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Abstract

Speculative decoding has emerged as a widely
adopted method to accelerate large language
model inference without sacrificing the qual-
ity of the model outputs. While this technique
has facilitated notable speed improvements by
enabling parallel sequence verification, its ef-
ficiency remains inherently limited by the re-
liance on incremental token generation in exist-
ing draft models. To overcome this limitation,
this paper proposes an adaptation of speculative
decoding which uses discrete diffusion models
to generate draft sequences. This allows paral-
lelization of both the drafting and verification
steps, providing significant speedups to the in-
ference process. Our proposed approach, Spec-

ulative Diffusion Decoding (SpecDiff), is vali-
dated on standard language generation bench-
marks and empirically demonstrated to provide
up to 7.2x speedups over standard generation
processes and up to 1.75x speedups over exist-
ing speculative decoding approaches.

1 Introduction

As autoregressive language modeling with trans-
formers (Vaswani et al., 2017) is scaled to larger
compute levels, performance improves and new
capabilities emerge (Kaplan et al., 2020; Brown
et al., 2020). Indeed, scaling has been shown to to
improve the performance of large language mod-
els (LLMs) for a diverse array of tasks, including
code generation, question answering, summariza-
tion, and many other use cases (Achiam et al., 2023;
Gemini Team, 2023; Llama Team, 2024). For in-
stance, models such as LLaMA 3.2 90B (Llama
Team, 2024), ChatGPT (OpenAI et al., 2024), Co-
here 52B (Ruis et al., 2023), Google’s Gemini-
ULTRA (Team et al., 2024) exemplify the ongoing

trend of deploying and releasing increasingly large
models, enabling broader access and application
across various domains.

However, while these desired capability arise,
running LLMs in inference mode for millions of
users produces burdensome electricity, time, and
monetary demands. Many methods exist to miti-
gate these costs – including sparsity, quantization,
and distillation – but they often introduce new trade-
offs, e.g., their application can degrade the perfor-
mance of the model (Hong et al., 2024).

Unlike other methods for accelerating LLM in-
ference, speculative decoding (Xia et al., 2023;
Leviathan et al., 2023) can improve LLM efficiency
by 2–3→ with no degradation in the quality of the

model outputs. In Leviathan et al. (2023), specula-
tive decoding achieves this by sequentially gener-
ating multiple tokens with a small, efficient draft
model, then running the target, large, LLM in par-
allel on all of the drafted tokens, simultaneously
evaluating their consistency with the target LLM’s
output token probabilities. Provided that the draft-
ing model’s tokens are frequently accepted by the
target model and that the drafting model operates
substantially faster than the target model, specu-
lative decoding can directly match the sampling
output from the target model while significantly
reducing runtime (Leviathan et al., 2023). This
functioning is shown in Figure 1 (left).

Notably, since both the drafting model’s speed
and its alignment relative to the target model are
critical to the success of speculative decoding, si-
multaneous improvements in each of these areas
are necessary to ensure speculative decoding’s rel-
evance to future, more capable target models. For
instance, a small GPT-2 (Radford et al., 2019) draft-
ing model could produce drafts that are often re-
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Figure 1: Illustration of classical speculative decoding (left) and speculative diffusion decoding (right).

jected by GPT-4 (Achiam et al., 2023), and simply
scaling the drafting model to address its weaker
generations risks diminishing the speed advantage
necessary to speculative decoding’s success. To ad-
dress this challenge, previous efforts have focused
on introducing additional parallelization techniques
that incorporate prediction trees and branching to
refine the drafting process (Fu et al., 2024; Miao
et al., 2023b; Svirschevski et al., 2024). However,
the gain in generation efficiency are at the expense
of much increased number of operations and/or
memory for each generation.

This paper proposes a fundamentally different
approach to improve speculative decoding: It pro-

poses to replace the auto-regressive drafter with

recently introduced discrete diffusion models (Lou
et al., 2024; Sahoo et al., 2024). These models
offer several key advantages when used as drafters:
Firstly, they provide a smooth trade off between the
compute cost of generation and the quality of gen-
eration (via the number of reverse diffusion steps).
Second, while they have historically struggled rel-
ative to traditional language models, recent diffu-
sion models have been shown to require 32→ fewer
function evaluations than autoregressive models
to produce text with comparable perplexity (Lou
et al., 2024), with more recent works reporting
even further speedups (Sahoo et al., 2024). This
is a trend which is anticipated to continue. Finally,
future advances in diffusion model generation qual-
ity are highly aligned with their ability to perform
strongly as speculative drafters: as drafted tokens

are accepted by the target model at a higher rate, a
larger number of proposed drafted tokens becomes
optimal from an efficiency/speed point of view,
and (unlike sequential drafters) diffusion models
can easily accommodate generation of many more
tokens since they are able to generate entire se-
quences in a single step.

Contributions. More specifically, this paper
makes the following contributions:
1. It introduces a novel integration of generative

diffusion language models with speculative de-
coding, schematically illustrated in Figure 1
(right).

2. It empirically demonstrate the hybrid model’s
ability to significantly accelerate inference times
while maintaining the same high-quality outputs
of the original, target large language model.

3. The proposed method ensures that all genera-
tions from the diffusion language model, which
are empirically shown to produce outputs with
significantly higher perplexity than current state-
of-the-art autoregressive models (Sahoo et al.,
2024; Lou et al., 2024; Austin et al., 2021;
Gloeckle et al., 2024), align with the outputs
generated by larger, more computationally de-
manding models.

