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Abstract— We present refinement-by-superposition (RBS) 
hp-refinement infrastructure for computational electromagnetics 
(CEMs), which permits exponential rates of convergence. In con- 
trast to dominant approaches to hp-refinement for continuous 
Galerkin methods, which rely on explicit constraint equations, the 
multilevel strategy presented drastically reduces the implemen- 
tation complexity. Through the RBS methodology, enforcement 
of continuity occurs by construction, enabling arbitrary levels of 
refinement with ease, and without the practical (but not theoret- 
ical) limitations of constrained-node refinement. We outline the 
construction of the RBS hp-method for refinement with H(curl)- 
and H(div)-conforming finite cells. Numerical simulations for 
the 2-D finite element method (FEM) solution of the Maxwell 
eigenvalue problem demonstrate the effectiveness of RBS hp- 
refinement. As an additional goal of this work, we aim to 
promote the use of mixed-order (low- and high-order) elements 
in practical CEM applications. 

Index Terms— Computational electromagnetics (CEMs), con- 
tinuous Galerkin, finite element method (FEM), higher order 
methods, hp-refinement, refinement-by-superposition (RBS). 

I. INTRODUCTION 

NCREASINGLY, satisfying the practical demands (on the 

accuracy and confidence of solutions and computables) of 

numerical methods relies on sophisticated adaptive refinement 

techniques and, therefore, discretization refinement infrastruc- 

ture. The need for new capabilities and improvements to 

existing capabilities motivates research efforts in applied math- 

ematics that yield discretizations, which are both accurate and 

efficient. Recent developments in adaptively solving partial 

differential equations demonstrate the significant potential for 

such approaches in modern simulation-based design, where 

the need for high confidence and efficiency, including paral- 

lelization and parallelizability, dominates [1], [2], [3], [4], [5]. 
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Geometric discretization by quadrilaterals and hexahedra, 

while significantly more accurate with respect to the number 

of degrees of freedom (DoFs) than modeling with triangles or 

tetrahedra [6], presents significant challenge to fully dynamic 

mesh adaptivity. In refinement with triangles and tetrahedra, 

local adaptivity directives propagate to a small set of neigh- 

boring elements, enabling the insertion of new DoFs without 

modification to the entire element structure. Similar refinement 

approaches with quadrilateral and hexahedral cells, however, 

would dictate global refinement, thereby destroying the utility 

of h-adaptivity. Inserting transition elements also poses signif- 

icant challenge to the approximation quality, particularly for 

vectorial shape functions, which are highly sensitive to the 

loss of linear independence in the physical domain. Finally, 

application of a discontinuous Galerkin method, while evading 

this problem, among its other difficulties, generally requires 

more DoFs for the same level of accuracy. 

As shown in [7], [8], [9], and [10], when the solution 

satisfies certain regularity conditions, local enrichment of 

function spaces, also known as p-refinement, enables expo- 

nential convergence. When such conditions are not satisfied, 

however, the benefit of p-refinement is heavily degraded, 

reduced instead to algebraic convergence as in the case of 

pure spatial subdivision, or h-refinement. Pure p-refinement, 

while effective in certain situations (e.g., [11]), is therefore 

insufficient in general, and as such, a combined approach 

with both h- and p-adaptivity is necessary to achieve 

exponential convergence for solutions with singularities or 

non-smooth behavior, motivating the need for more advanced 

and versatile approaches to h-refinement across application 

domains. 

