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75 Years of IEEE 
AP-S Research 

in Computational 
Electromagnetics 

 
A view on the discipline and its history, current state, 

and future prospects. 

 T 
his article presents an overview of 75 years of research 

in computational electromagnetics (CEM) within the 

IEEE Antennas and Propagation Society (AP-S) and 

the AP community at large on the occasion of the 75th 

anniversary of AP-S, where both CEM and AP-S have similar 

and interwoven histories of 75 years, a half of the history of 

Maxwell’s equations. The article discusses the discoveries, 

developments, implementations, and applications of principal 

CEM methodologies and techniques for AP. While historical- 

ly there were periods of time when certain CEM approaches 

seemed to dominate AP applications, it is indicative that 

CEM for AP of the 21st century has been constituted by a 

true expansion and/or renaissance of all approaches, with an 

emphasis on hybridizations and integrations. Overall, we have 

witnessed phenomenal progress and dramatic enhancements 

in the accuracy, efficiency, versatility, reliability, stability, 

and robustness of AP modeling, analysis, and design. How- 

ever, CEM is still a work in progress, and many important 

research challenges are yet to be addressed and solved for 

the ever-growing simulation and design demands of the next 

generations of AP technologies. Hence, the next 75 years of 

CEM and AP-S are promising to be equally rich, fascinating, 

and intense! 
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INTRODUCTION 
Antenna, radio-frequency (RF), wireless, and other electro- 

magnetics-related technologies are exploding! CEM is the 

interdisciplinary field aimed at numerically analyzing and com- 

putationally solving practical problems within these technologies 

involving electromagnetic fields and waves and their interactions 

with materials and existing or to-be-designed structures and 

systems. Naturally, CEM has been one of the main topics within 

the scope and activities of AP-S. 

Indeed, the importance of CEM to AP technologies can 

hardly be overstated. CEM simulations are effectively used 

today at frequencies spanning dc to optics, for system sizes rang- 

ing from subatomic to intergalactic, and for a broad spectrum of 

AP application areas, including the design of antennas and RF/ 

microwave/terahertz devices, components, and systems, elec- 

tromagnetic scattering, indoor and outdoor radio propagation, 

wireless communication systems, radar systems, remote sensing, 

packaging, RF interference, new materials, quantum electrody- 

namics, and bioelectromagnetics. To cover such a wide variety 

of structures, technologies, and applications, a range of different 

CEM methodologies and numerical discretization techniques is 

needed and preferred over a single approach. 

In his famous book, A Treatise on Electricity and Magnetism 
(1873) [1], James Clerk Maxwell provided a unified mathemati- 

cal framework for all fundamental laws of electricity and mag- 

netism discovered experimentally by his predecessors, and he 
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compiled and completed the four fundamental equations of 

electromagnetics that bear his name [2]. Per Albert Einstein, 

“The formulation of these equations is the most important event 

in physics since Newton’s time.” These four equations provide 

the foundation for the general analysis of electromagnetic radia- 

tion and propagation and for all of the theoretical principles, 

analytical procedures, and numerical techniques that together 

constitute the knowledge and tools for the understanding, analy- 

sis, and design of AP structures and systems [3]. 

So, as a community, just last year we celebrated 150 years of 

Maxwell’s equations, and CEM has a history of about 75 years 

[3]–[142]. CEM and AP researchers have made tremendous 

progress in devising and developing new methods and codes, 

both “in-house” (research or custom-designed) techniques 

and commercial solvers, often in synergy with AP application 

researchers and practitioners as CEM users. Holistically, CEM 

discoveries, advancements, and impacts over 75 years have 

tightly relied on principal breakthroughs and developments 

made in electromagnetic/physical formulations and contexts of 

engineering problems, mathematical and numerical foundations 

of methods and algorithms, and computing hardware and soft- 

ware infrastructure. Truly, CEM research and practice is a com- 

prehensive combination of engineering, physics, mathematics, 

and computer science, with exciting potential and challenges. 

This year, the IEEE Antennas and Propagation Soci- 

ety celebrates its 75th anniversary—the Diamond Jubilee 

Anniversary—as it was founded in 1949. AP-S is 

one of the three oldest IEEE societies (or profes- 

sional groups as the societies were called then), 

and its first official name was the IRE Professional 

Group on Antennas and Propagation. Remark- 

ably, the Society was founded with the same name 

(Antennas and Propagation) that it kept during the 

following 75 years and still does. Of course, it all 

started with Maxwell’s equations 150 years ago, and 

a half of that history was with AP-S as one of the 

leaders in the field. 

This article presents an overview of 75 years 

of research in CEM within AP-S and the AP 

community at large. It aims at providing rep- 

resentation that is as complete and unified as 

possible of fundamental developments across a 

spectrum of CEM formulations, methodologies, 

solution techniques, and applications related to 

AP. However, given the wealth and diversity of 

past ideas and efforts as well as their results and 

outcomes (that is, devised and available CEM 

methods and codes), this article is by no means 

meant to be an exhaustive survey. Rather it is a 

systematic and illustrative presentation and dis- 

cussion of commonalities and unifying concepts 

of CEM approaches and tools, including selected 

specifics, in terms of both the history and the 

state of the art, with an eye toward their practi- 

cal applicability and usefulness. 

Because of space limitations, all presented or 

mentioned CEM methodologies, techniques, implementations, 

and applications, all explicitly mentioned names, all presented 

commercial tools, all figures and results, and all listed and 

cited references are only meant to be representative, illustra- 

tive, informative, and interesting, and by no means complete or 

exhaustive. Also, to economize space, when an author name is 

mentioned in the article, it is typically and rather consistently a 

group or project leader on multiauthor publications with authors 

from the same group. These, again, are subjective selections that 

could certainly have been done differently and have left many 

key contributors unmentioned. 

Moreover, this is one author’s overview of the activities and 

accomplishments of thousands of researchers, practitioners, and 

students in many generations over 75 years and one person’s 

attempt to condense efforts and successes of an era and the 

entire discipline in one article. Thus, it is inevitable that some 

objectively important facts and contributions were omitted or 

misprioritized by mistake, lack of knowledge, or by a subjective 

and biased view of the author or just his imperfect and non- 

optimal endeavor to “squeeze” everything into the page limit. 

