfﬁl(y)’ Pls-sPpy = 1,....m
pryai=l oy P+ L gylen)
and
& ’ o OISO
(@ g E2® @ “'>— Y e S — g ),
PioeosPpy+1=1 oyt oy
We alsosetﬁg =79 =Idand £° .= 77! =£‘ E‘ =0.
. Ec &.c,C &l &

In order to be able to differentiate our processes of interest in the Malliavin calculus sense, let us label the following regularity
assumption on the vector fields V;.

Hypothesis 3.16. The vector fields v}, ...,V are CIEL+2)V3(]R'") (bounded together with all their derivatives up to order (L +2)V 3)
for L > 0.

We can now define a family of paths which will encode the expressions for the Malliavin derivatives of the Euler scheme.

Definition 3.17. For n > 1 we consider the Euler scheme y" given by (3.15), and recall that » designates a fBm independent of x.
Let £L, £, £T be the operators introduced in Notation 3.15. Then for L > 0 we define a discrete process = defined for ¢ = #, and
taking values in R", given similarly to (3.16) by the iterative equation
=L  _ pL L-1
8E = Er V(y;'k)éx,k,kﬂ + EH B V(ytk)éb

T+ 1 Tlics 1

d
+= ZE (av; - v)) GfaM +

[1] [N

1 n
E - o V/) (ytk)AZH’ (3.21)

or in the integral form

=L _ =L L L-1
sl =5+ z LL VO, )8, + 2 LV )8by,,,,

ro<zk<r to<ty <t
Zﬁ (ov; - v;) )M + Z ZE (ov; - v;) )M,
r0<rk<r/ 1 10<tk<x,

where ¢, € [0,T] is the initial time of the iteration equation and ¢ = (¢, ;,i € A;) and ¢ = (¢ ;,i € A ) are some constants.

Note that we apply £f=,c to every component of V (i.e. f = Vj‘ for each i and j) in order to get a R™-valued element
£§’CV(y;'k)5x,k,k , in the right-hand side of (3.21). Precisely, we have Ef,_CV(y) = (Ef:’ch",i =1...,mj=1,..,4d). Ef,,c(avj “V»)
and £L S0V - V() should be interpreted in the same way.

Ee,l

We now state our general expression for the Malliavin derivatives of the Euler scheme. In the following, for conciseness we drop
the subscript (£, ¢) of £L and simply write ££. This simplification is also applied to £L and £L .

el

Lemma 3.18. Forn > 1 let y" be the Euler scheme defined by (3.16). Assume that Hypothesis 3.16 holds for L > 1. Recall that a notation

Dj, has been introduced in Section 2.2 for the Malliavin derivative with respect to the fBm x. We also write Dj, for the directional derivative
Oyt
2 o foralli € A;. Then

with respect to the independent fBm b. Let = be the process introduced in Definition 3.17 with ¢, ; = &, ; =
for all t € [0,T] the iterated derivative (2.14) of y!' can be expressed as

AL oL
Dh V= Di: h (3.22)
Proof. According to Definition 3.17 and recalling our convention £~! = £~! =0, it is straightforward to see that 50 = y".

For L > 1, consider the process =L defined by (3.21). Our next endeavor is to find a difference equation satisfied by DLEL. To

this aim we differentiate the terms in the right-hand side of (3.21). Note that " does not depend on b and therefore D [6f 1y ( y;’k )] =0.
We now prove that =% belongs to the #th Wiener chaos of b, which will be denoted by ICf; (similarly to that of x in Section 2.2).

10
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This can be done recursively on L using relation (3.21). Namely we assume that _t” S IC” for all p < L — 1. It can be checked that
the terms on the right-hand side of (3.21) belongs to ]Cll. For sake of conciseness, let us focus on the following term of (3.21) (the

other terms being left to the patient reader):
VO sb,, = Y 6 1,<a WO EP @ ®E “’>5b,k,k+l. (3.23)
€A,

By the induction assumption the generic term on the right-hand side of (3.23) is in the chaos

b b _ pb
]CZZ’ZK,,H K-n =KL (3.24)

where we have invoked Remark 3.4 for the second equation. Relation (3.24) thus proves that Et’; € lC’; by induction. In particular,
DIl =0if ¢ > 2.

