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75 Years of |IEE

AP-S Research
in Computationa
Electromagnetics

A view on the discipline and its history, current state,
and future prospects.

his article presents an overview of 75 years of research

in computational electromagnetics (CEM) within the

IEEE Antennas and Propagation Society (AP-S) and

the AP community at large on the occasion of the 75th
anniversary of AP-S, where both CEM and AP-S have similar
and interwoven histories of 75 years, a half of the history of
Maxwell’s equations. The article discusses the discoveries,
developments, implementations, and applications of principal
CEM methodologies and techniques for AP. While historical-
ly there were periods of time when certain CEM approaches
seemed to dominate AP applications, it is indicative that
CEM for AP of the 21st century has been constituted by a
true expansion and/or renaissance of all approaches, with an
emphasis on hybridizations and integrations. Overall, we have
witnessed phenomenal progress and dramatic enhancements
in the accuracy, efficiency, versatility, reliability, stability,
and robustness of AP modeling, analysis, and design. How-
ever, CEM is still a work in progress, and many important
research challenges are yet to be addressed and solved for
the ever-growing simulation and design demands of the next
generations of AP technologies. Hence, the next 75 years of
CEM and AP-S are promising to be equally rich, fascinating,
and intense!
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INTRODUCTION

Antenna, radio-frequency (RF), wireless, and other electro-
magnetics-related technologies are exploding! CEM is the
interdisciplinary field aimed at numerically analyzing and com-
putationally solving practical problems within these technologies
involving electromagnetic fields and waves and their interactions
with materials and existing or to-be-designed structures and
systems. Naturally, CEM has been one of the main topics within
the scope and activities of AP-S.

Indeed, the importance of CEM to AP technologies can
hardly be overstated. CEM simulations are effectively used
today at frequencies spanning dc to optics, for system sizes rang-
ing from subatomic to intergalactic, and for a broad spectrum of
AP application areas, including the design of antennas and RF/
microwave/terahertz devices, components, and systems, elec-
tromagnetic scattering, indoor and outdoor radio propagation,
wireless communication systems, radar systems, remote sensing,
packaging, RF interference, new materials, quantum electrody-
namics, and bioelectromagnetics. To cover such a wide variety
of structures, technologies, and applications, a range of different
CEM methodologies and numerical discretization techniques is
needed and preferred over a single approach.

In his famous book, A Treatise on Electricity and Magnetism
(1873) [1], James Clerk Maxwell provided a unified mathemati-
cal framework for all fundamental laws of electricity and mag-
netism discovered experimentally by his predecessors, and he
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compiled and completed the four fundamental equations of
electromagnetics that bear his name [2]. Per Albert Einstein,
“The formulation of these equations is the most important event
in physics since Newton’s time.” These four equations provide
the foundation for the general analysis of electromagnetic radia-
tion and propagation and for all of the theoretical principles,
analytical procedures, and numerical techniques that together
constitute the knowledge and tools for the understanding, analy-
sis, and design of AP structures and systems [3].

So, as a community, just last year we celebrated 150 years of
Maxwell’s equations, and CEM has a history of about 75 years
[3]-[142]. CEM and AP researchers have made tremendous
progress in devising and developing new methods and codes,
both “in-house” (research or custom-designed) techniques
and commercial solvers, often in synergy with AP application
researchers and practitioners as CEM users. Holistically, CEM
discoveries, advancements, and impacts over 75 years have
tightly relied on principal breakthroughs and developments
made in electromagnetic/physical formulations and contexts of
engineering problems, mathematical and numerical foundations
of methods and algorithms, and computing hardware and soft-
ware infrastructure. Truly, CEM research and practice is a com-
prehensive combination of engineering, physics, mathematics,
and computer science, with exciting potential and challenges.

This year, the IEEE Antennas and Propagation Soci-
ety celebrates its 75th anniversary—the Diamond Jubilee
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Anniversary—as it was founded in 1949. AP-S is
one of the three oldest IEEE societies (or profes-
sional groups as the societies were called then),
and its first official name was the IRE Professional
Group on Antennas and Propagation. Remark-
ably, the Society was founded with the same name
(Antennas and Propagation) that it kept during the
following 75 years and still does. Of course, it all
started with Maxwell’s equations 150 years ago, and
a half of that history was with AP-S as one of the
leaders in the field.

This article presents an overview of 75 years
of research in CEM within AP-S and the AP
community at large. It aims at providing rep-
resentation that is as complete and unified as
possible of fundamental developments across a
spectrum of CEM formulations, methodologies,
solution techniques, and applications related to
AP. However, given the wealth and diversity of
past ideas and efforts as well as their results and
outcomes (that is, devised and available CEM
methods and codes), this article is by no means
meant to be an exhaustive survey. Rather it is a
systematic and illustrative presentation and dis-
cussion of commonalities and unifying concepts
of CEM approaches and tools, including selected
specifics, in terms of both the history and the
state of the art, with an eye toward their practi-
cal applicability and usefulness.

Because of space limitations, all presented or
mentioned CEM methodologies, techniques, implementations,
and applications, all explicitly mentioned names, all presented
commercial tools, all figures and results, and all listed and
cited references are only meant to be representative, illustra-
tive, informative, and interesting, and by no means complete or
exhaustive. Also, to economize space, when an author name is
mentioned in the article, it is typically and rather consistently a
group or project leader on multiauthor publications with authors
from the same group. These, again, are subjective selections that
could certainly have been done differently and have left many
key contributors unmentioned.

Moreover, this is one author’s overview of the activities and
accomplishments of thousands of researchers, practitioners, and
students in many generations over 75 years and one person’s
attempt to condense efforts and successes of an era and the
entire discipline in one article. Thus, it is inevitable that some
objectively important facts and contributions were omitted or
misprioritized by mistake, lack of knowledge, or by a subjective
and biased view of the author or just his imperfect and non-
optimal endeavor to “squeeze” everything into the page limit.
Therefore, one thing is certain: the most rigorous and exact
aspect of this article is that it is a personal view of the author on
the discipline and its history, current state, and future prospects.
It is just one possible view and an imperfect but honest attempt.