Therefore, one thing is certain: the most rigorous and exact 

aspect of this article is that it is a personal view of the author on 

the discipline and its history, current state, and future prospects. 

It is just one possible view and an imperfect but honest attempt. 

Three special issues of IEEE Transactions on Antennas and 
Propagation on CEM provided comprehensive accounts of 
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developments and the state of the art in the field as well as archi- 

val materials for the respective time periods. These were the 

1997 special issue, titled “Advanced Numerical Techniques in 

Electromagnetics” [4]; the one published in 2008, on “Large and 

Multiscale Computational Electromagnetics” [5]; and the just- 

published special issue (in two parts) on “Frontiers in Compu- 

tational Electromagnetics” (December 2023/January 2024) [6]. 

However, computational electromagnetics is still a work in 

progress, and many important research challenges are yet to be 

addressed and solved. Namely, we are not yet done in solving 

these four 150-year-old equations, as we continue a quest to 

devise, develop, and use new and improved methods and tools 

to achieve more speed, accuracy, versatility, and reliability of 

CEM simulations for different classes of real-world AP engi- 

neering applications and problems [3]. 

PRINCIPAL CEM METHODOLOGIES AND APPROACHES 
The CEM methodologies of the 75 years of CEM and AP-S 

can broadly be classified into those based on integral equation 

(IE) formulations, namely, on solving IEs for currents (field 

sources) [7], [8], [9], [10], [11], [12], [13], [14], [15], those based on 

partial differential equation (PDE) formulations, i.e., on solving 

PDEs for fields E and/or H as unknown quantities [12], [13], 

[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], and 

high-frequency (HF) asymptotic techniques [26], [27], [28] as 

well as hybrid approaches [15], [16], [17], [18], [19], [20], [21]. IE 

methods included those for discretizing surface integral equa- 

tions (SIEs) for the surface electric current, Js, on metallic AP 

structures (see, e.g., [8]), and for equivalent electric and mag- 

netic (artificial) surface currents, Js and Ms, placed over surfaces 

of dielectric parts of a structure (see, e.g., [9]) as well as volume 

integral equations (VIEs) with volume electric current, J, inside 

dielectric volumes (see, e.g., [11]). 

As general numerical solution procedures, CEM used the 

method of moments (MoM) or boundary element method 

(BEM) [7], [8], [9], [10], [11] to discretize SIEs and VIEs and 

both the finite-element method (FEM) [16], [17], [18], [19], [20], 

[21] and the finite-difference time-domain (FDTD) method 

[22], [23], [24] to discretize PDEs, in addition to other approach- 

es, including the transmission-line modeling (TLM) method 

[25], multiresolution time-domain method [29], and finite inte- 

gration technique (FIT) [30] (Figure 1). 

Numerically approximate HF techniques were devised 

and used for the asymptotic CEM analysis of electrically very 

large AP structures and systems with smooth surfaces, such 

as a large antenna platform (e.g., a ship), a scatterer (e.g., an 

airplane illuminated by a radar beam), or an antenna reflec- 

tor (e.g., a parabolic dish) [26], [27], [28]. These techniques 

included either ray-based approaches, such as geometrical 

optics, ray tracing (RT), the shooting and bouncing rays (SBR) 

method, and uniform geometric theory of diffraction (UTD), 

or current-based ones, for example, physical optics (PO); see 

Figure 1. In fact, historically, HF methods dominated the 

first few decades of the 75-year history of CEM and AP-S, 

with groundbreaking works by Kouyoumjian, Pathak, Burn- 

side, Marhefka, Mittra, Rahmat-Samii, and others [32], [33], 
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[34], [35], [36]. For example, the 

first steps of the men on the Moon 

during the Apollo 11 mission in 

1969 were TV-broadcasted live 

on Earth thanks to dish reflector 

antennas designed using HF tools. 

In terms of the particulars of 

the numerical discretizations, most 

of the frequently used CEM tools 

were low-order techniques, with 

the AP structure modeled by geo- 

metrical elements that are electri- 

cally very small (on the order of 

m/10 or m/20 in each dimension, m 

being the wavelength in the medi- 

 
The first steps of the 
men on the Moon 
during the Apollo 11 
mission in 1969 were 
TV-broadcasted live on 
Earth thanks to dish 
reflector antennas 
designed using HF tools. 

mapping was used for IE analy- 

sis of arbitrary metallic antennas 

and scatterers as early as 1972 [53]. 

Furthermore, the successful prac- 

tice of the CEM discipline was 

often considered to be more of an 

art than a science [39]. 

The release of the famous 

Numerical Electromagnetic Code 

(NEC) for wire antennas and scat- 

terers, by Burke and Poggio of the 

Lawrence Livermore National 

Laboratory, in 1980 [54] initiated a 

great deal of activity in utilization 

of the MoM/BEM for antennas and 

um), and the currents and/or fields within the elements were 

approximated by low-order basis functions. This typically results 

in a significant burden on the functional (current/field) and geo- 

metrical discretization errors on the CEM solution accuracy and 

a low convergence rate of the solution, where the solution accu- 

racy improves slowly with increasing the number of unknowns 

or degrees of freedom (DoFs) and the requirements in compu- 

tational resources. 

The CEM for AP also used higher order discretizations, 

featuring higher order basis functions defined in large curved 

geometrical elements (e.g., on the order of m, e.g., 2m, in each 

dimension) [37], [8], [9], [10], [14]. The more complex elements, 

basis functions, and implementations are generally justified 

by both higher order geometrical flexibility and higher order 

current/field-approximation flexibility, preferably in the same 

method, which enables faster (higher order) convergence of the 

solution and more efficient model refinements. 

has had, over decades, a profound impact on AP design. 

Surface patches were more challenging for MoM modeling 

than the wire segments in the NEC, primarily because of the 

difficulty in enforcing the current continuity across junctions 

between patches. The Rao–Wilton–Glisson (RWG) vector basis 

functions (named after their inventors) defined on flat triangular 

patches [55] solved this problem. Historically, the introduction 

of the RWG functions in 1982 [55] resulted in a large number of 

new MoM codes and is one of the most important advances in 

CEM for AP. While representing the state of the art in the early 

1980s, remarkably, they remain the dominant approach in use 

today [39]. Currently, these are the most widely used MoM basis 

functions in the AP community. 