4. Finally, the paper sets a new benchmark for
speed in language completion tasks on the CN-
N/DM (Nallapati et al., 2016)and OpenWebText
datasets (Gokaslan et al., 2019).



2 Related Work

While autoregressive language models provide
state-of-the-art performance on language genera-
tion tasks, the incremental decoding used by these
architectures results in significant overhead at in-
ference time (Miao et al., 2023a). This is largely
a result of the inability to parallelize the sequen-
tial process of generating tokens in the output se-
quence as each token generation is dependent upon
the preceding tokens in the sequence; consequen-
tially, scaling the compute associated with the in-
ference cannot directly reduce this overhead when
using standard decoding schemes. In recent liter-
ature studying how to accelerate large language
model generation, two primary approaches have
been explored: (1) advanced decoding implemen-
tations that better parallelize token generation and
(2) non-autoregressive language models allowing
full sequences to be generated simultaneously.

Speculative decoding. Speculative decoding ac-
celerates autoregressive generation by leveraging
a smaller autoregressive models of the same ar-
chitecture (the drafter model) to predict candidate
sequences, which the original model (the target
model) then verifies (Leviathan et al., 2023; Chen
et al., 2023). Notably, the earliest literature on
speculative diffusion adapted a non-autoregressive
model to act as the drafter model (Xia et al., 2023),
using a masked language model with a bidirectional
decoder (Ghazvininejad et al., 2019). However, the
integration of non-autoregressive draft models has
not received much attention due to the difficulty
introduced by the necessary additional training in
existing approaches and the modest speedups that
were previously reported using these methods (less
than 2x speedup over vanilla decoding schemes).

Thus, recent advancements in speculative decod-
ing have focused on overcoming memory-related
constraints, with improvements achieved through
various approaches: drafting directly with the tar-
get model (Cai et al., 2024; Zhang et al., 2024), en-
hancing draft algorithms (Sun et al., 2024), and in-
troducing additional parallelization techniques that
incorporate branching to refine the drafting process
(Fu et al., 2024; Miao et al., 2023b; Svirschevski
et al., 2024).

Non-autoregressive language models. Models
which stray from the autoregressive paradigm have
been shown to speedup generation by generating
blocks or even entire sequences simultaneously.

Gloeckle et al. (2024) propose a method of adapting
traditional autoregressive models to sample blocks
of tokens, improving inference time over similarly
scaled models. In a similar vein, diffusion language
models have been recognized for their efficiency in
generating extended token sequences concurrently,
offering even greater speed enhancements. These
models recast language generation as a diffusion
process either across the embedding space (Austin
et al., 2021) or, more recently, through the probabil-
ity distributions of generated tokens (Sahoo et al.,
2024; Lou et al., 2024). Recent models report up to
a 32x speedup over similarly sized GPT-2 models
(Lou et al., 2024), and current state-of-the-art fur-
ther improves runtime speed (Sahoo et al., 2024).
However, despite they have been shown to dramat-
ically accelerate the inference time for language
generation, diffusion models typically perform less
effectively than state-of-the-art autoregressive mod-
els in terms of standard language metrics, often
exhibiting significantly higher perplexity scores
(Zheng et al., 2024). In the following section, we

will demonstrate, for the first time, how the speed

of these models can be leveraged without being

subject to this critical limitation.

3 Preliminaries and Settings

For open-ended language generation, we focus on
the task of token generation, where given a se-
quence of tokens x1, x2, . . . , xi, denoted here with
shorthand notation x1:i, the goal is to generate the
next n tokens xi+1, . . . , xi+n from the conditional
distributions p(xi+1|x1:i), . . . , p(xi+n|x1:i+n→1)
or more succinctly pi+1, . . . , pi+n.

Speculative decoding. Speculative decoding
leverages two LLMs, Mp and Mq, to parallelize
token generation:

• Mp is the original, target, model whose out-
put probability distributions for the tokens are
pi+1, . . . , pi+n.

• Mq is a smaller and more efficient drafter model,
used to generate approximations of the distribu-
tion of Mp as qi+1, . . . , qi+n.

This process follows a draft-then-verify approach
(Stern et al., 2018), where Mq efficiently computes
a candidate sequence of tokens, which Mp then
verifies in parallel.

During each speculative decoding iteration, Mq

generates a subset of the total n tokens that are
required for the generation task. The size of this



subset is denoted as ω. As shown in Figure 1 (left),
the tokens xi+1:i+ω sampled from Mq are then
used by Mp to generate the corresponding probabil-
ity distributions pi+1, . . . , pi+ω . The distributions
qi+1, . . . , qi+ω from Mq are stored for evaluating
acceptance in subsequent steps. Critically, the tar-
get model’s inference over pi+1, . . . , pi+ω can now
be run in parallel as the model has access to tokens
xi+1:i+ω , alleviating the sequential dependency for
generation with Mp.

To ensure high-quality outputs despite potential
discrepancies between Mp and Mq, tokens are sub-
jected to an acceptance criterion. For each token xj
with j ↑ [i+ 1, i+ ω], if q(xj) ↓ p(xj), the token
is accepted. If q(xj) > p(xk), the token is rejected
with a probability of 1 ↔

p(xj)
q(xj)

. This criterion is
applied sequentially from left to right; rejection of
any token results in the discard of all subsequent
tokens. Hence, the token acceptance is maximized
when the output distributions of Mq and Mp are
closely aligned.

