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A Refinement-by-Superposition 2p-Method for
H(curl)- and H(div)-Conforming Discretizations
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Abstract— We present refinement-by-superposition (RBS)
hp-refinement infrastructure for computational electromagnetics
(CEMs), which permits exponential rates of convergence. In con-
trast to dominant approaches to /sp-refinement for continuous
Galerkin methods, which rely on explicit constraint equations, the
multilevel strategy presented drastically reduces the implemen-
tation complexity. Through the RBS methodology, enforcement
of continuity occurs by construction, enabling arbitrary levels of
refinement with ease, and without the practical (but not theoret-
ical) limitations of constrained-node refinement. We outline the
construction of the RBS Ap-method for refinement with H(curl)-
and H(div)-conforming finite cells. Numerical simulations for
the 2-D finite element method (FEM) solution of the Maxwell
eigenvalue problem demonstrate the effectiveness of RBS /p-
refinement. As an additional goal of this work, we aim to
promote the use of mixed-order (low- and high-order) elements
in practical CEM applications.

Index Terms— Computational electromagnetics (CEMs), con-
tinuous Galerkin, finite element method (FEM), higher order
methods, ip-refinement, refinement-by-superposition (RBS).

1. INTRODUCTION

NCREASINGLY, satisfying the practical demands (on the

I accuracy and confidence of solutions and computables) of
numerical methods relies on sophisticated adaptive refinement
techniques and, therefore, discretization refinement infrastruc-
ture. The need for new capabilities and improvements to
existing capabilities motivates research efforts in applied math-
ematics that yield discretizations, which are both accurate and
efficient. Recent developments in adaptively solving partial
differential equations demonstrate the significant potential for
such approaches in modern simulation-based design, where
the need for high confidence and efficiency, including paral-
lelization and parallelizability, dominates [1], [2], [3], [4], [5].
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Geometric discretization by quadrilaterals and hexahedra,
while significantly more accurate with respect to the number
of degrees of freedom (DoFs) than modeling with triangles or
tetrahedra [6], presents significant challenge to fully dynamic
mesh adaptivity. In refinement with triangles and tetrahedra,
local adaptivity directives propagate to a small set of neigh-
boring elements, enabling the insertion of new DoFs without
modification to the entire element structure. Similar refinement
approaches with quadrilateral and hexahedral cells, however,
would dictate global refinement, thereby destroying the utility
of h-adaptivity. Inserting transition elements also poses signif-
icant challenge to the approximation quality, particularly for
vectorial shape functions, which are highly sensitive to the
loss of linear independence in the physical domain. Finally,
application of a discontinuous Galerkin method, while evading
this problem, among its other difficulties, generally requires
more DoFs for the same level of accuracy.

As shown in [7], [8], [9], and [10], when the solution
satisfies certain regularity conditions, local enrichment of
function spaces, also known as p-refinement, enables expo-
nential convergence. When such conditions are not satisfied,
however, the benefit of p-refinement is heavily degraded,
reduced instead to algebraic convergence as in the case of
pure spatial subdivision, or A-refinement. Pure p-refinement,
while effective in certain situations (e.g., [11]), is therefore
insufficient in general, and as such, a combined approach
with both /- and p-adaptivity is necessary to achieve
exponential convergence for solutions with singularities or
non-smooth behavior, motivating the need for more advanced
and versatile approaches to /A-refinement across application
domains.

Previous works in computational electromagnetics (CEMs),
for example, have demonstrated the potential of sp-adaptivity
through hybrid meshes, for example, in [12]. Most typically,
however, FEM codes overcome the limitations of #Ap-
adaptivity by performing the insertion of constrained nodes,
which—in contrast to true DoFs—are constrained to enforce
continuity conditions with neighboring elements. Such
approaches in CEM have shown significant performance
increase and exponential convergence in the presence of
singular solutions [13], [14], [15], [16], [17], [18], but at the
cost of high implementation complexity, impeding wide-scale
adoption. Furthermore, such methods are usually limited in
implementation to 1-irregular mesh (i.e., only one hanging
node per edge), which, not a severe limitation in practice,
prevents arbitrary local refinement steps. Open-source
libraries—such as deal.Il [19]—have significantly simplified
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the implementation of /p-refinement codes; yet in some cases
it might be inconvenient or undesirable to utilize third-party
finite element method (FEM) libraries.

In response, we opt to extend the refinement-by-
superposition (RBS) approach introduced in [20], [21], [22],
and [23] for hierarchical basis functions, which demonstrated
exponential convergence for scalar problems with C © finite
elements, to H (curl)- and A (div)-conforming finite elements.
Additional studies with C ° finite elements and the RBS
hp-method with adaptivity in [24] further motivate extensions
of the method to CEM.