Three special issues of [EEE Transactions on Antennas and
Propagation on CEM provided comprehensive accounts of
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developments and the state of the art in the field as well as archi-
val materials for the respective time periods. These were the
1997 special issue, titled “Advanced Numerical Techniques in
Electromagnetics” [4]; the one published in 2008, on “Large and
Multiscale Computational Electromagnetics” [5]; and the just-
published special issue (in two parts) on “Frontiers in Compu-
tational Electromagnetics” (December 2023 /January 2024) [6].

However, computational electromagnetics is still a work in
progress, and many important research challenges are yet to be
addressed and solved. Namely, we are not yet done in solving
these four 150-year-old equations, as we continue a quest to
devise, develop, and use new and improved methods and tools
to achieve more speed, accuracy, versatility, and reliability of
CEM simulations for different classes of real-world AP engi-
neering applications and problems [3].

PRINCIPAL CEM METHODOLOGIES AND APPROACHES

The CEM methodologies of the 75 years of CEM and AP-S
can broadly be classified into those based on integral equation
(IE) formulations, namely, on solving IEs for currents (field
sources) [7], [8], [9], [10], [11], [12], [13], [14], [15], those based on
partial differential equation (PDE) formulations, i.e., on solving
PDEs for fields E and/or H as unknown quantities [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], and
high-frequency (HF) asymptotic techniques [26], [27], 28] as
well as hybrid approaches [15], [16], [17], [18], [19], [20], [21]. IE
methods included those for discretizing surface integral equa-
tions (SIEs) for the surface electric current, Js, on metallic AP
structures (see, e.g., [8]), and for equivalent electric and mag-
netic (artificial) surface currents, Js and Ms, placed over surfaces
of dielectric parts of a structure (see, e.g., [9]) as well as volume
integral equations (VIEs) with volume electric current, J, inside
dielectric volumes (see, e.g., [11]).

As general numerical solution procedures, CEM used the
method of moments (MoM) or boundary element method
(BEM) [7], [8], [9], [10], [11] to discretize SIEs and VIEs and
both the finite-element method (FEM) [16], [17], [18], [19], [20],
[21] and the finite-difference time-domain (FDTD) method
[22], [23], [24] to discretize PDEs, in addition to other approach-
es, including the transmission-line modeling (TLM) method
[25], multiresolution time-domain method [29], and finite inte-
gration technique (FIT) [30] (Figure 1).

Numerically approximate HF techniques were devised
and used for the asymptotic CEM analysis of electrically very
large AP structures and systems with smooth surfaces, such
as a large antenna platform (e.g., a ship), a scatterer (e.g., an
airplane illuminated by a radar beam), or an antenna reflec-
tor (e.g., a parabolic dish) [26], [27], [28]. These techniques
included either ray-based approaches, such as geometrical
optics, ray tracing (RT), the shooting and bouncing rays (SBR)
method, and uniform geometric theory of diffraction (UTD),
or current-based ones, for example, physical optics (PO); see
Figure 1. In fact, historically, HF methods dominated the
first few decades of the 75-year history of CEM and AP-S,
with groundbreaking works by Kouyoumjian, Pathak, Burn-
side, Marhefka, Mittra, Rahmat-Samii, and others [32], [33],
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[34], [35], [36]. For example, the
first steps of the men on the Moon
during the Apollo 11 mission in

1969 were TV-broadcasted live

on Earth thanks to dish reflector
antennas designed using HF tools.
In terms of the particulars of
the numerical discretizations, most
of the frequently used CEM tools
were low-order techniques, with
the AP structure modeled by geo-
metrical elements that are electri-
cally very small (on the order of
m/10 or m/20 in each dimension, m
being the wavelength in the medi-
um), and the currents and/or fields within the elements were
approximated by low-order basis functions. This typically results
in a significant burden on the functional (current/field) and geo-
metrical discretization errors on the CEM solution accuracy and
a low convergence rate of the solution, where the solution accu-
racy improves slowly with increasing the number of unknowns
or degrees of freedom (DoFs) and the requirements in compu-
tational resources.

The CEM for AP also used higher order discretizations,
featuring higher order basis functions defined in large curved
geometrical elements (e.g., on the order of m, e.g., 2m, in each
dimension) [37], [8], [9], [10], [14]. The more complex elements,
basis functions, and implementations are generally justified
by both higher order geometrical flexibility and higher order
current/field-approximation flexibility, preferably in the same
method, which enables faster (higher order) convergence of the
solution and more efficient model refinements.

THE METHOD OF MOMENTS

The basic electric and magnetic field IEs (EFIE and MFIE)
were described by Maue in 1949 [38], with the understand-
ing that they can be expressed in a variety of ways by shifting
derivatives from one term to another and other transformations,
and can be combined together, have remained the basis of most
formulations [39], including, for example, the combined field
integral equation (CFIE) [40], [41]; the Poggio, Miller, Chang,
Harrington, Wu, and Tsai (PMCHWT) formulation [42], [43],
[44], [45]; and Muller’s formulation [46], [47].

Numerical solutions to EFIE/MFIE formulations for AP
problems have proven promising and valuable since the early
1960s, when practitioners such as Kennaugh [48], Andreason
[49], Richmond [50], Harrington [7], and others began to
disseminate their research efforts in that area [39]. Since [E
formulations typically involve dense matrix equations, all of
these early approaches were severely limited by the available
computational resources. Because of this limitation, the early
formulations were most successful for 2D scattering prob-
lems [49], [S0] and for the analysis of wire antennas and wire
structures [7], [51], with one of the first higher order MoM
techniques being that for wire-dipole antenna analysis by
Popovic™ in [52]. It is noteworthy that a cell-by-cell parametric
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The first steps of the
men on the Moon
during the Apollo 11
mission in 1969 were
TV-broadcasted live on
Earth thanks to dish
reflector antennas
designed using HF tools.

mapping was used for [E analy-
sis of arbitrary metallic antennas
and scatterers as early as 1972 [53].
Furthermore, the successful prac-
tice of the CEM discipline was
often considered to be more of an
art than a science [39].