Previous literature quantifies the likelihood of
token acceptance, denoted ε, and theoretically
demonstrate that ε = 1 ↔ E(DLK(p, q)) where
DLK represents a divergence measure between dis-
tributions (Leviathan et al., 2023). This has led to
the prevalent use of drafters taken from the same
series as the target models, a paradigm that we

challenge in this paper.

4 Speculative Diffusion Models

Speculative decoding has provided state-of-the-art
results for improving language generation infer-
ence time but requires meticulous tuning of the
associated hyperparameters to achieve optimal re-
sults. Particularly ω, the sequence length generated
by the drafter model, needs to be appropriately cal-
ibrated not only to maximize potential speedup but
to even outperform standard autoregressive decod-
ing. This is an important consideration when using
current autoregressive draft models, provided that
the inference time to generate Mq(x), the draft log-
its, is directly scaled by the size of ω. Increasing
this value too high reduces the number of oper-
ations that are conducted in parallel, potentially

leading to speculative decoding increasing infer-

ence time, while reducing this value too low results
in speculative decoding “missing out” on token
generations that could have been handled by the
draft model.

Leviathan et al. (2023) has conducted theoretical
analysis on how to best optimize the value of ω,
however, it has been contingent upon accurately es-
timating the percentage of tokens in a the sequence
that will be accepted by the target model. By their
own acknowledgment, it would be necessary to
predict this value for each draft and numerically
solve for the optimal value of ω to fully realize the
potential speedup of speculative decoding. Thus, a
significant portion of the residual suboptimality in
current implementations can be attributed directly
to the sensitivity of this hyperparameter.

Diffusion language models are juxtaposed to
conventional language models in that they do not
sample token sequences in a sequential manner,
rather generating entire sequences in parallel. This
has resulted in significant speedup over similarly
sized autoregressive models when generating ex-
tended sequences (Lou et al., 2024). This can par-
ticularly be observed in longer sequence genera-
tions as scaling the draft length ω results in minimal
overhead due to the ability to directly parallelize
token generation.

4.1 SpecDiff: Formulation

Diffusion models generally operate on continu-
ous data spaces by progressively adding Gaussian
noise to the data in a forward diffusion process
and then learning to reverse this process to gener-
ate new samples (Sohl-Dickstein et al., 2015b; Ho
et al., 2020; Song and Ermon, 2019). This frame-
work is well-suited for data types such as images,
where pixel values can be treated as continuous and
thus can naturally accommodate additive Gaussian
noise. However, when dealing with discrete data
like natural language (tokens), the assumption of
continuous noise addition does not hold, as it would
result in non-integer values that do not correspond
to valid tokens.

Discrete diffusion models address this limitation
by redefining the forward processes to transition
between discrete token states, such as replacing
tokens according to a transition matrix or introduc-
ing randomness through categorical distributions
(Austin et al., 2021; Hoogeboom et al., 2021; Sohl-
Dickstein et al., 2015a). This process enables the
generation of coherent and meaningful sequences
in natural language processing tasks. However, un-
like continuous diffusion models, traditional score-
matching techniques cannot be directly applied to
learn discrete diffusion models. Instead, various
surrogate losses have been proposed for training.



In particular, Sahoo et al. introduce the Masked
Diffusion Language Model (MDLM), which grad-
ually masks and then reconstructs tokens within
a text sequence, enabling efficient text genera-
tion. MDLM optimizes a continuous-time Negative
ELBO (NELBO) objective to minimize the nega-
tive log-likelihood over a continuous-time diffusion
process, which can be formulated as follows:

LNELBO
→ = Eq̃

[∫ t=1

t=0

(1 → ωt)
↑

ωt

∑

i

log↑xω(z
t
i ), xi↓ dt

]
(1)

where xε(zti) represents the model’s estimate of the
original token xi at time t given the current noisy
state zti , and ϑt denotes the noise schedule control-
ling the diffusion process. Here, q̃ is the forward
noising process of in the masked diffusion, defin-
ing the distribution over the noisy latent variable zti ,
and can be related to the NELBO as described in
Equation (8) of Sahoo et al., 2024. The expectation
Eq̃ signifies averaging over the possible outcomes
of q̃ allowing the model to accound for all possible
variations of zt. The Noise Schedule Derivative
term, (1→ϑt)→

ϑt
, represents the rate of change in the

noise schedule ϑt over time, and t is a continuous
timestep between 0 and 1.

This loss is directly used for pretraining our draft
model. As this process learns to denoise over the
probability mass vectors, the output of the draft
model is a matrix of Rn↑m where n = ω and m
is the size of the vocabulary. The candidate se-
quence can then be generated using standard de-
coding methods over these probability mass vec-
tors, the logits of which are stored to be used when
determining whether to accept each draft token.

Now, the draft logits produced by the output
matrix of the discrete diffusion drafter directly sub-
stitute the autoregressive drafter used to generate
Mq([x0:i] ↗ [xi+1, . . . , xi+ω ]), where ↗ is a list con-
catenation operator. This substitutes the draft step
taken by Leviathan et al. and Chen et al. and is the
primary difference between SpecDiff and standard
speculative decoding approaches. The subsequent
steps of verifying this draft with the target model
follow the previously proposed decoding algorithm,
thus our proposal requires minimal modifications
to existing speculative decoding code bases.

