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Snakebite envenoming remains a devastating and neglected tropical disease,
claiming over 100,000 lives annually and causing severe complications and
long-lasting disabilities for many more'?. Three-finger toxins (3FTx) are highly toxic
components of elapid snake venoms that can cause diverse pathologies, including
severe tissue damage? and inhibition of nicotinic acetylcholine receptors, resulting in
life-threatening neurotoxicity*. At present, the only available treatments for snakebites
consist of polyclonal antibodies derived from the plasma of immunized animals,
which have high cost and limited efficacy against 3FTxs*> . Here we used deep learning
methods to de novo design proteins to bind short-chain and long-chain a-neurotoxins
and cytotoxins from the 3F Tx family. With limited experimental screening, we obtained
protein designs with remarkable thermal stability, high binding affinity and near-
atomic-level agreement with the computational models. The designed proteins
effectively neutralized all three 3F Tx subfamilies in vitro and protected mice from
alethal neurotoxin challenge. Such potent, stable and readily manufacturable
toxin-neutralizing proteins could provide the basis for safer, cost-effective and widely
accessible next-generation antivenom therapeutics. Beyond snakebite, our results
highlight how computational design could help democratize therapeutic discovery,
particularly in resource-limited settings, by substantially reducing costs and resource

requirements for the development of therapies for neglected tropical diseases.

Snakebite envenoming represents a public health threatin many devel-
oping regions, notably low-resource settings in sub-Saharan Africa,
South Asia, Papua New Guinea and Latin America®. With over two mil-
lion annual cases, snakebites resultin 100,000 fatalities and 300,000
permanent disabilities’. In 2017, the World Health Organization listed
snakebite envenoming as a highest-priority neglected tropical disease®.
Nonetheless, limited resources have been dedicated to improving the
currentantivenom treatments® These therapies rely on plasma-derived
polyclonal antibodies from hyperimmunized animals, complemented
by medical and surgical care®. Although instrumental in saving lives,
antivenomaccessibility is hindered by high production costs and inad-
equate cold-chain infrastructure in remote areas’. Serious adverse
effects, including anaphylaxis and pyrogenic reactions, represent addi-
tional challenges during antivenom administration>*", Furthermore,
these treatments are often ineffective in counteracting neurotoxicity

and tissue necrosis owing to suboptimal concentrations of neutralizing
antibodies against three-finger toxins (3F Txs)*”. This inefficacy stems
from the limited immunogenicity of 3FTxs in antivenom-producing
animals, resultinginafailure to elicit a strong antibody response'>. Addi-
tionalissues arise because of the delayed administration of antivenom
treatment®. Antibody' 2 and non-antibody-based therapeutics?* 2
have been tested in preclinical studies, but the development of these
types of molecules requires either immunization of animals or the
development of large libraries that require extensive selection, screen-
ing and optimization efforts®.

We reasoned that de novo design approaches could have advantages
over thetraditional methods of antivenom development. First, de novo
protein design does not rely on animal immunization and yields pro-
teins that can be manufactured using recombinant DNA technology,
thereby creating a source for the continuous production of products
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Fig.1| Targets of 3FTxs. a, Structure of 3F Txs* (Protein Data Bank (PDB) 1QKD).
Highly conserved cysteineresidues are highlighted in sticks, and each of the
three fingersisindicated (I-111). b, Representation of type 1A cytotoxin®® (dark
pink) (PDB 5NQ4) interacting with alipid bilayer. ¢, Muscle acetylcholine (ACh)
(torpedo) receptor (light blue) (PDB 7Z14)%*. The ACh-binding site is depictedin
violet. Leftinset: close-up of the acetylcholine-binding protein (AChBP) (teal)
(PDB3WIP) bound to ACh® (violet). Aset of aromatic residues forma cage
around the neurotransmitter. Middle inset: close-up of a-cobratoxin (dark
purple) blocking access to the ACh-binding site in AChBP (teal) (PDB1YI5)**.

with limited batch-to-batch variation. Second, computational design
enablesthe creation of binding proteins with high affinity and specificity
without needing extensive experimental screening programmes that
oftenrely on pure toxins, which can be challenging toisolate from whole
venoms or generate viarecombinant expression®. Third, the small size
of the designed proteins could offer enhanced tissue penetration®
compared to large antibodies, enabling rapid toxin neutralization and
thereby being more effective in neutralizing local tissue damage. Fourth,
designed proteins can have high thermal stability**and can be produced
using low-cost microbial fermentation strategies, which could help
enable the development and deployment of new antivenom therapeu-
tics at reduced cost®. Hence, we used the deep learning-based RFdif-
fusion method* to design antivenoms for short-chain and long-chain
a-neurotoxins and cytotoxins from the 3F Tx snake venom toxin family.
We explored the design of binders for both individual natural toxins
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Amoleculeof AChisdepicted toillustrateits bindingsite. Rightinset: close-up
of ScNtx (dark blue) blocking access to the ACh-binding site in the torpedo
receptor (light blue) (PDB 7Z14)*. Amolecule of AChis depicted toillustrate
itsbinding site. d, Schematic showing a-cobratoxin binder design using
RFdiffusion. Starting fromarandomdistribution of residues around the
specified B-strands in the target toxin (dark purple), successive RFdiffusion
denoising steps progressively removed the noise leading at the end of the
trajectory toafolded structure interacting with a-cobratoxin f3-strands.
Schematicsina-cwere created using BioRender (https://biorender.com).

and consensus toxins representing afamily of toxin molecules because
binders to the latter could have broader neutralization activity.