The release of the famous
Numerical Electromagnetic Code
(NEC) for wire antennas and scat-
terers, by Burke and Poggio of the
Lawrence Livermore National
Laboratory, in 1980 [54] initiated a
great deal of activity in utilization
of the MoM/BEM for antennas and
has had, over decades, a profound impact on AP design.

Surface patches were more challenging for MoM modeling
than the wire segments in the NEC, primarily because of the
difficulty in enforcing the current continuity across junctions
between patches. The Rao-Wilton-Glisson (RWG) vector basis
functions (named after their inventors) defined on flat triangular
patches [55] solved this problem. Historically, the introduction
of the RWG functions in 1982 [55] resulted in a large number of
new MoM codes and is one of the most important advances in
CEM for AP. While representing the state of the art in the early
1980s, remarkably, they remain the dominant approach in use
today [39]. Currently, these are the most widely used MoM basis
functions in the AP community.

A triangle is commonly represented in terms of simplex
coordinates, p1, p2, and ps, representing normal distances of
a point on the triangle surface to the triangle edges [55], [11],
[12], [3], as shown in Figure 2(a). For the approximation of the
surface current density, Js, the RWG function K: has a nor-
mal component only on edge 1, which, moreover, is constant
along the edge, so that the current continuity condition for the
normal component of Js along the edge can be automatically
adjusted with the accompanying RWG function on the adjacent
patch across the edge, as in Figure 2(b). During the interven-
ing years, higher order generalizations of RWG functions on
curved triangular patches, as shown in Figure 2(c), have been
proposed [10], [14].

Quadrilateral MoM-SIE models with bilinear quadrilateral
patches, Figure 2(d), proposed by Kolundzija [9], or general-
ized curved quadrilateral elements, Figure 2(e), proposed by
Notaro$ [45], have also been used, with u- and v-components
of Js approximated using higher order polynomial vector basis
functions in the parametric coordinates # and v. The lowest
order yields the so-called rooftop functions, the version of
RWG functions for quadrilaterals, which serve in automatic
enforcement of the current continuity condition along quadri-
lateral edges.

More complex parameterizations based on rational polyno-
mial functions, e.g., nonuniform rational B-splines (NURBS)
[56], leading to what is called isogeometric analysis [57], [S8],
allowed for direct incorporation of CAD models into MoM/
BEM (and FEM) computation.
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The 3D generalization of RWG functions—the Schaubert-
Wilton-Glisson (SWG) basis functions on tetrahedral VIE
elements (proposed in 1984) [59]—have been to date the most
popular MoM basis functions for volume current J, namely, for
the electric flux density, D, in VIE modeling [60]. The hexahe-
dral counterparts are those by Notaro$ [61] and Volakis [11].

For transient MoM analysis, time-domain integral equations
(TDIEs) have been used, with the SIE being discretized in both
space, as in Figure 2(b), and time, using various time-marching
schemes and temporal basis functions [62] and a breakthrough
in the form of stable TDIE methods by Michielssen, Shanker,
Weile, and others (see, e.g., [62]).

A major problem in MoM computation is the presence of
Green'’s function, g(R), in the SIE or VIE integrals, making
these integrals singular or near singular when the source-to-
field distance R is zero or small, e.g., in Figure 2(b), and the
integrand becomes infinite or abruptly very large. Seminal prog-
ress has been made by the AP/CEM community, for example,
by Wilton, Graglia, Yla-Oijala, Duffy, and others, in computing
these integrals based on singularity extraction or subtraction
methods [63], [64], [65] and singularity cancellation or coordi-
nate transformation methods [66], [67], [68].

Additional advances in IE modeling for AP included for-
mulations that address the low-frequency breakdown problem,
where Chew and others provided general solutions [69], [70]
and fundamental matrix conditioning issues, e.g., Calderon pre-
conditioners, with impactful works by Andriulli and others [71],
[72], [41]; Nystrém discretizations, such as locally corrected Nys-
trém schemes, proposed by Canino and others [73], [74]; Green’s

functions for infinite multilayer dielectric media, with seminal
contributions by Michalski and Mosig [75]; and multitrace SIE
formulations [76].

THE FINITE ELEMENT METHOD

By its inherent features, the FEM for PDE discretization is
especially suitable for 3D modeling and analysis of AP struc-
tures and systems that contain inhomogeneous and complex
electromagnetic materials as well as geometrical irregularities
[3]. Importantly, PDE operators do not imply direct action at a
distance like integral operators do [e.g., R in Figure 2(b)] but
at a point; hence, the sparsity of FEM matrices, as opposed to
the MoM, and the absence of Green’s functions and singular
integrals. On the other hand, the FEM generally requires
larger numbers of DoF's than the MoM or BEM since it solves
for the fields and hence inherently needs mesh termination
and volumetric discretization and is prone to numerical pollu-
tion error [77].

The first FEM techniques for CEM were based on a point-
matched approach combined with nodal basis functions for each
scalar field component. This approach was susceptible to spuri-
ous modes. A fundamental solution to this was the implementa-
tion of vector basis functions in the FEM. Namely, extending
the triangular patch in Figure 2(a) to a volumetric element, a
FEM tetrahedron, shown in Figure 2(f), is obtained, with a 3D
version of RWG bases that automatically stipulates the conti-
nuity of the tangential E field across element faces, known as
Whitney forms. Elements with such vector bases are referred to
as vector finite elements.

FIGURE 2. CEM patches and elements [3], [37]. (a) Triangular patch with RWG basis functions. (b) MOM-SIE triangular mesh of a
metallic antenna using elements in (a). (c) Generalized curved parametric triangular MoM-SIE patch. (d) Bilinear quadrilateral
patch with higher order polynomial vector basis functions for Js in MoM-SIE. (e) Higher order generalized curved quadrilateral
MoM-SIE patch. (f) Tetrahedral vector finite element with Whitney forms as basis functions for E modeling. (g) Generalized curved
parametric tetrahedron for FEM. (h) Generalized curved hexahedral finite element with inhomogeneous anisotropic material.
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Historically, the development of the 3D vector finite ele-
ments (78], [79], [80], [81], with seminal contributions by Ravi-
art, Thomas, Nedelec, Lee, and others, was another major
advancement in CEM. They can correctly and accurately model
E- and H-field vectors, and, thanks to them as well as the multi-
grid preconditioners and efficient matrix solution processes [82],
the FEM has become practical for AP applications. Currently,
these elements are used in the leading commercial FEM solvers
and in numerous research codes [3].