Naturally, any informative numerical approximation must
satisfy characteristics that, in the limit of their resolution,
dictate the convergence of the discrete problem and its
solution to the continuous one. In this article, we study,
in particular, the Maxwell eigenvalue problem, both for its
computational challenges [12], and its utility in forming
and consistently evaluating numerical benchmarks. For this
model problem, significant numerical analysis undergirds the
choice of discretization, namely the proven suitability of
H (curl)-conforming finite elements via the discrete com-
pactness property for A- [25], p- [26], and hp-refinement
modalities [27]. Additional studies, such as in [28], [29], con-
sider H (div)-conforming discretizations and their convergence
properties in a similar manner.

While the proposed approach significantly simplifies
the implementation of Ap-refinement infrastructure for
applications in CEM, in contrast to more traditional refine-
by-replacement (RBR) strategies, the proposed approach
decreases the sparsity of the system matrices under both
h- and p-refinements, whereas RBR only reduces sparsity
under p-refinements. The proposed approach is, therefore,
less suitable for application to very large problems with vast
differences in scales. For applications of the approach to
boundary element method (BEM) problems, for example,
surface integral equation (SIE) problems in CEM discretized
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would instead concern the increase in integration time due to
the overlap of refinement layers.

The remainder of this article is organized as follows.
Section II details the construction of the RBS /p-method,
covering the enforcement of the required continuity conditions
(tangential or normal continuity) and ensuring linear inde-
pendence after the insertion of descendant refinement layers.
Section III examines application to an H (curl)-conforming
discretization of the Maxwell eigenvalue problem. We exam-
ine a challenging eigenpair with a singular eigenfunction as
studied in [30]. The presented approach yields exponential
convergence of the eigenvalue with respect to the number of
DoFs (NDoFs), which, along with the ease of implementation,
illustrates the practical value for applications in CEM.

II. RBS: DESCRIPTION AND CONSTRUCTION

Let Q € R be a polyhedral domain, d € {2, 3} (the case of
d = 1 being trivial), with its boundary dQ enclosing a volume
of homogeneous or inhomogeneous material. We assume that
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the problems considered are governed by the source-free (time-
harmonic) Maxwell’s equations

VxE+iwuH =0

V-uH=0
V x H - iweE = 0
V-€E=0 (1)

along with accompanying boundary conditions, where E, H,
w, U, and € denote, respectively, the electric field, the magnetic
field, frequency, permeability, and permittivity.
The objective is to generate a sequence of overlapping
meshes
L
T = T[
1=0

2

where on the /th level

{ 7

n="K"q G)

denotes a nonoverlapping, potentially incomplete covering of
Q via elements K, associated with an index set I; such that
the resulting discretization imparts exponential convergence on
the assemblage

u=u+---+u, u,...,u, €EB 4)

with B denoting the appropriate solution space, namely
H{(curl; Q) or H(div; Q), where )

H(curl; Q) := u € [Ly(Q)]¥s.t. V xu € [Lo(Q)> (5)
H(div; Q) := {u € [L(Q))¥s.t.V-u € L2(Q)}. ©)

These two function spaces, both vital to computational
electromagnetic problems in different contexts, are tied via the
de Rham complex or sequence [12], shown below for d = 3,
which identifies the coincidence of ranges and kernels of the
constitutive operators

i v H(curl V< H(div : 00
RS o o)l o)t g -

@)

This relationship between H(curl; Q) and H(div; Q) also ties
the approximation structure closely, as discussed throughout
the remainder of this section. In fact, in 2-D, the shape func-
tions for A (div)-conforming discretizations may be computed
simply as rotations of the H (curl)-conforming shape functions
of equivalent order.

The objective of this multilevel discretization is in some
sense distinct from that of multigrid methods [31], as we con-
sider only the generation of H (curl)- and H (div)-conforming
approximation spaces of Ap character, and not coupling of
coarse-to-fine solution ensembles. However, the following
method and the adaptivity structure it affords can augment
adaptive multigrid approaches.

On a given level [, we enforce a series of constraints on the
cells K, and Ki,, i, j €I, i 7 j.

1) Interior(K; ) N interior(K;,) = @.

2) Between elements K; and K

prohibited.

; » hanging nodes are
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Regarding the hierarchical meshes, we require only that
To forms a complete covering of Q. Subsequent levels may
form a complete covering, which we define as a global
refinement.

We also state the following property, which, for the
numerical solution of the aforementioned problems, impacts
integration and sparsity:

Fori€eI,, 0</<n

3j€ly, O<k<sn, k#l

o )
s.t. interior K~ N interior K, # .