Design of a-neurotoxin-binding proteins

«-Neurotoxins, aprominent subclass of 3FTxs, adopt amultistranded
B-structure with three extended loops protruding from a hydropho-
bic compact core stabilized by highly conserved disulfide bridges®**
(Fig. 1a). Short-chain and long-chain a-neurotoxins differ in their
length and number of disulfide bonds. Despite sequence homology,
«-neurotoxins have distinct pharmacological profiles across nicotinic
acetylcholinereceptor (nAChR) subtypes; short-chain and long-chain
a-neurotoxins inhibit muscle-type nAChRs, but only long-chain
a-neurotoxins strongly bind to neuronal a7-nAChRs*® (Fig. 1c). The
venoms of many elapid snake species derive their lethal effects from
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Fig.2|Experimental characterization of 3FTx-binding proteins. a, Design
models of protein binders (grey) bound to their 3F Tx targets (dark blue, SCNtx;
dark purple, a-cobratoxin; dark pink, consensus cytotoxin). b, SEC traces

of purified proteins. mAU, milli-absorbance units. ¢, SPR-binding affinity

these toxins, anditis crucial to neutralize both types of a-neurotoxins
toachieve therapeutic efficacy and prevent venom-induced lethality.

To achieve functional neutralization, we focused on binding modes
that block neurotoxin binding to nAChRs through steric hindrance.
Rather than focusing on the nAChR-binding site like previously dis-
covered antibodies?*?, we took advantage of recently developed
methods which enable the robust design of high affinity binders to
polar targets by complementing edge B-strandsin the target with geo-
metrically matching edge B-strands in the designed binder (ref. 37;
see Methods). RFdiffusion trajectories were carried out conditioned
onsecondary structure and block adjacency tensors guiding genera-
tion towards each exposed (edge) 3-strand in each neurotoxin one at
atime. Following generation of backbones making extended -sheets
with the targets through these conditioned RFdiffusion denoising
trajectories, sequence design was carried out using ProteinMPNN. The
resulting designs were filtered on the basis of AlphaFold2 (AF2) ini-
tial guess and Rosetta metrics, and the most promising candidates
were selected for experimental characterization. Top candidates were
selected for in vitro validation on the basis of their ability to inter-
fere with toxin binding to nAChR, guided by structural alignments

measurements. Coloured solid lines represent fits using the heterogeneous ligand
model, withthe dissociation constant (K,;) values derived from these fits.RU,
response units.d, CD data confirmed the presence of an af3-secondary structure
inthe 3FTx-binding proteins and their thermal stability (inset). 6, molar ellipticity.

comparing the neurotoxin-nAChR complex with and without the
designed binder.

Wetargeted short-chain a-neurotoxins using a previously designed
consensus toxin derived from elapid snakes (ScNtx)*® as arepresenta-
tive template (Supplementary Fig. 8). Synthetic genes encoding 44
designs targeting ScNtx were screened via yeast surface display, and
one candidate was identified to bind ScNtx with a dissociation con-
stant (K;) of 842 nM, as confirmed by bio-layer interferometry (BLI)
(Supplementary Fig. 1). Following partial diffusion optimization*’, 11
of 78 designs had higher affinity than the initial hit (Supplementary
Fig.9), withthe best (SHRT) having a binding affinity of 0.9 nM, as deter-
mined by surface plasmon resonance (SPR) (Fig. 2c, top row; a very
similar value of 0.7 nM was obtained by BLI (Supplementary Fig. 2)).
SHRT showed a single monomeric peak in size exclusion chromatog-
raphy (SEC), characteristic af3-protein circular dichroism (CD) spectra
and thermal stability witha melting temperature (T;,,) of 78 °C (Fig. 2d,
top row). Using X-ray crystallography, we determined the structure
of the SHRT design in the apo state, which closely matched the com-
putational design model (2.58 A resolution; 1.04 A root-mean-square
deviation (RMSD)) (Fig. 3a). The binder interacts with loop Il of the
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Loop I

Fig.3|Crystal structures of 3FTx-binding proteins closely matched those
ofthedesign models. a, Apo-state crystal structure of SHRT design. Left:
hydrogenbonding between the carbonyl oxygen of Cys41in ScNtx (dark blue)
and theside chain of Tyr45in the SHRT design model (grey). Middle: overlay of
the SHRT design model (grey) with crystal structure (wheat). Right: backbone
hydrogenbonding between the SHRT design model (grey) and ScNtx (dark blue)
B-strands. b, Crystal structure of LNG designin complex with a-cobratoxin.
Left: cross-interface hydrogen-bond network involving Arg33inloop Il of
a-cobratoxin (light purple) and Glu69, Tyr40 and Tyr49 in the LNG crystal
structure (wheat). Middle: overlay of the LNG design model (grey) bound to

neurotoxin, which is key for the binding of the toxin to muscle-type
nAChRs* (Fig. 3a). A B-strand in SHRT forms extensive backbone hydro-
gen bonds with an edge 3-strand in the toxin (Fig. 3a, right inset), and
tyrosine 45, located onan alpha helixin SHRT, forms abackbone hydro-
gen bond with cysteine 41 on ScNtx (Fig. 3a, left inset).

As a representative native long-chain a-neurotoxin, we chose
a-cobratoxin (P01391) from Naja kaouthia, one of the most extensively
characterized toxins in the 3FTx family*? (Fig. 1). Of 42 RFdiffusion
designs against a-cobratoxin, one candidate had a binding affinity of
1.3 uM using BLI (Supplementary Fig. 3). Partial diffusion optimiza-
tion of the binding interface generated 38 designs (Supplementary
Fig.10), the highest affinity of which, LNG, had a K; 0f 1.9 nM, as meas-
ured by SPR (Fig. 2c, middle row; BLl yielded a value of 6.7 nM (Supple-
mentary Fig. 4)). CD melting experiments showed a very high thermal
stability (7,, > 95 °C; Fig. 2d, middle row).