Previous works in computational electromagnetics (CEMs), 

for example, have demonstrated the potential of hp-adaptivity 

through hybrid meshes, for example, in [12]. Most typically, 

however, FEM codes overcome the limitations of hp- 

adaptivity by performing the insertion of constrained nodes, 

which—in contrast to true DoFs—are constrained to enforce 

continuity conditions with neighboring elements. Such 

approaches in CEM have shown significant performance 

increase and exponential convergence in the presence of 

singular solutions [13], [14], [15], [16], [17], [18], but at the 

cost of high implementation complexity, impeding wide-scale 

adoption. Furthermore, such methods are usually limited in 

implementation to 1-irregular mesh (i.e., only one hanging 

node per edge), which, not a severe limitation in practice, 

prevents arbitrary local refinement steps. Open-source 

libraries—such as deal.II [19]—have significantly simplified 
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the implementation of hp-refinement codes; yet in some cases 

it might be inconvenient or undesirable to utilize third-party 

finite element method (FEM) libraries. 

In response, we opt to extend the refinement-by- 

superposition (RBS) approach introduced in [20], [21], [22], 

and [23] for hierarchical basis functions, which demonstrated 

exponential convergence for scalar problems with C 0 finite 

elements, to H (curl)- and H (div)-conforming finite elements. 

Additional studies with C 0 finite elements and the RBS 

hp-method with adaptivity in [24] further motivate extensions 

of the method to CEM. 

Naturally, any informative numerical approximation must 

satisfy characteristics that, in the limit of their resolution, 

dictate the convergence of the discrete problem and its 

solution to the continuous one. In this article, we study, 

in particular, the Maxwell eigenvalue problem, both for its 

computational challenges [12], and its utility in forming 

the problems considered are governed by the source-free (time- 

harmonic) Maxwell’s equations 

∇ × E + iωµH = 0 

∇ · µH = 0 

∇ × H − iωεE = 0 

∇ · εE = 0 (1) 

along with accompanying boundary conditions, where E, H, 

ω, µ, and ε denote, respectively, the electric field, the magnetic 

field, frequency, permeability, and permittivity. 

The objective is to generate a sequence of overlapping 

meshes 

T = 
[ 

Tl (2) 

l=0 

where on the lth level 
and consistently evaluating numerical benchmarks. For this 

model problem, significant numerical analysis undergirds the Tl = 
{
Kli 

}
i ∈I 

(3) 

choice of discretization, namely the proven suitability of 

H (curl)-conforming finite elements via the discrete com- 

pactness property for h- [25], p- [26], and hp-refinement 

modalities [27]. Additional studies, such as in [28], [29], con- 

sider H (div)-conforming discretizations and their convergence 

properties in a similar manner. 

While the proposed approach significantly simplifies 

the implementation of hp-refinement infrastructure for 

applications in CEM, in contrast to more traditional refine- 

by-replacement (RBR) strategies, the proposed approach 

decreases the sparsity of the system matrices under both 

h- and p-refinements, whereas RBR only reduces sparsity 

under p-refinements. The proposed approach is, therefore, 

less suitable for application to very large problems with vast 

differences in scales. For applications of the approach to 

boundary element method (BEM) problems, for example, 

surface integral equation (SIE) problems in CEM discretized 

by the method of moments (MoMs), such considerations do 

denotes a nonoverlapping, potentially incomplete covering of 

Q via elements Kli associated with an index set Il such that 

the resulting discretization imparts exponential convergence on 
the assemblage 

u = u0 + · · · + un, u0, . . . , un ∈ B (4) 

with B denoting the appropriate solution space, namely 

H(curl; Q) or H(div; Q), where 

H(curl; Q) := 
{
u ∈ [L2(Q)]d s.t. ∇ × u ∈ [L2(Q)]2d−3

} 
(5) 

H(div; Q) := 
{
u ∈ [L2(Q)]d s.t. ∇ · u ∈ L2(Q)

}
. (6) 

These two function spaces, both vital to computational 

electromagnetic problems in different contexts, are tied via the 

de Rham complex or sequence [12], shown below for d = 3, 

which identifies the coincidence of ranges and kernels of the 

constitutive operators 

not apply given the global nature of the Green’s function but id  
H 1 

∇  H(curl ∇×  H(div ∇·  
L2 

0 0. 

would instead concern the increase in integration time due to 

the overlap of refinement layers. 

