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1. Introduction

In this paper we consider a stochastic heat equation on R of the form
9 0,%) = 3 4u(t, )+ S @(t, ) + ot N W (@), 1€[0.T] x e RY,
u(0, x) = up(x). )

In (1), 4 denotes the Laplace operator, W is a centered Gaussian noise which is white in time and whose covariance function satisfies
a standard assumption called strong Dalang condition (see Assumption 2.2 below for a precise statement). The coefficient ¢ in (1)
is supposed to be differentiable with bounded derivative. Our equation deviates from the standard setting for stochastic ppes due to
the drift coefficient f. This coefficient is only assumed to verify a mild damping condition, that is we suppose that f is continuously
differentiable and that f’ is upper bounded by a constant x € R:

flwy <k, forall ueR. (2)

This condition will be referred to as half-Lipschitz in the sequel. As a motivating example, any odd degree polynomial with a negative
leading coefficient such as f(u) = —u’ +u will satisfy (2). Under this setting, we investigate the law of the random field mild solution
to (1), u(t, x), at a fixed time ¢ > 0 and a fixed point in space x € R¢. We prove using Malliavin calculus that the law has a density.
Our main theorem can be expressed as below, although a precise statement of our assumptions is postponed to later sections.

Theorem 1.1. Let u be a mild solution to (1), where we assume that the coefficients f,c satisfy Assumptions 2.3-2.5, described in the
following section. We also suppose that the Gaussian noise W verifies Assumption 2.2. Then for (t,x) € (0,T] x R, the random variable
u(t, x) admits a density with respect to Lebesgue measure.
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Stochastic ppes have been primarily considered for globally Lipschitz continuous coefficients f and ¢ (see e.g. [1,2]). However,
since multiple relevant physical systems involve polynomial type nonlinearities, a substantial amount of effort has been devoted to
that case over the past decades. Among those contributions, one can single out the following:

(a) The case of x € D (with D a bounded domain in R?), and polynomial nonlinearities f with negative leading terms, has
been investigated in [3,4]. The techniques use localization arguments based on stopping time methods and a priori bounds. The
papers [3,4] are all handling the case of a colored noise W which can accommodate stochastic integrals without a need for
renormalization.

(b) The case of a stochastic heat equation defined on an unbounded spatial domain RY with f satisfying (2) and with at most
polynomial growth was first investigated independently by Iwata [5] and Brzezniak and Peszat [6]. Unlike in the bounded domain
setting, the solutions to (1) are unbounded in space if ¢ is bounded away from zero. Specifically, for any ¢ > 0, P(sup,cpa |u(?, x)| =
+o0) = 1.

(c¢) The variational methods of Rockner and collaborators can be applied when the perturbing noise is trace-class, so that Itd formula
methods are available [7-9]. This theory allows for sppes that are not semilinear, such as porous medium equations, but precludes
rough perturbations like space-time white noise.

(d) In case of a space-time white noise W (or even a spatial white noise if x € R? with d > 2), renormalization tools are in order.
We cannot list all the relevant contributions in this direction. Let us just mention [10] for the celebrated kpz equation and [11] for
the <Di model. Notice that most of those systems only admit an additive noise, and that the current techniques only yield local (in
time) solutions.

Studies of densities for stochastic processes in non-Markovian settings have been one of the great achievements of Malliavin
calculus. However, due to a methodology based on differentiation and integration by parts, Malliavin calculus results usually require
smooth and bounded coefficients in differential systems like (1). This is certainly the case in classical references concerning stochastic
ppEs [12-15] or systems driven by a fractional Brownian motion [16,17]. A more recent trend has been to adapt the integration by
parts technology to settings with little regularity or less restrictive growth assumptions. One can quote the following studies, which
are close in spirit to our own contribution:

(a) The article [18] deals with a stochastic differential equation driven by an additive Brownian motion, whose drift coefficient lies
in a fractional Sobolev space of the form W? (with a regularity parameter y € (0, 1]). The computations therein combine Malliavin
calculus and Girsanov transform tools.

(b) For stochastic differential equations driven by a fractional Brownian motion let us mention the paper [19], which handles the
case of a Holder drift. This is achieved thanks to a smart limiting procedure taken on Euler schemes. More recently, the preprint [20]
explores densities for a drift coefficient f which has linear growth and satisfies a mild damping condition. The main tools in [20]
is Girsanov’s transform, again due to the fact that an equation with additive noise is considered. The density is then analyzed by
importing arguments from the regularization by noise literature and investigating a functional for a fractional bridge.

(c) In [4,21] the authors consider a sppE of the form (1), satisfying an assumption which is similar to (2). The main difference between
this setting and ours is twofold: first [4,21] focuses on spatial variables in bounded sets of R?, while our result is concerned with x
in the whole space R?. Then [4,21] is restricted to coefficients f in (1) having polynomial growth, while we can reach exponential
growth in the current paper. Notice that in [21] the strategy is based on a localization procedure relying on Lipschitz approximations
of the drift coefficient f. This method is ruled out in our unbounded domain setting. Indeed, in our case the field {u(z, x); x € R?}
is unbounded for any fixed ¢ > 0, even if f is Lipschitz. The boundedness of u(t,-) whenever f is Lipschitz was a crucial ingredient
in [21].

As one can see, our result is thus the first one establishing existence of density for a sppe with drift whose first derivative is
unbounded and that is defined on a noncompact domain. On top of this novel aspect, we believe that our method of proof is
applicable to other settings. In some subsequent publication we plan to apply the techniques developed here to the renormalized
frameworks mentioned above.

In future work, we also wish to remove the growth restriction on f. While many previous works restricted the growth rate of
f to polynomial growth like |f(u)| < C(1 + |u|?) [3,5,6,9], we allow f to grow as fast as |f(u)] < KeXl“" for any K,v > 0 like
in [22]. The exponential growth restriction is helpful for proving that the integrals /0’ /Rd G(t — s,x — y)f(u(s, y))dyds in the mild
solution are well-defined. These growth restrictions do not seem necessary, however, and in future work we hope to prove that the
half-Lipschitz condition on f (2) along with appropriate assumptions on ¢ and the W, is sufficient to guarantee the existence and
uniqueness of mild solutions and the existence of a density. Such a generalization requires sensitive analysis of the spatial growth
rates of solutions and is outside of the scope of the current manuscript.

As mentioned above, the solutions to (1) with x € R? are unbounded and heat equations enjoy infinite propagation speed.
Therefore the localization arguments that are invoked in the bounded domain case [4,21] cannot be applied to the unbounded
domain setting. To investigate properties of unbounded solutions, many researchers have introduced a spatial weight. For example,
Iwata [5] and Brzezniak and Peszat [6] used exponential weights sup, e=**!|u(t, x)|. The choice of exponential weights, unfortunately,
introduced a polynomial growth restriction in the literature. With this observation in mind, the first author of this paper proposed
in [22] a new method to handle equations like (1). Roughly speaking, in this paper and in [22] we use polynomial weights
SUP,cRd 0l gor arbitrarily small # > 0. This choice of weights allows to prove the main results for superlinear half-Lipschitz

1+|x—x|?
reaction terms that grow as fast as | f(u)| < K exp(K|u|") for any K,y > 0.
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In order to explain how we obtained the existence of a density for the solution to (1), let us give a few details about the approach
in [22]. The scheme therein basically splits the dynamics in two pieces: first a stochastic map 7 defined for a jointly measurable
and predictable random field ¢ by

t
Z(I,X)=l“’(t,X)=// Gt —s5,x=y)p(s, W (dsdy),
0 Rd

d
where G(t, x) := (27)”2 exp(—|x|?/2) is the standard Gaussian heat kernel. This map is properly introduced in (99) below. The second
piece of our dynamics is a deterministic map called M (see Definition 2.10) given for a continuous function z defined on [0, T]x R¢
as the solution of the following integral equation

t
M), x) = / /1 Gt —5,x = y) [ (M(2)(s, ) dyds + z(t, x). (3
0 JRe

The crucial point in [22] is that, despite the fact that f in (3) in not globally Lipschitz continuous, the map M is globally Lipschitz
continuous on weighted spaces of continuous functions on [0,7] x R¢. Thanks to some thorough estimates for both 7 and M and
a Yosida type approximation procedure for the function f, one can prove existence and uniqueness for mild solutions to (1). More
specifically, the mild solution of (1) is defined to be a process u(t, x) that is jointly measurable and predictable with respect to the
filtration 7, and that solves the integral equation

1
u(t, x) :/ Gt —s,x— Yug(y)dy + / / G(t—s,x—y)f(u(s,y)dyds
R4 0 JRd

t
+ / / G(t = 5,x — y)o(u(s, Y)I)W (ds dy). “@
0 Jre
Letting U(t,x) = fRd G(t — s,x — yuy(y)dy and I?(t,x) and M be the maps defined above, Eq. (4) can be recast as
u(t,x) = M (U + I°“) (1, x). 5)

The existence and uniqueness of the solution to this equation was then established in [22] via a Picard iteration scheme. Namely,
we can recursively define

ug(t,x) = Up(t,x),  tpy = M(Up + W), (6)

By properly bounding both maps 7¢ and M, the existence and uniqueness for Eq. (1) is proved thanks to a fixed point argument.

We can now explain our global method for the existence of density result and outline the structure of our paper. First in Section 2
we introduce the main assumptions and recall the existence and uniqueness results for (1) from [22], as well as Malliavin calculus
results from [14]. Then we proceed to prove the Malliavin differentiability of u(z, x) via the approximation scheme (6), and also by
studying the Malliavin differentiability of the maps Z¢ and M. To begin with, Section 3 proves Proposition 3.1. This result states
that if a random field z : [0,7] x RY x 2 — R has the property that z(z, x) is Malliavin differentiable for any (¢,x) € [0,T] x R¢ and
additionally that z(t,x) and Dz(z, x) satisfy certain polynomial growth assumptions in the spatial variable, then the random field
M(z)(t, x) is also Malliavin differentiable for any (z, x) € [0, T] x R?. Furthermore, Proposition 3.1 establishes a weighted supremum
norm bound which holds with probability one:

I DM(2)(E, 34, 1Dz(t. )34,
sup sup —— < sup sup

€[0T xeRd 1+ |x— x0|9 1€[0,T] xeRd 1 + |x — xol‘9

@

where H; is the natural Cameron-Martin space related to our colored noise (see (54) below for a proper definition of the inner
product in Hy).