A complete overview of the SpecDiff decoding
is provided in Algorithm 1 (adapted from Leviathan
et al.).

Drafter’s evaluations. Next, we highlight an im-
portant difference between standard speculative de-

Algorithm 1: SpecDiff Decoding
ω Take T diffusion steps to generate the draft.
qTi+1,...,i+ω → N (0,εT I)
for t = T to 1 do

qt↑1
i+1,...,i+ω(x) ↑ Mq([x0:i] ↓ [qti+1,...,i+ω(x)], t)

xi+1,...,i+ω → q0

ω Run Mp in parallel.
pi(x), . . . , pi+ω+1(x) ↑
Mp(x0:i), . . . ,Mp(x0:i+ω)

ω Determine the number of accepted guesses n.
ri → U(0, 1), . . . , ri+ω → U(0, 1)

n ↑ min({j↔1 | i ↗ j ↗ i+ϑ, rj >
pj(x)

qj(x)
}↘{ϑ})

ω Adjust the distribution from Mp if needed.
p→(x) ↑ pn+1(x)
if n < i+ ϑ then

p→(x) ↑ norm(max(0, pn+1(x)↔ qn+1(x)))

ω Return one token from Mp, n tokens from Mq .
t → p→(x)

return x1, . . . , xn, t

coding and our approach. While in standard spec-
ulative decoding the number of evaluations by the
drafter model is dictated by the value of ω (used
in the first loop for Algorithm 1), in speculative
diffusion it is dictated by the number of diffusion
steps, T . This allows SpecDiff to scale ω to higher
values, as discussed further in Section 6.2.

Instead, the value of T is selected to optimize the
trade-off between draft quality and computational
overhead. While analysis by Lou et al. shows that
lower values of T lead to higher perplexity in the
generated sequence, this only impacts SpecDiff
with respect to its effect on the percentage of tokens
from the draft which are accepted (as can be noted
in the analysis reported in Figure 2 and discussed
in details Section 6.2).

Sequence initialization. An important consider-
ation in implementing SpecDiff is the initial align-
ment between the diffusion draft model and the
target model’s data distribution since these models
architectures are fundamentally different one an-
other. A key strength of SpecDiff lies in its ability
to leverage the alignment between the prefixes used
in discrete diffusion and the target model’s data dis-
tribution. Specifically, the better the prefixes align
with the target distribution, the more effectively the
diffusion drafter can generate longer, coherent se-
quences matching the target distribution, resulting
in progressively higher acceptance rates.

This however, also means that when the diffu-
sion draft model has not been finetuned, its output
distribution may initially differ from that of the tar-



get model, potentially leading to lower acceptance
rates at the beginning of the generation process.
To address this, we employ standard speculative
decoding for the initial few tokens, thereby optimiz-
ing SpecDiff’s performance from the outset. This
strategy ensures that SpecDiff achieves speedups
that are empirically at least as significant as those
observed with standard speculative decoding and
can realize substantial improvements, as we show
in Tables 2 and 4. Moreover, once the diffusion
draft model is finetuned to better match the target
distribution, this initial speculative decoding be-
comes unnecessary, as the drafter effectively aligns
with the target model from the beginning.

5 Comparative Analysis of Speculative

Decoders

Table 1 compares the computational aspects of
SpecDiff with state-of-the-art baselines in spec-
ulative decoding.

According to the Work-Depth parallel compu-
tation model (Blumofe and Leiserson, 1999), an
algorithm can be represented by a DAG, in which
each node is an operation and each edge is a depen-
dency. The longest shortest path in this computa-
tional DAG (i.e., the longest dependency chain) is
called the depth. It follows that the average paral-
lelism of a computation is the total number of nodes
divided by the depth, and that higher depth means
fewer opportunities for parallelism. We represent
the operations by the FLOPs of the model.

The table reasons about the approaches through
three parameters for Mp and Mq: C (memory con-
sumption), F (arithmetic/floating-point operations,
or FLOPs), and D (depth). Due to the quadratic
memory and computation requirements of trans-
formers, and for simplicity, C{p,q} and F{p,q} are
represented as functions of the number of tokens
after the initial prompt, i.e., Cp(k) is the mem-
ory cost for generating P + k tokens, where P is
the number of prompt tokens. The depth D{p,q}
is generally independent of the number of tokens
computed and is thus represented by a scalar.

In Medusa, the prediction tree is set by a number
of fixed hyperparameters (Cai et al., 2024), which
we aggregate by using the number of nodes and the
depth of the tree Tn and Td. Medusa-2 exhibits the
same parallel properties as Medusa-1, but requires
a joint fine-tuning of Mp along with Mq. Hydra is
an adaptation of Medusa, in which the heads are
applied in sequence. It thus only affects the depth

of the computations.
EAGLE uses a drafter model that contains the

target embedding layer, one autoregressive layer,
and the target LM head. The fixed tree size is 5
levels deep and contains 25 nodes (Li et al., 2024b).
EAGLE-2 (Li et al., 2024a) dispenses with the fixed
tree defined in EAGLE, and the induced dynamic
tree used in generation is represented with T .