A triangle is commonly represented in terms of simplex 

coordinates, p1, p2, and p3, representing normal distances of 

a point on the triangle surface to the triangle edges [55], [11], 

[12], [3], as shown in Figure 2(a). For the approximation of the 

surface current density, Js, the RWG function K1 has a nor- 

THE METHOD OF MOMENTS 
The basic electric and magnetic field IEs (EFIE and MFIE) 

were described by Maue in 1949 [38], with the understand- 

ing that they can be expressed in a variety of ways by shifting 

derivatives from one term to another and other transformations, 

and can be combined together, have remained the basis of most 

formulations [39], including, for example, the combined field 

integral equation (CFIE) [40], [41]; the Poggio, Miller, Chang, 

Harrington, Wu, and Tsai (PMCHWT) formulation [42], [43], 

[44], [45]; and Müller’s formulation [46], [47]. 

Numerical solutions to EFIE/MFIE formulations for AP 

problems have proven promising and valuable since the early 

1960s, when practitioners such as Kennaugh [48], Andreason 

[49], Richmond [50], Harrington [7], and others began to 

disseminate their research efforts in that area [39]. Since IE 

formulations typically involve dense matrix equations, all of 

these early approaches were severely limited by the available 

computational resources. Because of this limitation, the early 

formulations were most successful for 2D scattering prob- 

lems [49], [50] and for the analysis of wire antennas and wire 

structures [7], [51], with one of the first higher order MoM 

techniques being that for wire-dipole antenna analysis by 

Popovic´ in [52]. It is noteworthy that a cell-by-cell parametric 

mal component only on edge 1, which, moreover, is constant 

along the edge, so that the current continuity condition for the 

normal component of Js along the edge can be automatically 

adjusted with the accompanying RWG function on the adjacent 

patch across the edge, as in Figure 2(b). During the interven- 

ing years, higher order generalizations of RWG functions on 

curved triangular patches, as shown in Figure 2(c), have been 

proposed [10], [14]. 

Quadrilateral MoM–SIE models with bilinear quadrilateral 

patches, Figure 2(d), proposed by Kolundžija [9], or general- 

ized curved quadrilateral elements, Figure 2(e), proposed by 

Notaroš [45], have also been used, with u- and v-components 

of Js approximated using higher order polynomial vector basis 

functions in the parametric coordinates u and v. The lowest 

order yields the so-called rooftop functions, the version of 

RWG functions for quadrilaterals, which serve in automatic 

enforcement of the current continuity condition along quadri- 

lateral edges. 

More complex parameterizations based on rational polyno- 

mial functions, e.g., nonuniform rational B-splines (NURBS) 

[56], leading to what is called isogeometric analysis [57], [58], 

allowed for direct incorporation of CAD models into MoM/ 

BEM (and FEM) computation. 
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The 3D generalization of RWG functions—the Schaubert– 

Wilton–Glisson (SWG) basis functions on tetrahedral VIE 

elements (proposed in 1984) [59]—have been to date the most 

popular MoM basis functions for volume current J, namely, for 

the electric flux density, D, in VIE modeling [60]. The hexahe- 

dral counterparts are those by Notaroš [61] and Volakis [11]. 

For transient MoM analysis, time-domain integral equations 

(TDIEs) have been used, with the SIE being discretized in both 

space, as in Figure 2(b), and time, using various time-marching 

schemes and temporal basis functions [62] and a breakthrough 

in the form of stable TDIE methods by Michielssen, Shanker, 

Weile, and others (see, e.g., [62]). 

A major problem in MoM computation is the presence of 

Green’s function, g(R), in the SIE or VIE integrals, making 

these integrals singular or near singular when the source-to- 

field distance R is zero or small, e.g., in Figure 2(b), and the 

integrand becomes infinite or abruptly very large. Seminal prog- 

ress has been made by the AP/CEM community, for example, 

by Wilton, Graglia, Ylä-Oijala, Duffy, and others, in computing 

these integrals based on singularity extraction or subtraction 

methods [63], [64], [65] and singularity cancellation or coordi- 

nate transformation methods [66], [67], [68]. 

Additional advances in IE modeling for AP included for- 

mulations that address the low-frequency breakdown problem, 

where Chew and others provided general solutions [69], [70] 

and fundamental matrix conditioning issues, e.g., Calderon pre- 

conditioners, with impactful works by Andriulli and others [71], 

[72], [41]; Nyström discretizations, such as locally corrected Nys- 

tröm schemes, proposed by Canino and others [73], [74]; Green’s 

functions for infinite multilayer dielectric media, with seminal 

contributions by Michalski and Mosig [75]; and multitrace SIE 

formulations [76]. 

THE FINITE ELEMENT METHOD 
By its inherent features, the FEM for PDE discretization is 

especially suitable for 3D modeling and analysis of AP struc- 

tures and systems that contain inhomogeneous and complex 

electromagnetic materials as well as geometrical irregularities 

[3]. Importantly, PDE operators do not imply direct action at a 

distance like integral operators do [e.g., R in Figure 2(b)] but 

at a point; hence, the sparsity of FEM matrices, as opposed to 

the MoM, and the absence of Green’s functions and singular 

integrals. On the other hand, the FEM generally requires 

larger numbers of DoFs than the MoM or BEM since it solves 

for the fields and hence inherently needs mesh termination 

and volumetric discretization and is prone to numerical pollu- 

tion error [77]. 