The Malliavin differentiability of the stochastic integrals 7% when ¢ is Malliavin differentiable is a standard result from the theory
of Malliavin calculus (see Proposition 2.18 below). In Section 4 we prove that certain moment estimates of weighted supremum
norms, that applied to stochastic integrals 7%(z, x) when ¢ is real-valued, will also hold in the case where ¢ is Hilbert-space valued.
Specifically, we apply these results to derive estimates on the Malliavin derivatives of the stochastic integral terms. In Section 4.2
we apply these Malliavin differentiability results about 7% and M to the recursively defined Picard iteration scheme introduced in
(6). In particular, this allows us to prove that u,(t, x) is Malliavin differentiable for all n € N, ¢ € [0,T], and x € R?. Furthermore,
we prove that for any p>0and 7 > 0,

P
sup sup E| sup sup M <40 (€)]
n xpeRd [r€l0.T]xeRd 14 |x — x0|‘9
In particular, these weighted supremum moment bounds guarantee that sup, E||Du,(t, x)||§{ is finite for any fixed t > 0 and x € R?.
The classical result [14, Lemma 1.2.3] then guarantees that u(z, x) is Malliavin differentiable.

Finally, in Section 5 we prove that the Malliavin derivative of the mild solution is positive almost surely, that is P(|| Du(z, Ollyg,. >
0) = 1. By [14, Theorem 2.1.2], this positivity property implies that the law of u(z, x) is absolutely continuous with respect to Lebesgue
measure. We prove the positivity by constructing a particular family of deterministic test functions 4, , 5 € H; and proving that, with
probability one, the directional Malliavin derivative Dy, , su(t,x) is non-negative for some small (and random) 6 > 0. This analysis
involves writing the directional derivatives in a mild form

Dyu(t,x) = {¢, . h)HT + Ap(t,x) + By (t, %),
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where A, (1, x) is a Lebesgue integral and B, (t,x) is a stochastic integral. We prove that when § is sufficiently small, the integral
terms are much smaller than the leading term, implying that the directional Malliavin derivative is non-negative.

2. Approach to existence and uniqueness

In this section we will summarize the method employed in [22] in order to solve an equation like (1) with a half-Lipschitz
reaction term. The method is based on a fixed point argument in an appropriate weighted Holder space. We also include a minimal
set of Malliavin calculus tools necessary to carry out our main computations.
2.1. Functional space, assumptions and existence result

We start by defining the weighted function spaces which will be used throughout the paper.

Definition 2.1. Let 6 > 0 be a positive parameter and let x, € R?. The space C, ([0, T % R?) designates the set of continuous
functions

Z,
z2€CI0,TIxRY) : lim sup |z(—x)|9 =04, ©)
[xl=o0 o] 1+ |x — X
The space is endowed with the weighted supremum norm
|z(t, %)
|z| dy i= Ssup sup ———. 10
Coxg ((0.TIXRY) €l0T] vt 1+ |x — %o

For fixed 0, the spaces Cox, ([0, TT X R9) all coincide, but it is convenient to use different centers of the weight x,. In Theorem 4.3
of [22] and the Hilbert space generalization of that result in Lemma 4.2, below, we prove that certain moment estimates of the
weighted supremum norms of stochastic integrals are uniform with respect to the center of the weights. The uniformity of these
moment bounds over the center of the weights is used to prove the convergence of the Picard iteration schemes (Theorem 5.4 of [22]
and (52)-(53), below), which we use to prove both existence of solutions and Malliavin differentiability.

Next we state the assumptions on the stochastic noise W. All of the random variables below are defined on a complete probability
space (2, F,P) equipped with a filtration {F, : ¢ > 0}.
Assumption 2.2. The noise W in (1) is a centered Gaussian spatially homogeneous noise which is white in time. There exists a
positive and positive definite tempered measure A such that formally
E[W (1, )W (s, )] = 6(t — ) A(x — ). an

In the above expression, § is the Dirac measure. The Fourier transform of A is a measure u and we assume that there exists # € (0, 1)
such that

1
/]Rd Wﬂ(df) < +o00. 12)

We define W more rigorously in Section 2.3, below.
Notice that we are imposing here a strong version of the so-called Dalang condition (with # > 0). We doubt that our main result,
Theorem 1.1, is true under the weaker Dalang condition with # = 0. The strong Dalang condition is used to prove Theorem 4.3

of [22] and its Hilbert space generalization, Lemma 4.2, below.
The multiplicative noise coefficient ¢ in (1) satisfies standard differentiability and nondegeneracy assumptions.

Assumption 2.3. The noise coefficient o : R — R is differentiable and its derivative is uniformly bounded. Moreover, we assume
that there exists a > 0 such that

o(w)>a, forall uekR. (13)
Remark 2.4. A common assumption in the literature is that |oc(u)| > « for u € R for some « > 0. Because ¢ is continuous this
implies that either (13) holds or

o(u) <—-a, forall ueR.

Since ¢ is multiplied by a Gaussian W, the law of the process u(t, x) is identical when o(u) is replaced by —c(u). Therefore, we assume
(13) without loss of generality.

As mentioned in the introduction, our system (1) departs from the standard stochastic ppE setting due to the drift coefficient f.
Namely we only suppose that f in (1) satisfies a half-Lipschitz condition, is differentiable, and obeys a very mild growth condition.
This is summarized in the assumption below.
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Assumption 2.5. The reaction term f : R — R is continuously differentiable. Moreover, there exists k € R such that the derivative
is uniformly bounded from above

flwy<x, forall ueR. (14)
We further assume that there exist K > 0, v > 0 such that

If' ] < Kexp (Klul") (15)

Notice that the upper bound on the first derivative (14) implies that f : R — R is half-Lipschitz, meaning that for any u; > u,,

Suy) = flup) < k(uy —uy). (16)
We now label a standard assumption for the initial condition u, for our equation of interest.
Assumption 2.6. The initial condition for (1) is non-random, continuous and uniformly bounded, meaning that there exists M > 0
such that

sup lug(x)| < M. a7

xeRd

We now recall the main existence and uniqueness result from [22].

Theorem 2.7 (Theorem 2.6 of [22]). Suppose Assumptions 2.3-2.6 are satisfied. Then there exists a unique mild solution to (1) solving
(4). This solution lives in the space LP(2 : Co (10, T X R?)) for all p > 1 and any 6 < 2/v where v is from Assumption 2.5 and Cox, is
introduced in Definition 2.1.

2.2. Methodology

In this section we review the methods used to solve (1) in [22]. Those tools will also play a prominent role in analyzing the
Malliavin derivative of the solution.

2.2.1. Yosida approximations
A crucial ingredient in the analysis of Eq. (4) is based on Yosida approximations for the nonlinear forcing term f sat-
isfying Assumption 2.5. That is for any function f satisfying (14) or (16) it is easily seen (see [22, Proposition 2.4]) that

f@w) =) +ku, (18)

where ¢ is non-increasing. For ¢ : R — R that is non-increasing, we define the Yosida approximations for A > 0 by
1 -

d,(u) = 1(J,l(u) — u) where J;() = (I — Adp)™ (u). (19)
The family {¢, : 4 > 0} is intended to be a smooth approximation of ¢ under monotonicity conditions. We now summarize some
properties of the Yosida approximations, taken from [23, Appendix D].
Lemma 2.8. Let ¢ : R — R be a differentiable non-increasing function and let {¢, : 4 > 0} be its Yosida approximations defined by (19).
Then the following are true.

@ 1b3(u)) = b )| < 2|uy = uy), for u,u, € R and all 4> 0.
(i) ¢, < |p@)], for u € R and all A > 0.

(iii) u — ¢,(u) is nonincreasing, for all A > 0.

(iv) lim,_ ¢, ) = ), for allu € R.

) lim,_ ¢, (u) = ¢' (), for all u € R.

These properties of Yosida approximations are easily translated into approximations for the half-Lipschitz function f.

Lemma 2.9. Let f satisfy Assumption 2.5 so that f satisfies the decomposition (18). Define a family {f, : A> 0} by
Fiw) =) + xu (20)

where ¢, are Yosida approximations of the non-increasing function ¢. Then f, satisfies the following properties.

@ 1f20) = £ < (345 ) Iy = wl, for u,u, € R and all 4> 0.

@) |f,w| <A +2)|fw)|, forue R and all 2 > 0.

(i) (f;(uy) — f(up))sign(u; —uy) < kluy — uy|, for uy,u, € R and all A > 0.
(iv) lim,_ f,(u) = f(w), for all u € R.

W) lim,_ fiw) = f'(u), for all u € R.



M. Salins and S. Tindel Stochastic Processes and their Applications 168 (2024) 104263

2.2.2. Mapping M
The second ingredient we wish to highlight in the study of (1) is the introduction of a functional mapping M : Cy . (10,71 xR?) —
Cp .y ([0, T] X RY).

Definition 2.10. For a continuous function z € Coxy (10, TT X R?) let M(z) be the solution to the following equation

t
M(2)(t,x) = / /d G(t —s5,x = y) f(M(2)(s,y)) dyds + z(t, x) (21
0 JR

where we notice that the growth restriction (15) guarantees that the above integral is finite if M(z) € C(,,XO([O, T1x R?) for some
0€(0,2/v).

Remark 2.11. In order to prove existence of the map M one uses an approximating sequence {M,; A > 0} defined as in (21),
with f replaced by its Yosida approximation f, given in (19). Then some a priori estimates on M ,(z) are provided in [22]. Those
estimates allow to conclude the existence part, thanks to some compactness arguments.

With our Malliavin calculus considerations in mind, we formulate a time and space inhomogeneous version of Theorem 5.6
of [22]. To this aim, we consider ¢ : [0, T]xR? xR and assume that ¢ is uniformly half-Lipschitz in the third argument. This means
that there exists x € R such that for any # € [0,T], x € RY, and u; > u, € R,

@(t, x,uy) — @t x,uy) < k(U — uy). (22)
We also impose the growth restriction that there exist K > 0,v > 0, x, € R? and § € [0,2) such that for any ¢ € [0, T]
|op(t, x,u)| < KeK(|x7X0|ﬂ+‘“|V). (23)

We introduce a new functional mapping £ in the following way. Given ¢ satisfying (22)-(23) and z € Cpx,([0,T] x RY), let
L(z) € Cy ([0, T x R?) denote the solution to

1
L(z)(1,x) = / / G(t = 5,x = Y)(s, y, L(2)(s,y)) dyds + z(1, ). (24
0 Jrd

The growth restriction (23) guarantees that the above integral is finite if £(z) € Coxy 10, TT X R?) for some 4 € (0,2/v).

Remark 2.12. The existence of a solution L£(z) € Coxy (10, T] X R?) for any z € Cox, (10, T] X R?) can be proved via Yosida
approximations following the arguments of Theorem 5.2 of [22]. We will prove the existence of Malliavin derivatives that solve
(24) in Section 3 below, and we have no need to prove the existence of £(z) in full generality. We do need to prove that £ features
a global Lipschitz continuity property on the domain where it exists and we will use this property frequently in the sequel.