Notice that in our method, the depth of the algo-
rithm is dependent on T , the number of diffusion
steps, rather than ω. Empirically, T is smaller than
ω, which enables more parallelism in the computa-
tion w.r.t. the number of generated tokens. Com-
bined with diffusion models enabling longer pre-
diction horizons, this allows SpecDiff to produce
more speculative predictions faster.

Practically, we observe that this enables SpecD-
iff to produce near state-of-the-art inference accel-
eration while requiring significantly less computa-
tional overhead and reduced memory requirements.

6 Evaluation

6.1 Experimental Setup

Settings. To empirically evaluate the improve-
ments provided by using SpecDiff, the paper pro-
vides an empirical analysis on three standard natu-
ral language processing tasks: (1) text summariza-
tion using the CNN/DM dataset (Nallapati et al.,
2016), (2) text generation on the OpenWebText
(OWT) dataset (Gokaslan et al., 2019), and (3) text
generation using MT Bench (Zheng et al., 2023).
Additionally, we assess the performance of our
method against the current state-of-the-art using
SpecBench, a unified evaluation platform for spec-
ulative decoding techniques (Xia et al., 2024).

In each setting, the model is queried for 1024 to-
kens using a greedy decoding scheme (temperature
= 0). For the experiments, we evaluate the pre-
trained target models Mp GPT-2 XL (1.5B), GPT-
NEO (2.7B), and Vicuna (33B). We use Masked
Diffusion Language Model (110M) as our drafter
model Mq, which is a comparable size to the base-
line drafter GPT-2 (86M) employed for our stan-
dard speculative decoding baseline (Sahoo et al.,
2024).

All evaluation is conducted on two NVIDIA
A100 series GPUs (80GB) using CUDA 12.2. Ad-
ditionally, FlashAttention (Dao et al., 2022) is used
to optimize the performance in all experiments.

Evaluation metrics. Our method is assessed em-
pirically by walltime speedup, acceptance rate ε,



Method Total Memory FLOPs Depth Max Extra Training

Consumption Tokens Requirements

Autoregressive Cp(1) Fp(1) Dp 1 N/A

SpS (Leviathan et al., 2023)1 Cp(ω) + Cq(ω) Fp(ω) + Fq(ω) Dp + ωDq 1 + ω Mq

PLD (Saxena, 2023) Cp(ω) Fp(ω) +O(Pn) Dp +O(n) 1 + ω None
Lookahead (Fu et al., 2024)1 Cp (2ω(n↔ 1)) Fp (2ω(n↔ 1)) + Fp(1) Dp + O(1) n↔ 1 None
Medusa-1 (Cai et al., 2024) Cp(Tn) +KCq(ω) Fp(Tn) +KFq(ω) Dp +Dq 1 + Td Mq

Medusa-2 (Cai et al., 2024)2 — — — — Mp

Hydra (Ankner et al., 2024)3 — — Dp +KDq — Mq

EAGLE (Li et al., 2024b) Cp(25) + Cq(25) Fp(25) + 5Fq(5) Dp + 5Dq 6 Mq

EAGLE-2 (Li et al., 2024a)4 Cp(Tn) + Cq(Tn) Fp(Tn) + TdFq(
Tn
Td ) Dp + TdDq 1 + Td Mq

SpecDiff (Ours) Cp(ω) + Cq(ω) Fp(ω) + TFq(ω) Dp + TDq 1 + ω Mq

Table 1: Comparison of different speculative decoding strategies and their parallel properties. The quantities
represent the cost of one additional decoding step (i.e., following the initial prompt). Note that Mq (and related
quantities such as Fq) are not constant across methods; e.g., EAGLE uses a different draft model architecture than
SpecDiff. T is the number of diffusion steps, T is a sparse draft tree with Tn nodes and depth Td, K is the number
of heads in a multi-head speculative decoder, P is the number of prompt tokens, n is an n-gram length, and ω is the
number of proposed tokens. 1

O(1) represents a database lookup. 2 Medusa-1 with target fine-tuning for Medusa-2.
3 Medusa with sequential draft heads for Hydra. 4 EAGLE with dynamic draft trees for EAGLE-2.

Mp Mq ω ε Speedup

C
N

N
/D

M S
p

S GPT-2 XL GPT-2 8 0.92 3.58x

GPT-NEO GPT-2 9 0.95 5.45x

O
u

r
s GPT-2 XL MDLM 15 0.87 4.80x

GPT NEO MDLM 15 0.88 6.63x

O
p

e
n

W
e
b

T
e
x
t

S
p

S GPT-2 XL GPT-2 8 0.93 3.66x

GPT-NEO GPT-2 7 0.85 4.12x

O
u

r
s GPT-2 XL MDLM 15 0.89 5.38x

GPT NEO MDLM 20 0.88 7.23x

Table 2: Evaluation of walltime speedup over autore-
gressive decoding using SpecDiff (Ours) compared to
standard speculative decoding (SpS). The best result for
each setting and target model is displayed in bold.

and total floating point operations (FLOPs). The
reported results are compared to recognized base-
lines of vanilla autoregressive decoding, standard
speculative decoding (SpS) implementations as pro-
posed by Leviathan et al.; Chen et al., which our
method most closely resembles, and Eagle-2 (Li
et al., 2024a), the state-of-the-art for speculative
decoding methods. Additionally, we provide com-
prehensive comparison to these method, as well
as the current fastest-to-date speculative decoding
approaches, detailing the improvements SpecDiff
provides in reduction of FLOPs and memory foot-
print in Table 1.