The first FEM techniques for CEM were based on a point- 

matched approach combined with nodal basis functions for each 

scalar field component. This approach was susceptible to spuri- 

ous modes. A fundamental solution to this was the implementa- 

tion of vector basis functions in the FEM. Namely, extending 

the triangular patch in Figure 2(a) to a volumetric element, a 

FEM tetrahedron, shown in Figure 2(f), is obtained, with a 3D 

version of RWG bases that automatically stipulates the conti- 

nuity of the tangential E field across element faces, known as 

Whitney forms. Elements with such vector bases are referred to 

as vector finite elements. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 2. CEM patches and elements [3], [37]. (a) Triangular patch with RWG basis functions. (b) MoM–SIE triangular mesh of a 
metallic antenna using elements in (a). (c) Generalized curved parametric triangular MoM–SIE patch. (d) Bilinear quadrilateral 
patch with higher order polynomial vector basis functions for Js in MoM–SIE. (e) Higher order generalized curved quadrilateral 
MoM–SIE patch. (f ) Tetrahedral vector finite element with Whitney forms as basis functions for E modeling. (g) Generalized curved 
parametric tetrahedron for FEM. (h) Generalized curved hexahedral finite element with inhomogeneous anisotropic material. 
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Historically, the development of the 3D vector finite ele- 

ments [78], [79], [80], [81], with seminal contributions by Ravi- 

art, Thomas, Nedelec, Lee, and others, was another major 

advancement in CEM. They can correctly and accurately model 

E- and H-field vectors, and, thanks to them as well as the multi- 

grid preconditioners and efficient matrix solution processes [82], 

the FEM has become practical for AP applications. Currently, 

these elements are used in the leading commercial FEM solvers 

and in numerous research codes [3]. 

Higher order tetrahedral finite elements, proposed by Gra- 

glia, Wilton, and Peterson [83], Figure 2(g), were particularly 

useful because of their higher order convergence for large-scale 

AP problems, where the fields propagate over long electrical 

distances [84]. Equivalently, FEM modeling of AP structures 

was carried out using higher order hexahedral FEM modeling, 

Figure 2(h), proposed by Notaroš, as a volume generalization of 

quadrilateral patches in Figure 2(e) [85]. 

In AP analysis (open-region problems), the fields theo- 

retically occupy an infinite region, and the FEM or FDTD 

computational domain therefore needed to be truncated by 

implementing a suitable mesh termination scheme [3]. The 

FEM termination based on approximate absorbing bound- 

ary conditions (ABCs) [21], while preserving the simplic- 

ity of the FEM method and sparsity of the final system, 

required placing the truncation surface sufficiently far away 

from the antenna (or other AP structure), which significantly 

increased the computational domain. The perfectly matched 

layer (PML) [21], an artificial lossy domain added around the 

computational domain, was born in the context of the FDTD 

method by Berenger [86] and further advanced by Gedney 

[87] and others as another breakthrough in CEM. The locally 

conformal PML conforming to the geometry of an antenna 

was implemented for the FEM. 

As another important advancement in CEM for AP, with 

pivotal works by Jin, Volakis, Lee, and others, in a mesh ter- 

mination scheme based on boundary integral (BI) equations 

[88], [20], giving rise to a hybrid FE–BI, also referred to as 

the FEM–MoM, methodology, the FEM region was trun- 

cated and numerically closed (completed) by SIE (MoM) solu- 

tion outside the region, which was an exact termination. The 

method has been continuously developed for more than 35 

years, resulting in a variety of different formulations, includ- 

ing the latest symmetric ones [89], [90], [84]. The computation 

of fully populated BI subblocks was accelerated using fast 

algorithms [89]. 

THE FDTD METHOD 
The FDTD method discretizes directly the two curl Maxwell’s 

equations [2], which represent a system of simultaneous equa- 

tions with two unknowns (E and H). The method relies on the 

approximation of time and space derivatives by central differ- 

ences on a staggered grid. Figure 3 illustrates the Yee lattice 

(cell) for 3D FDTD field computation, where any of the E vec- 

tor components is surrounded by only H components, and vice 

versa. The overall result is a set of six coupled difference equa- 

tions that are solved by moving (marching) forward in space 

through the computational grid and time, the so-called leapfrog 

scheme. The FDTD implementation is inherently iterative and 

not a matrix method. 

Historically, the discovery of the Yee cell [91] was what 

made the FDTD method later become a practical CEM 

tool [22], [23], [24], [92], [93] currently in a wide use by AP 

modelers and designers, as implemented in some of the 

most popular commercial codes and in a large number of 

“in-house” code realizations. Being made as early as in 1966, 

it was the first major advance in CEM for AP. However, 

the method was more the one of theoretical curiosity than 

a practical solution long after its inception. Early pioneers 

in the development of the FDTD method as a practical 

AP tool in the United States were Taflove, Holland, and 

Kunz. In Europe, Weiland independently developed a twin 

approach dubbed the finite integration technique (FIT) 

[92], [93], [94]. 

The early 1980s witnessed a surge in the development of 

ABCs that allowed for open-problem FDTD and FEM simula- 

tions, and in the early 1990s, the first FDTD applications to 

the modeling of antennas began to appear in the literature [92], 

[93], [94]. With the increase in the size of the problems being 

tackled, the problem of numerical dispersion error came to the 

forefront in the late 1980s, and a series of higher order FDTD 

algorithms was developed to mitigate this error using larger 

finite-difference stencils [92], [93]. The introduction of the PML 

in the mid-1990s [86], [87] provided a major improvement in 

the dynamic range of open-domain FDTD simulations, which 

under very mild computational costs could now achieve 80 dB 

absorption and beyond [94]. The development of uncondition- 

ally stable algorithms for the FDTD in the late 1990s and early 

2000s was another major milestone since it lifted the Courant 

stability limit, with the time step not being bounded by the 

stability criterion anymore, which enabled highly refined spatial 

grids [93], [94]. 

Note that the respective FDTD equation agrees perfectly 

with Maxwell’s first equation in integral form [2] applied to 

 

FIGURE 3. Yee lattice (cell) for a 3D FDTD technique for 
solving general curl Maxwell’s equations [3]. 
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contour C in Figure 3. In fact, the FIT method [30] explicitly 

solves Maxwell’s integral equations based on such contours and 

the closed surface of a cell, in Figure 3. 

Time-domain FEM techniques were based on a numerical 

discretization of the time-domain version of wave equations 

[93], [94], [95], [96], or, more recently, coupled curl Maxwell’s 

equations [97], where, in both cases, marching in time similar to 

the process in the FDTD method was commonly used [16]. His- 

torically, the development of the time-domain (TD)-FEM, with 

works by Lee, Jin, Teixeira, and collaborators, was yet another 

important advancement in CEM [84]. 

Generally, time-domain formulations, including the FDTD, 

FIT, TD-FEM, and TDIE approaches, enable effective model- 

ing of time-varying and nonlinear problems and fast broadband 

simulations (providing broadband information in a single run) at 

the expense of the additional discretization—direct discretiza- 

tion in the time domain [3]. 