In order to differentiate the right-hand side of (3.21), we need to differentiate generic terms of the form = fz R Q= ”’ for
i € A;. It is easily seen that

R o ! P L
D_L(Efz®---®5t"‘)= > #D{”-‘?@ ®D‘,’/5 "
h k k : ng e p, !
(P23 sPay) P2+ 4Py =L %
However, if (p,, ..., p,,) # (¢1,...,¢"), at least one of the fj. will be larger than p;, yielding a null contribution. Therefore the only
surviving term in the sum above is
D[— ®-Q®ZF ]_f f ' D2 S, ®@ @D E (3.25)

The reader is referred to [15] for more detalls about the above computation. Note that the number of ways to assign the L operators
Dj,. .., Dy into groups of sizes ,,..., y s W’ which explains the multiplicative constant in the equation.

Wlth (3.25) in hand, we are now ready to dlfferentlate the right-hand side of (3.21). For the first term, using definition (3.18)
of £ we get

fz_.

¢ 13 Alu =Cai
DItV )= Y (VO DRE2 @ - @D E ™).

€Ay
Along the same lines and resorting to (3.19) for the definition of £, it is easily checked that

AL AL £1+1 Nz N
VLRV VL) = § @V V). D @ ® DL EL")
€Ay
b’ _f Ay INF—
+ Z Z(afl V(y 2 2 2 ® - ® D gfry(y;'k)@, ~®D. "5 ).
€Ay r=2
Similarly, for the second term on the right-hand side of (3.21), we end up with
DELENY (v )8k, =LY, (VG DI E,

€A

fz NP -
S ®-®D"E " ®sh

Tl )-

Note also that the fourth term on the right-hand side of (3.21) is in the (L — 2)th chaos of » and thus has zero DT derivative.
Differentiating both sides of (3.21) and taking into account the above computations, we have thus obtained

- pi st a,ﬁa,
DEE=% Y0V DRER @@ DL E " ox,,,,

0<t<ti€Ajp
13 ‘2 —/’2 N 7
+L Y Y VG, DRE® @D E @ 6h

0<ty <t iEAL 1

l z Z 2 (((afl+]V V)(Y,k) fz ® - ®D:a15,im>

0<t, <t j=li€Ay

(3.26)

fk’k+1>

(3]

%
+ Y OV00. DPER @ @ DLV () @ @ DY 1) ) 42K,

Let us now differentiate ;' according to its definition (3.16). To this aim resorting to the fact that éx,,  is in the first chaos of x,
we get

= Y DEV()Sx,, +L Y, DEVGSh,,

01, <t 0Lty <t

d
Z BE[(av,-v;) )] #1. (3.27)

0<,k<z

Next we differentiate the terms V(y;'k) and (9V; - Vj)(yfk) thanks to Lemma 3.8. It is readily checked that we get exactly the same
expression as (3.26). This shows our claim (3.22) and finishes our proof. []

11
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4. Upper-bound estimates of Malliavin derivatives of the Euler scheme

In Section 2.2 we have recalled some known results on the Malliavin derivative of the solution y to (1.1). Note that upper bounds
for higher order derivatives of y are obtained in [4,15]. With the preparation in Section 3 we are ready to extend those estimates
to the Euler scheme approximations y".

4.1. Some auxiliary results

This subsection is dedicated to some necessary auxiliary results. Throughout the subsection we fix an integer N > 0. Recall that
=L is defined by the iterative equation in Definition 3.17. We start by introducing a process related to =%, L = 0,1,..., N. In the
following we assume that Hypothesis 3.16 holds with L replaced by N. Namely, we assume that V' € CN+2V3(R™),

Definition 4.1. For each s € [0,T] we define PSL to be the maximum among the quantities of the form |5§l | X - x |E;.N°| with
Ny >0 such that iy, ..., iy, €{l,...,L} and i; + - + iy, < L. We also define P’ =1 and P~' =0.

The following result follows immediately from the definition of PL:
Lemma 4.2. The following three inequalities hold for s € [0, T]:
PL>pPY,  PLxPY <PHY forL>1'>0, and |Ef <Pl for L2 1.