6.2 Results and Discussion

Empirically we highlight the comparison between
our approach, other speculative decoding meth-
ods, and vanilla autoregressive generation. Across
the tested settings and target model architectures,
SpecDiff significantly outperforms standard specu-
lative decoding, achieving speedups of up to 7.2x
compared to the target models and increasing the

efficiency of standard speculative decoding by

more than 1.75x. Furthermore, SpecDiff rivals
the performance of current state-of-the-art methods
while reducing the FLOPs/draft by over 33%
and reducing memory consumption (shown in

Table 1).

Table 2 First, we compare SpecDiff to the perfor-
mance of standard speculative decoding. Despite
SpS generally reporting slightly higher acceptance
rates, the improved parallelization provided by

SpecDiff results in greater speedups ranging

from 1.45–1.75→ improvement over the base-

line. As we have not finetuned the target model
or draft model, we utilize sequence initialization
with SpS to enhance generation speed by sampling
the first 100 tokens of the sequence. We ablate the
performance of SpecDiff without this enhancement
in the Table 4.

Table 3 To provide comparison to other state-of-
the-art speculative decoding methods, evaluation is
conducted on generation prompts from MT Bench
(Zheng et al., 2023) using Vicuna 33B as the tar-
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Mp Mq ω ε FLOPs/draft Task Speedup Overall Speedup

EAGLE
† Vicuna 33B AR Head (990M) ↘5 0.80 2.01→ 1010 2.73x 2.41x

EAGLE-2
† Vicuna 33B AR Head (990M) ↘6 0.84 8.35→ 1010 3.03x 2.60x

Ours Vicuna 33B MDLM (141M) 15 0.76 5.53→ 1010 2.61x 2.61x

Table 3: Evaluation on MT Bench using SpecDiff (Ours), EAGLE, EAGLE-2, and SpS with Vicuna target models.
FLOPs/step computes that floating point operations for the drafter to generate each sequence. ‘Overall Speedups’ for
the baselines are measured on all Spec-Bench (Xia et al., 2024) tasks. † denotes results collected using Spec-Bench.

Figure 2: Evaluation of SpecDiff’s sensitivity to ω and number of diffusion steps when optimizing speed (left)
and accepted tokens per draft (right) as reported on the OpenWebText task using GPT-2 NEO as the target model.
Average token acceptance increases with T (x-axis), as examined theoretically in Appendix A. Despite this, the
additional compute required as T is scaled results in reduced speedup.

get model. Generation lengths are reduced to 512
tokens to better align with the task. For this set-
ting, MDLM (141M) is pretrained with the Llama
1 tokenizer for compatibility with the target model
used. As Vicuna is instruction tuned, we utilize
a teacher-student instruction tuning approach re-
sembling the knowledge distillation approach pro-
posed by Zhou et al. to align the output distribution
of MDLM with the target model. This approach
is similar to the additional instruction tuning con-
ducted to align Eagle and Eagle-2 on ShareGPT
instruction tuning dataset (Li et al., 2024b,a). Be-
cause of this finetuning step, it is not necessary to
use sequence initialization as with pretrained mod-
els. Notably, SpecDiff provides a speedup 70–85%
of the state-of-the-art methods, Eagle and Eagle-2,
while requiring 33% fewer floating point opera-

tions per draft generation. Thorough comparison
to Eagle-2 and other speculative decoding strate-
gies is highlighted in Table 1.

Table 4 While we observe a slight decrease in
SpecDiff’s speed when standard speculative de-
coding is not used to initialize the generation, the
change in ε is most noticeable when comparing to

Mp Mq ω ε Speedup

C
N

N

O
u

r
s GPT-2 XL MDLM 10 0.75 3.82x

GPT NEO MDLM 15 0.77 5.32x

O
W

T

O
u

r
s GPT-2 XL MDLM 15 0.78 4.06x

GPT NEO MDLM 15 0.82 6.19x

Table 4: Performance of a “vanilla” version of SpecDiff,
that does not use SpS initialization.

Table 2. This reflects the poor acceptance rates at
the beginning of the generation. While SpecDiff
does outperform SpS in this setting, providing up to

1.5x speedups over SpS, this highlights the benefit
of adjointly using SpecDiff and other speculative
decoding methods. Such hybrid approaches can be
particularly effective for shorter generations.

While previous implementations of speculative
decoding rely on a common architecture between
the drafter and target models (Leviathan et al.,
2023; Chen et al., 2023), using smaller versions of
the same architecture to generate draft sequences,
these experiments demonstrate a robustness to us-
ing a completely different architecture for sequence



drafting. This is particularly significant given the

absence of finetuning in the reported results (Ta-

bles 2 and 4). Pretrained diffusion models can
be directly purposed as draft models requiring no
additional training.

The much larger values of ω used for SpecDiff
should particularly be highlighted. This is a key
discrepancy between diffusion language models,
which generate entire sequences in parallel, and
autoregressive models. Hence, there is minimal
overhead to increasing the sequence length gener-
ated by the diffusion-based drafter, and ω can be
significantly increased without incurring significant
cost.