 

FAST SOLVERS, DOMAIN DECOMPOSITION METHODS, 
AND HYBRID APPROACHES 
A main problem and grand challenge in CEM for AP applica- 

tions has been the appearance of large matrices resulting from 

MoM/BEM and FEM discretizations of large and complex AP 

problems. Historically, the state of the art in terms of MoM 

solver performance in the 1980s was vividly summarized 

by Figure 2 of Miller’s review article of 1988 [98], [39]. This 

figure showed the largest size problem that could be solved by 

lower–upper (LU) decomposition in 1 h on the state-of-the-art 

computer of that year. While fundamentally a plot of computer 

performance, that figure presented a rather pessimistic future 

for IE formulations [39]. A rather general conclusion was that 

the MoM would not play critical roles in solving real-life AP 

problems because of its unfavorable computational complex- 

ity and scaling [82]. However, the development of fast solvers 

shifted that trajectory in a dramatic way. 

The fast multipole method (FMM), pioneered by Rokhlin 

[99], was an iterative fast solver that allowed for the rapid compu- 

tation of long-range or “far-field” interactions between groups of 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

FIGURE 4. The hybridization of different CEM 
methodologies, e.g., MoM, FEM, and HF asymptotic 
techniques, together with a circuit model (CM) and 
multiphysics (MP) analysis, into a single code for AP/ 
interdisciplinary simulation and design. 

unknowns in the MoM. The FMM performed fast matrix–vector 

multiplication, the speed of which was further increased by the 

multilevel FMM (MLFMM) [100], [12], with multiple levels of 

hierarchically defined groups of varying fineness and O(N log N) 

computational time complexity, where N is the number of DoFs, 

a dramatic acceleration relative to the O(N3) complexity of the 

MoM with LU decomposition. The time-domain counterpart 

of the MLFMM was the multilevel plane-wave time-domain 

(PWTD) algorithm, pioneered by Shanker and Michielssen [101]. 

Direct fast solvers based on H-matrices and matrix com- 

pressions provided kernel-independent algebraic methods 

with matrix blocks approximated by low-rank matrices, using 

singular value decomposition (SVD) [102], rank-revealing QR 

(RRQR) decomposition [103], or adaptive cross approximation 

(ACA) [104]. Low-rank compression schemes gained popular- 

ity through the works of Hackbusch [105] and Michielssen 

[106] as examples. 

Historically, the discovery of fast solvers constituted by the 

FMM and similar accelerations [99], [12] was another major 

advancement in CEM for AP. Indeed, it completely changed 

the landscape of CEM [82]. Chew led a team of researchers 

who successfully implemented the FMM and MLFMM and 

demonstrated that they can be applied to solve AP problems 

with unprecedented electrical size and uncompromised accu- 

racy [100], [12]. They proved that it was possible to drastically 

improve upon the trajectory of Miller’s 1988 figure, and that IE 

formulations were not as limited by computer hardware as pre- 

viously thought [39]. 

Another class of introduced fast methods included grid- or 

fast Fourier transform (FFT)-based algorithms, which relied 

on the block Toeplitz nature of Green’s functions mapped onto 

regular grids. The adaptive integral method (AIM), pioneered 

by, among others, Bleszynski’s et al. [107], and the precorrected- 

FFT (p-FFT) method, pioneered by Phillips [108], were among 

the most popular and well-documented techniques [82], [109] 

(Figure 1). 

Great developments in the AP community also occurred 

in the class of domain decomposition (DD) methods, with 

seminal works by Lee, Jin, Vouvakis, and Peng, among others 

(see, e.g., [110], [111], and [112]), which allowed splitting of the 

original large problem into a number of smaller ones, analyzed 

independently. These were then stitched together by some sort 

of local or integral boundary conditions, tremendously reducing 

the computational burden, yet yielding in the process a rigorous 

solution of Maxwell’s equations for the problem. Additionally, 

the DD methods were ideally suited for parallelization and the 

use of multiple machines and multiple processors. An alterna- 

tive approach to handling large problems based on the prin- 

ciple of localization was the characteristic basis function method 

(CBFM), pioneered by Mittra [113]. 

Finally, it is extremely beneficial to hybridize different meth- 

odologies and approaches (Figures 1 and 4) to combine their 

distinctive features and advantages. Historically, a notable 

example were hybrid FE–BI or FEM–MoM techniques [20], 

[88], [89], [90]. HF asymptotic approaches were hybridized with 

numerically exact methods, such as the MoM or FEM, giving 
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TABLE 1. COMPUTATION TIMES AND 
SPEEDUP OF A MASSIVELY 

GPU-PARALLELIZED SBR RT PROPAGATION 

 

  

   

    

1,600,000 86,214 6.5 13,263 

rise, for example, to hybrid PO–MoM solutions [114] and hybrid 

SBR–FEM solvers [115]. Hybrid solvers included incorporation 

of a circuit model (CM) and the cosimulation and co-design 

of integrated AP systems using field-circuit solvers as well as 

the integration of multiphysics (MP), such as electromagnetic, 

thermal, mechanic, photonic, fluidic, or elastic phenomena 

into tightly coupled mixed-physics modeling methods. This has 

become critical in some emerging AP designs because of the 

rise of mixed-technology systems [109]. DD methods can be 

used to combine completely different numerical techniques 

(e.g., FEM, MoM–SIE, MoM–VIE, and HF methods) in the 

same complex system. Indeed, the future of CEM will require 

and facilitate hybridizations of all approaches at once, as indi- 

cated in Figure 4. 

PARALLELIZATION AND HIGH-PERFORMANCE COMPUTING 
AP CEM researchers and practitioners have taken full advan- 

tage of available high-performance computing (HPC) platforms 

over time. Indeed, computing hardware and software infra- 

structure has provided, especially more recently, unparalleled 

opportunities, with the associated challenges, for the rapid 

growth of CEM capabilities and modeling technologies needed 

and desired by AP application researchers and practitioners. 

However, this has evolved in close synergy with the electromag- 

netic formulations and numerical foundations of CEM methods 

and algorithms (Figure 1). As a community, we have explored 

and devised innovative ways to maximally harness the advan- 

tages of the growing opportunities of the computing hardware 

and technology. 