Theorem 2.13. Consider a function ¢ : [0,T] x R? x R verifying (22)-(23) and a generic Xy € RY. Let 6 € (0,2/v). There exists
K = K(T,0,x) > 0 such that if z, 2, € Cy ., (10,71 % R?) and if there exist L£(z,), £(z,) € Cp.x, (10, TT% R9) that solve (24), then

[L(z)) — E(ZZ)ng,XO([O,T]XR”) <K|z - 12|co>x0([oyr]xu{d)- (25)

The constant K does not depend on the center of the weight x, and only depends on ¢ through the parameter k.

Proof. Let v;(1,x) 1= L(z;)(t,x) — z;(t,x) for i € {1,2} and let &(t, x) = v, (t, x) — v, (¢, x). The function & is weakly differentiable and

920,30 = 3 0(0,3) + (1 %, 011, X) + 211, X)) = 9lt, X, 03(0,3) + 2300, 2). (26)
Without loss of generality, we can assume that 7 is strongly differentiable by approximating & using resolvent operators [24,
Proposition 6.2.2]. Let p(x) = (1 + |x — x0|2)5 be a twice-differentiable weight. Then the quotient (¢, x) = % satisfies
94 [y ~ Vp(x) | 1 Ap(x)
— (1, x) == 44(t, Vit x) - ~4(t,
az( X) 3 q(t, x) + Vg(t, x) 200 +211( X) 20
1, x,0;(t,x) + z;(t, X)) — @(t, x, Uy (1, x) + 2, (2,
+ @t x,01(1,X) + 2 ( X)L(x)q?( x, 0y (1, X) + 2o( X))' @7

By the assumption that & € Cox, (10, T] X RY), the weighted difference § sits in the space C,([0,7] x R?), meaning that
lim| 4, o SUP,efo.7) 14(¢, X)] = 0. For any ¢ € [0, T}, there exists at least one point x, € R? where the supremum is attained. Specifically,

14@. x)| = sup 14, x)|. (28)

xeR
Furthermore, the upper-left derivative of the supremum is bounded by

<%

=5 ¢ x,)sign(§(, x,)), (29

d”— .
— I,.
27 140 )le,
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where x, is any maximizer such that relation (28) holds true (see [22, Proposition 3.5]). Therefore applying (27) and (29), the left

derivative above satisfies

g, < 1Aq<t x)SIgN( X)) + Vit x) - LD sign (gt x,)
dt »JICy = s (e (e ﬂ(x;) s Mt
~(t X;) i )) sign(q(t, x,)) + Q; ,

where we have set
(1, x,, 01t x,) + 21 (1, X,)) — @1, X, Uy (8, x,) + 25 (8, X))

Q, = sign(4(t, x,))

p(x;)
We now examine the right hand side of (30).

(i) Because x, is a maximizer or minimizer for ¢, we have

vi(t,x;) = 0.

(ii) The convexity of a function at a local maximizer or minimizer guarantees that

Ag(t, x,)sign(g(t, x,)) < 0.

A/I(X)

(iii) Direct calculations verify that sup, <22 < +o0 so that

L% 225 ien(ae, x,) < Clatt. x,)|
2430700 ) £ Clte, x|

(30)

(31)

(32)

(33)

(34

(iv) We split the analysis of the Q, term in (31) into two cases, according to the relation |4(z, Ne, > 12t )¢, or 13t e, < 12 ¢,

Namely let Z(t, x) be the weighted difference
zy(t,x) = z5(t, x)

p(x)
If 14, )¢, > 121, 9]¢, then

Z(t,x) =

sign(g(t, x,)) = sign(g(t, x,) + Z(t, x,)) = sign(v, (¢, x,) + z(t, x;) — (V2 (t, X;) + 2, (, x,))).

In this case, (22) guarantees that

Q, < kgt ) + 2(t. )¢, < 24, ).

Hence plugging (32)—(33)-(34) and (37) into (30), in the case where |§(, -)Ico > |Z(t, ')|c0 we get

d” . ,
271409y < €l e,

where the constant C depends only on « and 6.

(35)

(36)

(37)

(38)

On the other hand if |2(1,-)l¢, > [4(t,")lc,, then we cannot get a bound on the left derivative ‘2—;|¢7(t, )l¢,» but this is
not a problem because in this case we have an explicit upper bound on |4(t,)|¢, itself. To deal with both of these cases
simultaneously, it is convenient to bound the left derivative of

max{ltj(t,-)|c0’M}, where M := sll(l)pnlz(t e, (39)
SE|

Specifically, if |q(t,)|¢, > M, then the left derivative of max{lti(t, -)|CU,M} is (38), while if |4(r, )], < M, then the left

derivative of max { 14, ey M} is 0.

From (30)—(38)-(39) and the considerations above, we can see that for any fixed T > 0 and for any ¢ € [0, 7] we have

d- ~ . ~
a max {|4(t, )|, M} < C|q(t, )¢, < Cmax {|g(,)|, M} . (40)
Using the fact that (0, x) = 0, one can integrate (40) in order to get an exponential growth bound:
sup max {|g(z, )|, M} < MeCT. (41)
t€[0,T]

Therefore because M = sup;e(o 1) SUpyers 12(t, )¢,

sup sup [4(t,x)| < eT sup sup |(t, )¢, (42)
t€[0,T] xeRd t€[0,T] xeR4

The definitions of § and Z guarantee that

v(t,x) — Uy (t, X z1(t,x) — zH(t, x
sup  sup [0 (1, x) — vy( . )] <o sup sup |z, (t, %) 2(9 )I' 43)
1€l0T1xeRd 1+ [x — xp] 1el0T]xeRd 1+ |x — x|

Our claim (25) follows because L(z;) =v; +z;. [
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As a particular case of Theorem 2.13 for a homogeneous function ¢, we get the fact that M in Definition 2.10 is a Lipschitz map
on CG,XO([O, T1x R?) (this was the content of Theorem 5.6 in [22]). The existence of M was proved in Theorem 5.2 of [22].

Proposition 2.14. Suppose Assumption 2.5 is satisfied. Let 6 € (0, %) where v is from (14) For any z € Cg,XU([O, T] x RY) there

exists a unique solution M(z) € Cy, ([0,T] x R%) to (21). Furthermore, M is globally Lipschitz continuous. Specifically, there exists
a constant K = K(T,0,«), depending only on the weight parameter 6 and x from Assumption 2.5 such that for any two functions
21,23 € oy, ([0, TI X RY),

[M(z;) = M(zl)|cg'X0([o,T]de) <Klz -1z |C(97XU([O,T]><JRf’)' (44)
2.2.3. Approximation scheme for existence and uniqueness
With the preliminary results in Sections 2.2.1 and 2.2.2, the Picard iterations approximating the solution of (4) are defined as

follows in [22].

(i) Initiate the iterations by setting

Uy(t,x) := ./]Rd G(t, x — yuy(ydy, (45)
Zo(t,x) = 0, (46)
uy(t,x) = Uy(t, x). (47)

(i) Given (u,, Z,), define

Zpoi(t,%) 1= /0 t /R Gt = 5.x = o, (s, )W (ds d). (48)
(iii) Once Z,, is introduced, set

U, 1, %) := MUy + Z,, ), x). (49)
Remark 2.15. Because of the definition of M, defined in (21), for any »n € N, u,(#, x) implicitly solves

U (1 3) = /]R Gl = gy + /0 I /]R Gl = 5.x = ) Uy s )y

t
+/ / Gt — 5, x = y)o(u,(s, )W (dyds). (50)
0 JRY

Notice that this differs from the classical Picard iteration scheme used by, for example, Dalang [1] in the case where f is globally
Lipschitz continuous. In the classical setting the f(u,,(s,»)) on the right-hand side of (50) is replaced by f(u,(s, y)).

It is proved in [22, Theorem 5.2] that the sequence {u,; n > 0} converges to the solution of (4) and that Z, converges to the
stochastic convolution

t
Z(t,x) 1= / / Gt —s,x — y)o(u(s, y)W(dsdy). (51)
0 Jrd
Specifically, the following relation hold true for all p > 1:
Z,(t.x) - Z@ x|
lim sup E| sup sup M =0. (52)
nooeRd |r€0.T]xeRd 1+ |x — xg]
P

t,x) — u(t,
lim sup E| sup sup w = (53)
n=o eRd |1€l0 T xerd 1+ |x — x|

The proof of [22, Theorem 5.2] requires that the convergence in (52) and (53) is uniform over the center of the weights x,. This is
why we needed to introduce the spaces Cy, ([0, 71X R?) with arbitrary centers of the weights.
Also recall that in item (iii) above, the mapping M is defined through a limiting procedure involving the Yosida approximations

f,of f.
2.3. Malliavin calculus
This section is devoted to review some elementary notions of Malliavin calculus (mostly borrowed from [14]). We first recall

that our noise W is a Gaussian centered field whose covariance is formally given by (11). One can also look at W as a centered
Gaussian family {W(¢); ¢ € H;}, where H; denotes the Hilbert space with inner product

T
(& vy :/O /Rd /]Rd O, yw ) A(yy = y2) dy,dy,dt, (54
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and where we recall from Assumption 2.2 that A can be allowed to be a positive and positive definite tempered measure.
Let S be the set of smooth and cylindrical random variables of the form

F=g(Wh),....W(hy)),

where N > 1, g € C°(RY) and hy, ..., hy € Hy. For every ¢ € Hy, the partial Malliavin derivative of F in the direction of ¢ is
defined for F € S as the random variable

N
P
D,F = Z a_f. (W R ccc. W () By Cy, - (55)

Relation (55) can also be seen as an equation for (DF, ¢ >Hr’ where DF is now a Hp-valued random variable. We can iterate this

procedure to define higher order derivatives D’; .. F, which produces a H®*-valued random variable. For any p > 1 and integer
£yt

k > 1, we define the Sobolev space D*” as the closure of S with respect to the norm

k
IFIE, =EUFIP + Y E[IDFIL |- (56)
i=1

If V is Hilbert space, D¥?(V) denotes the corresponding Sobolev space of V-valued random variables.
The existence of a density for u(#, x), the mild solution of (1), is obtained by applying the following criterion borrowed from [14,
Theorem 2.1.2].

Proposition 2.16. Let F be a real-valued random variable in D' for some p > 1, such that IDF i3 >0 with probability one. Then the
law of F is absolutely continuous with respect to the Lebesgue measure in R.

When proceeding by approximations, we will rely on a technical result summarized below (see [14, Lemma 1.2.3]) in order to
probe Malliavin differentiability.

Proposition 2.17. Let {F, : 2> 0} be a sequence of random variables such that

F,eD'? forall 2>0, mE[F,-FP] =0, supE [||DF,1||§,T] < +oo. (57)
- A

Then F € D'? and the sequence { DF, : A > 0} converges weakly to DF in L*(Q : Hy) as 4 — 0.