Let us now fix some constants which we will make extensive use of: For f € C[f’ +2 N e N we set

€Y= sup 110 f o> 4.1)
T<N+2
where || - ||, denotes the sup norm for continuous functions. Also recall that for i € A, the constants «; and c;; are defined

respectively in Notation 3.3 and Lemma 3.18, and C3 is defined in (4.1). Then for L = 1,2, ..., N we define

1 0 1 0 1
Cly= D c,Cy, Cp,=Cp, C!, =0, (4.2)
€Ay
a;
2 _ 0 0 1 2 _ 042 2 _
=Y enCy (CV +Y Cm)’ Ciy =2Cp)?, €2, =0, (4.3)
€Ay r=2
a;
3 _ 0 ~1 3 _ 3 _
Crv= Z ZCL»iCVCf,—l,V’ Coy =0, €, =0 (4.4
€Ay r=2

We will also resort to the following constants:
L_ ol 1 L_ 2 2 3 3
Ki=C ,+C_,+1, Ky=Cly+Ci 1y +Crp+Cp 1y +1 (4.5)
Next we introduce a family of sets in the following way, for L > 1:
Sy ={ ty, .. ) L' €NG By, by ENG, £ + -+ £y = L),

Related to this definition, we define another family of constants:

Ch= max  2MMx KD xxK(E, (4.6)
(L")l )ESL
and
%
5 0 1 ‘r 4 5 _ c0g0
=2 ZA: cr,CY <1<l + 2‘5 K] >(1 +C), Cy=CYK). 4.7)
€A r=

Remark 4.3. The constants introduced above will appear in our proof for the upper bound of 5. We will see that because our
proof is an induction argument, it is important to keep track of these constants.

With this additional notation, in the following we derive an upper-bound estimate for the product of =-.

Lemma 4.4. Let w be a control function on [0, T]. Recalling our definition (2.1) for the operator 6, let (s,u) € S,([0, T1) be such that

w,w'?<1/2, and  |6EL

su

| <KEPro(s,w'/?, L=1,..,N. (4.8)
Let Lo < N and (N',¢,,....¢ 1) € Si,- Then we have

6(21 @ ®@2V) 1<Cf - PR (s, w)'/e. (4.9)

12
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Proof. We first note that a straightforward computation shows that § (51 ® -+ ® =/~ )Su is equal to the summation of products of
the quantities of the forms Ef’ and 655;,’ with r = 1,..., N'. Apply Lemma 4.2 to £% and condition (4.8) to |55§;’ |. Also take into
account that w(s,u)!/? < 1/2, according to (4.8). We obtain that each product in the summation is bounded by

max Krl x---foN, PO 20(s,u)/P.
(N’,f],“.,fN/)ESLO

Note that there are at most 210 — 1 terms in the summation. Hence owing to the definition of C‘zo in (4.6) we obtain the desired
estimate (4.9). [

Following is an estimate for the Euler scheme y":

Lemma 4.5. Let w be a control function on [0, T] and consider the Euler scheme in (3.15). Let (s,u) € S,([[0, T1) be such that
[6y75,1 < K?w(s, w)'/?. (4.10)
Then for 0 < L < N and recalling that C(f) is defined by (4.1), we have:

15 (9" £ (), | < CoHK s, w)' /7.

Proof. The lemma follows immediately from the mean value theorem and the condition (4.10). [J
Recall that we have defined the solution to (3.14) as the controlled process in (2.6). The following lemma improves our

Lemma 4.5 when y is a discrete controlled process.
Lemma 4.6. Let w be a control function on [0, T]. Let (s,u) € S,([0, T1) be such that

16y%| < Klo(s,w)'/? and |8y, = V(y")6xy,| < KJoo(s,u)*/?. (4.11)
Then the following relation holds true for 0 < L < N:

16 (95 VM), — @V IM6x,,| < C) (KVKD + KY) (s, u)™/?. (4.12)
Proof. The lemma follows from the application of an obvious second order Taylor expansion, as well as the conditions in (4.11).

Precisely, let f be a continuous function from R” — R whose first- and second-order derivatives exist and are continuous. Then the
elementary mean value theorem shows that we have the relation:

1f(®) = f(@ = 0f @b - a)] <10*flls - 16— al* (4.13)
Taking f =9V, a = y! and b = y" in (4.13) we obtain the relation:
16 (05 V (yM),, — 0V (6| < 1052V || - 18Y7, 1P
<0 - 1K (s up?,

where in the second inequality we have used the first condition in (4.11) and the fact that [|0L+?V]|, < Cg. In order to prove (4.12)
it thus remains to show that

[0E 1V (ysy”, — @V V)(6x,| < CF - Kda(s, u)P. (4.14)
It is easy to see that (4.14) follows by applying the second condition in (4.11). We thus conclude that (4.12) holds. []
Recall that ££ , £L | £L are defined in Notation 3.15. For the sake of simplicity we will drop the subscript and write £%,

L£L, £T in the following series of lemmas.