Using X-ray crystallography, we determined the structure of the
LNG a-cobratoxin binder in complex with the target, which closely
matched the computational design model (2.68 A resolution; 0.42 A
RMSD over design, 0.61 A over toxin; there was aslight deviation in the
positioning of the toxin relative to the binder). Asin the design model,
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CYTX

a-cobratoxin (dark purple) with crystal structure of binder (wheat) bound to
toxin (light purple). Right: backbone hydrogen bonding between the crystal
structure of the designed binder (wheat) and a-cobratoxin (light purple)
B-strands.c, Crystal structure of CYTX_B10 designin complex with Naja pallida
cytotoxin. Left: cross-interface electrostatic interaction network between
loops Illand Il of N. pallida cytotoxin (light pink) and the binder crystal structure
(wheat). Middle: overlay of the CYTX_B10 design model (grey) bound to the
toxin (dark pink) with the crystal structure of the binder (wheat) bound to

N. pallida cytotoxin (light pink). Right: salt bridge between positively charged
Lys18in cytotoxin (light pink) and Asp57in the binder crystal structure (wheat).

thebinderinteracts with the central loop Il of the neurotoxin, whichis
crucial for the interaction of the toxin with muscle-type and neuronal
a7-nAChRs**%, This interaction is primarily mediated by backbone
hydrogen bonding between the 3-strand in LNG and a 3-strand in the
toxin (Fig.3b). Arg33, located at the tip of loop Il of a-cobratoxin, forms
extensiveinteractions with LNG (Fig. 3b, left inset). This toxin residue
also interacts extensively with AChBP*,

Design of cytotoxin-binding proteins

Cytotoxins, a prominent functional group in the 3F Tx family found in
cobravenoms, exert cytotoxic effects and induce local tissue damage
by destabilizing phospholipid membranes® (Fig. 1b). Neutralizing these
toxins is crucial to prevent severe sequelae, such as limb deformity,
amputation and lasting disabilities in snakebite victims*.

Totarget cytotoxins, we hypothesized that relying solely on 3-strand
pairing interactions might not adequately prevent cytotoxin inser-
tion into membranes because of the critical role of their three-finger
loopsinmembraneinteraction and disruption**° (Fig. 1b).Instead, we
focused onbinding directly to the three-finger loops of the cytotoxin by



generating RFdiffusion-based protein backbones with hotspot residues
defined in these regions (Fig. 2a, bottom row). To increase the breadth
of neutralization, we targeted a consensus sequence derived from 86
different snake cytotoxins (type IA cytotoxin sub-subfamily; Methods).
Following ProteinMPNN and AF2 screening, partial diffusion was used to
further optimize the designs with the best metrics. A total of 55 protein
designs were recombinantly expressed using Escherichia coli, and fol-
lowing SEC purification, 18 designs with monomeric populations were
tested inaluminescent cell viability assay. Of these, one protein binder
(CYTX) had high solubility, with asingle monomeric peak in SEC and high
neutralization activity against Naja pallida and Naja nigricollis whole
venoms, known for their high cytotoxin content™ (Supplementary Fig. 5).
The K, for the cytotoxinfrom . pallida was determined tobe 271 nM via
SPR (Fig.2¢, bottomrow). CYTX exhibited a characteristic af-protein CD
spectrumand was thermostable with a T, of 61 °C (Fig. 2d, bottom row).

Few designed binders have targeted loops; hence, we sought to solve
the crystal structure of CYTXin complex with the N. pallida cytotoxin
(Fig.3c). Toreduce flexibility to favour crystallization, a disulfide bond
wasintroducedinaflexibleloop connecting the 3-sheet segmenttothe
two o-helices of CYTX, yielding a candidate (CYTX_B10) withimproved
thermal stability (7, = 70.3 °C) and monomeric profile during SEC, but
aslightly weaker K, of 740 nM for N. pallida cytotoxin (Supplementary
Fig. 6). The structure of CYTX_B10 in complex with the target closely
matched the computational design model (resolution, 2.0 A; RMSD,
1.32 Aover designand 0.58 A over toxin), showing extensive electrostatic
interactionsinvolving side chain-main chain hydrogenbonds between
cytotoxinloopsIlandllland the CYTX_B10 binder (Fig.3c, leftinset). The
unusual open fold of CYTX_B10 highlights the power of RFdiffusion to
custom generate scaffolds shape-matched with protein targets and the
power of proteinMPNN to stabilize structures that violate common rules
of protein structure (in this case, lacking a central hydrophobic core).

Invitro neutralization

We assessed the ability of the designs to functionally neutralize
o-neurotoxins in patch-clamp experiments using a human-derived
rhabdomyosarcoma cell line expressing muscle-type nAChRs. When
preincubated with ScNtx, the SHRT design achieved complete neu-
tralization atal:1molarratio (toxin:binder), whichwas better than the
previously characterized ScNtx nanobody (TPL1163_02_A01)*2 (Fig. 4a;
acontrolnanobody targeting phospholipase A, had no effect). Similarly,
the LNG design had a better neutralizing efficacy than a previously
characterized a-cobratoxin nanobody (TPL1158_01_C09)%, achieving
full protection at al:1 molar ratio (toxin:binder) (Fig. 4b).

We used a cytotoxicity assay to evaluate the cross-reactivity of the
CYTX design against various cobrawhole venoms. Immortalized human
keratinocytes (N/TERTs) were exposed to venoms from seven different
Najaspecies, which previous proteomic analyses suggested primarily
consist (approximately 70%) of cytotoxins®. Preincubating CYTX with
venom (two IC,, values) at a 1:5 molar ratio (toxin:binder) provided
70-90% protection against venom-induced cytotoxicity (Fig. 4c).
Similarly, preincubation of the cytotoxin binder with theisolated cyto-
toxinfromN. pallida (two IC,, values) at a1:5 molar ratio (toxin:binder)
provided 85% protection against cytotoxicity (Fig. 4c). However, pre-
liminary studies indicated that the CYTX design, in1:1,1:2.5and 1:5
molar ratios (toxin:binder), did not significantly decrease the size
of the dermonecrotic lesions induced by intradermal N. nigricollis
venom administration in a murine model* (Supplementary Fig. 7).
The affinity of CYTX likely needs to be further optimized for fullin vivo
neutralization of cytotoxins.