R −→ (Q) −→ ; Q) −→ ; Q) −→ (Q) −→ 

(7) 

The remainder of this article is organized as follows. 

Section II details the construction of the RBS hp-method, 

covering the enforcement of the required continuity conditions 

(tangential or normal continuity) and ensuring linear inde- 

pendence after the insertion of descendant refinement layers. 

Section III examines application to an H (curl)-conforming 

discretization of the Maxwell eigenvalue problem. We exam- 

ine a challenging eigenpair with a singular eigenfunction as 

studied in [30]. The presented approach yields exponential 

convergence of the eigenvalue with respect to the number of 

DoFs (NDoFs), which, along with the ease of implementation, 

illustrates the practical value for applications in CEM. 

 

II. RBS: DESCRIPTION AND CONSTRUCTION 

Let Q ⊂ Rd be a polyhedral domain, d ∈ {2, 3} (the case of 

d = 1 being trivial), with its boundary ∂Q enclosing a volume 

of homogeneous or inhomogeneous material. We assume that 

This relationship between H(curl; Q) and H(div; Q) also ties 

the approximation structure closely, as discussed throughout 

the remainder of this section. In fact, in 2-D, the shape func- 

tions for H (div)-conforming discretizations may be computed 

simply as rotations of the H (curl)-conforming shape functions 

of equivalent order. 

The objective of this multilevel discretization is in some 

sense distinct from that of multigrid methods [31], as we con- 

sider only the generation of H (curl)- and H (div)-conforming 

approximation spaces of hp character, and not coupling of 

coarse-to-fine solution ensembles. However, the following 

method and the adaptivity structure it affords can augment 

adaptive multigrid approaches. 

On a given level l, we enforce a series of constraints on the 

cells Kli and Kl j , i, j ∈ Il , i ≠ j . 

1) Interior(Kli ) ∩ interior(Kl j ) = ∅. 
2) Between elements Kli and Kl j , hanging nodes are 

prohibited. 
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Regarding the hierarchical meshes, we require only that 

T0 forms a complete covering of Q. Subsequent levels may 

form a complete covering, which we define as a global 

refinement. 

We also state the following property, which, for the 

numerical solution of the aforementioned problems, impacts 

integration and sparsity: 

For i ∈ Il , 0 < l ≤ n 

∃ j ∈ Ik,  0 ≤ k ≤ n, k ≠ l 

s.t. interior
(
Kli 

) 
∩ interior

(
Kk j 

) 
≠ ∅. (8) 

Finally, for levels l and k, l ≠ k, hanging nodes are permitted. 

With an underlying hierarchical H (curl)- or H (div)- 

conforming basis, such as introduced in [32], exponential 

convergence of the solution given in (4) may be achieved with 

suitable refinements by a collection of overlay meshes. This 

RBS approach yields the desired discretization by imposing 

homogeneous Dirichlet boundary conditions on the boundaries 

of the inserted descendant cells (i.e., the collection of over- 

lay meshes) [20], [21], [22], [23]. Continuity requirements, 

therefore, may be easily enforced for arbitrary levels of 

refinements (i.e., n-irregular meshes) and heterogeneity in the 

chosen orders of the hierarchical basis throughout the mesh. 

This enables an algorithmically straightforward and low-cost 

method to add hp-refinement capabilities for H (curl)- and 

H (div)-conforming discretizations by enforcing, respectively, 

tangential and normal continuity. 