The hyperparameters used in the reported results
have been optimized empirically. We highlight that
while in standard speculative diffusion the perfor-
mance is highly sensitive to ω, SpecDiff is robust
to a range of values for ω making it unnecessary to
precisely tune this hyperparameter (in our experi-
ments we found between 10 and 20 worked well).
Rather, SpecDiff’s performance is much more sen-
sitive to the number of diffusion steps selected.
Similar to the role of ω in an autoregressive model,
the number of diffusion steps T dictates the num-
ber of network evaluations during a single drafting
step. As reported in the Figure 2, while increas-
ing this hyperparameter arbitrarily results in higher
values of ε, SpecDiff performs best when this is
optimized to balance the objectives of maximizing
the number of accepted tokens and minimizing the
drafter’s overhead.

7 Conclusion

Motivated by the costly inference time of current
large language models, this paper has proposed
the novel integration of discrete diffusion models
with autoregressive language models. The pro-
posed method, Speculative Diffusion Decoding,
alters existing speculative decoding schemes to in-
tegrate a non-autoregressive diffusion model as the
draft model. As shown by the empirical evalua-
tion on standard language generation benchmarks,
the proposed method leverages the dramatic run-
time advantages of discrete diffusion models while
also maintaining the dramatically higher genera-
tion quality of autoregressive target models. The
reported results demonstrate the utility of this ap-
proach in effectively accelerating runtime, outper-
forming vanilla decoding by over 7x and specula-
tive decoding methods by over 1.75x.

8 Limitations

While our proposed Speculative Diffusion Decod-
ing method represents a significant step forward in
accelerating large language model inference, sev-
eral limitations warrant discussion. Addressing
these limitations highlights promising avenues for
future research that could further enhance the effi-
ciency and applicability of SpecDiff.

Calibration of discrete diffusion models. A pri-
mary limitation of our approach lies in the chal-
lenge of using different architectures for the drafter
and verifier models. Specifically, the adopted dis-
crete diffusion models do not output well-calibrated
probability distributions that align with those of the
target autoregressive models, particularly when the
sampling temperature (T ) is greater than zero. The
diffusion models tend to produce over-confident
predictions, often assigning near-certain probabil-
ity to the top-1 token while assigning negligible
probabilities to all other tokens. This results in de-
terministic sampling regardless of the temperature
setting, challenging the applicability of SpecDiff
in scenarios where diversity and stochasticity in
generation are desired.

Thus, the development of techniques to better
align the output probabilities of diffusion drafters
with the target models is an key area of future
work. Achieving proper calibration would enable
effective use of SpecDiff at higher temperatures, as
well as unlocking massive further speedups beyond
what we have reported, as the acceptance rates are
predicted to increase dramatically.

Limited tokenization availability. We note that
available discrete diffusion models are based on the
GPT-2 tokenizer, which would restrict one immedi-
ate compatibility with target models using different
tokenization schemes. For our experiments, we
indeed trained a new discrete diffusion model from
scratch with a different tokenizer, a process that
demanded substantial computational resources and
time. All our models will be released on Huggin-
Face and thus be directly used by the community.

Performance on shorter generation tasks. We
observe that SpecDiff exhibits optimal performance
on longer sequence generations. In shorter gener-
ation tasks, the benefits of parallelization are less
pronounced, and finetuning the diffusion drafter
may be necessary to achieve comparable efficiency
gains. Without finetuning, the drafter may not effec-



tively capture the target model’s token distributions
for shorter sequences.

An interesting outcome of these observations is
that tailoring the drafter to better model shorter
sequences, could improve its alignment with the
target model, thereby maintaining speedups even in
less extensive generation tasks. We believe that this
adjustment may broaden SpecDiff’s applicability.

Stochastic sampling. Note that our experiments
are conducted with the sampling temperature set
to zero, resulting in deterministic token generation.
While this setting simplifies the verification process
it limits the exploration of the model’s capabilities
in generating diverse outputs. In the future, we plan
to exploring SpecDiff’s performance at non-zero
temperatures. As highlighted earlier, addressing
the calibration issue of the diffusion drafter would
enable effective stochastic sampling.

Despite these challenges, our work lays the foun-
dational framework for integrating discrete diffu-
sion models with autoregressive models in spec-
ulative decoding. Each limitation discussed high-
lights a specific area where further research could
yield significant benefits for the performance of the
proposed SpecDiff. We are optimistic that over-
coming these challenges will not only reinforce the
strengths of SpecDiff but also unlock new possibil-
ities for accelerating language model inference.
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A Drafter Convergence Analysis

In previous speculative decoding approaches the
computational overhead of the drafting stage has
been proportional to ω, as this parameter dictates
the number of network evaluations during the draft
phase. When using a discrete diffusion draft model,
the number of network evaluations is dictated by
the number of diffusion steps T . The following
reports an analysis of the possible speedups that
can be achieved by our approach, as a function of
the diffusion steps T .

First, note that the expected number of tokens
per draft can be derived from ε and ω:

E(#tokens) =
1↔ εω+1

1↔ ε
. (2)

In prior studies, theoretical results have fo-
cused on determining the optimal ω to maximize
the throughput of speculative decoding methods
(Leviathan et al., 2023). For SpecDiff, extending
ω introduces minimal overhead and becomes less
important to consider. The number of sequential
diffusion operations, T , instead impacts ε as in-
creasing this number improves the convergence of
Mq(x) to the learned distribution, aims to closely
approximate the distribution of Mp(x). Hence, an
implicit dependency arises between T and ε, which
is reflected in Figure 2 (right).