Invivo protection

Given the encouraging in vitro neutralization of our anti-neurotoxin
designs, we proceeded to in vivo studies. We determined the mean

lethal dose (LDs,) values for a-neurotoxins in male non-Swiss albino
mice viaintraperitoneal administration; a-cobratoxinhad an LD, of
0.098 pg g'and ScNtx had anLD,,0f 0.087 pg g™, inagreement with
previous intravenous LDy, doses of these toxins (0.1 pug g™) (ref. 55). To
evaluatetheinvivoneutralization efficacy of our neurotoxin-targeting
designs, we monitored survival for 24 h post-lethal neurotoxin chal-
lenge following the administration of purified toxins (three LDy,
values) (Fig. 4d). The SHRT binder provided complete protection
(100%) to mice when preincubated and administered intraperito-
neally with the corresponding short-chain neurotoxin ata1:10 molar
ratio of toxin to binder; however, as expected, it did not neutralize
the non-target a-cobratoxin. The LNG binder exhibited comparable
efficacy, completely neutralizing a-cobratoxin but not the non-target
ScNtx (Fig. 4d, left). Inrescue assays that better mimicked a real-life
snakebite scenario, complete protection (100%) was achieved when
short-chain or long-chain a-neurotoxin binders were administered
intraperitoneally at a 1:10 molar ratio (toxin:binder) 15 min after a
lethal a-neurotoxin challenge (three LD, values) (Fig. 4d, middle).
Administering the SHRT binder 30 min after toxininjection also pro-
vided 100% protection against SCNtx, whereas the LNG binder con-
ferred 60% protection against a-cobratoxin (Fig. 4d, right). All of the
surviving mice showed no evidence of limb or respiratory paralysis. At
al:5Smolarratio (toxin:binder), intraperitoneal administration of the
SHRT design 15 min after toxin injection (three LD, values) resulted
in100% survival, whereas the LNG binder provided 80% protection.
Miceinjected with the binder alone showed no negative effects at 24
and 48 h post-injection or up to 2 weeks post-injection.

Discussion

Antivenoms based on animal-derived polyclonal antibodies have long
been the cornerstone of snakebite therapy, but their application is
hampered by limited efficacy against toxins with low immunogenicity,
propensity to cause severe adverse reactions, inherent batch-to-batch
variations and high production costs associated with their manufac-
ture®®. Thus, there has been asearch for alternatives, with recombinant
human monoclonal antibodies and nanobodies presenting solutions
that can help overcome some of these limitations®. Our designed neu-
rotoxin binders demonstrate comparable potency to the best immu-
noglobulin G antibodies and nanobodies reported in the literature®”
and are highly stable and readily producible in microbial systems.
Their small size (approximately 100 amino acids) may enable them
to penetrate rapidly into deep tissue®. More generally, our in silico
design approach avoids animal immunization and/or construction
and several rounds of selection and/or screening of large libraries,
providing alow-cost methodology for the rapid development of toxin
binders to the many components of snake venom when structural or
sequence data exist for these targets. De novo designed proteins have
high stability and are amenable to low-cost manufacturing, which is
key to effectively address snakebite envenoming as a neglected tropi-
cal disease. From the design perspective, the crystal structure of our
cytotoxin binder highlights the ability of RFdiffusion to custom design
scaffolds to matchalmostany target shape and to generate binders to
loop regions of proteins. The inhibitory activity of our anti-cytotoxin
designs directly supports a hypothesized role for the cytotoxin loops
inmembrane disruption.

Advancing the field to provide effective solutions for snakebite
victims requires a collaborative effort involving the scientific com-
munity, pharmaceutical industry, public health systems, and gov-
ernments?. Although traditional antivenoms will likely remain a
therapeutic cornerstone in snakebite treatment for the immediate
future, our de novo designed binders could potentially be used as
fortifying agents toimprove the efficacy of antivenoms, which would
be particularly beneficial in the treatment of elapid envenomings, in
which low-molecular-mass toxins with limited immunogenicity but
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inhibitory concentration (ICg). The y axis corresponds to the AChresponsein
the presence of toxin and design, normalized to full AChresponse, and averaged
ineachgroup (n=16).b, Concentration-response curves comparing the efficacy
of the LNG binder and anti-a-cobratoxin V,H in preventing nAChR blocking

by onelCg,of a-cobratoxin. ¢, Neutralization of the cytolytic effects of whole
venoms from seven different Naja species and isolated cytotoxin by the CYTX
binder. Two IC;, values of the whole venom or toxin were preincubated with
CYTXatal:5molarratio (toxin:binder). This ratio was estimated assuming

that 70% of the whole venom consists of cytotoxins, on the basis of previous
proteomicanalyses®. Keratinocyte medium was used as a positive control (PC).
Triton X-100 was used as a negative control (NC). CYTX binder (B) was used
asaPC.(-) denotes twoIC,, values of the whole venom without a binder, and

highmedicalimportance dominate toxicity and therefore must be neu-
tralized*®. Beyond fortification, RFdiffusion could be used to generate
designs that neutralize other medically relevant toxins, expediting the
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following lethal neurotoxin challenge (n=5). Ataconcentration corresponding
tothree times the LD, value of SCNtx or a-cobratoxin, either were preincubated
for30 min (=30 min) with the corresponding protein bindersatal:10 ratio

and then administered intraperitoneally into groups of five mice. Toxins were
administered intraperitoneally following IP administration of binders at 1:10
or1:5molarratios (toxin:binder) either 15 min (+15 min) or 30 min (+30 min)
post-toxininjection. Controlsincluded mice that received the toxins alone (C).
Specificity was assessed via cross-treatment (CT) experiments, inwhich non-
targetbinders were preincubated with three LD, values of SCNtx or a-cobratoxin
and administered intraperitoneally. Signs of toxicity were observed, and deaths
wererecorded for aperiod of 24 h. Illustrationind created with BioRender
(https://biorender.com).

formulation of antivenoms with broader species coverage. More gener-
ally, asinsilico protein design is less resource-intensive than traditional
antibody development, our approach could aid inthe democratization
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of drug design and discovery, enabling researchers inlow-income and
middle-income countries to better contribute to the development of
effective treatments for snakebite envenoming and other neglected
tropical diseases.
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Methods

Cytotoxin consensus sequence design

Amino acid sequences for cytotoxins were collected from the UniProt
website using family: “snake three-finger toxin family Short-chain sub-
family Type IA cytotoxin sub-subfamily” as a query. The resultant 86
unique CTX sequences were subjected to multiple sequence alignments
in Clustal Omega®. Using these alignments, a consensus sequence
was designed to represent the most common amino acid at each posi-
tionacross the aligned sequences. In this process, each column of the
sequence alignment was analysed to select the most frequent amino
acid. In scenarios in which no single amino acid was dominant, a con-
sensus symbol was used to represent a group of similar amino acids
on the basis of their properties, such as charge or hydrophobicity.
This approach allowed the representation of conserved biochemical
properties rather than specificamino acid identities at positions with
high variability.