We now state a differentiation rule for stochastic integrals that will be invoked to differentiate solutions to stochastic ppEs.
Proposition 2.18 (Section 1.3.1 of [14]). Let X be an adapted random field in D'*(H;), and define the Itd stochastic integral
T
Jr(X) = / / X(s,x) W(ds dy).
0 Jrd
Then J(X) is an element of D', and for any h € Hy we have

T
D} Jr(X) = (X, h)y, +/0 /Rd D, X(s,x) W (ds dy).

The next result gives an easy to check condition that guarantees that a stochastic convolution with the fundamental solution to
the heat equation satisfies the assumptions of Proposition 2.18.

Proposition 2.19. Let X be an adapted random field such that for any (t, x) € [0, T]1xRY, we have X(t,x) € D'2. In addition, we assume
that

sup sup E [|X(t, x)|2] < +o0, (58)
t€[0.T] xeRd
and
sup sup E [||DX(t, x)||§_l ] < +00. (59)
1€[0,T] xeRd T

Let G be the fundamental solution of the heat equation. Define the stochastic convolution

I(t,x)=I%(t,x) = /0 l /}R Gl =s5.x =YX (s, YW (dsdy). (60)
Then for any (t,x) € [0,T] x RY, I(t, x) is an element of D', and for any h € H; we have

DyL(t,3) = (Gl = x = IX(, ), Ry, + /0 t [, 6055 =D, XG0 Widsdy), 61)

In the above expression G(t — r,x — y) is defined to be 0 if r > 1.
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Proof. To apply Proposition 2.18, we need to first verify that for fixed (¢, x) € [0, T] xR, the integrand (s, y) = G(t — s, x — y) X (s, )
is an element of D!?(H;). Fortunately, a straightforward consequence of the fact that G(-,-) and A(-) are positive is that

EIG( = - x = )X (),

t
e E/ /d /d Gt —s5,x—yDG@E = 5,x = y)X(5,y1)X (5, y2)A(y) — y2)dy d y,ds
0 R R

< C< sup sup E|X(s, y)|2> 0,0 (62)

s€[0,1] yeRd
where we have set
1
0,0 = / / / Gt =5, x = y)G( — 5,x = y)A(y; — y)dydy,ds. (63)
0 Jrd JRrd

Along the same lines, we also have

1
E|G( -, x— ~)DX(‘,')||§., = IE/ / / G(t—5,x—y)G(t —s,x—y,)
T 0o Jrd Jrd
X(DX(s,y1), DX (5. y2)) 3, A1 — y2)dydy,ds,
and therefore
E|G(t~ - x = )DX(.)I3, < C< sup sup EHDX(s,y)n%,T) 0,(0). (64)
s€l0.] yeRd

Now taking Fourier transforms as in [1], Assumption 2.2 guarantees that

t
0,0 = /0 /R ) e~ (ag) < +oo. (65)

Plugging this relation into (62) and (64), then taking hypothesis (58)-(59) into account, our claim is a direct consequence of
Proposition 2.18. []

3. Malliavin differentiability of M

In Section 2.2.3 we gave the iteration scheme allowing to solve (4). We shall now follow the very same scheme in order to
show Malliavin differentiability, and we start by analyzing the mapping M defined by (21). Namely we showed in [22] that M is
a Lipschitz continuous map on the weighted spaces Cy , (0,71 x R%). In this section we prove the following proposition about the
Malliavin differentiability of M(z).

Proposition 3.1. Let 6 € (O, %) where v is from (15), and pick a generic x, € R?. Denote by L*(Q : Co .y ([0, T] X R?)) the set of
Cox, ([0, T] X R?)-valued square integrable random variables. Consider z € L*(Q : Cox, ([0, T] R?)) which has the properties that z(t, x) is
Malliavin differentiable for dll (t,x) € [0,T1x R and
I1D2(t. ), |*
E| sup su .

p i +00. (66)
1€l0.T] xeRd 1 + |x — x|

Let M(z) be given as in Definition 2.10 and assume Assumptions 2.3-2.5 for ¢ and b. Then M(z)(t,x) is also Malliavin differentiable for
all (t,x) € [0,T] x RY and almost surely we have

I DIM2)(E. 0)]ll24, 1Dz(t. )13,
sup sup ———— < sup sup

0 0’ (67)
(€[0.T] xeRd 1+ |x — xgl 1€[0.T] xeRd 1+ |x — xg|

where K = K(T, 0, x) is also the Lipschitz constant of M in (44), which does not depend on x, € R?.

We prove Proposition 3.1 in several steps. First, we prove this in the simpler case where f is globally Lipschitz continuous.

Lemma 3.2. Let 0 € (O, %) where v is from (15). Let x, € RY. Assume that f : R — R is differentiable and globally Lipschitz

continuous and that sup, f'(u) < k. Then if z € L*(2 : Cox, ([0, TT % R?)) has the properties that z(t, x) is Malliavin differentiable for all
(t,x) € [0,T] x R and
ID2(t, %)l

sup sup ——
1€l0.T] xeRd 1 + |x — x|

then M(z) is also Malliavin differentiable and with probability one we have
I DIM(2)(t, X)]ll3¢, 1Dz, )34,

sup sup ————————— < K sup sup ———, (69)
1€[0,T] xeRd 1+ |x —xgl 1e0,T] xeRd 1+ |x — x|

2

E 0, (68)

where K = K(T, 0, ) is also the Lipschitz constant of M. Notice that K depends on «, the upper bound of f’(u), but does not depend on
the lower bound of f'(u).

10



M. Salins and S. Tindel Stochastic Processes and their Applications 168 (2024) 104263

Proof. We define a sequence of functions {m, : n > 1} by Picard iterations by

my(t,x) = z(t, x)
'
m,,(t,x) = / /d G(t—s,x—y)f(m,(s,y)dyds + z(t,x).
o Jr

Standard arguments based on the Lipschitz continuity of f show that m, converge to m := M(z) in the L*(Cy ,40,T 1xR4)) topology.
Furthermore, m, (7, x) is Malliavin differentiable by assumption. Then by induction and using the fact that integration and Malliavin
differentiability commute, m,(z, x) is Malliavin differentiable for all » > 1 and

‘
Dm, (t,x) = / / G(t = s5,x — y) ' (m,(s,))Dm, (s, y)dyds + Dz(t, x). (70)
0o Jre

Notice that in order to get (70), we imposed the additional assumption that f’ is bounded. Let L := sup,p | /' (u)|. We also set

1D, (5.1,

@, (1) := sup sup 71)

xeRrd se01 1+ |x = x,|°

We assumed in the statement of the lemma that &, (¢) is finite with probability one, since m; = z and z satisfies (68). From (70) we
can see that for any n > 1 and (¢, x) € [0,T] x R? we have

t
1Dy, (2 ) 134, S/ /d Gt = s,x = y)LI| Dm,,(s, )34, dyds + | Dz(t, X) I3, - 72)
0o Jr

Next, we observe that |Dm, (s, y)| < @,(s)(1 + | y1%) by the definition (71) of ®,. Furthermore, due to the fact that G is a Gaussian
kernel, we have

0
/ G(t = 5,x = y)(1+ |y = x|")dy < C(1 +(t = )2 + [x — x| 73)
R4
Plugging (73) into (72), there exists C > 0 such that for any 7 € [0,7']
, IDz(r )y,
D, ()< Cp [ @ (s)ds+ sup sup ————. 74
0 rel0.T]xeRd 1+ [x — x|
Hence it is easily seen by induction that @, satisfies the following inequality, uniformly in »,
1Dz, )l
sup @,(1) < e“rT sup sup —H;, (75)
1€[0,T] 1€l0,T1 xeRd 1 + |x — x|

with probability one. In particular, if we fix (¢, x) € [0, T] x R?, we get

1Dz, )l |*
sup sup itbiadic f R (76)

2
supEllen(t,x)HHT <cry E 7
n rel0.T] xeRd 1+ |x — xg|

Therefore by Proposition 2.17 and the fact that E|m,(t, x) — m(z, x)|> = 0, the random variable m(z, x) is Malliavin differentiable and
Dm,(t,x) converges weakly to Dm(t,x) in L*(£2; Hy) as n — co. Taking limits in (70) thanks to a standard procedure, Dm(t, x) must
be the solution to

t
Dm(t,x) = / Gt — s,x — y)f (m(s,y))Dm(s, y)dyds + Dz(t, x), 77)
0

where we recall that (77) admits a unique solution if sup, | /' (u)| = L < oo.

Now that we have shown that Dm(t, x) exists and solves (77), we argue that we can improve the bound on || Dm(t, )l s0 that
it depends only on the upper bound « := sup, /() and not on the Lipschitz constant L = sup, | f’(u)|. To this aim, by the linearity
of (77), for any h € Hy,

Dym(t,x) = /0 t G(t = 5,x — y) ' (m(s, y))Dm(t, x)dyds + Dj,z(t, x). (78)
Recall that m = M(z) is the unique solution to (21) and define the function ¢ : [0,T] X R? xR — R by

o, x,V) = f(m@t, ))V. (79)
Because k :=sup, f'(u) < +o0, the following inequality holds for any t € [0,T], x € R, and V] > V;:

o, x, V) — o, x, V) < (V) = V3). (80)

The growth condition (23) is fulfilled for ¢ because m € Cy, and f is globally Lipschitz continuous by assumption. Hence for
L =sup, |f'W),

lo@t, x, V)| < LIV (81)

11
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Therefore, D,m satisfies the assumptions of Theorem 2.13. Moreover, it is readily checked that for D,z = 0, Eq. (78) admits
D,m(1,x) = 0 as a unique solution. Hence there exists K = K(T', 0, k) depending only on T, 6, and «, but not L, such that

|Dm(t,x) = 0| |Dpz(t,x) = 0|
sup sup ——————— <K sup sup —————-, (82)
€l0.T]1xeRd 14 |x — xq] €[0T xeRd 1+ |x — xg|
with probability one. In particular, for any ¢ € [0,T], x € R? and ||h||7_,,l, =1
D,ym(t, x [1Dz(t, )l
lh—()lg <K sup sup —H; , (83)
L+ ]x — x| 1€[0.T] xeRd 1 + |x — x|
with probability one. Taking the supremum over ||All;, = 1,7 €[0,T] and x € RY,
[ Dm(z, x)| [I1Dz(t, )|
sup sup —HHT <K sup sup —H;. 84
t€[0,T] xeRd 1+ |x| 1€l0.T] xeRd 1 + |x — x|

This proves our claim (69) under the assumption that f is globally Lipschitz continuous. []

Now we start a limiting procedure in order to prove Proposition 3.1. Namely let f be any force satisfying Assumption 2.5 and
let f, be the Yosida approximation defined by (20). By Lemma 3.2, for each A > 0, because each f, is Lipschitz continuous, there
exists a unique m, solving (see also item (iii) in Section 2.2.3):

t
my(t,x) = /0 /Rd Gt —s,x—y) f;(m;(s,y)dyds + z(t, x). (85)

Due to the fact that f, satisfies (iii) in Lemma 2.9 uniformly in A (for a given « > 0), it follows from Theorem 2.13 (see also [22,
Corollary 5.5]) that m, is such that

my(t,x 1,
sup sup L)Ig <K| 1+ sup sup |z(—x)|g , (86)
1€[0,T) xeRd 1 + |x — x¢| 1€[0,T] xeRd 1 + |x — x|

where the constant K depends only on 7', 6 and x. Moreover, Lemma 3.2 guarantees that m, (¢, x) is Malliavin differentiable. According
to (77), the Malliavin derivative satisfies

t
Dym,(t,x) = / /d Gt —s,x— y)f;(mj(s, y)Dum,(s,y)dyds + Dyz(t, x). (87)
0 JR
In this context, relation (69) can be read as
1 Dm, (2, x)|| [1Dz(t, x)l|
sup sup A—GHT <K sup sup —HHT (88)
1€[0,T] xeRd 1+ x| €[0T xerd 1+ |x|

and the constant K is like in (86). Notice again from Lemma 2.9 that all of the f, have the same half-Lipschitz constant «.
In the following lemma we improve on the approximation results in [22], and show that m,(#, x) converges in L*(£2).