®

Finally, for levels / and k, [ # k, hanging nodes are permitted.
With an underlying hierarchical H(curl)- or H(div)-
conforming basis, such as introduced in [32], exponential
convergence of the solution given in (4) may be achieved with
suitable refinements by a collection of overlay meshes. This
RBS approach yields the desired discretization by imposing
homogeneous Dirichlet boundary conditions on the boundaries
of the inserted descendant cells (i.e., the collection of over-
lay meshes) [20], [21], [22], [23]. Continuity requirements,
therefore, may be easily enforced for arbitrary levels of
refinements (i.e., n-irregular meshes) and heterogeneity in the
chosen orders of the hierarchical basis throughout the mesh.
This enables an algorithmically straightforward and low-cost
method to add /p-refinement capabilities for H(curl)- and
H(div)-conforming discretizations by enforcing, respectively,
tangential and normal continuity.

We approach the description explicitly from a 2-D perspec-
tive; however, the process generalizes trivially to 3-D. First,
we classify each shape function in the following manner. In the
case of an H (curl)-conforming discretization, we assign each
shape function according to the properties of the nonzero
tangential components at the boundary of the cell. These
shape functions are classified into three categories: the node-
functions, that is, those functions with non-zero tangential
components at only one node; the edge-functions, that is,
those functions with nonzero tangential components along
one and only one edge; and the cell-functions, that is, those
functions that have no nonzero tangential components on the
boundary. The existence of node-functions is only necessary
when in 2.5-D, the axial component (i.e., perpendicular to
the 2-D plane of the geometry) of the solution is nonzero,
as in the examples in [11]. The same classification strategy,
albeit according to the nonzero normal components at the
boundary, is applied for seeking solutions in A (div). Naturally,
the difficulty in inserting unknowns rests in the treatment
of the edge-functions (and potentially the node-functions),
while the cell-functions, which introduce no DoFs influencing
the boundary, may be inserted or excised without global
considerations.

While we focus on isotropic refinement infrastructure,
the superposition-based approach supports anisotropy in
p-refinement directives trivially and, with modification,
to anisotropic A-refinements [33]. For example, for a single
h-refinement step applied to one cell in 2-D, four new child
cells are inserted one refinement layer above the parent cell
according to the constraint of isotropic refinement only. Note
that geometrically, the child cells lie in the same physical
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space as the parent; rather, the designation of “above” is purely
conceptual.

We have two simultaneous considerations in the refinement
process: continuity and linear independence. Continuity must
be enforced due to potential nonuniformity in the polynomial
degree of the basis on neighboring cells and the existence (or
lack thereof) of child cells on the various refinement levels.
Linear independence, on the other hand, is guaranteed by
the proper delegation of DoFs between the refinement layers
descended from the origin cell. DoFs must be deactivated on
the parent cells and activated on the child cells, depending on
the refinement levels of the cell and its neighbors.

The refinement and coarsening directives are applied for
both cases through the assignment of the DoFs to the geomet-
rical structures as mentioned above (the cells, the edges, the
nodes, and, in 3-D, the faces).

A. Enforcing Continuity Requirements

The activation and deactivation of the DoFs on the bound-
aries of the cells follow a unified procedure based on [20],
[21], [22], and [23]. For each layer in the discretization, from
the origin layer Ty to the highest refinement layer T,, DoFs
are assigned to each of the geometrical elements according to
the continuity requirements desired, in this case, tangential
continuity for seeking a solution in A (curl) and normal
continuity for A (div). Each cell, edge, node (when necessary
in 2.5-D), and face (exclusively in 3-D) collects a list of DoFs,
both active and inactive.

As the DoFs are accumulated, each one is matched as
necessary with the associated shape functions on neighboring
cells according to the vectorial direction and multiindex of
the associated shape function. As opposed to the boundary-
functions (i.e., node, face, and edge), the cell-functions
automatically satisfy continuity requirements and therefore no
special considerations are necessary except for those related
to ensuring linear independence across overlapping levels. The
boundary-function DoFs are marked as active according to
the existence of neighbors in the refinement level and the
expansion order of those cells. Both restrictions are handled
seamlessly and without distinction as the overall process
amounts to traversing the geometrical entities in the discretiza-
tion, which are assigned their maximal sets of associated
DoFs, and activating only the DoFs according to the above
compatibility conditions.

We summarize the procedure for activating DoFs based on
the continuity requirements as follows.

1) For each cell, edge, node, and face in each refinement

layer, collect the associated DoFs.

a) For H (curl), associate the DoFs with the relevant
geometric entity based on the nonzero tangential
components.

b) For H (div), associate the DoFs with the relevant
geometric entity based on the nonzero normal
components.

2) Iterate through each refinement layer and each edge,

node, and face.

a) If a suitable refinement neighbor exists, match
the shape functions associated with the adjacent
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Fig. 1.
perspective of the distribution of 4-refinements applied in the 2-D example.

cells, activating only the fully matched DoFs and
deactivating the rest.

In summary, with efficient data structures for relating the
DoFs on the boundaries of cells for the cases of H (curl)
and H (div), enforcing continuity requirements for seeking
solutions in either function space amounts to straightforward
queries between neighboring cells.