Lemma 4.7. Recall that y" is the numerical scheme given by (3.15), and that Hypothesis 3.16 holds true. For L > 0 let Ci Vo Ci "
and Cz , be the constants defined by (4.2)-(4.4) and recall that PL is introduced in Definition 4.1. Then the following holds true for all

s€[0,T] and L > 0:

eyl < ¢y, Ph, (4.15)
IEE@VV (Il < €, P, (4.16)
IEE @V VDI < €5 |, PR (4.17)

Proof. An application of Lemma 4.2 to (3.18) yields

LV OIS Y e O PE.

€Ay

13
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Relation (4.15) then follows immediately from the definition of Ci " in (4.2). Now apply Lemma 4.2 to (3.19) as before, and then
apply (4.15) in order to handle the terms £7r g(yfk) in the right-hand side of (3.19). We obtain:

&
L 0 0 pL 1 L
IEXQVV I < Y e Cy) (CVPS +>.C P, )
r=2

€A

Hence resorting to the definition of Ci , in (4.3) we obtain relation (4.16). The last relation (4.17) can be shown in a similar way.
We have
&

I GRS ZcLyicgc;,ﬁLVPSL.

i€Ap r=2

Relation (4.17) then follows from the definition of Ci yin(44). O

In the following we consider the increments of processes in Lemma 4.7.

Lemma 4.8. Let w be a control function on [0, T]l. Recdll that we write £*, £E, £L for £L , £L | £L . Assume that (4.8) and (4.10)
hold (notice that (4.8) for L = 0 in fact implies (4.10)) for some (s,u) € S,([0, T1). Then we have the following relations L > O:

18 (L"), | < € Plats, w7, (4.18)
|8 (2 avron),, | < €p  Prot.w', (4.19)
|6 (£-@vviom),,| <€) Plats.w'”. (4.20)

Proof. Recall that £ is defined in (3.18). For two functions f, g: [0,T] — R and for the operator § defined by (2.1), it is easily
seen that

6(/&)su =68+ f58u: (4.21)
Invoking repeatedly this relation and consistently replacing the terms g, above by g, we end up with the relation
S(LErom), =J8 + T2 (4.22)

where the terms .Islu and Jszu are defined by

fﬂ
H= Y (@0 rem), 2 @@ 5)

i€EAL
a; .
+ YUY E @ @5y @ - ®E, >), (4.23)
r=2
_ o
I = Z CL,i{<5 (01 £ (M), -6 (:,fz ®-®Z )Su>
€A,
a; ,
r=2 su
In order to bound J! above we apply Lemma 4.2 to the quantities 2, and Lemma 4.5 to 6§ (91 f M), in (4.23). We get
al
A< Y e <C?K?PSL + Y COK| ’PSL> (s, u)'/?. (4.25)
i€Ap r=2

We can bound qu, in a similar way. As before we apply Lemmas 4.2 and 4.5 respectively to =/ and & (o1 f (yﬁ))w, and then

¢
apply Lemma 4.4 to the quantity 6(5.”? " Q... ® E “),. Taking into acount the assumption w(s,u)'/? < 1/2 in (4.8), we obtain

al
21<2 Y, e CO(KICEPE + Y K[ CLPE) - (s /. (4.26)
r=2

€Ay

Combining the estimates (4.25) and (4.26) in (4.22) and recalling the definition of Cf, L in (4.7), relation (4.18) is now easily
obtained. []

We end this subsection with a result on the remainder of ELV(ny ) considered as a controlled process:

Lemma 4.9. Let w be a control function on [0, T]. Suppose that

1625 — £hv (y"ox,, — L'V (M6, < KfPro(s,w??,  L=0,1,....N 4.27)

14
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for some (s,u) € S,([[0, TT), where PSL is the quantity given in Definition 4.1. Suppose that (4.8) and (4.11) holds for the same (s, u). Then
we have the following relation for L > —1:

|5 (L2 VM), — L5 @V V) (1)exg, — L5 OV V) ()b,

<C} , Plos,u?,

8
where we define the constants {Cy - Lz-1} by

i

LI 0 0 0 0 1,4 t, £ ~4

C =2 ¢,C) <K1K1 + K+ KJCF+ Y (Ky" +K["C} >
i€eAp r=2

8 _ 0/ x0x0 0 8
CV,O - CV(KI Kl + KZ )s CV,—I

=0.
Proof. Recall that £F, £1 and £! are introduced in (3.18)-(3.20). Similarly to the beginning of the proof of Lemma 4.8, we apply
relation (4.21) and replace the terms g, by g. This leads to a decomposition of the form

4
5 (Ltv (M), - £E @V V) (ex,, — £X @V V) (1)oby, = Y. T,

su su’

=1

(4.28)

where J;u and qu are defined in (4.23)-(4.24), and we also introduce the increments

_ La;

== Y e (@Y Y(Mex,, 2 ® - @ E,7)

€A

a; ’
_ _ L

Th== ) Y e (VL EZ @ ® (LY (X, + LTIV (b)) ® - ® Z).