Higher order tetrahedral finite elements, proposed by Gra-
glia, Wilton, and Peterson [83], Figure 2(g), were particularly
useful because of their higher order convergence for large-scale
AP problems, where the fields propagate over long electrical
distances [84]. Equivalently, FEM modeling of AP structures
was carried out using higher order hexahedral FEM modeling,
Figure 2(h), proposed by Notaro§, as a volume generalization of
quadrilateral patches in Figure 2(e) [85].

In AP analysis (open-region problems), the fields theo-
retically occupy an infinite region, and the FEM or FDTD
computational domain therefore needed to be truncated by
implementing a suitable mesh termination scheme [3]. The
FEM termination based on approximate absorbing bound-
ary conditions (ABCs) [21], while preserving the simplic-
ity of the FEM method and sparsity of the final system,
required placing the truncation surface sufficiently far away
from the antenna (or other AP structure), which significantly
increased the computational domain. The perfectly matched
layer (PML) [21], an artificial lossy domain added around the
computational domain, was born in the context of the FDTD
method by Berenger [86] and further advanced by Gedney
[87] and others as another breakthrough in CEM. The locally
conformal PML conforming to the geometry of an antenna
was implemented for the FEM.

As another important advancement in CEM for AP, with
pivotal works by Jin, Volakis, Lee, and others, in a mesh ter-
mination scheme based on boundary integral (BI) equations
[88], [20], giving rise to a hybrid FE-BI, also referred to as
the FEM-MoM, methodology, the FEM region was trun-
cated and numerically closed (completed) by SIE (MoM) solu-
tion outside the region, which was an exact termination. The
method has been continuously developed for more than 35
years, resulting in a variety of different formulations, includ-
ing the latest symmetric ones [89], [90], [84]. The computation
of fully populated BI subblocks was accelerated using fast
algorithms [89].

THE FDTD METHOD

The FDTD method discretizes directly the two curl Maxwell’s
equations [2], which represent a system of simultaneous equa-
tions with two unknowns (E and H). The method relies on the
approximation of time and space derivatives by central differ-
ences on a staggered grid. Figure 3 illustrates the Yee lattice
(cell) for 3D FDTD field computation, where any of the E vec-
tor components is surrounded by only H components, and vice
versa. The overall result is a set of six coupled difference equa-
tions that are solved by moving (marching) forward in space
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through the computational grid and time, the so-called leapfrog
scheme. The FDTD implementation is inherently iterative and
not a matrix method.

Historically, the discovery of the Yee cell [91] was what
made the FDTD method later become a practical CEM
tool [22], [23], [24], [92], [93] currently in a wide use by AP
modelers and designers, as implemented in some of the
most popular commercial codes and in a large number of
“in-house” code realizations. Being made as early as in 1966,
it was the first major advance in CEM for AP. However,
the method was more the one of theoretical curiosity than
a practical solution long after its inception. Early pioneers
in the development of the FDTD method as a practical
AP tool in the United States were Taflove, Holland, and
Kunz. In Europe, Weiland independently developed a twin
approach dubbed the finite integration technique (FIT)
[92], [93], [94].

The early 1980s witnessed a surge in the development of
ABCs that allowed for open-problem FDTD and FEM simula-
tions, and in the early 1990s, the first FDTD applications to
the modeling of antennas began to appear in the literature [92],
[93], [94]. With the increase in the size of the problems being
tackled, the problem of numerical dispersion error came to the
forefront in the late 1980s, and a series of higher order FDTD
algorithms was developed to mitigate this error using larger
finite-difference stencils [92], [93]. The introduction of the PML
in the mid-1990s [86], [87] provided a major improvement in
the dynamic range of open-domain FDTD simulations, which
under very mild computational costs could now achieve 80 dB
absorption and beyond [94]. The development of uncondition-
ally stable algorithms for the FDTD in the late 1990s and early
2000s was another major milestone since it lifted the Courant
stability limit, with the time step not being bounded by the
stability criterion anymore, which enabled highly refined spatial
grids [93], [94].

Note that the respective FDTD equation agrees perfectly
with Maxwell’s first equation in integral form [2] applied to

(i+1, j+1, k+1)

Ey

.01
+— Kk
(i,J 2,)

k+1
2 )

(i, J, k)

(i), k*3)

FIGURE 3. Yee lattice (cell) for a 3D FDTD technique for
solving general curl Maxwell’s equations [3].
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contour C in Figure 3. In fact, the FIT method [30] explicitly
solves Maxwell’s integral equations based on such contours and
the closed surface of a cell, in Figure 3.

Time-domain FEM techniques were based on a numerical
discretization of the time-domain version of wave equations
[93], [94], [95], [96], or, more recently, coupled curl Maxwell’s
equations [97], where, in both cases, marching in time similar to
the process in the FDTD method was commonly used [16]. His-
torically, the development of the time-domain (TD)-FEM, with
works by Lee, Jin, Teixeira, and collaborators, was yet another
important advancement in CEM [84].

Generally, time-domain formulations, including the FDTD,
FIT, TD-FEM, and TDIE approaches, enable effective model-
ing of time-varying and nonlinear problems and fast broadband
simulations (providing broadband information in a single run) at
the expense of the additional discretization—direct discretiza-
tion in the time domain [3].