B. Eliminating Linear Dependence of the Hierarchical
Refinements

To ensure linear independence between overlapping shape
functions, we prioritize the highest feasible refinement level
possible. For example, the cell-functions, which by definition
satisfy the continuity requirements automatically, require
deactivation on the parent cell and activation of the DoFs

on the child cells. Unlike the handling of the edge- and
node-functions, this transfer occurs without any queries to the
discretization other than checking if the descendant cells exist.
Now, for the edge- and node-functions, additional care is
necessary. In this case, the preference to delegate DoFs to the
child cells is constrained by the refinement state of one or more

neighbors of the cell. In other words, in 2-D, if a parent cell
shares an edge with another refined parent cell, the DoFs on
the parent edge may be transferred to the corresponding edges
on the child refinement layer. Likewise, the deactivation of a
node-function on the parent refinement layers requires that the
corresponding node is surrounded by refined cells. In other
words, as in [20], [21], [22], and [23], active geometrical
components may not “overlap” with respect to the refinement
layers.

We summarize the activation and deactivation of DoFs as

follows.

1) On an A-refinement step, deactivate cell-functions on the

parent cell and activate the cell-function DoFs on the
child cell.

()

RBS Ahp-refinement activation and deactivation procedure. (a) Depiction of the process in 1-D. (b) Depiction of the process in 2-D. (c) Overhead

() (b)

Fig. 2. Model and problem under study. (a) Initial discretization for the
L-shaped domain. (b) Field magnitude of the first eigenfunction, illustrating
the singularity at the reentrant corner.

2) If a geometrical component (node, edge, or face) on the
descendant layer is active (i.e., it has associated active
DoFs), deactivate the corresponding component on the
parent layer.

According to this procedure, a parent cell sufficiently
surrounded by refined cells may be entirely deactivated to
ensure linear independence and maximize the resolution of
the approximation. In such cases, the sparsity of the resulting
system is enhanced.

C. Summary of the Overall Approach

Fig. 1 shows examples of how basis functions are dis-
tributed across refinement layers as generated from the
linearity and continuity enforcement procedures summarized
in Sections II-A and II-B. Similar to the descriptions of the
RBS process in 1-D in [20], [21], [22], and [23], Fig. 1(a)
summarizes the procedure for a 1-D domain, including the
transfer of DoFs associated with lower refinement levels to the
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(a)
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(b)

Fig. 3. Example discretizations for the RBS /p-method and the selectively A-refined comparison method with uniform p. (a) RBS Ap-method discretization
with maximum and minimum expansion orders of three and one, respectively. (b) RBS #-method with a uniform expansion order of three. The two discretizations

have L =5 refinement levels.

descendant layers and the ability to choose the expansion order
p arbitrarily. Note that in 1-D, we have only the linear class of
boundary-functions, that is, at the boundary between two cells
(across all the refinement levels), only one active boundary-
DoF exists. The hierarchical basis functions illustrated in
Fig. 1(a) (and those used in Section III) are based on the
maximally orthogonalized basis functions [32].

In 2-D (and 3-D), however, many active DoFs exist on
the cell boundaries as a result of employing higher order
boundary-functions. Depicted in Fig. 1(b), we demonstrate
a similar refinement model as in the 1-D case. Unlike in
the 1-D case, the depicted refinement in 2-D results in the
enforcement of the domain boundary conditions propagating
to the higher refinement levels when available. Furthermore,
in this case, many of the parent cells retain a large number
of DoFs assigned to the boundary due to the higher order
boundary-functions. In Fig. 1(b), such occurrences are denoted
by the cells with solid boundaries and transparent interiors,
in addition to the matching designations related to the active
geometrical components as seen in Fig. 1(a).

Finally, for each cell located on a new refinement layer,
an additional mapping between integration space and reference
space is introduced, resulting in a succession of mapping
operations. Note, however, that regardless of the curvature of
the origin cell, all subsequent mappings from the reference
cell to the child cell have constant Jacobian determinants and
may be handled with ease during integration.

What remains is whether the resulting solution space
belongs to a subset of H (curl) or H (div). To elucidate
the preservation of this property under the RBS paradigm,
consider the collection of subdomains {Q; } associated with
each of the leaf cells in T . For both H (curl) and H (div),
over each subdomain (and therefore the entire domain), we
have a linear combination of shape functions in L? that
satisfy, depending on the desired approximation space, certain
conditions on their partial derivatives. As a result, this finite
sum remains in L2, Furthermore, between each subdomain,
as a result of the construction in Section II-A, the constraints
on the curl and divergence, respectively, are maintained.
In particular, regardless of the difference in refinement level
between subdomains, tangential continuity or normal continu-
ity is enforced for seeking solutions in H (curl) and H (div),
respectively. As a result, the theoretical provisions of, for
example, [27], [29], for the efficacy of Ap-refinements in
many computational electromagnetic applications of interest
is unchanged as a result of this streamlined RBS structure
for H (curl)- and H (div)-conforming approximations. Potential
convergence rates with respect to the NDoFs are, therefore,
still limited by the discretization properties (both local spatial
resolution and local function space fidelity) and the behavior
of the underlying, unknown exact solution. Moreover, as in the
case of RBR, effective exploitation of the RBS infrastructure
depends on error estimation and adaptivity to assemble the
approximation space for solution objectives or requirements.
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D. Handling Integration in the Multilevel Structure