We approach the description explicitly from a 2-D perspec- 

tive; however, the process generalizes trivially to 3-D. First, 

we classify each shape function in the following manner. In the 

case of an H (curl)-conforming discretization, we assign each 

shape function according to the properties of the nonzero 

tangential components at the boundary of the cell. These 

shape functions are classified into three categories: the node- 

functions, that is, those functions with non-zero tangential 

components at only one node; the edge-functions, that is, 

those functions with nonzero tangential components along 

one and only one edge; and the cell-functions, that is, those 

functions that have no nonzero tangential components on the 

boundary. The existence of node-functions is only necessary 

when in 2.5-D, the axial component (i.e., perpendicular to 

the 2-D plane of the geometry) of the solution is nonzero, 

as in the examples in [11]. The same classification strategy, 

albeit according to the nonzero normal components at the 

boundary, is applied for seeking solutions in H (div). Naturally, 

the difficulty in inserting unknowns rests in the treatment 

of the edge-functions (and potentially the node-functions), 

while the cell-functions, which introduce no DoFs influencing 

the boundary, may be inserted or excised without global 

considerations. 

While we focus on isotropic refinement infrastructure, 

the superposition-based approach supports anisotropy in 

p-refinement directives trivially and, with modification, 

to anisotropic h-refinements [33]. For example, for a single 

h-refinement step applied to one cell in 2-D, four new child 

cells are inserted one refinement layer above the parent cell 

according to the constraint of isotropic refinement only. Note 

that geometrically, the child cells lie in the same physical 

space as the parent; rather, the designation of “above” is purely 

conceptual. 

We have two simultaneous considerations in the refinement 

process: continuity and linear independence. Continuity must 

be enforced due to potential nonuniformity in the polynomial 

degree of the basis on neighboring cells and the existence (or 

lack thereof) of child cells on the various refinement levels. 

Linear independence, on the other hand, is guaranteed by 

the proper delegation of DoFs between the refinement layers 

descended from the origin cell. DoFs must be deactivated on 

the parent cells and activated on the child cells, depending on 

the refinement levels of the cell and its neighbors. 

The refinement and coarsening directives are applied for 

both cases through the assignment of the DoFs to the geomet- 

rical structures as mentioned above (the cells, the edges, the 

nodes, and, in 3-D, the faces). 

 

A. Enforcing Continuity Requirements 

The activation and deactivation of the DoFs on the bound- 

aries of the cells follow a unified procedure based on [20], 

[21], [22], and [23]. For each layer in the discretization, from 

the origin layer T0 to the highest refinement layer Tn, DoFs 

are assigned to each of the geometrical elements according to 

the continuity requirements desired, in this case, tangential 

continuity for seeking a solution in H (curl) and normal 

continuity for H (div). Each cell, edge, node (when necessary 

in 2.5-D), and face (exclusively in 3-D) collects a list of DoFs, 

both active and inactive. 

As the DoFs are accumulated, each one is matched as 

necessary with the associated shape functions on neighboring 

cells according to the vectorial direction and multiindex of 

the associated shape function. As opposed to the boundary- 

functions (i.e., node, face, and edge), the cell-functions 

automatically satisfy continuity requirements and therefore no 

special considerations are necessary except for those related 

to ensuring linear independence across overlapping levels. The 

boundary-function DoFs are marked as active according to 

the existence of neighbors in the refinement level and the 

expansion order of those cells. Both restrictions are handled 

seamlessly and without distinction as the overall process 

amounts to traversing the geometrical entities in the discretiza- 

tion, which are assigned their maximal sets of associated 

DoFs, and activating only the DoFs according to the above 

compatibility conditions. 

We summarize the procedure for activating DoFs based on 

the continuity requirements as follows. 

1) For each cell, edge, node, and face in each refinement 

layer, collect the associated DoFs. 

a) For H (curl), associate the DoFs with the relevant 

geometric entity based on the nonzero tangential 

components. 

b) For H (div), associate the DoFs with the relevant 

geometric entity based on the nonzero normal 

components. 

2) Iterate through each refinement layer and each edge, 

node, and face. 

a) If a suitable refinement neighbor exists, match 

the shape functions associated with the adjacent 
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Fig. 1.  RBS hp-refinement activation and deactivation procedure. (a) Depiction of the process in 1-D. (b) Depiction of the process in 2-D. (c) Overhead 
perspective of the distribution of h-refinements applied in the 2-D example. 