Secondary structure and block adjacency tensors

To generate the desired binder-target 3-strand pairing interactions
using RFdiffusion, fold-conditioning tensors describing single binder
B-strandsinteracting with the target -strands in a matrix format were
supplied to RFdiffusion atinference. This information was supplied via
twotensors:an|[L,4] secondary one-hottensor (0 = a-helix, 1= 3-strand,
2 =loop and 3 = masked secondary structure identity) to indicate the
secondary structure classification of each residue in the binder-target
complex, and an [L,L,3] adjacency one-hot tensor (O = non-adjacent,
1=adjacent and 2 = masked adjacency) to indicate interacting part-
ner residues for each residue in the binder-target complex. For the
design of the binders described here, the secondary structure tensor
indicated an entirely masked binder structure, with the exception of
binderresiduesset to -strand identities, whereas the adjacency tensor
indicated a masked adjacency between binder-target residues, with
the exception of the predefined strand residues being adjacent to the
defined target strand residues.

De novo 3FTx binder design using RFdiffusion

The crystal structures of SCNtx (PDB 7Z14) and a-cobratoxin (PDB
1YI5) served as the inputs for RFdiffusion. In the case of the consensus
cytotoxin, the AF2 model was used. Approximately 2,000 diffused
designs were generated for each target, using the secondary structure
and block adjacency tensors in the RFdiffusion model. The resulting
backbone libraries underwent sequence design using ProteinMPNN,
followed by FastRelax and AF2 + initial guess®. The resulting libraries
were filtered on the basis of AF2 predicted aligned error (PAE) <10,
predicted local distance difference test (pLDDT) > 80 and Rosetta Delta
Delta G (ddg) < —40.

Partial diffusion to optimize binders

The AF2 models of the highest-affinity designs for each toxin target
were used as the inputs for partial diffusion. The models were subjected
to 10 and 20 noising time steps out of a total of 50 time steps in the
noising schedule and subsequently denoised (“diffuser.partial_T” input
values of 10 and 20). Approximately 2,000 partially diffused designs
were generated for each target. The resulting library of backbones
was sequence designed using ProteinMPNN after Rosetta FastRelax,
followed by AF2 + initial guess®®. The resulting libraries were filtered
on the basis of AF2 PAE <10, pLDDT > 80 and Rosetta ddg < -40.

Recombinant expression of SCNtx

ScNtx was recombinantly expressed from the methylotrophic yeast
Komagataella phaffii (formerly known as Pichia pastoris). The SCNtx
sequence was codon-optimized for expression in yeast and included
an N-terminal His, tag, followed by a biotin acceptor peptide and a
tobacco etch virus proteolytic site. The expression was performed as

described previously®®. The culture medium was dialysed overnight
against wash buffer (50 mM sodium phosphate buffer (pH 8.0) and
20 mM imidazole). Purification was carried out using an NGC chro-
matography system (Bio-Rad) with a5 mlimmobilized metal affinity
chromatography (IMAC) nickel column (Bio-Rad). After loading, the
column was washed with 5 column volumes of wash buffer to remove
non-specifically bound proteins. The protein was then eluted using a
gradient of 250 mM imidazole over 10 column volumes. Fractions with
ahighabsorbance at 280 nmwere pooled and dialysed against 50 mM
sodium phosphate buffer (pH 8.0). Purity was assessed on SDS-PAGE
to confirm the size. The protein solution was aliquoted and stored at
-20 °C for further use.

Toxins

a-Cobratoxin (L8114) was obtained from Latoxan. Cytotoxin from
N. pallida was obtained from Sigma-Aldrich (217503).

Venoms

Whole venoms for initial neutralization screening from N. nigricollis
(CV0O1089563VEN) and M. pallida (CV01089566VEN) were obtained
in lyophilized form from Amerigo Scientific. Catalogue numbers are
provided in parentheses.

For in vitro neutralization experiments in human keratinocytes,
whole venoms from N. nigricollis (L1327), Naja nigricincta (L1368),
Najamossambica (L1376), Naja nubiae (L1342), Naja katiensis (L1317),
Naja ashei (L1375) and N. pallida (L1321) were purchased in lyophilized
form from Latoxan. Catalogue numbers are provided in parentheses.

Fortheinvivo anti-cytotoxinstudy, N. nigricollisvenom was sourced
fromwild-caught Tanzanian specimens housed in the herpetarium of
Liverpool School of Tropical Medicine.

Gene construction of 3FTx binders

The designed protein sequences were optimized for expression in
E. coli. Linear DNA fragments (eBlocks; Integrated DNA Technolo-
gies) encoding the design sequences contained overhangs suitable
to cloninginto the pETcon3 vector for yeast display (Addgene #45121)
and LM627 vector for protein expression (Addgene #191551) through
Golden Gate cloning.