Historically, the most widely used parallel programming 

paradigms were open multiprocessing (OpenMP) and the mes- 

sage passing interface (MPI) [3]. For example, these protocols 

enabled truly unprecedented MLFMM scattering simulations 

with billions of unknowns [116], [117]. 

Now we can take a look back at Miller’s 1988 figure [98] and 

note that the advancement over about 30 years (from the early 

1950s to the mid-1980s) in terms of the largest problem that 

could be solved within 1 h was from N = 100 unknowns to about 

6,000 unknowns (the maximum dimension of a scatterer being a 

few wavelengths), so an increase of about 60 times. The follow- 

ing ~30 years, from the mid-1980s to the late 2010s, however, 

saw the rise all the way to, as an example, N = 10,666,680,960 

unknowns (a maximum dimension of 11,503m) within 7.5 h 

[117], so about a 1.7 million times improvement (note that with 

the O(N3) complexity in Miller’s figure, 1 h versus 7.5 h compu- 

tation time does not make a big difference in N). Indeed, what 

was once a rather pessimistic trajectory for the first half of the 

CEM history then became a blistering growth during the sec- 

ond half of the 75 years of CEM. 

Enormous advances in graphics processing unit (GPU) 

technology, originally for graphics applications, have made 

these hardware accelerators widely useful outside the com- 

puter graphics world, including in CEM for AP [3]. For 

example, Table 1 illustrates how a speedup of an SBR method 

for RT propagation modeling, including electric field compu- 

tation, as dramatic as four orders of magnitude faster could 

be achieved with massively parallel GPU optimization on an 

Nvidia OptiX Prime CUDA GPU parallelization framework, 

relative to the implementation on a central processing unit 

(CPU) in serial [118]. 

Currently and for the future, of greatest importance for 

HPC in CEM and AP is the hybridization of different paral- 

lelization paradigms and strategies, such as the MPI, OpenMP, 

and CUDA frameworks, to fully exploit the available and emerg- 

ing hardware capabilities. 

 

ERROR ESTIMATION, ADAPTIVE REFINEMENT, 
UNCERTAINTY QUANTIFICATION, OPTIMIZATION, 
AND DESIGN 
Historically, it has always been clear that the task of proving 

the theoretical convergence of CEM solutions for AP is not 

trivial [39]. During the past several decades, a steady effort was 

directed toward a better understanding of theoretical error 

rates, and a knowledge base was generated (see, e.g., [119], [120], 

and [121]) that provided a foundation for a more rigorous scien- 

tific understanding of expected convergence rates, performance 

of error levels, etc. Another area where historically progress was 

slow is in the development of inexpensive error estimators for 

use with adaptive model refinement (AMR) algorithms. It is the 

convergence of these areas that could enable the realization of 

“dialable” accuracy in numerical solutions [39]. 

Indeed, of paramount importance is a synergistic combination 

of error estimation and control [119], [120], [121], meshing [122], 

AMR [123], and uncertainty quantification (UQ) [124] for CEM 

(Figure 1); see [125], [126], [127], [128], [129], and Figure 5, select- 

ed only as illustrative examples. A goal is to make CEM method- 

ologies and techniques as accurate, efficient, accessible, usable, 

reliable, and robust as possible and thus maximally beneficial to a 

broad audience of AP researchers, practitioners, and students, with 

no need for expert user intervention. 

Through effective and rigorous UQ, the quality of analyses 

and designs may be improved drastically, in terms of both 

effectiveness and reliability, since material parameters of an 

antenna/scatterer, object shape/size, mutual positions/orienta- 

tions, etc., are all uncertain input parameters, which may be 

known only within a specific tolerance [124], [128], [129]. UQ 

in CEM involved studies of how the input parameter uncer- 

tainty resulted in uncertainty in the generated electric or mag- 

netic field, for example, in assessing the sensitivity of the field 

to the uncertain input parameter [see, e.g., Figure 5(e) and (f)]. 
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FIGURE 5. (a) Dramatic improvement in the monostatic RCS error magnitude and uniformity with adjoint-based adaptive error control and AMR for MoM–SIE analysis of a NASA 
almond [126]. (b) Drastic reduction of the number of DoFs with AMR [126]. (c) Adjoint-based per finite-element QoI error contribution estimates for FEM–PML analysis of a 
dielectric sphere scatterer enabling targeted AMR and dramatically improved resource allocation [125]. (d) Perfect curvature/detail modeling with hyperlarge hypercurved patches 
using a meshing method based on discrete surface Ricci flow with iterative adaptive refinement: fighter jet model featuring as few as 32 quadrilateral elements as in Figure 2(e) 
but of 64th order [122]. (e) Adjoint-based UQ with HOPS and FEM–PML: several orders of magnitude improvement in computation time with respect to a traditional MC simulation 
for RCS versus material uncertainty [128]. (f ) Surrogate RCS reconstruction for 2D material uncertainty by the GETK UQ method: almost an exact match with MC solution even with 
an extremely small number of training input points [129]. (g) and (h) Multilevel fully anisotropic hp-refinement methodology for CEM based on a refinement-by-superposition 
approach, which uniquely drives perfect exponential convergence with respect to the number of DoFs even in the case of singular solution behaviors [127]. QoI: quantity of 
interest; RCS: radar cross section; GETK: gradient-enhanced Taylor kriging; HOPS: higher order parameter sampling; MC: Monte Carlo. 
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Again, it is key to have an accelerated design integrating auto- 

mated adaptive error estimation and control, AMR, and UQ 

(see, e.g., Figures 1 and 5). 

The AP CEM community made seminal advancements in 

developing and using electromagnetic optimizers for AP syn- 

thesis and design (Figure 1); see, e.g., [130]. Some of the most 

notable and impactful approaches included gradient-based 

optimization as well nature-inspired optimizers, such as genetic 

algorithm (GA) and particle swarm optimization (PSO), intro- 

duced in AP CEM design by Rahmat-Samii. The most recent 

advancements in CEM analysis and design invoked artificial 

intelligence (AI), machine learning, and data-enabled approach- 

es. For example, various techniques in AI were applied for elec- 

tromagnetic optimization and design; see, e.g., [131]. 