 

cells, activating only the fully matched DoFs and 

deactivating the rest. 

In summary, with efficient data structures for relating the 

DoFs on the boundaries of cells for the cases of H (curl) 

and H (div), enforcing continuity requirements for seeking 

solutions in either function space amounts to straightforward 

queries between neighboring cells. 

 

B. Eliminating Linear Dependence of the Hierarchical 

Refinements 

To ensure linear independence between overlapping shape 

functions, we prioritize the highest feasible refinement level 

possible. For example, the cell-functions, which by definition 

satisfy the continuity requirements automatically, require 

deactivation on the parent cell and activation of the DoFs 

on the child cells. Unlike the handling of the edge- and 

node-functions, this transfer occurs without any queries to the 

discretization other than checking if the descendant cells exist. 

Now, for the edge- and node-functions, additional care is 

necessary. In this case, the preference to delegate DoFs to the 

child cells is constrained by the refinement state of one or more 

neighbors of the cell. In other words, in 2-D, if a parent cell 

shares an edge with another refined parent cell, the DoFs on 

the parent edge may be transferred to the corresponding edges 

on the child refinement layer. Likewise, the deactivation of a 

node-function on the parent refinement layers requires that the 

corresponding node is surrounded by refined cells. In other 

words, as in [20], [21], [22], and [23], active geometrical 

components may not “overlap” with respect to the refinement 

layers. 

We summarize the activation and deactivation of DoFs as 

follows. 

1) On an h-refinement step, deactivate cell-functions on the 

parent cell and activate the cell-function DoFs on the 

child cell. 

 

 

 
Fig. 2.  Model and problem under study. (a) Initial discretization for the 
L-shaped domain. (b) Field magnitude of the first eigenfunction, illustrating 
the singularity at the reentrant corner. 

 

 

2) If a geometrical component (node, edge, or face) on the 

descendant layer is active (i.e., it has associated active 

DoFs), deactivate the corresponding component on the 

parent layer. 

According to this procedure, a parent cell sufficiently 

surrounded by refined cells may be entirely deactivated to 

ensure linear independence and maximize the resolution of 

the approximation. In such cases, the sparsity of the resulting 

system is enhanced. 

 

C. Summary of the Overall Approach 

Fig. 1 shows examples of how basis functions are dis- 

tributed across refinement layers as generated from the 

linearity and continuity enforcement procedures summarized 

in Sections II-A and II-B. Similar to the descriptions of the 

RBS process in 1-D in [20], [21], [22], and [23], Fig. 1(a) 

summarizes the procedure for a 1-D domain, including the 

transfer of DoFs associated with lower refinement levels to the 
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Fig. 3. Example discretizations for the RBS hp-method and the selectively h-refined comparison method with uniform p. (a) RBS hp-method discretization 
with maximum and minimum expansion orders of three and one, respectively. (b) RBS h-method with a uniform expansion order of three. The two discretizations 
have L = 5 refinement levels. 

descendant layers and the ability to choose the expansion order 

p arbitrarily. Note that in 1-D, we have only the linear class of 

boundary-functions, that is, at the boundary between two cells 

(across all the refinement levels), only one active boundary- 

DoF exists. The hierarchical basis functions illustrated in 

Fig. 1(a) (and those used in Section III) are based on the 

maximally orthogonalized basis functions [32]. 

In 2-D (and 3-D), however, many active DoFs exist on 

the cell boundaries as a result of employing higher order 

boundary-functions. Depicted in Fig. 1(b), we demonstrate 

a similar refinement model as in the 1-D case. Unlike in 

the 1-D case, the depicted refinement in 2-D results in the 

enforcement of the domain boundary conditions propagating 

to the higher refinement levels when available. Furthermore, 

in this case, many of the parent cells retain a large number 

of DoFs assigned to the boundary due to the higher order 

boundary-functions. In Fig. 1(b), such occurrences are denoted 

by the cells with solid boundaries and transparent interiors, 

in addition to the matching designations related to the active 

geometrical components as seen in Fig. 1(a). 