With the approximation structure complete, we now outline
the procedure for handling the filling of the Galerkin system
matrices. Recall from Section II and (8), that the RBS
approach, as opposed to the more typical RBR perspective,
reduces sparsity under both 4- and p-refinements, as opposed
to just p-refinements. This reduction of sparsity directly
results from the integration requirements demanded by
RBS-type infrastructure.

As in the organization of the DoFs relative to cell neighbors
for enforcing the constraints in Sections II-A and II-B, inte-
gration procedures benefit from an inheritance tree. Based on
this inheritance tree and the difference in levels between cells
of overlapping subdomains, integrations are performed only
over cell intersections. For testing and trial shape functions
associated with the same cell, numerical integration is entirely
unchanged from the conventional case. When the difference
in levels is nonzero, then one cell is an active descendant
that is a strict subset of an active ancestor cell; in such case,
(mechanically) the integration is performed over the entire
subdomain of the descendant cell and the equivalent region on
the ancestor cell. Conceptually, of course, the integration may
be treated as an integration over the full ancestor cell, noting
that the shape function associated with the descendant cell is
nonzero only over its subdomain; however, this interpretation
has little practical value considering the impact on quadrature.
Specifically, this cell intersection driven integration perspective
preserves the efficacy (and in polynomial integrand cases,
a priori convergence rates) of conventional quadrature rules
(typically Gauss—Legendre, but not exclusively) experienced
with uniform or RBR meshes.

In comparison to conventional matrix filling, therefore, each
interaction between trial and testing shape functions relies
on query to the inheritance tree for the active cells, with
the integrals appropriately constrained by the overlapping
subdomains.

III. NUMERICAL RESULTS

We now demonstrate the suitability of the RBS /Zp-
refinement methodology by solving the following Maxwell
eigenvalue problem (in variational form):

Find U = {usp, Aip} € Bip x R such that

a(uy, ‘Php) = Apm(wyy, ‘Php) V@, € Bip ©)
for a finite dimensional subspace By, € H(curl; Q), where
m(uhpl ¢hp) = <uhp/ ‘php)n and a(uh]?/ (php) = (Vi x Wip,
V. x @, ). We further assert that the domain Q c R? is
terminated by the Dirichlet boundary condition n x w;, = 0
on 9Q. Finally, wj, is purely transversal (meaning that
node-type DoFs do not appear).

While not exclusively applicable to eigenvalue problems
with singularities, we study the approach for a 2-D cross
section of an L-shaped waveguide, shown in Fig. 2(a), which
features many singular eigenfunctions, to demonstrate the
capability to achieve exponential convergence in the pres-
ence of solution irregularity. We focus our analysis on the
convergence of the smallest eigenvalue to an accurate numer-
ical computation [30] of the benchmark problem originally
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m@m RBS hp=@0= L =10 L=]lu@= [ =2a@= L =3

L =4 m@=l,=5e@=LL=G=@= LL=7 L =X
1“—27 T TR
107

Relative Error
7

;o9

1“7.“{ 1 LL\JHH. I \\LHME L Lol
107 10° 10
NDoFs
(1)
m@m RBS hp=©= L =0 L=lu@= L=2=@= =23
L=4 =@l —-5u@= L—Gu@= I.—7 =3

Relative Error

L L L
10 15 20
(NDoFs)'/*

(h)

L
5

Fig. 4. Convergence of the first eigenvalue for the RBS /p-method and the
comparison approach with /-refinement levels from L = 0 to L = 8 and
increasing uniform expansion orders. (a) Double logarithmic representation.

(b) Log-cube-root representation.

proposed by [34]. The eigenfunction associated with this
eigenvalue exhibits a singularity in the field at the reentrant
corner, as seen in Fig. 2(b).

Following the procedure outlined in Section II, the ini-
tial discretization is successively refined about the reentrant
corner. New refinement layers are inserted in groups with
p = 1 and the expansion orders of each preexisting cell are
increased by one each iteration, resulting in an emphasis on
h-refinements closer to the reentrant corner and an emphasis
on p-refinements away from the reentrant corner. We note
that this illustrative a priori refinement strategy is neither
optimal nor adaptive. Adaptive strategies, such as in [30], may
be applied in place of the illustrative refinement approach
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presented in this manuscript. A collection of discretizations
with A-refinements targeting the reentrant corner (from L = 0
to L = 8 refinement levels) and global (i.e., uniform) incre-
ments in p serve as the comparison approach.