Lemma 3.3. Let m; be the Yosida approximations defined in (85) and assume that z satisfies the assumptions of Proposition 3.1. Then
for any fixed (t,x) € [0,T] x R, we have

im E|m, (1, x) = m(t, 0?=0, (89)

where m(t, x) is the unique solution to

t
m(t,x) = / / Gt —s,x = y)f(m(s, y)dyds + z(t, x). (90)
0 R4

Proof. First, we prove that m,(t, x) converges almost surely to m(t, x). Let v,(t,x) = m,(t, x) — z(t, x). Then

t
v,(1,x) = / /d Gt —s,x = y)f3(m,(s, y)dyds oD
o Jr
By the growth rate assumption (15) and the bound (86),
1£20m(2,50)] < €1+ |x = xol*) exp(C(1 + |x = xo]*)), 92)

where C = C(w) is some random constant that is independent of A. If v < 2, (92) along with standard properties of the heat kernel
G prove that for almost any fixed w € @ the family {(t,x) — v,(,x) : 4 € (0,1)} is equibounded and equicontinuous for (7, x) in
any compact subset of [0,T] x R?. The Arzela-Ascoli theorem guarantees that there exists a subsequence 4, — 0 such that v 4, (1:%)
converges to a limit v*(¢, x), uniformly on compact subsets of (¢,x) € [0,T] x R?. Because m; = v, + z, invoking the bound (92),
properties (ii) and (iv) in Lemma 2.9 plus some standard dominated convergence arguments, we get that this limit solves

t
vi(t,x) = / / G(t—s,x—y) f(U*(s,y) + z(s,y))d yds. 93)
0 JRd

12
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Thus if we define m*(z, x) := v*(t, x) + z(¢, x), then m* solves

m*(t,x) = / / G(t—s,x —y)f(m*(s,y)dyds + z(t, x). 94)
0 JRA

The solution to (94) is unique by Proposition 2.14. Therefore, the same Arzela-Ascoli argument proves that every subsequence of
m, has a further subsequence that converges to m* and therefore lim,_,, m,(t, x) = m*(t, x) with probability one.

Finally, the L?(£2) convergence of m,(t,x) to m*(t,x) is a consequence of the almost sure bound (86), the assumption that
ze LR : CMO([O, T]1x R?)), and the dominated convergence theorem. []

After this series of preliminary Lemmas, we are now ready to prove the main result of this section.

Proof of Proposition 3.1. Let z satisfy the assumptions of Proposition 3.1 and let m,; be defined in (85). By (88) and the fact that
z satisfies (66), for any fixed (¢, x) € [0,T] x R¢,

sup E|Dm,(t,x)II3, < +oo. (95)
1€(0,1) T

Lemma 3.3 proves that
lim E | m; (1, ) ~ m. 0 =o. (96)

The assumptions of Proposition 2.17 are therefore satisfied. The limit m(z, x) is Malliavin differentiable and verifies (67). []

Remark 3.4. Applying Proposition 2.17 as above, we get the weak convergence of Dm,(t, x) to Dm(t, x). Combining this with the
almost sure bounds (86), (88) and the exponential growth assumption (15), similarly to what we did for (94), guarantees that
Dm(t, x) solves

t
Dm(t,x) = / / G(t — s, x — y)f'(m(s, y))Dm(s, y)dyds + Dz(t, x). 97)
0 Jrd

where m = M(z).
4. Malliavin differentiability of the mild solution

As mentioned at the beginning of Section 3, our analysis of the Malliavin differentiability of u (solution to (4)) follows the scheme
outlined in Section 2.2.3. In this section we focus our attention on the stochastic convolution Z given in the iteration step (48). We
prove Malliavin differentiability via an approximation procedure and Proposition 2.17. Some preliminary results are presented in
Section 4.1 and the Malliavin differentiability is achieved in Section 4.2.

4.1. Some moment bounds

In [25, Theorem 2.1], it is proved that certain stochastic convolutions Z(t,x) = /ot G(t — s,x — y)(s, Y)W (ds dy) are Holder
continuous in 7 and x as long as ¢ is a real-valued adapted random field satisfying sup,c[o 7 sup,egre El@(t, x)|? < oo for sufficiently
large p > 1. The following lemma claims that the same result is true when ¢ is Hilbert-space valued. Due to our Malliavin calculus
considerations, in the current paper we are mostly interested in the case where the integrand is H-valued.

Lemma 4.1. Suppose that ¢ is an adapted Hy-valued adapted random field defined on [0,T] x RY. We assume

sup sup Ellg(t, 0llf, < oo, 98)

1€[0.T] xeR4

for sufficiently large p > 1. As in (60), let

1
I(t,x)=1%(t,x)= / / Gt —s,x—y)(s,yW(dsdy), 99)
0 JRd

and recall that n is introduced in the strong Dalang condition (12). Then for any 0 <y < a <n/2 and p > 2, there exist constants C, , > 0
such that for any x,x;,x, € R? and t,1,,1, € [0,T],

EIZ(t, 0}, < C,, TP sup sup Ellg(s, yli} (100)
Hp ay SEl0.T] yerd Hrp
EIZ(tx) = I xp)ll}, < Cyylxy = %o *P TP sup sup Ella(s. )llf, (101)
s€[0,T] yeRd r
EIZ(ty,x) = L(ty, %)l < Cyylty =1 TP sup sup Ellg(s, 5, - (102)
r s€[0,T] yeRd r

Proof. The only difference between the proof in [25] and this lemma is that ¢ and T are Hilbert-space-valued. Theorem 4.36 of [23]
guarantees that the BDG inequality holds for Hilbert-space valued stochastic integrals identically to how it holds for real-valued
random variables. []

13



M. Salins and S. Tindel Stochastic Processes and their Applications 168 (2024) 104263

In the sequel we will need to bound stochastic integrals in the norms related to Definition 2.1. Towards this aim, the following
lemma generalizes Theorem 4.3 of [22] to the Hilbert-space setting of Lemma 4.1. The proof of Lemma 4.2 is based on a Kolmogorov
continuity theorem argument and is a consequence of the increment moment estimates from Lemma 4.1. The proof omitted because
it is the same as Theorem 4.3 of [22], except for the Hilbert-space setting.

Lemma 4.2. Let T > 0. Consider p > @ where d is the spatial dimension and n € (0, 1) is still the parameter from (12). For any
0> p_‘i;'i ik there exists Cr, o > 0 such that for all adapted random fields ¢ : [0, T] X RY x Q — My verifying
sup sup Ellg(s, 0)[l}, < +eo, (103)
1€[0,T] xeR¢ T
the stochastic integral T = 1% defined by (99) satisfies
IZG X, [P )
sup E| sup sup ——————| < Cr o sup sup Elle(t xo)ll, - (104)
xp€R?  [r€l0.T] xeRrd 1+ |x — Xq| 1€[0.T) xyeRd T

Moreover, the constant Cr. , o defined in (104) satisfies limy_ Cr , 9 = 0.

Next we need to bound weighted norms of H-valued processes, in a suitable way for our stochastic convolutions. A deterministic
type result in this direction is presented below.

Lemma 4.3. Assume that X is a function indexed by [0, T] x RY such that there exists § > 0 and x,, satisfying
X(,
M := sup sup |(—X)|€ < +00. (105)
1€[0.T] xeRd 1 4+ |x — xq|

Then there exists C = C(T, 0) > 0 such that we have
2
Gt — - x—)X(, )1
e ]

sup  sup ™ < CM?Q,(T) (106)
1€[0,T] xeRd (14 ]x = x0]%)

where Q4 is defined in (65). If X is a random field, then (106) holds with probability one.

Proof. Assume that there exists § > 0 and 7 > 0 such that (105) holds. the definition of the H; norm (54), we write
66— x =X
134,

t
= / / / Gt —5,x—y)G@E = 5,x = y) X (5, y)X (5, ) Ay — ¥2)dy;dy,. (107)
0 R4 JRA

Now owing to the definition of M and the positivity of G and A, an upper bound for the right hand side of (107) is

2 1
st// / Gt —5,x — y)G(t — 5, x — )
Hr 0 Jrd JRrd

X(1+ y; = xo|)(1 + [y, = x0|D) AW = y)dy,dy,. (108)

HG(I - x=9X(, ')]l[o,z1|

Moreover, the quantities 1+ |y; — x|’ and 1 + |y, — x,|’ above satisfy
1+ |y — xolg <CU+ |y, —x% + |x - xolg) =C(+ |x —xolg + |y — x|?). (109)

In addition, invoking the elementary relation sup,cp |z exp(—a z2) < ¢, < oo, valid for any arbitrary constant a > 0, it is easy to
verify that there exists C = C(0) such that
0

G(t.y) < C13G(1/2. ). (110)

4
2

°G(t,y) =t

Plugging (109) and (110) into (108), we thus get
2
|G = x =X ¢ 1, 1)
T
P 1
<M (14 1x = xl) / /Rd /IR[ Gt = 5.x = 3Gt — 5,% = y)AG; — y)dy;dyy
0 :

t
+CM? / / / (t = 9°G((t = 5)/2,x = yG((t = )/2,x = y)A(y| — yp)dy dy,.
0 R4 JRA

The right hand side above can now be expressed in terms of Fourier transforms and a change of variable s := ¢t — s in the time
integral. We end up with

”G(t — 5 x =Xy ”;

14
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t t s1e2
<CM?*(1+ |x—x0|9)2/ / e—S\-f\zﬂ(df)ds+CM2/ / s“’e‘%ﬂ(dg)ds. (112)
0 Rd 0 Rd
With (65) in mind, it is thus readily checked that
2 2 0y2 2.0
”G(t— X — ')X("')HW”]”HT < CM2(1+ |x — x0|)20,,() + CM22Q (1),

from which our claim (106) is easily deduced. []

4.2. Malliavin differentiability

With the above preliminary results in hand, let us state our Malliavin differentiability result for the mild solution to the sppE (4).