Yeast display screening

For yeast transformation, 50-60 ng of pETcon3, digested with Ndel
and Xholrestriction enzymes, and 100 ng of the insert (eBlocks) were
transformed into Saccharomyces cerevisiae EBY100 following the
protocol described in a previous study®’. EBY100 cultures were culti-
vated in C-Trp-Ura medium with 2% (w/v) glucose. To induce expres-
sion, yeast cells initially grownin the C-Trp-Ura medium with 2% (w/v)
glucose were transferred to SGCAA medium containing 0.2% (w/v)
glucose and induced at 30 °C for 16-24 h. After induction, the cells
were washed with PBSF (phosphate-buffered saline (PBS) with 1% (w/v)
bovine serumalbumin) and labelled for 40 min with biotinylated toxin
targets at room temperature using the without-avidity labelling condi-
tion®., Subsequently, the cells were washed, resuspended in PBSF and
individually sorted on the basis of each unique design using a 96-well
compatible autosampler in the Attune NxT Flow Cytometer (Thermo
Fisher Scientific).

Protein expression and purificationin E. colifor 3FTx binders

Protein expression was conducted in 50 ml of Studier autoinduction
medium supplemented with kanamycin, and cultures were grown
overnight at37 °C. Cells were collected by centrifugation at4,000xg
for10 min and resuspended inlysis buffer (100 mM Tris-HCI, 200 mM
NaCland 50 mMimidazole) supplemented with Pierce Protease Inhibi-
tor Tablets (EDTA-free). Cell lysis was achieved by sonication using
a Qsonica Q500 instrument with a four-pronged horn for 2.5 min
ON total at an amplitude of 80%. Soluble fractions were clarified by
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centrifugation at 14,000xg for 40 min and subsequently purified by
affinity chromatography using Ni-NTA resin (Qiagen) on a vacuum
manifold. Washes were performed using low-salt buffer (20 mM
Tris-HCI, 200 mM NaCl and 50 mM imidazole) and high-salt buffer
(20 mM Tris-HCI, 1,000 mM NaCl and 50 mM imidazole) before elu-
tion with elution buffer (20 mM Tris-HCI, 200 mM NaCland 500 mM
imidazole). Eluted protein samples were filtered and injected into an
autosampler-equipped AKTA pure system on a Superdex S75 Increase
10/300 GL column at room temperature using SEC running buffer
(20 mM Tris-HCland 100 mM NaCl (pH 8)). Monodisperse peak frac-
tions were pooled, concentrated using spin filters (3 kDa molecular
weight cutoff; Amicon; Millipore Sigma) and stored at 4 °C before
downstream characterizations. Protein concentrations were deter-
mined by measuring absorbance at 280 nm using a NanoDrop spec-
trophotometer (Thermo Fisher Scientific) using the molecular weights
and extinction coefficients obtained from their amino acid sequences
using the ProtParam tool.

BLIbinding experiments

BLlexperiments were performed on an Octet RED96 (ForteBio) instru-
ment, with streptavidin-coated tips (Sartorius item no. 18-5019).
Buffer comprised 1x HBS-EP+ buffer (CytivaBR100669) supplemented
with 0.1% w/v bovine serum albumin. The tips were preincubated in
buffer for atleast 10 min before use. The tips were then sequentially
incubated in biotinylated toxin target, buffer, designed binder and
buffer.

Affinity measurements by SPR

SPR experiments were conducted using a Biacore 8K instrument
(Cytiva) and analysed using the accompanying evaluation software.
Biotinylated a-cobratoxin was immobilized on a streptavidin sen-
sor chip (Cytiva). For ScNtx and N. pallida cytotoxin, immobilization
involved the activation of carboxymethyl groups ona dextran-coated
chip through reaction with N-hydroxysuccinimide. The ligands were
then covalently bonded to the chip surface by means of amide linkages,
and the excess activated carboxyls were blocked with ethanolamine
(https://doi.org/10.1007/978-1-59745-523-7_20). Increasing concentra-
tions of protein binders were flown over the chip in1x HBS-EP+ buffer
(CytivaBR100669).

Circulardichroism

Thesecondary structure content was evaluated by CDinaJascoJ-1500
CD spectrometer coupled to a Peltier system (EXOS) for temperature
control. The experiments were performed on quartz cells with an opti-
cal path of 0.1cm, covering a wavelength range of 200-260 nm. The
CDsignal was reported as molar ellipticity (6). The thermal unfolding
experiments were followed by achange inthe ellipticity signal at 222 nm
as afunction of temperature. Proteins were denatured by heating at
1°C min™from 20 to 95 °C.

Crystallization and structure determination

Crystallization experiments for the binder complex were conducted
using the sitting drop vapour diffusion method. Crystallization trials
were set upin 200 nldrops using a 96-well format by mosquito LCP from
SPT Labtech. Crystal drops were imaged using the UVEX crystal plate
hotel system by JANSi. Diffraction quality crystals for the LNG binder
complex appeared in 1.5 M ammonium sulfate and 25% (v/v) glycerol
in 2 weeks. Diffraction quality crystals for the SHRT binder appeared
in0.08 Msodiumacetate trihydrate (pH4.6),1.6 Mammonium sulfate
and 20% (v/v) glycerol. For CYTX_B10-complex diffraction, quality
crystalsappearedin 0.1 M2-(N-morpholino)ethanesulfonic acid (MES)
(pH 6),0.01 Mzinc chloride, 20% (w/v) polyethylene glycol (PEG) 6000
and 10% (v/v) ethylene glycol. The crystals were flash-cooled in liquid
nitrogen before being transported to the synchrotron for diffraction
experiments.

Thediffraction datawere collected at the National Synchrotron Light
Source llBeamline AMX (17-ID-1). X-ray intensities and datareduction
were evaluated and integrated using XDS®* and merged/scaled using
Pointless/Aimless in the CCP4i2 Program Suite®. The structure was
determined by molecular replacement using amodel designed using
Phaser®, Following molecular replacement, the model was improved
and refined using Phenix®”. Model building was performed using Coot®®
in between refinement cycles. The final model was evaluated using
MolProbity®. Data collection and refinement statistics are reported
in Extended Data Table 1. The final atomic coordinates, mmCIF and
structural factors were deposited in the PDB with accession codes
9BKS5, 9BK6 and 9BK7, respectively.