FAST SOLVERS, DOMAIN DECOMPOSITION METHODS,
AND HYBRID APPROACHES
A main problem and grand challenge in CEM for AP applica-
tions has been the appearance of large matrices resulting from
MoM/BEM and FEM discretizations of large and complex AP
problems. Historically, the state of the art in terms of MoM
solver performance in the 1980s was vividly summarized
by Figure 2 of Miller’s review article of 1988 [98], [39]. This
figure showed the largest size problem that could be solved by
lower-upper (LU) decomposition in 1 h on the state-of-the-art
computer of that year. While fundamentally a plot of computer
performance, that figure presented a rather pessimistic future
for IE formulations [39]. A rather general conclusion was that
the MoM would not play critical roles in solving real-life AP
problems because of its unfavorable computational complex-
ity and scaling [82]. However, the development of fast solvers
shifted that trajectory in a dramatic way.

The fast multipole method (FMM), pioneered by Rokhlin
[99], was an iterative fast solver that allowed for the rapid compu-
tation of long-range or “far-field” interactions between groups of

_ Hybridization

—
'—--—_____.a/

FIGURE 4. The hybridization of different CEM
methodologies, e.g., MoM, FEM, and HF asymptotic
techniques, together with a circuit model (CM) and
multiphysics (MP) analysis, into a single code for AP/
interdisciplinary simulation and design.

unknowns in the MoM. The FMM performed fast matrix-vector
multiplication, the speed of which was further increased by the
multilevel FMM (MLFMM) [100], [12], with multiple levels of
hierarchically defined groups of varying fineness and O(N log N)
computational time complexity, where N is the number of DoFs,
a dramatic acceleration relative to the O(N3) complexity of the
MoM with LU decomposition. The time-domain counterpart
of the MLFMM was the multilevel plane-wave time-domain
(PWTD) algorithm, pioneered by Shanker and Michielssen [101].
Direct fast solvers based on H-matrices and matrix com-
pressions provided kernel-independent algebraic methods
with matrix blocks approximated by low-rank matrices, using
singular value decomposition (SVD) [102], rank-revealing QR
(RRQR) decomposition [103], or adaptive cross approximation
(ACA) [104]. Low-rank compression schemes gained popular-
ity through the works of Hackbusch [105] and Michielssen
[106] as examples.

Historically, the discovery of fast solvers constituted by the
FMM and similar accelerations [99], [12] was another major
advancement in CEM for AP. Indeed, it completely changed
the landscape of CEM [82]. Chew led a team of researchers
who successfully implemented the FMM and MLFMM and
demonstrated that they can be applied to solve AP problems
with unprecedented electrical size and uncompromised accu-
racy [100], [12]. They proved that it was possible to drastically
improve upon the trajectory of Miller’s 1988 figure, and that IE
formulations were not as limited by computer hardware as pre-
viously thought [39].

Another class of introduced fast methods included grid- or
fast Fourier transform (FFT)-based algorithms, which relied
on the block Toeplitz nature of Green’s functions mapped onto
regular grids. The adaptive integral method (AIM), pioneered
by, among others, Bleszynski’s et al. [107], and the precorrected-
FFT (p-FFT) method, pioneered by Phillips [108], were among
the most popular and well-documented techniques [82], [109]
(Figure 1).

Great developments in the AP community also occurred
in the class of domain decomposition (DD) methods, with
seminal works by Lee, Jin, Vouvakis, and Peng, among others
(see, e.g., [110], [111], and [112]), which allowed splitting of the
original large problem into a number of smaller ones, analyzed
independently. These were then stitched together by some sort
of local or integral boundary conditions, tremendously reducing
the computational burden, yet yielding in the process a rigorous
solution of Maxwell’s equations for the problem. Additionally,
the DD methods were ideally suited for parallelization and the
use of multiple machines and multiple processors. An alterna-
tive approach to handling large problems based on the prin-
ciple of localization was the characteristic basis function method
(CBFM), pioneered by Mittra [113].

Finally, it is extremely beneficial to hybridize different meth-
odologies and approaches (Figures 1 and 4) to combine their
distinctive features and advantages. Historically, a notable
example were hybrid FE-BI or FEM-MoM techniques [20],
[88], [89], [90]. HF asymptotic approaches were hybridized with
numerically exact methods, such as the MoM or FEM, giving
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rise, for example, to hybrid PO-MoM solutions [114] and hybrid
SBR-FEM solvers [115]. Hybrid solvers included incorporation
of a circuit model (CM) and the cosimulation and co-design
of integrated AP systems using field-circuit solvers as well as
the integration of multiphysics (MP), such as electromagnetic,
thermal, mechanic, photonic, fluidic, or elastic phenomena
into tightly coupled mixed-physics modeling methods. This has
become critical in some emerging AP designs because of the
rise of mixed-technology systems [109]. DD methods can be
used to combine completely different numerical techniques
(e.g., FEM, MoM-SIE, MoM-VIE, and HF methods) in the
same complex system. Indeed, the future of CEM will require
and facilitate hybridizations of all approaches at once, as indi-
cated in Figure 4.

PARALLELIZATION AND HIGH-PERFORMANCE COMPUTING
AP CEM researchers and practitioners have taken full advan-
tage of available high-performance computing (HPC) platforms
over time. Indeed, computing hardware and software infra-
structure has provided, especially more recently, unparalleled
opportunities, with the associated challenges, for the rapid
growth of CEM capabilities and modeling technologies needed
and desired by AP application researchers and practitioners.
However, this has evolved in close synergy with the electromag-
netic formulations and numerical foundations of CEM methods
and algorithms (Figure 1). As a community, we have explored
and devised innovative ways to maximally harness the advan-
tages of the growing opportunities of the computing hardware
and technology.

Historically, the most widely used parallel programming
paradigms were open multiprocessing (OpenMP) and the mes-
sage passing interface (MPI) [3]. For example, these protocols
enabled truly unprecedented MLFMM scattering simulations
with billions of unknowns [116], [117].