Theorem 4.4. Recall that our coefficients b, o satisfy Assumptions 2.3-2.5. Let u be the unique solution to (4) and let Z be the stochastic
convolution defined in (51). For any fixed (t,x) € [0,T] x R?, both u(t,x) and Z(t,x) are Malliavin differentiable. For any time horizon
T > 0 and power p > 1, the Malliavin derivatives satisfy

IDZ(t %)llye, |”
sup E| sup sup P E— (113)
xg€R?  [r€l0.T) xeRd 1+ |x — Xxq]
and
| Dutt, )l 1|
sup E| sup sup —Tg (114)
xg€R?  [r€l0.T]xeRd 1+ |x — x|

Proof. We will prove this theorem via Proposition 2.17, using the approximating sequences {Z,; n > 0} and {u,; n > 0} that

are respectively defined by (48) and (49). We proceed by induction to prove a uniform bound on Du, and DZ, in an appropriate
topology. For n > 0, we thus suppose that both u,(z, x) and Z,(t, x) are elements of the space D! given by (56) with p > 1 and satisfy

1DZ, )3, |
sup E| sup sup n—GT (115)
xp€R?  [r€l0.T]xeRd 1+ |x — x|

1 Du,,(t, )ll34, |7
sup E| sup sup n—; (116)
xoeRd  |1€l0,T]xeRd 1+ |x — Xxg]

The inductive assumption (115)-(116) is trivially true for the initial U, and Z,,, defined in (45)-(46) because they are non-random.
We shall now propagate this assumption. We first consider Z,,; defined by (48). Namely we are assuming (116) holds for u, and
we wish to apply Proposition 2.19 to prove that Z,,, defined by (48) is Malliavin differentiable. To this aim, Proposition 2.19 will
be applicable if o(u,) satisfies (58)—-(59). We proceed to check those assumptions below.

From (53), for each n € N,
P

1,
sup sup lun . )| < +00. (117)

sup E —
1€[0,7] xeRd 1 + |x — x|

xo€R?

By setting x = x,, in the above expression and moving the time supremum outside of the expectation,

»
sup sup Elu,(t,x)” < sup E
1

sup |u, (1, xo)|
T]

xo€RA 1€[0,T xo€R? tel0,
p
u,(t, X)
< sup E| sup sup @l 5| < +oo. (118)
xp€Rd  [t€[0.T] xeRd 1 + |x — xg|

Therefore, u,, satisfies (58). The same reasoning shows that (116) implies that Du, satisfies relation (59). In summary,

sup sup IEIlu,,(t,x)l2 <+oo, and sup sup E|Du,(r, x)||§{ < +o00.
1€[0,T] xeRd 1€[0.T) xeR4 r

Since o verifies Assumption 2.3, we also have

sup sup E|o (un(t, x)) |2 <+oo, and sup sup E| Do (un(t, x)) ||§1 < 4o00.
1€[0,T] xeR? 1€[0,T] xeRd ’

Now observe that the stochastic integral Z,,, defined in (48) can be written as I°w) using the notation of (60). Therefore,
Proposition 2.19 asserts that Z,,,(#,x) is an element of D> and

D,Z, (t,x) =(G(t — -, x = )o(u,(-, "), h>HT

t
+ / /d G(t—s,x— y)a’(un(s, W)Dyu, (s, y) W(dsdy). (119
0 JR

15
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Having shown that Z,(t,x) € D'2 for all (t,x) € [0,T] x R?, we proceed to prove (113) and (114). To this aim, observe that
relation (119) can be written as

Dy Zyy 1 (1,%) = (Gt = -, x = )0 (u,), h)yy, + 17 “Phin (1, ), (120)

where we invoked our notation (60) again. We can bound the first term on the right-hand-side thanks to (106) and the second term
on the right-hand side (remember that ¢’ is uniformly bounded according to Assumption 2.3) with (104) to get

IDZ, 1t O3y, |”
sup E| sup sup H—gr (121)
xg€R?  [r€[0.T)xeRd 1+ |x — xq
P P
ou, (t,x [ Du,,(t, x) 3¢
SC(QA(T))% sup E| sup sup M +Crpo sup Ef sup sup n—; .
xoeRd €[0T xeRd 1 + |x — x| xoeR?  |1€l0T1xeR?d 1+ [x — x|
In addition, invoking Lemma 4.2, we have
limCy ,p =0, (122)

T10
and we also recall that 0 ,(T) is defined in (65).

We are now ready to propagate relation (116) for Du, on a small time interval. Namely, because u,,; = M(U, + Z,, ), relations
(67) and (121) guarantee that

1Dty (2, I, | DUy, 0)ll34, |7
sup E| sup sup H—QT <C sup E| sup sup —GT (123)
xg€R?  [r€l0.T)xeRd 1+ |x — x| xo€RI  |rel0.T] xerd 14 |x — x|
lou,(t, )| |” Nl D, (1, )\l |

+ C(Q,(T)? sup E

xo€RY

sup sup

+Cr 9 sup E
e[0T xerd 1+ |x = x¢|° »

xg€RY

sup sup ——————~
€[0T xeRd 1+ |x — x|

In addition, if the initial data u, is non-random, then DUy(#, x) = 0. We choose T, > 0 small enough so that the coefficient Cr, , < 1.
Then by induction, invoking (123) we get

1Du, 2, )3,
sup sup ————

€[0Tyl xerd 1 + |x — x,|°

P
sup sup E
n xoeRd

L Cu)?

oGt x| |
sup sup ———

0 (124)
1€l0,T] xeRd 1 + |x — xq|

sup sup E
l_CTo,p,H n xOGJRd

The right hand side of the above expression is finite because of (53) and the assumption that ¢ is globally Lipschitz continuous.
Therefore,

1D, 2, 3) 15 |
sup sup E| sup sup P E— (125)
n xoeRd  |t€[0Tyl xeRd 1+ [x — Xxql
Then (121), (53), and (125) imply that
IDZ,,(t, )l3¢. |7
sup sup E| sup sup n—h‘;T (126)
n xoeRd  |t€l0TylxeRd 14 |x — x|

In particular, for any fixed (,x) € [0, Ty] x R?, we have sup, E|| Du,(t, x)||§{T < +00 and sup, E[|DZ,(t, x)||§{T < 400. Approximations
(52)-(53) and Proposition 2.17 guarantee that u(t, x) and Z(z, x) are Malliavin differentiable for 7 € [0,T;] and x € R4, where T, is
the small parameter chosen above. Furthermore, (113)-(114) hold for T < T, by Fatou’s lemma

We can extend this result to arbitrary time horizons T > T, by taking advantage of the self-similarity of the process W. Namely
for any n € N and 7 > 0,

t
U (Ty +1,x) = /d Gt x = Yy, (To, y)dy + / /d Gt = 5. x = f(u,(Ty + 5, y)dyds
R 0o Jr
t
+ / / G(t —s,x = y)ow,(Ty+ s)W(dy,(Ty+ ds))
0 Jrd
This translated process has the property that

t (T + 1,3) = M (Ug it + Zyar ) (1)

where we have set

Urpns1 %) 1= /W G(t,x — Yy, (Ty, y)dy
t
Z,,+1(t,x) 1= / /]Rd G(t —s,x = y)o(u,(Ty + )W (dy, (T + ds))
0

16
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The pth moment bounds (121)~(123) continue to hold with U, replaced by Uy, ,.,, and Z, replaced by Z,. The constants Cr e and
Q0 4(T) in these expressions do not change (they only depend on the law of W, which is invariant by time shift) and we can use the
same value of T, as above. The only novelty is that DU, = 0, while DUy, ,,, is not zero. But we have a uniform bound on

I DU, 11 (1, )34,
sup sup ————— T

1€[0,Ty] xeRd 1+ |x— xole

P
sup sup E

n xoeRd

s

as a consequence of (125) and properties of the heat kernel G. Therefore, the same arguments that implied (125)-(126) imply

1Du, 2, )13, |7
sup sup E| sup sup P E—— +00. (127)
n xoeRd  |t€lTp2Tpl xeRd 1+ |x — x|
It follows immediately from (121) that
IDZ,(t, )l |”
sup sup E| sup sup n—BT +o00. (128)
n xoeRd  |t€Tp2Tyl xeRd 1+ [x — Xxgl

Proposition 2.17 guarantees that u(z, x) and Z(t, x) are Malliavin differentiable for ¢ € [T}, 2T;]. Repetition of this argument proves
the Malliavin differentiability of u(z, x) and Z(z, x) for t € [2T)), 3T,], [3T;.4T,], and so on. [

We close this section by identifying an integral equation satisfied by directional Malliavin derivatives of u

Corollary 4.5. Recall that Hy is the Hilbert space with inner product given by (54) and assume the same hypotheses as in Theorem 4.4.
Forany T > 0 and h € Hy, and (t,x) € [0,T] x R?, the Malliavin derivative of u(t, x) solves the integral equation

Dpu(t,x) =(G(t = -, x = Yo (u(:, ), h)y,.

'
+ / / Gt —s,x— y)f’(u(s, Y)Dpu(s, y)dyds
0 JRrd

1
+ / / G(t — 5,x — y)o’ (u(s, ) Dpu(s, )W (ds dy). (129)
0 Jrd

Proof. The integral Eq. (129) is easily obtained by combining (97) with (126) and Proposition 2.18. []
5. Positivity of the Malliavin derivative

In this section we prove Theorem 1.1, which claims that the solution u to (4) has the property that u(, x) admits a density for
t > 0, x € RY by analyzing the quantity || Du(, %)ll3¢,.- In order to prove Theorem 1.1, we start in Section 5.1 by explaining our
strategy, and we perform most of our computations in Sections 5.2-5.5.