Invitro neutralization using electrophysiology

Human-derived rhabdomyosarcomaRD cells (American Type Culture
Collection) endogenously expressing the muscle-type nAChR were used
for electrophysiology experiments®. Planar whole-cell patch-clamp
recordings were conducted on a Qube automated electrophysiology
platform (Sophion Bioscience) with 384-channel patch chips (patch
hole resistance 2.00 + 0.02 MQ), following the protocol detailed in
aprevious study®. Protein binders were preincubated with approxi-
mately one 80% inhibitory concentration (ICq,) of a-cobratoxin or
ScNtx at various toxin-to-binder molar ratios (1:1,1:3,1:9 and 1:27) and
thenaddedto the cells. The ability of the toxin toinhibit an acetylcho-
line (ACh; 70 pM) response in the presence or absence of binders was
normalized to the full ACh response, averaged in each group (n=16)
andrepresented in anon-cumulative concentration-response plot. We
analysed data using Sophion Analyzer v.6.6.70 (Sophion Bioscience)
and GraphPad Prism v.10.1.1 (GraphPad Software).

Initial neutralization screening of whole venoms using cell
viability assay

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium
(Gibco) supplemented with 10% fetal bovine serum at 37 °C and 5%
CO,. Cells were subjected to commercial whole venoms from N. pal-
lida (34 ng ml™) and N. nigricollis (42 pg ml™), either in the absence or
presence of 1:1or 5:1 molar ratio of toxin:binder. Buffer and binder-only
controls were run in parallel, and all samples were preincubated for
30 min at room temperature before addition to HEK293T cells. To
determine the percentage of viable cells, RealTime-Glo MT Cell Viabil-
ity Assay (Promega) was performed according to the manufacturer’s
protocol. Experiments were performed in triplicate, and the results
were expressed as mean s.d.

Invitro neutralization of whole venoms using cell viability assay
N/TERT-immortalized keratinocytes were cultured as described previ-
ously”. After determining the IC,, for seven venoms of Afronaja snakes,
N/TERT cells were subjected to twice the IC;, of each venom, either in
the absence or presence of a 1:5 molar ratio of venom:binder. Buffer
and binder-only controls were run in parallel, and all samples were
preincubated (30 min at 37 °C) before addition to N/TERT cells. To
determine the percentage of viable cells, the CellTiter-Glo Lumines-
cent Cell Viability Assay (Promega) was performed according to the
manufacturer’s protocol. Experiments were performed in triplicates,
and results were expressed as mean +s.d.

LD,,determinations for a-neurotoxins

Allassays used male non-Swiss albino mice (20-30 g), and all doses were
mass adjusted. The toxins assayed were a-cobratoxin (7,820 Da, from
N. kaouthiavenom obtained from Latoxan S.A.S.) and the short-chain
neurotoxin ScNtx (8,944 Da, recombinantly expressed). The toxins
weresolubilized in PBS at1.0 mg ml”and then diluted in PBS as needed.
For toxin LDs,determination, five doses with three mice per dose were
used, and a100 pl bolus was injected intraperitoneally in the right
lower abdominal region; controls received only PBS. The injected mice
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were observed for the first 2 h and then again at 24 h. LD, values were
calculated using the Quest Graph LD, Calculator™.

Invivo neurotoxicity protein binder protection assays

In the preincubation experiments, three LD, values of the toxins
(a-cobratoxin, 0.294 png g™ mouse; ScNtx, 0.261 ug g™ mouse) were
mixed with a ten-fold molar excess of their respective protein bind-
ers in PBS and incubated at room temperature for 30 min before
intraperitoneal administration. Groups of five mice were injected
with the binder:toxin mixture and observed at 2 and 24 h. Inrescue
experiments, toxins (three LDy, values) were administered intraperi-
toneally 15 or 30 min before the corresponding binder, given intraperi-
toneally at either ten-fold or five-fold molar excess to groups of five
mice. Protection against lethality was measured as per cent mortality
at24h.

Invivo dermonecrosis protein binder protection assays
CD1malemice (18-20 g; Charles River Laboratories) were acclimated
for1week before experimentationin specific pathogen-free conditions.
The holding room conditions were 23 °C with 45-65% humidity and
12/12 h light cycles (350 lux). Mice were housed in Tecniplast GM500
cages (floor area of 501 cm?) containing 120 g LIGNOCEL wood fibre
bedding (JRS) and Z-nest biodegradable paper-based material for nest-
ing and environmental enrichment (red house, clear polycarbonate
tunnel and loft). The mice had ad libitum access to irradiated PicoLab
food (LabDiet) and reverse osmosis water in an automatic water system.
The animals were split into cages (experimental units) upon arrival,
and no further randomization was performed.

Allmice were pretreated with 5 mg kg™ morphine (injected subcuta-
neously) before receivingintradermalinjectionsinal00 pl volumeinto
the ventral abdominal region (rear side flank region). A venom-only
control group of five mice received 63 pg of N. nigricollis (Tanzania)
venom (dissolved in PBS). For protection assays, crude venom was
preincubated (30 min at 37 °C) with varying cytotoxin:binder ratios
of 1:1,1:2.5 and 1:5 before injection (n = 3) (ratios estimated from the
proportion of cytotoxininthe venom). Before this, the control group
(N=3)receivedinjections of cytotoxin binder alone (278 uM, equiva-
lent to the 1:5 cytotoxin:binder dose) to check tolerance of the cyto-
toxin binder. For sample size, N=3 was used for groups receiving the
cytotoxin binder because this was a pilot experiment. N = 5was used for
the venom-only control group because of the variation in lesion size,
whichis the size recommended by the World Health Organization. In
total, 17 mice were used. No inclusion or exclusion criteria were used
during the experiment, and all data points were used in the analysis.
No strategy was used to control confounders. All experimenters were
aware of the group allocation during the experiment and analysis.