Example discretizations from each approach with five
refinement layers are illustrated in Fig. 3. Fig. 3(a) depicts
the progression from third-order field expansion to first-order
while undergoing simultaneous #4-refinements and Fig. 3(b)
features the same level of Z-refinement with homogeneous
third-order field expansion.

Fig. 4 shows the convergence results for the first eigenvalue
with the two approaches to refinement. RBS /p-refinement
achieves exponential convergence while the successively
p-refined discretizations at various levels of A-refinement
(L = 0to L = 8) provide only algebraic convergence. The
linear trend with respect to (NDoFs)'/? as in Fig. 4(b) indicates
the strong consistency of the exponential convergence.

IV. CONCLUSION

We have demonstrated the capability to achieve exponential
convergence through an RBS Ap-method in CEM. At the cost
of reducing sparsity in FEM applications, the significant reduc-
tion in implementation complexity facilitates straightforward
adoption of /sp-refinement techniques with arbitrary levels of
refinement.

When applied to the computation of the eigenvalue asso-
ciated with a singular eigenfunction for H (curl)-conforming
elements, the method delivers perfect exponential convergence
while enforcing the tangential continuity requirements by
construction rather than through constraint equations. Finally,
the entire procedure directly applies to enforcement of normal
continuity when H (div)-conforming elements are required and
also extends to 3-D applications easily.

Finally, an open-source library based on this approach was
further developed in [35] and is available at [36].

REFERENCES

[1]1 P. Di Stolfo and A. Schroder, “C* and C ° hp-finite elements on
d-dimensional meshes with arbitrary hanging nodes,” Finite Elements
Anal. Des., vol. 192, Sep. 2021, Art. no. 103529.

[2] M. Fehling and W. Bangerth, “Algorithms for parallel generic /p-
adaptive finite element software,” 2022, arXiv:2206.06512.

[3] M. Janc"ic” and G. Kosec, “Strong form mesh-free ip-adaptive solution
of linear elasticity problem,” 2022, arXiv:2210.07073.

[4] G. Kamber, H. Gotovac, V. Kozulic’, and B. Gotovac, “2-D local
hp adaptive isogeometric analysis based on hierarchical fup basis
functions,” Comput. Methods Appl. Mech. Eng., vol. 398, Aug. 2022,
Art. no. 115272.

[5]1 A. Mezher, L. Jason, G. Folzan, and L. Davenne, “Simulation of large
dimensional reinforced and prestressed concrete structures using a new
adaptive static condensation method including automatic mesh partition-
ing,” Finite Elements Anal. Des., vol. 202, May 2022, Art. no. 103718.

[6] J. Chang, M. S. Fabien, M. G. Knepley, and R. T. Mills, “Comparative
study of finite element methods using the time-accuracy-size(TAS) spec-
trum analysis,” SIAM J. Sci. Comput., vol. 40, no. 6, pp. C779-C802,
Jan. 2018.

[7] L Babuska and M. R. Dorr, “Error estimates for the combined /4 and
p versions of the finite element method,” Numerische Math., vol. 37,
pp. 257-277, Jun. 1981.

[8] W. Gui and 1. Babuska, “The %, p and A- p versions of the finite element
method in 1 dimension. Part I. The error analysis of the p-version,”
Numerische Math., vol. 49, no. 6, pp. 577-612, Nov. 1986.

9363

[91 W. Gui and I. Babuska, “The %, p and A- p versions of the finite element
method in 1 dimension. Part II. The error analysis of the /- and 4- p
versions,” Numerische Math., vol. 49, no. 6, pp. 613—-657, Nov. 1986.
W. Gui and 1. Babuska, “The 4, p and A- p versions of the finite element
method in 1 dimension: Part III. The adaptive - p version,” Numerische
Math., vol. 49, no. 6, pp. 659—683, Nov. 1986.

M. M. Ilic, A. Z. Ilic, and B. M. Notaros, “Efficient large-domain 2-D
FEM solution of arbitrary waveguides using p-refinement on generalized
quadrilaterals,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 4,
pp. 1377-1383, Apr. 2005.

S. Zaglmayr, “High order finite element methods for electromagnetic
field computation,” Ph.D. dissertation, Inst. Numer. Math., Johannes
Kepler Univ. Linz, Linz, Austria, 2006.

M. Ainsworth, J. Coyle, P. D. Ledger, and K. Morgan, “Comput-
ing Maxwell eigenvalues by using higher order edge elements in
three dimensions,” [EEE Trans. Magn., vol. 39, no. 5, pp. 2149-2153,
Sep. 2003.