5.1. Strategy

According to Proposition 2.16, the existence of a density is established if we can prove that u(t,x) € D' for some p > 1 and if
the Malliavin derivative has strictly positive ; norm. Moreover, Theorem 4.4 asserts that u(z, x) belongs to the Sobolev space D'-?
for all p > 1. It remains to prove that for every ¢ > 0, x € RY,

P (llDu(t, Dy, > o) =1 (130)
For convenience we will further reduce (130) to a statement about directional derivatives. Namely condition (130) is implied if
PP (There exists h € Hy such that Dyu(t,x) > 0) = 1. (131)

We now elaborate on (131). Recall the integral Eq. (129) for the directional Malliavin derivative of u(z, x). Namely for any h € H,
t € [0,T], and x € R?, we have obtained that

Dyu(t,x) = (¢, . h)HT + Ay(t, x) + B(t, x), (132)
where the function ¢, , is defined on [0, T] x R? by
G x(r,2) = G(t — r,x = 2)o(u(r, 2)) Lo (1), (133)
and where the terms A, and B, are given by
1
Apt,x) = / / G(t — s, x = y)f' (u(s, ) Dyu(s, y)dyds (134)
o Jre

1
B,(t,x) = / /]Rd G(t — s,x — y)o' (u(s, y)) Dyu(s, )W (ds dy). (135)
0

17



M. Salins and S. Tindel Stochastic Processes and their Applications 168 (2024) 104263

Furthermore, one can also express the directional derivative of u(t, x) as
Dyu(t, x) :ﬁ((q&.,.,h)HT +Bh(~,-)> (. %), (136)

where £ is the functional mapping defined in (24) with ¢(z, x, V) := f'(u(s, y))V. This point of view allows us to apply Theorem 2.13
to get useful upper bounds on |D,u(t, x)|.

With (131) in mind, for fixed 7, € [0,T], x, € R, and § € (0,1,) we chose a specific test function &
hy, x5 D€ defined by

s € Hyp. Specifically, let

10-X0)»

i xo.5(rs 2) 1= Gt — 1, x0 — D)Ly 54 (F). (137)

Because h, . 5(r,z) is only nonzero when r € [t; — §,)] and ¢, ,(r, z) defined in (133) is only non-zero when r € [0,1], the inner
product <¢,,X,h,0 o 5>H is zero when 1 € [0,¢, — §). Then because the Egs. (132)—(135) are linear with respect to Dh o6 u(t, x), it

follows that D,,l0 u(t x) 0 for all ¢ € [0, ¢, — 6]. This means that the integral terms Ah and Bhlo e in (134) and (l 35) can be
written as integraTs starting at ¢, — 8. Specifically, for any t € [¢, — 8.1,], we have

'
Ay (x) = / / Gt —s,x — ) f (s, WDy, u(s,y)dyds (138)
0-%0- t9-6 JRa %0
t
Bht a'(t’ x) = / / G(t — 5, x — y)o' (u(s, »)D,, 5u(s, YW (dsdy). (139)
0-X0+ to—6 JRE 10-X0~

Moreover, for ¢ € [0,¢, — 6] both A iy ,(t.x) and Bh! ,(t.x) are vanishing.
With those preliminary con51derat10ns in hand, usmg the decomposition (132), we will achieve the desired property (131). That
is we will be able to show that with probability one there exists 5 > 0 such that Dhlo “ ;U(tg, xg) > 0. This is accomplished by proving

that <¢,0,XO, h,O’X0,§>H is larger than Ahro xoj(to, X)) + B,,ro xo»‘(to’ xo) when § is small, guaranteeing that (132) is positive. The main
ideas are the followinTg.

(D Invoking the non degeneracy of the kernel G and of the coefficient 5, we shall see that the inner product <¢,0 o> Moo, §>H has
a lower bound that is proportional to O ,(6) defined in (65).

(ii) Using (136) along with the boundedness of ¢’, we will prove that an upper bound on the LP(Q2 : Coxy (10, TT X R?)) norm of

D,,rO “ Sut,x) is also proportional to Q 4(6).

(iii) Finally, the fact that A"o (to,xo), and th 0 (to,xo) in (138)-(139) are integrals whose integrands have L”(£) norms
proportional to Q,(8), but whose interval of 1ntegrat10n are of size §, we can show that with probability one there exists a
subsequence &, | 0 such that

|A Ry vt (f9, Xp)| + |Bht0x " (t9, x)I

lim =0, with probability one. (140)
Py 0,60 P v

Putting together the 3 items above, one concludes that with probability one, there exists a small enough (random) 6, = (@)
such that

Dy, ., ultg,x0) = <¢,yx, h’0~"0"5k>HT + Any o 050 + By (1,%0) > 0. (141)

This will prove (131) and therefore the existence of a density. The remainder of the section is devoted to detail the 3 steps above.

5.2. Lower and upper bounds on <¢,yx, h,O’X0’5>H
T

In this section we give details about item (i) above. Our findings are summarized in the following lemma.

Lemma 5.1. Let t; > 0,x, € RY. For § € [0,1,] we recall the definition of h 5 in (137):

10.X(
h,oyst(r, z) 1= Gty —r,xy — Z)llto—ﬁ,tol(r)' (142)
Also recall that ¢, , is defined by (133) and Q, is introduced in (63)-(65). Then we have the following lower and upper bounds for
<¢,_x, h,U,xU,5>H . Forany T > 0,1y € [0,T],x, € R and 6 € [0, 1,]
.

<¢,0,X0, h,O‘XO’5>H >aQ,(5). with probability one (143)
-
where a > 0 is from (13). In addition, there exists C > 0 such that for any T > 0,1, € [0,T1], x, € R4, Yo € R4, and 6 € [0, tol,

| <¢t,x’ ht0¢x0,5>H |
T
sup sup ——mM8M

1€ltg—6.19] xeRd 1+ |x— yole

< COL6) <l sup  sup M) (144)

s€ltg=5.19] yerd 1 + |y YO|

18
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Furthermore, if t € [0,1, — 6], x, € RY, and x € R,

<¢I,x’ hro,xo,iS)HT =0. (145)

Proof. Recall the expressions (133) and (142) for ¢, and h, ,, s as well as the definition (54) of the inner product in #. Then it
is readily checked that

<¢t,x’ hro,x0,6>HT
t
= / / / Gt —s,x — you(s, y)G(t — 5,x9 — y2)A(y; — y2)dy dy,ds, (146)
19-5 JRA JRA

for all € [1, — 4,1,]. We can now prove (143) in the following way: owing to the fact that o(u(s, y;)) > a (see Assumption 2.3) and
thanks to the positivity of G and A we obtain

<¢to,x0’ htU,x0,5>HT
fo
> a/ / / G(ty — s, xg — y1)G(tg — s, x5 — ) Ay — y2)dy dy,ds. (147)
19-8 JRE JRA
The last term in the above expression is Q ,(6), which was defined in (63). We have thus obtained
(dno.xo, h,(,,xo,a>H 2 aQ4(6), (148)
T

that is (143) holds true.
The proof of (144) is a consequence of Lemma 4.3. Namely start from the expression (146) for the inner product (¢, . ., 1 xy.5) 34, -
Then notice that in the right hand side of (146), the time integrand goes from ¢, — § to ¢. By the Cauchy Schwarz inequality, we get

O S )2 (Ry(1)7 . (149)

where we have set

t
R (t,x) = / / / G(t—s,x—y)G({t—5,x—y,)
to—6 JR? JR

Xo(u(s, y1))o(u(s, y)) Ay — y2)dy dy, (150)

and
t
Ry(n) = / / / Gt = 5,x) = yG(t = 5, X0 — y2)A(y; — y)d ydy, . (151)
tg—6 JRA JRA
The term R,(?) in (151) is easily bounded above by

Ry(1) < 04(5). (152)

In fact R,(r) would be exactly Q,(8) if we had 7 = #,. The term R,(z, x) defined by (150) can be bounded using a time translated
modification of Lemma 4.3 with T = § (the length of the time interval [#, — 6,7y]) and X (7, x) = o(u(t, x)). Specifically, we get
R, (1, x)

2
t
sup  sup ——————— < CQ4(5) sup  sup b(u(—’x»le .
reltg-s.19] xeRd (1 + |x — x|”)? reltg-.10] xeRd (1 + [x — x|”)?

Since ¢ has linear growth, we thus end up with

Ry(t, 1, %)%
sup  sup # <CQ )| 1+ sup sup i UICL) . (153)
reltg=6.101 xerd (1 + |x — x(|%)? relig-s40] xeRd (1+ |x = x0]?)2
Then (144) follows by plugging (152) and (153) into (149).
Finally, if 7 € [0, ) — 6] then the supports of ¢, and h, , s are disjoint and therefore relation (145) follows. [

5.3. Upper bounds on moments of the derivative of u(t, x)

We have seen in (114) that the Malliavin derivative of u(t, x) is bounded in the L?-sense for all p > 1. Eq. (124) can even be seen
as a quantitative bound on this derivative. In the current section we push forward this analysis to derive an upper bound for the
moments of the weighted supremum norms

»
D, 5450l

sup E  sup sup (154)

yo€RE  1€l19—b.10] xeR?

l+|x—y0|9

and to show that these are proportional to (Q 4(6))?. As mentioned in our strategy Section 5.1, this is the contents of item (ii) above.
We will use (136) along with Theorem 2.13 to prove these upper bounds. Our main estimate is contained in the following lemma.
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Lemma 5.2. For § > 0 and t; € (5,T], define a quantity Q, 5 , by

|Dhr N 6“(& x|
Qisp= sup E| sup sup Lg . (155)
yoeRd  |teltg=5tg] xeRd 1+ |x — yg
Then under the conditions of Theorem 1.1, there exist a constant C > 0, depending on p and 0, but not 6, and a parameter &, > 0 such that
for all § € (0, &),

Q15 S C(QA0))". (156)

Proof. First we recall our upper bounds on the weighted supremum norms of the stochastic integral Bh (t, x), where we recall
that Bh’ (t x) is defined by (139). Notice that

ter

6 =174, with @(s.3) ='W, )D,, u(s.y),

where the notation 7% comes from (60). If both p > 1 and 6 > 0 are sufficiently large, then inequality (104) guarantees that there
exist C; , o such that lims_, C5 , o = 0 and such that

|B, @l
10%0,0

sup E 0%
Yo€ERA

sup  sup

<Cs,0%15,> (157)
1€lty=8,t0 xeRd 1 + |x — y0|9 " ’

where we have just defined Q, ; , in (155). We know that the right-hand-side of (157) is finite because of Theorem 4.4. In addition,
because tho o= LU, hyyx.60my T Bhro “ ,)» Theorem 2.13 guarantees that there exists C > 0 such that for all é € [0, 1],

P
D, u,x)||" | <¢t,x’ hro,xo,a> |
. . § 10-%(0 § . . Hy
sup E| sup sup — | < C sup E| sup sup —_——
yoeRd  |t€ltg=b.tgl xeRd 1 + |x — ypl YoERY  |t€ltg—d.t0] xeRd 1+ [x = yol
IB;,, 0 56 P
+C sup E{ sup sup —9 (158)
yeR?  |reltp-b.19] xeRd 1+ |x — yp
Then plugging (144) and (157) into the right hand side of (158), we get
1Dy, 540 ?
sup E| sup  sup ———2————| < C;,00Q5,+C04@) (1+Q,;,) (159)
yoeRd  |r€ltg=s.10] xeRd 1+ |x — yp|
where we have set
4
t
Qs5p= sup E| sup sup —lu( Xl (160)
yoeRd  |t€ltg=6.0] xeRd 1+ |x — yol?