€Ay r=2

Notice that one can combine J!, J? and J# into

1 3 4
']Su +Jt un

=Y e <(5 (0" VM), - (afl“I/V)(y';)axw),Ef2 ® - ® 5K>
€A
+Y Z L <af1 VO, E2 ® - ® (555; — LIV ("o, — Efr’lV(y;')ébSu> @@= >

€Ay r=2
We are now in a position to apply Lemma 4.6 and condition (4.27) in order to get:

L +03 + 0 < Z e PECOKOKY + KO)ar(s, u)*/?
€Ay

&i
Z,
+ O Y e Oy Ky Plas,u/r.
€Ay r=2

Combining this estimate and the relation (4.26) in (4.28), and taking into account the definition of the constant Cﬁ , we obtain the
desired relation. []

4.2. Upper-bound estimate of the derivatives

In this subsection, we derive a uniform upper-bound estimate for the Malliavin derivatives of y". For a given threshold a > 0,
our estimates consist of three parts, which are estimates of the derivative over the steps of (1) small size (<« «); (2) medium size
(~ a); (3) large size > a).

We now specify our threshold parameter a. Towards this aim, recall that KIL and KZL for L=0,1,..., N, are introduced in (4.5)
and K L 18 defined in (2.7). We also define:

L _ L L _ (8 8 6 7
Ky =K,K; V1, where K, = (CV,L + CV,L—I +4CV,L +4CV4’L) V1. (4.29)
Then we shall resort to a positive constant a such that:
a'/? =min{1/2,1/KF, 1/KF, L=0.1,...,N}. (4.30)

Eventually we introduce some second chaos processes which play a prominent role in the analysis of Euler schemes (see [18]).
Namely for [s,¢] € [0, T] we set
ij _ 2.ij 1 2H bij _ 2.ij 1 2H
a4 = Z (xtkrkﬂ - EA 1(i=j)> , and " = 2 (brkzkH - EA 1(i=j) : (4.31)
Sty <t s<ty <t
For convenience we also introduce a specific notation for the cross integrals between the independent fractional Brownian motions

x and b. Namely we first introduce a Gaussian process w which encompasses the coordinates of both the driving nose x and the
extra noise b. Specifically we define

. 1 2dy . 1 d 1
swy 1= 6w, ..., 6w) 1= (6xL, ..., 6x%, 6bl,.

..6b). (4.32)

15
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Then writing w? for the iterated integral of w (see Definition 2.1) we set

Wy = (Wi i=dH 1,24 =1, 0d) (4.33)
dy =( Z wfk”'tiﬂ, i=d+1,...,2d, j= 1,...,d> , (4.34)
s<ty <t

for 5,1 € S,([0, T]). With this notation in hand, we now state our bound on derivatives of the Euler scheme.

Theorem 4.10. Let y and y" be the solution of the SDE (3.14) and the corresponding Euler scheme (3.15), respectively. Let = be given
in Definition 3.17. Suppose that V € CIEHZM for some integer L > 0. Let p> 1/H. Let w = (x, b) be defined in (4.32) and let w := S,(w)
be the rough path lifted from w. We introduce a control w by

2 2
(5. ) = W2 e + 1913 oy + 101 e (520 € So(00. T, (4.35)

where q is defined in (4.31). Denote s, = 0. Then given s;, we define s, ., recursively as

T+ A, if S+ A4) >
S =12 Hals.s;+d)>a (4.36)
max{u € [0,T1 : u>s; and w(s;,u) < a}, if o(s;,s; +4)<a
Next we split the set of s;’s as
So=1{s;: a2 < o(sj,sip) Saly Sy ={s; T wls;,s;40) < af2}; (4.37)
Sy = {s; 1 w(sj,5;41) > a}. (4.38)
Then we have:
(a) The following relation holds for all (s,t) € S,([0, T1):
12" povar sy < K - @(5,0!/7185 U S U Sy - (Mg - My - M-, (4.39)
where we have set
Mo =[] (Kots;os;0077+1), My =[] (Keots;os;007 +1),
s;€S8y S;ES)
M= T] (1r<|5ww+1 |+ K42 4 1), (4.40)
5;€S8)

and K is a constant independent of n.
(b) For (s,1) € Sy([ls;,s;411) such that s; € Sy U S, we have

165 — Ly (3"M6x, — L7V (5")6by| < Keo(s, 1?7 - PL.