COMMERCIAL CEM CODES FOR AP 
Perhaps the most significant change in the CEM for AP over- 

all and its main signature for the start of the 21st century was 

the establishment of commercial CEM codes as essential and 

extremely widely used software tools for AP modeling, analysis, 

and design. Dramatically fewer AP research and development 

groups and units at academic, governmental, and industrial/com- 

mercial institutions and organizations are developing “in-house” 

CEM methods, algorithms, and codes. Most researchers, prac- 

titioners, and students are relying instead on commercial solvers 

for CEM simulation and design. For example, graduate students 

typically no longer write their own codes for their AP research. 

In what follows, we list some of the most popular com- 

mercial CEM software tools used for AP simulations, highlight 

some of their numerical components, and outline some of their 

apparent capabilities and features relevant for AP modelers and 

designers [3]. Many other commercially available CEM codes 

are not listed, and many of the known characteristics of the 

codes listed are not included for brevity. 

Ansys High Frequency Structure Simulator (HFSS) primar- 

ily employs the FEM to solve a wide range of AP problems in 

both the frequency and time domains. It uses rectilinear or 

curvilinear tetrahedral finite elements, Figure 2(f) and (g), with 

field expansions of first, second, and mixed order. The code car- 

ries out automatic and adaptive mesh refinement with these ele- 

ments. Ansys HFSS is arguably the most widely used CEM tool 

for AP analysis and design. 

The Computer Simulation Technology Microwave Studio 

(CST MWS) offers widely used CEM tools based on the FIT 

as well as the MoM, MLFMM, FEM, and RT, respectively. 

The software uses automatic meshing based on hexahedra or 

tetrahedra [Figure 2(f)–(h)] and mesh adaptation techniques 

implemented in cooperation with Dassault Systèmes. Antenna 

Magus is a software tool tailored specifically for antenna design 

and modeling. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 6. Design of a wideband compact double-ridged transverse electromagnetic (TEM) horn antenna embedded in a 
shaped rectangular cavity [3], [132]. (a) Photograph of the structure. (b) Comparison of numerical results obtained by ANSYS- 
HFSS (FEM, tetrahedral mesh, mixed-order basis functions), CST MWS (FIT, hexahedral mesh, time-domain solver), and FEKO 
(MoM-SIE, triangular mesh, RWG bases), and experimental results at 7 GHz. (c) HFSS mesh. (d) FEKO mesh. (Courtesy of 
Mohamed Elmansouri.) 
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FEKO by Altair HyperWorks is one of the most popu- 

lar commercially available CEM tools in the AP community. 

The primary computational method employed is the MoM 

with triangular patches [Figure 2(a) and (b)] and RWG basis 

functions, optionally with the MLFMM acceleration. However, 

FEKO provides a whole suite of codes, such as FEM, FDTD, 

PO, and UTD solutions, which can be used either independent- 

ly or in hybrid arrangements. 

WIPL-D Pro is a powerful design program capable of 

modeling AP structures comprising both metal (WIres and 

PLates) and Dielectric materials. It is becoming increasingly 

popular among antenna engineers for its economic and accurate 

solutions. WIPL-D implements the MoM and uses bilinear 

quadrilateral patches [Figure 2(d)] to model both metallic and 

dielectric surfaces. Currents are approximated by higher order 

polynomial vector basis functions. 

TICRA software combines the PO, GTD, and RT 

techniques with the MoM using higher order quadrilat- 

eral patches [Figure 2(e)] and polynomial vector bases and is 

especially well known for the analysis and design of reflector 

antenna systems. 

Remcom offers an FDTD (Figure 3) computer pro- 

gram for AP modeling and design, XFdtd, which comes 

with a well-developed GUI. It also features the Wireless 

InSite, a powerful RT tool for AP modeling in outdoor and 

indoor environments. 

SEMCAD X is a 3D full-wave CEM solver based on the 

FDTD method (Figure 3). It is often utilized for RF modeling 

of biological tissues in AP applications. 

COMSOL Multiphysics performs CEM analysis based on 

the FEM [Figure 2(f)], and its primary strength is seamless cou- 

pling of various MP effects into the CEM AP analysis. 

CEM APPLICATIONS 
This section shows some illustrative AP applications of the CEM 

methodologies and numerical discretization techniques pre- 

sented in this article. 

Figures 6 and 7 show results obtained by the first three 

commercial CEM codes discussed in the previous sec- 

tion—for two real-world antenna designs and applications 

[3]. The excellent agreements in cross-validations of CEM 

results observed in the figures are very relevant, given that 

the solution approaches used are completely different, both 

conceptually (in terms of the CEM methodology, meshed 

domain, and discretized quantity) and numerically (with 

respect to the geometrical elements, basis functions, and 
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FIGURE 7. Mitigation of pulse distortion in spiral antenna-based ultra-wideband communication systems [3], [133]. (a) Antenna 
geometries. (b) Comparison of numerical results obtained by CST MWS (FIT, hexahedral mesh, time-domain solver) and FEKO 
(MoM-SIE, triangular mesh, RWG bases, indirect transient analysis using the discrete Fourier transform and its inverse), and 
experimental results for normalized received pulses of a two-arm planar equiangular spiral antenna-based communication 
link. (c) FEKO mesh. (Courtesy of Mohamed Elmansouri.) 
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solution techniques). For instance, the MoM–SIE (FEKO) 

method is a surface modeling technique that solves bound- 

ary IEs for currents, while the FEM (Ansys HFSS) and 

FIT (CST MWS) methods are volumetric modeling tech- 

niques that solve PDEs for fields. Discretizations are as 

different as triangular/low-order (FEKO), hexahedral/low- 

order (CST MWS), and tetrahedral/mixed-order (Ansys- 

HFSS) types, and include both solutions in the frequency 

domain (Ansys HFSS and FEKO) and time-domain tech- 

niques (CST MWS). 

Ultimately, the confirmation and demonstration of every 

design and validation of every numerical method and approach 

is an agreement with experiment [3], and we see excellent agree- 

ments of the CEM results with the antenna measurements in 

Figures 6 and 7. 

Figure 8 depicts 14 comprehensive CEM-AP applications 

with results provided by AP-S CEM researchers, which were 

obtained in their CEM and AP projects within the past 20 

years, as illustration of the versatility and effectiveness of 

various CEM approaches. The applications and problems 

range from in-depth characterizations and evaluations to 

optimized designs, and from antennas, propagation, and 

scattering to radar meteorology and medical diagnostics. 