J. Coyle and P. D. Ledger, “Evidence of exponential convergence in the
computation of Maxwell eigenvalues,” Comput. Methods Appl. Mech.
Eng., vol. 194, nos. 2-5, pp. 587-604, Feb. 2005.

L. Demkowicz, “Fully automatic Ap-adaptivity for Maxwell’s equa-
tions,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 2, pp. 605-624,
2005.

L. E. Garcia Castillo, D. Pardo Zubiaur, and L. F. Demkowicz, “Fully
automatic hp adaptivity for electromagnetics, application to the analysis
of H-plane and E-plane rectangular waveguide discontinuities,” in /EEE
MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 285-288.

L. E. Garcia-Castillo, D. Pardo, and L. F. Demkowicz, “Energy-norm-
based and goal-oriented automatic sp adaptivity for electromagnetics:
Application to waveguide discontinuities,” IEEE Trans. Microw. Theory
Techn., vol. 56, no. 12, pp. 3039-3049, Dec. 2008.

M. Biirg, “Convergence of an automatic hp-adaptive finite element strat-
egy for Maxwell’s equations,” Appl. Numer. Math., vol. 72, pp. 188-204,
Oct. 2013.

D. Arndt et al, “The deal.ll library, version 9.2,” J. Numer.

Math., vol. 28, no. 3, pp. 131-146, 2020. [Online]. Available:

https://dealii.org/deal92-preprint.pdf

N. Zander, T. Bog, S. Kollmannsberger, D. Schillinger, and E. Rank,

“Multi-level hp-adaptivity: High-order mesh adaptivity without the dif-

ficulties of constraining hanging nodes,” Comput. Mech., vol. 55, no. 3,

pp. 499-517, Mar. 2015.

[21] N. Zander, T. Bog, M. Elhaddad, F. Frischmann, S. Kollmanns-
berger, and E. Rank, “The multi-level hp-method for three-dimensional
problems: Dynamically changing high-order mesh refinement with arbi-
trary hanging nodes,” Comput. Methods Appl. Mech. Eng., vol. 310,
pp. 252277, Oct. 2016.

[22] N. Zander, “High order finite element methods for electromagnetic
field computation,” Ph.D. dissertation, Dept. Comput. Eng., Technische
Universitdt Miinchen, Munich, Germany, 2016.

[23] N. Zander, H. Bériot, C. Hoff, P. Kodl, and L. Demkowicz, “Anisotropic

multi-level hp-refinement for quadrilateral and triangular meshes,” Finite

Elements Anal. Des., vol. 203, Jun. 2022, Art. no. 103700.

V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gémez-Revuelto, and

L. E. Garcia-Castillo, “A painless automatic hp-adaptive strategy for

elliptic problems,” Finite Elements Anal. Des., vol. 178, Oct. 2020,

Art. no. 103424.

F. Kikuchi, “On a discrete compactness property for the Nédélec finite

elements,” J. Fac. Sci. Univ. Tokyo A, Math., vol. 36, pp. 479—490, 1989.

D. Boffi, M. Costabel, M. Dauge, L. Demkowicz, and R. Hiptmair,

“Discrete compactness for the p-version of discrete differential forms,”

SIAM J. Numer. Anal., vol. 49, no. 1, pp. 135-158, Jan. 2011.

D. Boffi, M. Costabel, M. Dauge, and L. Demkowicz, “Discrete com-

pactness for the hp version of rectangular edge finite elements,” SIAM

J. Numer. Anal., vol. 44, no. 3, pp. 979—-1004, Jan. 2006.

D. N. Arnold, D. Boffi, and R. S. Falk, “Quadrilateral H (div) finite

elements,” SIAM J. Numer. Anal., vol. 42, no. 6, pp. 2429-2451,

Jan. 2005, doi: 10.1137/S0036142903431924.

A. Bespalov, N. Heuer, and R. Hiptmair, “Convergence of the natural

hp-BEM for the electric field integral equation on polyhedral surfaces,”

SIAM J. Numer. Anal., vol. 48, no. 4, pp. 1518-1529, 2010, doi:

10.1137/090766620.

J. J. Harmon and B. M. Notaro$, “Adaptive hp-refinement for 2-D

Maxwell eigenvalue problems: Method and benchmarks,” IEEE Trans.

Antennas Propag., vol. 70, no. 6, pp. 4663—4673, Jun. 2022.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on December 28,2023 at 03:39:43 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1137/S0036142903431924
http://dx.doi.org/10.1137/090766620

9364

[31] D. N. Arnold, R. S. Falk, and R. Winther, “Multigrid in H(div) and
H(curl),” Numerische Math., vol. 85, no. 2, pp. 197-217, 2000, doi:
10.1007/PL00005386.