Remark 4.11. The reader might argue that the right-hand side of (4.39) still depends on n. However, in our companion paper [17]

we will show that this right-hand side is uniformly integrable in n. Thus =] is also uniformly integrable in n.

Remark 4.12. The fact that the quantities M,,, M, M, are finite can be argued as follows: Note that .S, .S}, .S, are contained in
the finite set [0, 7], and therefore the number of components of the products in the definitions of M, M;, M, in (4.40) are finite.
On the other hand, the control function w is defined over the discrete interval [0, T], and thus it is also finite. We conclude that
My, My, M, are all finite.

Before proving Theorem 4.10, let us state a corollary giving the actual bound on the Malliavin derivatives of y". Recall that b is
an independent copy of the fBm x as given in Definition 3.17 and we denote D the Malliavin derivative operator for b. We denote
& and DL the expectation and the Sobolev space corresponding to b, respectively.

Corollary 4.13. Under the same conditions as for Theorem 4.10 and recalling our notation from Section 2.2, we have
sup | D"y llzer < K - @(0,1)1/71S5 U S US| - (M - M, - Mo)*.
neN

Proof. Because =t

of (4.39) combined with Lemma 3.18. [

as a functional of b is in a finite chaos, we have || 5L lpr, < C(IEJlE,L |”)!/p, Our claim is thus an easy consequence

t

Remark 4.14. A natural question raised by Corollary 4.13 is whether we have the convergence of those Malliavin derivatives
DLy DLy" — DLy, as n — oo. It has been shown in [12] that this convergence does hold when H > 1/2, and the convergence has
been applied in the same paper to derive the asymptotic error of weak convergence of the Euler scheme. On the other hand, to our
knowledge the convergence in the case H < 1/2 is still an open problem.

16
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Proof of Theorem 4.10. The proof is divided into several steps.

Step 1. Representation of remainders. Recall the definition of =% in (3.21), that is

8 :kafk = - rL V(y:,k)éx’kfk+] + oLt V(y:,k)ébtk’kﬂ (4.41)
+= z LE (v - V) A 4 5 Z EEN (v - vy) o)At
]=l
Next observe that owing to our definition (4.31), (4.33) and (4.34) we have
1 on 1 on -2 - _
2A ld; = x’k’k T g EA ld, = b[k[kﬂ iyt and Wieteer ~ Yt = 0.
Hence recalling our notation (4.33)-(4.34), one can recast (4.41) as
=L L L-1 L
5:,”“1 =L V(y;‘ )5x,k,k+] +L V(y;‘k)(‘Sb,k,k+I +L (()VV)(y,k)( et q,k,kH)
FL-1 b AL
+L5 (V) (y,k)(b,k,k+l Ditrs I)+ L (0VV)(y,k)(W,k,k+l Grtyr)
~L-1 ~ T
+L57 (VYV) (y,k)(W,k,k+1 Grty)) - (4.42)
This suggests to define the following remainder process for L =0,1,..., N and s,7 € [0, T]:
RL =— 621 4+ £tV (y"ox, + LXV (b,
+ LY@V V) (s, = ) + L @V V) DB, - a2
+ L@V (D, = 4g) + L5 @V V) (WS, = 4" (4.43)
Notice that as a straightforward consequence of (4.42) we have RL =0 for all k.

Our aim is now to prove that R is indeed a small remainder by applylng Lemma 2.3. Since R, =0 it remains to analyze the

increment §R as defined in (2.1). Now starting from (4.43), an elementary computation yields:

Tlt1

SRL = E! -+ B

sut sut sut’

where we define

El, =-5(ctvm),, ox

sut
Eszm ==6 ([’L_l V(y~n)>su 6b“’
Efu, =LL @V V) (y")xg, ® 6%, + LE @V V) (y")5by, ® 6x,,
E} =L@V V) (")6by, ® by + L1 @V V) (06X, ® by,
B}, ==8(LN@VOM),, (% = du) =8 (L @VV)YOM),, (0 — ab)

=5 (LE@VYOM),, Wy = Gu) = 8 (L7 @V O1) , (W, = @)
In the following steps we estimate the terms E', ..., E’ differently on small and large steps.