Finally, for each cell located on a new refinement layer, 

an additional mapping between integration space and reference 

space is introduced, resulting in a succession of mapping 

operations. Note, however, that regardless of the curvature of 

the origin cell, all subsequent mappings from the reference 

cell to the child cell have constant Jacobian determinants and 

may be handled with ease during integration. 

What remains is whether the resulting solution space 

belongs to a subset of H (curl) or H (div). To elucidate 

the preservation of this property under the RBS paradigm, 

consider the collection of subdomains {Qi } associated with 

each of the leaf cells in T . For both H (curl) and H (div), 

over each subdomain (and therefore the entire domain), we 

have a linear combination of shape functions in L2 that 

satisfy, depending on the desired approximation space, certain 

conditions on their partial derivatives. As a result, this finite 

sum remains in L2. Furthermore, between each subdomain, 

as a result of the construction in Section II-A, the constraints 

on the curl and divergence, respectively, are maintained. 

In particular, regardless of the difference in refinement level 

between subdomains, tangential continuity or normal continu- 

ity is enforced for seeking solutions in H (curl) and H (div), 

respectively. As a result, the theoretical provisions of, for 

example, [27], [29], for the efficacy of hp-refinements in 

many computational electromagnetic applications of interest 

is unchanged as a result of this streamlined RBS structure 

for H (curl)- and H (div)-conforming approximations. Potential 

convergence rates with respect to the NDoFs are, therefore, 

still limited by the discretization properties (both local spatial 

resolution and local function space fidelity) and the behavior 

of the underlying, unknown exact solution. Moreover, as in the 

case of RBR, effective exploitation of the RBS infrastructure 

depends on error estimation and adaptivity to assemble the 

approximation space for solution objectives or requirements. 
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D. Handling Integration in the Multilevel Structure 

With the approximation structure complete, we now outline 

the procedure for handling the filling of the Galerkin system 

matrices. Recall from Section II and (8), that the RBS 

approach, as opposed to the more typical RBR perspective, 

reduces sparsity under both h- and p-refinements, as opposed 

to just p-refinements. This reduction of sparsity directly 

results from the integration requirements demanded by 

RBS-type infrastructure. 

As in the organization of the DoFs relative to cell neighbors 

for enforcing the constraints in Sections II-A and II-B, inte- 

gration procedures benefit from an inheritance tree. Based on 

this inheritance tree and the difference in levels between cells 

of overlapping subdomains, integrations are performed only 

over cell intersections. For testing and trial shape functions 

associated with the same cell, numerical integration is entirely 

unchanged from the conventional case. When the difference 

in levels is nonzero, then one cell is an active descendant 

that is a strict subset of an active ancestor cell; in such case, 

(mechanically) the integration is performed over the entire 

subdomain of the descendant cell and the equivalent region on 

the ancestor cell. Conceptually, of course, the integration may 

be treated as an integration over the full ancestor cell, noting 

that the shape function associated with the descendant cell is 

nonzero only over its subdomain; however, this interpretation 

has little practical value considering the impact on quadrature. 

Specifically, this cell intersection driven integration perspective 

preserves the efficacy (and in polynomial integrand cases, 

a priori convergence rates) of conventional quadrature rules 

(typically Gauss–Legendre, but not exclusively) experienced 

with uniform or RBR meshes. 

In comparison to conventional matrix filling, therefore, each 

interaction between trial and testing shape functions relies 

on query to the inheritance tree for the active cells, with 

the integrals appropriately constrained by the overlapping 

subdomains. 