CONCLUSIONS 
This article has presented an overview of 75 years of research 

in computational electromagnetics within the IEEE Antennas 

and Propagation Society and the AP community at large, on the 

occasion of the 75th anniversary of AP-S, where both the CEM 

and AP-S have similar and interwoven histories of 75 years, half 

of the history of Maxwell’s equations. 

The article has discussed the discoveries, developments, 

and implementations of principal IE and PDE CEM method- 

ologies, HF asymptotic techniques, and general MoM, FEM, 

 

 
FIGURE 8. Collage of 14 comprehensive CEM-AP applications [31], [134], with the analyses and designs conducted using FE–BI, FEM–
ABC, MoM–SIE, FDTD, DD, MLFMM, RT–SBR, and MoM/FEM–PO methods, and both frequency-domain and time-domain 
computations. The collage presents CEM characterizations of (a) large antenna array with a radome using frequency-selective 
surfaces [135]; (b) aircraft carrier with airplanes, helicopters, unmanned aerial vehicles, and antennas at 1.2 GHz; (c) 5G MIMO 
wireless channel in a city block; (d) scattering from an F16 aircraft at 1 GHz; (e) electric field distribution within a human 
head, hand, and cell phone, including the antenna, PCB, and battery, at 900 MHz [136]; (f ) MP CEM–plasma interaction with 
air breakdown and plasma filamentary array formation near two metallic cylinders with an air gap, excited by high-power 
microwaves [137]; (g) wave propagation effects inside a desktop computer at 10 GHz; (h) antenna–platform interaction on 
a ship at 1 GHz; (i) transient currents on an aircraft with a mounted Vivaldi antenna at 270 MHz [138]; (j) horn antenna array 
fed with a Rotman lens; (k) specific absorption rate in a human head model at 835 MHz [139]; (l) RF coil/antenna array for 
next-generation, ultrahigh field magnetic resonance imaging [140]; (m) precipitation scattering [141]; and (n) wireless signal 
propagation in underground mine tunnels [142]. MIMO: multiple-input, multiple-output; PCB: printed circuit board. [(a) and 
(h) courtesy of John Volakis and Kubilay Sertel; (b), (c), and (g) courtesy of Zhen Peng; (d), (e), and (j) courtesy of Jin-Fa Lee; 
(f ) and (i) courtesy of Jian-Ming Jin and Su Yan; (k) courtesy of Cynthia Furse; (l), (m), and (n) courtesy of Branislav Notaroš.] 
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and FDTD numerical discreti- 

zation procedures for AP. These 

have included parametric triangu- 

lar and quadrilateral patches and 

tetrahedral and hexahedral vol- 

ume elements and characteristic 

types of current/field vector basis 

functions, such as RWG functions, 

Whitney forms, and polynomial 

vector bases as well as the Yee lat- 

tice. The article has also reviewed 

the history, state of the art, and 

 
Most researchers, 
practitioners, and 
students are relying 
instead on commercial 
solvers for CEM 
simulation and design. 

and techniques, with some high- 

lights being commercial codes; 

fast solvers; hybridizations; DD; 

CEM– CM–MP cosimulation, 

co-design, and mixed technology; 

parallelization and HPC; higher 

order modeling; AMR; UQ; and 

design optimization. Overall, we 

have witnessed dramatic enhance- 

ments in the accuracy, efficiency, 

versatility, reliability, stability, and 

robustness of AP modeling, analy- 

future outlook of various important components of CEM mod- 

eling and computation, such as fast solvers, DD algorithms, 

and hybrid methods; parallel programming paradigms and 

HPC; and error estimation and control, meshing, AMR, and 

UQ for CEM-AP. Finally, we have overviewed some of the 

most popular commercial CEM software tools used for AP 

simulations and design. 

Illustrative numerical results obtained by some of the 

leading commercial CEM codes have demonstrated excel- 

lent agreements, accuracy, and efficiency in comparisons 

of the solutions by multiple tools and against antenna 

measurements for diverse real-world antenna designs and 

applications [3]. The presented CEM results for several com- 

prehensive AP applications have signified the power, versa- 

tility, and reliability of CEM and its impact on AP research 

and practice. 

The article has shown a great diversity of formula- 

tions, elements, bases, and solution techniques within 

CEM for AP. Although all of these components as well 

as their many working combinations resulting in CEM 

codes for AP analysis and design seem to be completely 

different, they all have a lot in common, as has also 

been shown in the article. However, they all show some 

advantages and deficiencies. The choice of the “ best” 

method depends on the particular problem that needs 

to be solved. Therefore, all presented and/or refer- 

enced CEM formulations, elements, bases, solutions, 

and implementations as well as those that could not 

be mentioned are important and constitute a body of 

knowledge in this area. 

Historically, however, there were periods of time during 

the past 75 years of history of AP-S and history of CEM when 

certain CEM approaches seemed to dominate the AP applica- 

tions. The first few decades saw the dominant practical use of 

HF methods. The 1980s were dominated by the MoM/BEM, 

along with HF approaches. The early 1990s were the begin- 

ning of practical AP applications of the FEM and the FDTD 

method, with the practical debut of fast methods in the late 

1990s. By the early 2000s, it became obvious that commercial 

CEM software tools would play an incredibly important role in 

AP research and practice, and would essentially dominate AP 

simulations and design. 

CEM for AP of the 21st century has been constituted 

by a true expansion and/or renaissance of all methodologies 

sis, and design, for an unprecedented variety of AP/interdisci- 

plinary applications. 

The article has demonstrated the phenomenal progress 

that CEM and AP researchers and developers have made over 

the past 75 years. Of course, it was impossible to accurately 

and fully represent the tremendous successes and accomplish- 

ments of an era in one article. Yet, it is hoped that the article 

is still representative of the CEM history as well as the state 

of the CEM art for AP, which is truly outstanding. How- 

ever, progress is still being made, and many innovative CEM 

approaches are yet to come in new computational methodolo- 

gies, hybridization strategies, discretization techniques, and 

application-driven implementations as well as new ways to 

better harness the ever-growing HPC power. The next 75 

years of CEM and AP-S are promising to be equally rich, 

fascinating, and intense! Are those four, now 150-year-old, 

Maxwell’s equations ever going to be solved? 
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