Now we can take a look back at Miller’s 1988 figure [98] and
note that the advancement over about 30 years (from the early
1950s to the mid-1980s) in terms of the largest problem that
could be solved within 1 h was from N = 100 unknowns to about
6,000 unknowns (the maximum dimension of a scatterer being a
few wavelengths), so an increase of about 60 times. The follow-
ing ~30 years, from the mid-1980s to the late 2010s, however,
saw the rise all the way to, as an example, N = 10,666,680,960
unknowns (a maximum dimension of 11,503m) within 7.5 h
[117], so about a 1.7 million times improvement (note that with
the O(N3) complexity in Miller’s figure, 1 h versus 7.5 h compu-
tation time does not make a big difference in N). Indeed, what
was once a rather pessimistic trajectory for the first half of the
CEM history then became a blistering growth during the sec-
ond half of the 75 years of CEM.

Enormous advances in graphics processing unit (GPU)
technology, originally for graphics applications, have made
these hardware accelerators widely useful outside the com-
puter graphics world, including in CEM for AP [3]. For
example, Table 1 illustrates how a speedup of an SBR method
for RT propagation modeling, including electric field compu-
tation, as dramatic as four orders of magnitude faster could
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be achieved with massively parallel GPU optimization on an
Nvidia OptiX Prime CUDA GPU parallelization framework,
relative to the implementation on a central processing unit
(CPU) in serial [118].

Currently and for the future, of greatest importance for
HPC in CEM and AP is the hybridization of different paral-
lelization paradigms and strategies, such as the MPI, OpenMP,
and CUDA frameworks, to fully exploit the available and emerg-
ing hardware capabilities.

ERROR ESTIMATION, ADAPTIVE REFINEMENT,
UNCERTAINTY QUANTIFICATION, OPTIMIZATION,

AND DESIGN

Historically, it has always been clear that the task of proving
the theoretical convergence of CEM solutions for AP is not
trivial [39]. During the past several decades, a steady effort was
directed toward a better understanding of theoretical error
rates, and a knowledge base was generated (see, e.g., [119], [120],
and [121]) that provided a foundation for a more rigorous scien-
tific understanding of expected convergence rates, performance
of error levels, etc. Another area where historically progress was
slow is in the development of inexpensive error estimators for
use with adaptive model refinement (AMR) algorithms. It is the
convergence of these areas that could enable the realization of
“dialable” accuracy in numerical solutions [39].

Indeed, of paramount importance is a synergistic combination
of error estimation and control [119], [120], [121], meshing [122],
AMR [123], and uncertainty quantification (UQ) [124] for CEM
(Figure 1); see [125], [126], [127], [128], [129], and Figure 5, select-
ed only as illustrative examples. A goal is to make CEM method-
ologies and techniques as accurate, efficient, accessible, usable,
reliable, and robust as possible and thus maximally beneficial to a
broad audience of AP researchers, practitioners, and students, with
no need for expert user intervention.

Through effective and rigorous UQ, the quality of analyses
and designs may be improved drastically, in terms of both
effectiveness and reliability, since material parameters of an
antenna/scatterer, object shape/size, mutual positions/orienta-
tions, etc., are all uncertain input parameters, which may be
known only within a specific tolerance [124], [128], [129]. UQ
in CEM involved studies of how the input parameter uncer-
tainty resulted in uncertainty in the generated electric or mag-
netic field, for example, in assessing the sensitivity of the field
to the uncertain input parameter [see, e.g., Figure 5(e) and (f)].

TABLE 1. COMPUTATION TIMES AND
SPEEDUP OF A MASSIVELY
GPU-PARALLELIZED SBR RT PROPAGATION
ANALYSIS VERSUS SERIAL CPU

IMPLEMENTATION [118].
Serial Parallel
Number Computation Computation
of Rays Time (s) Time (s) Speedup (x)
1,600,000 86,214 6.5 13,263

75



9L

yZ0Z ANNT

IANIZVOVIN NOILYOVdOYUd 8 SYNNILNY 3331

\—- Initial Discretization ~*-AMR |

s ==Uniform Reference —AMR| 0.25 [— Monte Carlo (1,000 pt)
S 100 15,000 | i — HOPS (1 pt)
5 i | ! 0.2}
2 10-1 10,000 | 1
= L » i
§102 5 i = ! 2 0.15]
- o ‘@
5 100 5000 | kol
g @t
= 104 3,000 PWW
®© ! 3 |
L5 | =, AY ] -90 -50 0 50 90 0.05
—90 50 0 50 90 Monostatic Scattering Angle (°) 0 | !
Monostatic Scattering Angle (°) (b) 0 5 10 15 20
(a) R(’Z()Q)
Qol Error per Element Refinement Strategy Comparison (k = 9)
16 ¢ GETK 9 Points WS i - iso-hp
L *x MC 1,000 Points i -= iso-h aniso-p
& aniso-h iso-p
\ ~&- aniso-hp

Relative Error

15
Imag {£} 35 Real {£}

N 0.6x10* 10 1.6x10%
() ()] DoFs
(h)
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but of 64th order [122]. (e) Adjoint-based UQ with HOPS and FEM-PML: several orders of magnitude improvement in computation time with respect to a traditional MC simulation
for RCS versus material uncertainty [128]. (f) Surrogate RCS reconstruction for 2D material uncertainty by the GETK UQ method: almost an exact match with MC solution even with
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Again, it is key to have an accelerated design integrating auto-
mated adaptive error estimation and control, AMR, and UQ
(see, e.g., Figures 1 and 5).

The AP CEM community made seminal advancements in
developing and using electromagnetic optimizers for AP syn-
thesis and design (Figure 1); see, e.g., [130]. Some of the most
notable and impactful approaches included gradient-based
optimization as well nature-inspired optimizers, such as genetic
algorithm (GA) and particle swarm optimization (PSO), intro-
duced in AP CEM design by Rahmat-Samii. The most recent
advancements in CEM analysis and design invoked artificial
intelligence (Al), machine learning, and data-enabled approach-
es. For example, various techniques in Al were applied for elec-
tromagnetic optimization and design; see, e.g., [131].

COMMERCIAL CEM CODES FOR AP

Perhaps the most significant change in the CEM for AP over-
all and its main signature for the start of the 21st century was
the establishment of commercial CEM codes as essential and
extremely widely used software tools for AP modeling, analysis,
and design. Dramatically fewer AP research and development
groups and units at academic, governmental, and industrial/com-
mercial institutions and organizations are developing “in-house”
CEM methods, algorithms, and codes. Most researchers, prac-
titioners, and students are relying instead on commercial solvers

for CEM simulation and design. For example, graduate students
typically no longer write their own codes for their AP research.