III. NUMERICAL RESULTS 

We now demonstrate the suitability of the RBS hp- 

refinement methodology by solving the following Maxwell 

eigenvalue problem (in variational form): 

Find U = {uhp, λhp} ∈ Bhp × R such that 

a(uhp, φhp) = λhpm(uhp, φhp) ∀φhp ∈ Bhp (9) 

for a finite dimensional subspace Bhp ⊂ H(curl; Q), where 

m(uhp, φhp) = ⟨uhp, φhp ⟩, and a(uhp, φhp) = ⟨∇t × uhp, 
∇t × φhp ⟩. We further assert that the domain Q ⊂ R2 is 

terminated by the Dirichlet boundary condition n × uhp = 0 

on ∂Q. Finally, uhp is purely transversal (meaning that 
node-type DoFs do not appear). 

While not exclusively applicable to eigenvalue problems 

with singularities, we study the approach for a 2-D cross 

section of an L-shaped waveguide, shown in Fig. 2(a), which 

features many singular eigenfunctions, to demonstrate the 

capability to achieve exponential convergence in the pres- 

ence of solution irregularity. We focus our analysis on the 

convergence of the smallest eigenvalue to an accurate numer- 

ical computation [30] of the benchmark problem originally 

 

 
 

 

Fig. 4. Convergence of the first eigenvalue for the RBS hp-method and the 
comparison approach with h-refinement levels from L = 0 to L = 8 and 
increasing uniform expansion orders. (a) Double logarithmic representation. 
(b) Log-cube-root representation. 

 

 

proposed by [34]. The eigenfunction associated with this 

eigenvalue exhibits a singularity in the field at the reentrant 

corner, as seen in Fig. 2(b). 

Following the procedure outlined in Section II, the ini- 

tial discretization is successively refined about the reentrant 

corner. New refinement layers are inserted in groups with 

p = 1 and the expansion orders of each preexisting cell are 

increased by one each iteration, resulting in an emphasis on 

h-refinements closer to the reentrant corner and an emphasis 

on p-refinements away from the reentrant corner. We note 

that this illustrative a priori refinement strategy is neither 

optimal nor adaptive. Adaptive strategies, such as in [30], may 

be applied in place of the illustrative refinement approach 
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presented in this manuscript. A collection of discretizations 

with h-refinements targeting the reentrant corner (from L = 0 

to L = 8 refinement levels) and global (i.e., uniform) incre- 

ments in p serve as the comparison approach. 

Example discretizations from each approach with five 

refinement layers are illustrated in Fig. 3. Fig. 3(a) depicts 

the progression from third-order field expansion to first-order 

while undergoing simultaneous h-refinements and Fig. 3(b) 

features the same level of h-refinement with homogeneous 

third-order field expansion. 

Fig. 4 shows the convergence results for the first eigenvalue 

with the two approaches to refinement. RBS hp-refinement 

achieves exponential convergence while the successively 

p-refined discretizations at various levels of h-refinement 

(L = 0 to L = 8) provide only algebraic convergence. The 

linear trend with respect to (NDoFs)1/3 as in Fig. 4(b) indicates 

the strong consistency of the exponential convergence. 

 

IV. CONCLUSION 

We have demonstrated the capability to achieve exponential 

convergence through an RBS hp-method in CEM. At the cost 

of reducing sparsity in FEM applications, the significant reduc- 

tion in implementation complexity facilitates straightforward 

adoption of hp-refinement techniques with arbitrary levels of 

refinement. 

When applied to the computation of the eigenvalue asso- 

ciated with a singular eigenfunction for H (curl)-conforming 

elements, the method delivers perfect exponential convergence 

while enforcing the tangential continuity requirements by 

construction rather than through constraint equations. Finally, 

the entire procedure directly applies to enforcement of normal 

continuity when H (div)-conforming elements are required and 

also extends to 3-D applications easily. 

Finally, an open-source library based on this approach was 

further developed in [35] and is available at [36]. 
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