Observe that as an easy consequence of (53), we have Q, ; , < +co. Furthermore, recall that lim;_, C; ,o = 0 in Eq. (157). Hence
there exists §, > 0 small enough so that Cj,, < % The left hand side of (159) being also of the form Q, ; , according to our
definition (155), for all 6 € (0, §,) we obtain that there exists a constant C such that

p
th,OYXOYéu(t, x|

sup E
yo€ERY

sup  sup

| S CQA). (eb
teltp=dtpl xeRd 1+ |x — ypl

This proves our claim (156). [
5.4. Almost sure upper bounds on the integrals A and B

In this section, we will prove that with probability one, A, _ (ty,xy) and B”o o ;(tg, xo) converge to zero much faster than
Q,(6) as 6 | 0. These results, along with (143), will enable us to prove that with probability one there exists § > 0 such that
Dy, . ou(to,xo) > 0.

As a first step, we show that |B,, (tg- x0)|/0 4(8) converges to zero in probability.

105X0+0

Lemma 5.3. Let (t5,x,) € (0,T] x RY, and recall that the term Bh (to,xo) is defined by (139). We work under the conditions of
Theorem 1.1. Then for any € > 0,

[By, _ ,(to,xp)l
IimP| —2% > ¢)=0. (162)
50 0,(8)

Proof. We start by applying Chebyshev inequality in order to get

P
P < |tho.xo.5 (IO’ X0)| S g> < ]E|Bh107x0’§ (’0’x0)|

0,(8) eP(Q 4(8))
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Next applying successively (156) and (157) we easily get that

1By, (1o x0)] c c
P 10X < 8.,p.0 <L
< QA(5) > $> < £F(QA(5))F Ql,&,p ) 8,p,0 °

where C; , , satisfies lim;_, Cs , o = 0. We have thus achieved (162), which finishes the proof. []

Let us state a corollary to Lemma 5.3 which will be important in our arguments towards positivity of the Malliavin derivative.
Its proof derives from standard tools in probability theory and is omitted for sake of conciseness.

Corollary 5.4. Let the assumptions of Lemma 5.3 prevail. Then for any sequence 5, | 0, there exists a subsequence Sy, on which

|Bh10,x0, 5 (tg, x0)1/Q 4(8,) converges to zero almost surely.

The Lebesgue integral AhIO 05 is more difficult to analyze because of the presence of the f/(u(z, x)) term in (138). Assumption 2.5

Ju(t,x)|
1+\x—x0|9 ’
reason to expect to have moment estimates on E|f/(u(t,x))|”. On the other hand, the bounds on f’(u) guarantee that the integral

defined in (138) is convergent with probability one as long as fv < 2. Before controlling the size of Ahlo 0” let us thus state an
estimate on Dh'o © ,u(t, x) that holds with probability one.

limits the growth to |f’(u)| < K exp(K|u|*), but because we only have moment estimates on SUP;e(0,7] SUPxeRd there is no

Lemma 5.5. For § > 0 and (ty, x,) € (0, T1x R, let hy, .5 De defined by (137). We suppose that the assumptions of Theorem 1.1 hold.
Consider the sequence {5,; k > 1} defined by &, = 27%. Then we have

1
2
621Dy, ., u(t. )]

P| lim  sup 0|=1. (163)

sup 7 =
k=0 e[ty —8.to] xeRd (1 + [x = x| ) 0,4(5y)

1
Remark 5.6. Notice that there is an extra 5kz in the numerator of the expression in (163). This extra factor will help all of this
converge to zero.

Proof of Lemma 5.5. Recall that §, = 27%. Like in the proof of Lemma 5.3, we first apply Chebyshev’s inequality. Recalling our
notation (155) for Q5 We get

1

2 2
8¢ 1Dp, 5 40 )| ! 50,5,
P sup  sup i >6/|< —
1€lty-dp.to] xeRd (1 4 |x — x01")Q 4 (1) QA(ﬁk)Pﬁz

Therefore due to (156) we have

1
52|D, u(t, x)| i
k1R g ’ 7
P| sup sup 0 Uékg >6}[<Cs
t€lty—dxtol xeRd (1 + |x — x|")0 4 (6))

= s
A%

<2”

(164)

By the Borel-Cantelli Lemma, with probability one there exists K(w) such that for all £ > K(w)
1
82|D u(t, x)| i
k Vg o, ’ 7
sup  sup % <8, (165)
t€lty—dx.tol xeRd 1 + |x — x¢|” O 4 (6)
implying that
1
82|D

. 0l

hy X040,
P| lim  sup  su 00

p ——————=0|=1 (166)
k=00 1e[ty-51.10] xeRe 1 + |x — x| 0 4 (84)

This achieves the proof of (163). []
With this intermediate result on the behavior of Du(t, x), we can now state a lemma estimating the integral term A.
Lemma 5.7. Recall that we have set 5, = 27* for k > 1. The integral AhIO ‘it (t9, xo) is defined by (138), that is

o
= !
Ay g5, 02 X0) = /to Py /R , Glto = 5. %0 =S (s, DDy, . ; u(s. y)dyds. (167)

Our assumptions are those of Theorem 1.1. Then we have

|Ah,0 w0 (19, x| (168)
P( lim ——— =0 ) =1. 168
k—oo QA(ék)
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Proof. We have seen that the random variable Drsp defined by (160) is such that E[Q, 5 ,] < o0, as an easy consequence of (53).
Hence with probability one there exists a (random) constant M (w) such that

sup sup M < M(w). (169)

r€l049] xeRd 1+ |x = xo]°

Furthermore, by possibly increasing the value of M (w), Lemma 5.5 guarantees that choosing &, = 2%, with probability one we have

sup  sup ———————— < M(w)

1Dy 4t
s 240 for ati ke (170)

telty=8.tol xeRd 1 + |x — xole 52
k
In this proof, we allow the value of M(w) to change from line to line as long as its value remains independent of §,.
Let us turn to the estimate on A in (167). Owing to (15), (169) and (170), we easily obtain

|Ah,0 r0k (19, x0)| < / / G(ty — s, %y — y) exp (M (@)|xg — ¥1?)
—0k

XM (@)(1 + |y — x| =22 "( £ 4yds.
5 2
k
By increasing the value of M(w), the integrand in the above expression is bounded by
_d |y | Ov _%
Qr(ty — )" M () exp ~2e—y M(@)lxg = ¥I? ) 0465, > 171)
We now bound the term
R = _u + M(w)|xo — y|%", 172)

w,v,0 = 2(1‘0 )

which appears in the exponent in (171). Namely recast this exponent as

v

ly = xo1 |xg —

Rov —+KM( )(2(tg — ))2 _— .
0T T 2y - ) oo ( V2@t - s))

Next because 0v < 2, Young’s inequality with powers % and ﬁ in the right hand side above proves that R, , , satisfies

2 v
Cly=xl vy =xol? | 2= vO (M (@) 21y — )78
o0 T2y =) | Aty —s) 2 '
In addition, since (¢, — s) < §; < 1, the third term in the above expression is uniformly bounded with respect to s and independent
of y. Therefore |Ah10 - (tg, xp)| is bounded by

R,

|Ah,0’x(]’6k (19, Xo)I

< M(@)Q4(5,)8, ° /

to—0

2
/(27((t0—s)) Zexp< (1 V)H)dyds.
-

The above integral over R? is the integral of a Gaussian density and its value does not depend on s. Therefore, owing to the fact
that the time interval is length §,, we end up with

1
1A 5 G0 %) < M@)QA(BI5] (173)
with probability one. This proves that
[An, . 5 (19, x0)|
lim —22%% -0, with probability one. (174)
k— oo QA (§k)
Our claim (168) is proved. []

Now we can establish the main result of this subsection, which is that there exists a subsequence §, | 0 such that with probability
one, for small values of &, |Ah10.x0ﬁk (t9- xo)| and |Bh5k,10.x0 (t» xp)| are much smaller than Q ,(6;).

Proposition 5.8. Consider (1), x,) € (0,T]1x R? and the sequence {5, = 27%; k > 1}. The function Dy xy.6, 1S introduced in (142), and
the terms A, B are respectively given by (138)—(139). We assume that the coefficients b, o satisfy Assumptions 2.3-2.5. Then there exists a
subsequence of &, still denoted 5, such that

|Ahr 505 (1o,xo)|+|Bh, 05k (19, x|
P{ lim =0)=1 (175)
k—oo QA(ak)
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Proof. Let §, be a subsequence from Lemma 5.7 along which

(A, ., (t0, %)l
P lim —20% o) =1. (176)
k—co 0,(6¢)

Then thanks to Corollary 5.4, there is a subsequence of §, (relabeled as &) along which lim,_, ., Q 4(5;)~"! |Bh10 i (tg, xp)| = 0 with
probability one. This proves our result. []

5.5. Positivity of the Malliavin derivative

In this section we prove that for any ¢, € (0,T] and x, € RY we have || Du(t,, x)llz¢, > 0 almost surely. This will allow to establish
the existence of a density for the random variable u(t), x).

Theorem 5.9. Lett, € (0,T] and x, € RY. We assume that the coefficients b, o satisfy Assumptions 2.3-2.5 and we consider the solution
u to Eq. (4). Then the following holds true:

Pl Du(tg, xp)llzg, > 0) = 1.

Proof. Let h,o’x()!é be defined by (142). In (132) we decomposed

Dhlu,xu,éu(to’xo) = <¢zo,x0a hto,x0,6>
Moreover, in (143), we proved that with probability one,

(P Mosas )y, 2 Q4O

+ A o, Xg) + B, to, Xg)-
Hy h,woﬁ(o ) hlu-Xu-é(O o)

By Proposition 5.8 there exists a subsequence §, | 0 such that
i lAhfwo-ﬁk (19, x)| + |Bh,0'X0'5k (195 Xp)| ~o
k—co Q4(6y)

Therefore, with probability one, there exists a (random) k(w) such that

u(ty, xo) > 0.
h5k(w)~‘0~>‘0 (o, Xo)

This implies that || Du(t, X3, >0 with probability one, because at least one of the directional derivatives is nonzero. []

We conclude this paper by proving our main result for the density of u(z, x).

Proof of Theorem 1.1. According to Proposition 2.16, we have to check that the random variable F = u(ty, x,) belongs to the
Malliavin-Sobolev space D!?, and that Pl Duty, xp)llz, > 0) = 1. Now the fact that u(ty, x,) € D'"? is established in Theorem 4.4,
while the condition P(l| Du(ty, xp)llz¢, > 0) =1 is the contents of Theorem 5.9. This implies that the law of u(, x,) is absolutely
continuous with Lebesgue measure. []
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