In what follows, we list some of the most popular com-
mercial CEM software tools used for AP simulations, highlight
some of their numerical components, and outline some of their
apparent capabilities and features relevant for AP modelers and
designers [3]. Many other commercially available CEM codes
are not listed, and many of the known characteristics of the
codes listed are not included for brevity.

Ansys High Frequency Structure Simulator (HFSS) primar-
ily employs the FEM to solve a wide range of AP problems in
both the frequency and time domains. It uses rectilinear or
curvilinear tetrahedral finite elements, Figure 2(f) and (g), with
field expansions of first, second, and mixed order. The code car-
ries out automatic and adaptive mesh refinement with these ele-
ments. Ansys HFSS is arguably the most widely used CEM tool
for AP analysis and design.

The Computer Simulation Technology Microwave Studio
(CST MWS) offers widely used CEM tools based on the FIT
as well as the MoM, MLFMM, FEM, and RT, respectively.
The software uses automatic meshing based on hexahedra or
tetrahedra [Figure 2(f)-(h)] and mesh adaptation techniques
implemented in cooperation with Dassault Systémes. Antenna
Magus is a software tool tailored specifically for antenna design
and modeling.

Realized Gain (dBi)

— Measurement ' ' y =
- HFSS 4
—= CST-MWS

o FEKO 59

o N A O

(b)

FIGURE 6. Design of a wideband compact double-ridged transverse electromagnetic (TEM) horn antenna embedded in a
shaped rectangular cavity [3], [132]. (a) Photograph of the structure. (b) Comparison of numerical results obtained by ANSYS-
HFSS (FEM, tetrahedral mesh, mixed-order basis functions), CST MWS (FIT, hexahedral mesh, time-domain solver), and FEKO
(MoM-SIE, triangular mesh, RWG bases), and experimental results at 7 GHz. (c) HFSS mesh. (d) FEKO mesh. (Courtesy of

Mohamed Elmansouri.)
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FEKO by Altair HyperWorks is one of the most popu-
lar commercially available CEM tools in the AP community.
The primary computational method employed is the MoM
with triangular patches [Figure 2(a) and (b)] and RWG basis
functions, optionally with the MLFMM acceleration. However,
FEKO provides a whole suite of codes, such as FEM, FDTD,
PO, and UTD solutions, which can be used either independent-
ly or in hybrid arrangements.

WIPL-D Pro is a powerful design program capable of
modeling AP structures comprising both metal (Wires and
PLates) and Dielectric materials. It is becoming increasingly
popular among antenna engineers for its economic and accurate
solutions. WIPL-D implements the MoM and uses bilinear
quadrilateral patches [Figure 2(d)] to model both metallic and
dielectric surfaces. Currents are approximated by higher order
polynomial vector basis functions.

TICRA software combines the PO, GTD, and RT
techniques with the MoM using higher order quadrilat-
eral patches [Figure 2(e)] and polynomial vector bases and is
especially well known for the analysis and design of reflector
antenna systems.

Remcom offers an FDTD (Figure 3) computer pro-
gram for AP modeling and design, XFdtd, which comes

Equiangular Spiral: r(<) = ri,e®<

Transmitting Spiral

with a well-developed GUI. It also features the Wireless
InSite, a powerful RT tool for AP modeling in outdoor and
indoor environments.

SEMCAD X is a 3D full-wave CEM solver based on the
FDTD method (Figure 3). It is often utilized for RF modeling
of biological tissues in AP applications.

COMSOL Multiphysics performs CEM analysis based on
the FEM [Figure 2(f)], and its primary strength is seamless cou-
pling of various MP effects into the CEM AP analysis.

CEM APPLICATIONS

This section shows some illustrative AP applications of the CEM
methodologies and numerical discretization techniques pre-
sented in this article.

Figures 6 and 7 show results obtained by the first three
commercial CEM codes discussed in the previous sec-
tion—for two real-world antenna designs and applications
[3]. The excellent agreements in cross-validations of CEM
results observed in the figures are very relevant, given that
the solution approaches used are completely different, both
conceptually (in terms of the CEM methodology, meshed
domain, and discretized quantity) and numerically (with
respect to the geometrical elements, basis functions, and
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FIGURE 7. Mitigation of pulse distortion in spiral antenna-based ultra-wideband communication systems [3], [133]. (a) Antenna
geometries. (b) Comparison of numerical results obtained by CST MWS (FIT, hexahedral mesh, time-domain solver) and FEKO
(MoM-SIE, triangular mesh, RWG bases, indirect transient analysis using the discrete Fourier transform and its inverse), and
experimental results for normalized received pulses of a two-arm planar equiangular spiral antenna-based communication

link. (c) FEKO mesh. (Courtesy of Mohamed Elmansouri.)

JUNE 2024 IEEE ANTENNAS & PROPAGATION MAGAZINE



solution techniques). For instance, the MoM-SIE (FEKO)
method is a surface modeling technique that solves bound-
ary IEs for currents, while the FEM (Ansys HFSS) and
FIT (CST MWS) methods are volumetric modeling tech-
niques that solve PDEs for fields. Discretizations are as
different as triangular/low-order (FEKO), hexahedral/low-
order (CST MWS), and tetrahedral/mixed-order (Ansys-
HFSS) types, and include both solutions in the frequency
domain (Ansys HFSS and FEKO) and time-domain tech-
niques (CST MWS).

Ultimately, the confirmation and demonstration of every
design and validation of every numerical method and approach
is an agreement with experiment [3], and we see excellent agree-
ments of the CEM results with the antenna measurements in
Figures 6 and 7.

Figure 8 depicts 14 comprehensive CEM-AP applications
with results provided by AP-S CEM researchers, which were

obtained in their CEM and AP projects within the past 20
years, as illustration of the versatility and effectiveness of
various CEM approaches. The applications and problems
range from in-depth characterizations and evaluations to
optimized designs, and from antennas, propagation, and
scattering to radar meteorology and medical diagnostics.