Step 2. Estimate over small and medium size steps. We consider the intervals [s;, s;,,] such that s; € S,u S|, with S and .S, defined by
(4.37). In the following, we show by induction that for s,u,t € [s oSzl the following inequalities for L =0, 1, ..., N are satisfied:

1625 < KEPEw(s,0)'/P, |62E — LV (y)ox, — L2V (y)éby | < KEPRw(s, 12/, (4.44)

IRE| < KEPRw(s, 1)/7 I6RE | < KFPEow(s, 0, (4.45)

sut

where we recall that KIL, ..., K 4L are defined in (4.5) and (4.29), and where PSL is introduced in Definition 4.1. Namely, suppose
that (4.44)—(4.45) hold for s,u,t € [s;,v]. In the following, we are going to show that (4.44)—(4.45) also holds on [s;, v+ 4]

To this aim, it is enough to estimate 5Rm for s,u € [s U] and ¢ € [v, v + 4]. For such a tuple (s, u,t), we apply Lemma 4.8 to Ej
and Lemma 4.9 to (E| + E3) and (E, + E;). We obtain

I8RL,| <(C}  PE+CY | PE Do, 0P+ 4(CE |, + C] ) PLao(s, 17

V,L-1"s
<K} PSLa)(s, /. (4.46)

sut

From (4.46), one can thus complete the proof of the second inequality in (4.45) by induction. The first inequality in (4.45) is then
obtained from the second one by a direct application of Lemma 2.3.

We now turn our attention to the proof of (4.44). By applying relation (4.45), (4.16) and (4.17) to (4.43) and taking into account
the condition w(s,1)'/? <1/ K}, we obtain

[62L — L2V (y"ox, — LEV ()b

+C; L, +C_ L, + DP s, 0?7, (4.47)

2
S(C +C L-1V

L-1v
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This concludes the proof of the second relation in (4.44). In order to show the first relation we apply (4.15) to (4.47) and take into
account the assumption that w(s,1)!/? < 1/Kt. We get

=L 1 1 L 1
18251 <(Cp ., +Cp_,y + DPEeo(s, 07

This completes the proof of (4.44)-(4.45) for s,u,t € [s 5,0+ 4], under the hypothesis s ; €Sy S;. Our induction procedure is thus
achieved.

Step 3. Estimate over large size steps. For large size steps, we will use a cruder estimate. Namely, when s, sits in the set S, defined
by (4.38), we have Sip =8, +A It follows from Eq. (4.41) that

6=
SjSj+1

— = 1 1 2 3 L 1 2H
| =182, I S(CLy +Cly +Chy+Ch IPE (WL [+ 421, (4.48)

where w!, = w;, and thus with Definition 4.1 in mind we simply get

st

=L L 1 2H
EMES (Klwsm“ |+ KA2H 4 1) . (4.49)

Step 4. Conclusion. We first derive the uniform upper-bound for 5%. That is, for t € [[s 84111 we write

|=E < |5_=SL/,| + |5:L,-|~ (4.50)
Hence in the case 5; €SyU Sy, applying (4.44) to (4.50) we have

=L L. L 1

I 1< PE - (1+ Kfas;,0'/7) .
Moreover, in the case that s ; €5y, relation (4.49) implies that

=L L 1 2H

|Z11 < PEKIw, 1+ K&+ 1).
Iterating the above two estimates, we end up with

IZE < K-(My- M- M=, forall 1 €[0,TT], (4.51)

which is our desired uniform bound.
We turn to the estimate of the increments of ZL. We first write

=L =L
|5'—s7| < Z |5_s\/s,.t/\sj+1 |
S<s;<t

We apply the increment inequalities (4.44) for small sized steps and (4.48) for large sized steps. We also take into account the
uniform estimate (4.51). We then obtain

bzLi<k| Y o507 +K Y, (|w1 |+1<42”+1) My - M, - My)E. (4.52)

SjSj+l
5;€S)US] S;ESy

In the right-hand side of (4.52), bounding each w(s;, s;,.1) by w(s.1) for every s; € S, U S| we get

> olsj s )" < ols, VP18, U S . (4.53)
s;ESHUS|
In addition, recall that the control w is defined by (4.35), which includes the term ||w||Z_Var. Hence if s €S, (that is w(s 081 > a)
and 4 is small enough, we have
1 2 1
K Z W, s, |+ K4 H < Kao(s, 1)'/7],. (4.54)
S;€ESH
Plugging (4.53) and (4.54) into (4.52), we obtain
1651 < K - a(s,0/?|Sy U S, U S, - (Mg - M - Mp)E, (4.55)

for all (s,1) € S,([0, TT). The upper-bound (4.39) for |55£| is exactly (4.55). [
4.3. Point-wise upper-bound estimate