M. M. Kostic and B. M. Kolundzija, “Maximally orthogonalized higher
order bases over generalized wires, quadrilaterals, and hexahedra,” IEEE
Trans. Antennas Propag., vol. 61, no. 6, pp. 3135-3148, Jun. 2013.

P. Di Stolfo, A. Schroder, N. Zander, and S. Kollmannsberger, “An easy
treatment of hanging nodes in /p-finite elements,” Finite Elements Anal.
Des., vol. 121, pp. 101-117, Nov. 2016.

M. Dauge. Benchmark Computations for Maxwell Equations for
the Approximation of Highly Singular Solutions. Accessed: Jun.
2021. [Online]. Available: https://perso.univ-rennes].fr/monique.dauge/
benchmax.html

J. Corrado, J. J. Harmon, B. M. Notaros, and M. M. Ilic, “FEM_2D: A
rust package for 2D finite element method computations with extensive
support for hp-refinement,” J. Open Source Softw., vol. 8, no. 84,
p. 4172, 2023.

J. Corrado. (2022). FEM 2D: A Rust Library for 2D Finite Element
Method Computations. [Online]. Available: https:/github.com/jeremiah-
corrado/fem_2d

321

[33]

[34]

[35]

[36]

Jake J. Harmon (Member, IEEE) received the B.S.
degree (summa cum laude) in electrical engineering
and the Ph.D. degree in electrical engineering from
Colorado State University, Fort Collins, CO, USA,
in 2019 and 2022, respectively.

He is currently a Post-Doctoral Researcher
with the Los Alamos National Laboratory in the
Theoretical Division, the Applied Mathematics and
Plasma Physics Group, and the Center for Nonlinear
Studies, Los Alamos, NM, USA. His Ph.D. research,
which was supported by the DoD High Performance
Computing and Modernization Program and the U.S. Air Force Research
Laboratory (AFRL), was on the topics of adaptive numerical methods
and uncertainty quantification, including goal-oriented error estimation and
adaptivity, hp-refinement, and expediting the propagation of uncertainty
in computational electromagnetics. His research interests include adaptive
numerical methods, uncertainty quantification, and scientific computing.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 12, DECEMBER 2023

Jeremiah Corrado received the B.S. and M.S.
degrees in electrical engineering from Colorado
State University, Fort Collins, CO, USA, in 2020 and
2022, respectively.

He is currently working as a Core Developer
with the Chapel Language Team, Hewlett Packard
Enterprise, Seattle, WA, USA, where he is using
his experience as a domain scientist to improve the
Chapel Programming Language. His research inter-
ests include adaptive mesh refinement algorithms for
improved efficiency of finite element simulations in
computational electromagnetics.

Branislav M. Notaro§ (Fellow, IEEE) received the
Dipl.-Ing. (B.S.), M.S., and Ph.D. degrees in elec-
trical engineering from the University of Belgrade,
Belgrade, Yugoslavia, in 1988, 1992, and 1995,
respectively.

From 1996 to 1999, he was an Assistant Professor
at the School of Electrical Engineering, University
of Belgrade, Belgrade, Serbia. From 1999 to 2006,
he was an Assistant and an Associate Professor at the
Department of Electrical and Computer Engineer-
ing, University of Massachusetts Dartmouth, North
Dartmouth, MA, USA. He is currently a Professor of electrical and computer
engineering, a University Distinguished Teaching Scholar, and the Director
of Electromagnetics Laboratory, Colorado State University, Fort Collins,
CO, USA. His publications include more than 300 journal articles and
conference papers, and textbooks “Electromagnetics” and “MATLAB-Based
Electromagnetics” (Pearson Prentice Hall), in 2010 and 2013, respectively,
and “Conceptual Electromagnetics” (CRC Press), in 2017. His research
contributions are in computational and applied electromagnetics.

Prof. Notaros$ is a fellow of ACES. He was a recipient of the 1999 IEE
Marconi Premium, the 2005 IEEE MTT-S Microwave Prize, the 2022 IEEE
Antennas and Propagation Edward E. Altshuler Prize Paper Award,
the 2019 ACES Technical Achievement Award, the 2014 Carnegie Foundation
Colorado Professor of the Year Award, the 2015 ASEE ECE Distinguished
Educator Award, the 2015 IEEE Undergraduate Teaching Award, and the
many other research and teaching awards. He served as the General Chair
for the IEEE APS/URSI 2022 Denver Conference, the Chair for the IEEE
AP-S Meetings Committee, the Chair for the Joint Meetings Committee, and
an AP-S AdCom member. He serves as the President Elect for the IEEE
Antennas and Propagation Society (AP-S), the Immediate Past President for
the Applied Computational Electromagnetics Society (ACES), the Chair for
the USNC-URSI Commission B, and a Track Editor for IEEE TRANSAC-
TIONS ON ANTENNAS AND PROPAGATION.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on December 28,2023 at 03:39:43 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1007/PL00005386