CONCLUSIONS
This article has presented an overview of 75 years of research
in computational electromagnetics within the IEEE Antennas
and Propagation Society and the AP community at large, on the
occasion of the 75th anniversary of AP-S, where both the CEM
and AP-S have similar and interwoven histories of 75 years, half
of the history of Maxwell’s equations.

The article has discussed the discoveries, developments,
and implementations of principal IE and PDE CEM method-
ologies, HF asymptotic techniques, and general MoM, FEM,

1
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FIGURE 8. Collage of 14 comprehensive CEM-AP applications [31], [134], with the analyses and designs conducted using FE-BI, FEM-
ABC, MoM-SIE, FDTD, DD, MLFMM, RT-SBR, and MoM/FEM-PO methods, and both frequency-domain and time-domain
computations. The collage presents CEM characterizations of (a) large antenna array with a radome using frequency-selective
surfaces [135]; (b) aircraft carrier with airplanes, helicopters, unmanned aerial vehicles, and antennas at 1.2 GHz; (c) 5G MIMO
wireless channel in a city block; (d) scattering from an F16 aircraft at 1 GHz; (e) electric field distribution within a human
head, hand, and cell phone, including the antenna, PCB, and battery, at 900 MHz [136]; (f) MP CEM-plasma interaction with
air breakdown and plasma filamentary array formation near two metallic cylinders with an air gap, excited by high-power
microwaves [137]; (g) wave propagation effects inside a desktop computer at 10 GHz; (h) antenna-platform interaction on

a ship at 1 GHz; (i) transient currents on an aircraft with a mounted Vivaldi antenna at 270 MHz [138]; (j) horn antenna array
fed with a Rotman lens; (k) specific absorption rate in a human head model at 835 MHz [139]; (1) RF coil/antenna array for
next-generation, ultrahigh field magnetic resonance imaging [140]; (m) precipitation scattering [141]; and (n) wireless signal
propagation in underground mine tunnels [142]. MIMO: multiple-input, multiple-output; PCB: printed circuit board. [(a) and
(h) courtesy of John Volakis and Kubilay Sertel; (b), (c), and (g) courtesy of Zhen Peng; (d), (e), and (j) courtesy of Jin-Fa Lee;

(f) and (i) courtesy of Jian-Ming Jin and Su Yan; (k) courtesy of Cynthia Furse; (1), (m), and (n) courtesy of Branislav Notaros.]
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and FDTD numerical discreti-
zation procedures for AP. These
have included parametric triangu-
lar and quadrilateral patches and
tetrahedral and hexahedral vol-
ume elements and characteristic
types of current/field vector basis
functions, such as RWG functions,
Whitney forms, and polynomial
vector bases as well as the Yee lat-
tice. The article has also reviewed
the history, state of the art, and
future outlook of various important components of CEM mod-
eling and computation, such as fast solvers, DD algorithms,
and hybrid methods; parallel programming paradigms and
HPC; and error estimation and control, meshing, AMR, and
UQ for CEM-AP. Finally, we have overviewed some of the
most popular commercial CEM software tools used for AP
simulations and design.

Illustrative numerical results obtained by some of the
leading commercial CEM codes have demonstrated excel-
lent agreements, accuracy, and efficiency in comparisons
of the solutions by multiple tools and against antenna
measurements for diverse real-world antenna designs and
applications [3]. The presented CEM results for several com-
prehensive AP applications have signified the power, versa-
tility, and reliability of CEM and its impact on AP research
and practice.

The article has shown a great diversity of formula-
tions, elements, bases, and solution techniques within
CEM for AP. Although all of these components as well
as their many working combinations resulting in CEM
codes for AP analysis and design seem to be completely
different, they all have a lot in common, as has also
been shown in the article. However, they all show some
advantages and deficiencies. The choice of the “ best”
method depends on the particular problem that needs
to be solved. Therefore, all presented and/or refer-
enced CEM formulations, elements, bases, solutions,
and implementations as well as those that could not
be mentioned are important and constitute a body of
knowledge in this area.

Historically, however, there were periods of time during
the past 75 years of history of AP-S and history of CEM when
certain CEM approaches seemed to dominate the AP applica-
tions. The first few decades saw the dominant practical use of
HF methods. The 1980s were dominated by the MoM/BEM,
along with HF approaches. The early 1990s were the begin-
ning of practical AP applications of the FEM and the FDTD
method, with the practical debut of fast methods in the late
1990s. By the early 2000s, it became obvious that commercial
CEM software tools would play an incredibly important role in
AP research and practice, and would essentially dominate AP
simulations and design.

CEM for AP of the 21st century has been constituted
by a true expansion and/or renaissance of all methodologies

Most researchers,
practitioners, and
students are relying
instead on commercial
solvers for CEM
simulation and design.

and techniques, with some high-
lights being commercial codes;
fast solvers; hybridizations; DD;
CEM- CM-MP cosimulation,
co-design, and mixed technology;
parallelization and HPC; higher
order modeling; AMR; UQ; and
design optimization. Overall, we
have witnessed dramatic enhance-
ments in the accuracy, efficiency,
versatility, reliability, stability, and
robustness of AP modeling, analy-
sis, and design, for an unprecedented variety of AP/interdisci-
plinary applications.

The article has demonstrated the phenomenal progress
that CEM and AP researchers and developers have made over
the past 75 years. Of course, it was impossible to accurately
and fully represent the tremendous successes and accomplish-
ments of an era in one article. Yet, it is hoped that the article
is still representative of the CEM history as well as the state
of the CEM art for AP, which is truly outstanding. How-
ever, progress is still being made, and many innovative CEM
approaches are yet to come in new computational methodolo-
gies, hybridization strategies, discretization techniques, and
application-driven implementations as well as new ways to
better harness the ever-growing HPC power. The next 75
years of CEM and AP-S are promising to be equally rich,
fascinating, and intense! Are those four, now 150-year-old,
Maxwell’s equations ever going to be solved?
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