Theorem 4.10 and Corollary 4.13 provide estimates in p-variation for the Malliavin derivatives of the Euler scheme y". In this
subsection we use similar arguments in order to derive a pointwise estimate for the Malliavin derivatives of the form Dy, (recall
that those H-valued derivatives have been defined in Section 2.2). Notice that we have stated and proved the theorem below for the
first two derivatives of y". However, the extension of this result to higher order derivatives is just a matter of cumbersome notation.

18
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Theorem 4.15. Let the notations in Theorem 4.10 prevail. Suppose that V & C[f. Take r,r’ > 0 and let ko, k) € N be such that
r€ (g, 1] and r' € (tk[/J, tk(’)+l]' We define a Malliavin derivative vector &" as

&= (DY, D, Dyy") i= (&, &) (4.56)
Then &L, L = 1,2 satisfies the iterative Eq. (3.21) with ¢ i = 1 and ¢; ; = 0. Furthermore, we have the estimate
”5”’1 “p-var,[[s,r]] + ”f”’z”p»var,ﬂs,tﬂ <K- ﬂ)(& I)l/p|S0 U Sl U S2| : (Mo ° MI : MZ)L ’ (4'57)

for all (s,t) € S,[[0, T1, where S;, M, are respectively defined for i = 0,1,2 in (4.37)—(4.38) and (4.40). Moreover, for (s,t) € Sy(llsj 55411
such that s; € Sy U S| and L = 1,2 we have

1655 — £V (3M6x,| < Ke(s, /P - PL. (4.58)

In both estimates (4.57) and (4.58), K is a constant independent of r, r', j and n.

Proof. Recall that y” is defined in (3.16). Let us first derive the iterative equation for the derivatives of y". Recall that r € (Thys Trg 1l
We can divide the differentiation of 5y:'k toat in three cases.

() If ko > k, then r > 1,,,. Therefore, since y, € F, we get Dr[ﬁy;lk[k+l] =0.

(i) If kg = k, then 1, < r < t;,,. Moreover it is readily checked from Eq. (2.12) that D,[éx,, , 1= 1;,,,.,

1(r) = 1 almost everywhere and differentiating (3.16) on both sides we obtain

1(r). Hence we have

l(tkv’kJrl
d d
Disy., 1= Z{ V0 () = 2‘1 VO =a
Jj= Jj=
(iii) If k, < k, then we can differentiate both sides of (3.16). We obtain the equation:
L8
8D,V = OV O Dy 0%, + 5 D@V, V)L ), Dy YA
j=1
Gathering item (i), (ii) and (iii) above, and recalling that we have set a; = Z;.L 1 I/j(y:,k ), we get the following expression for ¢ € [0, T,
0
r<t, and ft"’l =D,y

Tkt

d
1
8y, = VI )0x,, + 5 Y AOOVVIOL). &AM (4.59)
j=1

Also notice that we have obtained é,"’l = 0if r > ¢. In particular, it is clear that &"! satisfies the iteration equation in Definition 3.17
with ¢;; =1and ¢, ; =0, with L =1 and initial time 7y = t, . Precisely, we have

d
1 -
8g = LV 6%, + 5 PN HCIAD DY (4.60)
j=1

Tkl

Therefore, a direct application of Theorem 4.10 yields the estimate (4.57) for &™!.
In a similar way we can show that .f;‘t"’z = D,D,y; satisfies the iterative equation in Definition 3.17 with ¢;; = 1 and &, ; = 0,
with L =2 and initial time 7y =1, v T - Indeed, a straightforward computation shows that

Dyt =& DLV =LVL).  DyLLOVV)L) = LFOV VL)
Let r € [ty ty,41) and ' € [tk(/J e +1)- Then, by differentiating both sides of (4.60) by D, and taking into account the above three

relations we get for all 1 > ¢,
d
El=a+ Y LIV, + % Y, X Levivpunat,
v <t <t rvr' <t <t j=1
where a, is the initial value of the iterative equation defined as follows

d d
ay = Lygig) - 24V, 0 D )+ Liggsig) 2OV 07, 0 Dy, )
=1 =1 0 0
We conclude that the estimate (4.57) also holds for &”2. The proof is complete. []
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