After 72 h, the mice were euthanized with increasing concentrations
of CO,, and the lesions were excised. The outcome measured was the
lesion size. Photographs of the lesions were taken using a digital camera
immediately after excision, and the severity and size of the dermon-
ecroticlesions were determined using Venom Induced Dermonecrosis
Analysis tooL (VIDAL)”.

Ethical approval
Animal experiments for in vivo neurotoxicity assays were conducted at
the University of Northern Colorado under protocol 2303D-SM-S-26,
approved by the University of Northern Colorado Institutional Animal
Careand Use Committee (UNC-IACUC), inaccordance with Government
Principles, Public Health Policy, US Department of Agriculture Animal
Welfare Act and the Guide for the Care and Use of Laboratory Animals.
Animal experiments for in vivo dermonecrosis assays were approved
by the Animal Welfare and Ethics Review Board of the Liverpool School
of Tropical Medicine and the University of Liverpool, and conducted
under the UK Home Office project licence P58464F90 in accordance
with the UK Animal (Scientific Procedures) Act 1986.

Cellline development, acquisition and authentication

HEK293T cells (American Type Culture Collection CRL-3216) and
N/TERT-immortalized keratinocytes, provided by E. O’'Toole (Queen
Mary University of London), were authenticated by means of morpho-
logical assessment and tested for mycoplasma contamination.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Atomic models of the snake toxin binders have been deposited in the
PDB. These include the apo-state structure of the SHRT design (PDB
9BK7) (Fig. 3a), the holo-state structure of the LNG design in complex
with a-cobratoxin (PDB 9BKS5) (Fig. 3b) and the CYTX_B10 design in
complex with N. pallida cytotoxin (PDB 9BK6) (Fig. 3c).

Code availability

Codeexplanation and examples of binder design using RFdiffusion can
befound at https://github.com/RosettaCommons/RFdiffusion#binder-
design.
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Extended Data Table 1| Data collection and refinement statistics (molecular replacement)

LNG binder (holo) (PDB
ID: 9BK5)

B10_CYTX binder
(holo) (PDB ID: 9BK6)

SHRT_binder
(PDB ID: 9BK7)

(apo)

Data collection
Space group

Cell dimensions
a, b, c(A)

a, By (°)
Resolution (A)

Rmerae

I/al
Completeness (%)

Redundancy

Refinement
Resolution (A)
No. reflections
Rwork / Rfree

No. atoms

Protein

Ligand/ion
Water

B-factors
Protein

Ligand/ion
Water

R.m.s. deviations
Bond lengths (A)

Bond angles (°)

14,22

P2,22,

14,22

77.79,77.79,173.52

34.56, 63.66, 77.72

75.33, 75.33, 108.34

90, 90, 90

90, 90, 90

90, 90, 90

34.06 - 2.68 (2.85 - 2.68)

33.17 - 2.00 (2.05 - 2.00)

32.17 - 2.58 (2.84 - 2.58)

0.105 (3.172)

0.088 (0.599)

0.246 (1.069)

17.12 (1.08) 10.4 (2.6) 13.30 (4.13)
99.86 (99.53) 99.7 (99.7) 99.83 (99.92)
24.3 (25.8) 6.4 (6.2) 24.6 (25.2)

34.06 - 2.68 (2.85 - 2.68)

33.17 - 2.00 (2.05 - 2.00)

32.17 - 2.58 (2.84 - 2.58)

7836 (1264)

12047 (2928)

5179 (1262)

0.2387 (0.3049)/
0.2681 (0.3349)

0.2496 (0.3301)/
0.2850 (0.4167)

0.1970 (0.2954)/
0.2235 (0.3560)

1118 1241 739
n/a n/a n/a
n/a 57 n/a
101.38 48.61 67.50
n/a n/a n/a
n/a 48.81 n/a
0.003 0.002 0.004
0.55 0.45 0.62

*Single Crystal used for each data collection. *Values in parentheses are for highest-resolution shell.
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Atomic models of the snake toxin binders have been deposited in the Protein Data Bank. These include the apo-state structure of the SHRT design (PDB ID: 9BK7,
Fig. 3a), the holo-state structure of the LNG design in complex with a-cobratoxin (PDB ID: 9BKS5, Fig. 3b), and the CYTX_B10 design in complex with Naja pallida
cytotoxin (PDB ID: 9BK®6, Fig. 3c).
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snake venom toxins with our de novo protein binders. Determining precise LD50 values is not relevant here, as our proteins are experimental.
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Data exclusions  None
Replication Each dataset contains many (n reported in figure legends) independent measurements.

Randomization  Snake venom has a well-defined, immediate toxic effect, and antivenom neutralization follows a clear biological pathway. Because the
biological response to venom and antivenom is relatively predictable, randomization may not add significant value to the validity of the
experiment

Blinding N/A (all analysis was automated)
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Materials & experimental systems Methods
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X|[] Antibodies X|[] chip-seq

|:| X Eukaryotic cell lines |Z |:| Flow cytometry

|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
|:| |Z Animals and other organisms

|:| Human research participants

X]|[ ] clinical data
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK293T were obtained from ATCC, N/TERT immortalized keratinocytes were kindly provided by Edel O'Toole from the
Queen Mary University of London

Authentication Morphology check by microscope

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination

Commonly misidentified lines  n/a
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals NSA CD1 male mice (Charles River, 18-20 g)

Wild animals No wild animals were used in the study




Field-collected samples  N/A

Ethics oversight Animal experiments for in vivo neurotoxicity assays were conducted at the University of Northern Colorado under protocol 2303D-
SM-S-26, approved by the UNC Institutional Animal Care and Use Committee (UNC-IACUC), in accordance with Government
Principles, Public Health Policy, USDA Animal Welfare Act, and the Guide for the Care and Use of Laboratory Animals.

Animal experiments for in vivo dermonecrosis assays were approved by the Animal Welfare and Ethical Review Boards of the

Liverpool School of Tropical Medicine and the University of Liverpool, and conducted under UK Home Office project license
P58464F90 in accordance with the UK Animal (Scientific Procedures) Act 1986.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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