First, note that the computation overhead of a
single network evaluation of Mq(x) and Mp(x) is
constant. Mq(x) is scaled by the number of diffu-
sion steps, whereas all evaluations of Mp(x) are
conducted in parallel. Now, consider that, provided
Equation 2:

E(#tokens/second) =
(1→ϖω+1

1→ϖ )

Tc1 + c2
(3)

where c1 is the computation overheads of a single
network evaluation of Mq(x) and c2 is the compu-
tation overheads of a single network evaluation of
Mp(x).

Next, consider that the convergence of q(x) to
the original data distribution, which we will denote
as q̂(x), is proportional to the 1/T .
Theorem A.1 ((Li et al., 2023)). Under standard

assumptions, the convergence rate of samplers

based on the probability flow Ordinary Differential

Equation (ODE), converge at the rate

TV (q1, q̂1) ↗ c3
d2 log4 T

T
+ c3

d6 log6 T
T 2

+c3

√
d log3 T ϖscore + c3d(log T )ϖJacobi
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where d is the dimensions of the sample, ϖscore is

the error in the score function estimation, ϖJacobi is

the error in the Jacobian matrices, and universal

constant c3 > 0.

Given that q1 ↘ q0, this result provides a practi-
cal upper bound on the distance between q(x) and
q̂(x). As Theorem A.1 provides an explicit rela-
tion to T , this can be used to determine an upper
bound on the distance between q(x) and p(x) for
a given number of diffusion steps. By the triangle
inequality:

TV (p(x), q(x)) ↗ TV (p(x), q̂(x))+TV (q̂(x), q(x)) (4)

Now, the remaining step to find the upper bound
on the distance from q(x) to p(x) is to determine
TV (p(x), q̂(x)). First, consider that this relation
can be expressed as follows:

Definition A.2 ((Leviathan et al., 2023)).
DLK(p, q) =

∑
x ≃p(x) ↔ M(x)≃ =∑

x ≃q(x)↔M(x)≃ where M(x) = p(x)+q(x)
2

Corollary A.3 ((Leviathan et al., 2023)). ε = 1↔
E(DLK(p, q)) = E(min(p, q))

Provided Corollary A.3, DLK(p(x), q̂(x)) can
be computed empirically by setting T arbitrar-
ily high and evaluating ε; subsequently, we will
refer to this distance as c4. We note that the
DLK(p(x), q̂(x)) captures any error in the draft
model’s learned distribution that is introduced in
Theorem A.1 as ϖscore and ϖJacobi, so we will set
these to zero when applying the theorem.

Note that the metric DLK is equivalent to the
discretized total variation:

Proof.

DLK(p, q) =
∑

x

≃p(x)↔M(x)≃

=
1

2

∑

x

≃p(x)↔ q(x)≃

↘
1

2

∫
≃p(x)↔ q(x)≃dx

=TV (p, q)

For practical applications such as this, the dis-
crete total variation is used, and for the purpose of
this analysis we will consider the metrics equiva-
lent. Now, we are ready to compute a lower bound
for ε that is dependent on T , applying Equation 4:

ϱ = 1↔ E(DLK(p, q)) = 1↔ E(TV (p, q))

≃ 1↔ (c4 + TV (q̂(x), q(x)))

ε ⇐ 1↔ (c4 + c3
d2 log4 T

T
+ c3

d6 log6 T

T 2
) (5)

Equation 5 provides a lower bound on ε that is
dependant on T . While in practice this remains
computationally intractable, given that c3 is un-
known, this can be approximated using a surrogate
network to predict this constant; this is not dis-
similar from the suggestion by Leviathan et al. to
optimize runtime using such an approach to predict
ε.

We are now ready to connect this to Equation 3:

E (#tokens/second) ⇐
1→

(
1→c4→c3

d2 log4 T
T →c3

d6 log6 T
T2

)ω+1

c4+c3
d2 log4 T

T +c3
d6 log6 T

T2

→
1

Tc1+c2

This equation can now be solved analytically to
optimize the lower bound. Practically, in the pres-
ence of a surrogate network, this can be simplified
further, given convergence of the diffusion model
is proportional to 1/T .

E(#tokens/second) ⇐
1→(1→c4→c5

1
T )ω+1

c4+c5
1
T

→
1

Tc1+c2

(6)
Hence, the dependency between T and ε can be ex-
ploited to estimate the optimal number of diffusion
steps. In our experiments we find that the optimal
value of T ↓ 5.

B Accepted Draft Lengths

Figure 3: Accepted draft lengths for OpenWebText eval-
uation.

We notice a starch constrast in the lengths of ac-
cepted drafts between these two settings. While the
distribution of accepted draft lengths in Figure 4 is
what would be anticipated given the lower values
of ε, the longer generations on OpenWebText (Fig-
ure 3) speak to the parallelism that can be realized
when the distribution is effectively aligned to the
target model.



Mp Mq Strategy ω T Gen Length Precision

C
N

N

Ours

GPT-2 XL (1.5B) MDLM (110M) ddpm cache 15 2 1024 32 bit

GPT NEO (2.7B) MDLM (110M) ddpm cache 15 2 1024 32 bit

O
W

T
Ours

GPT-2 XL (1.5B) MDLM (110M) ddpm cache 15 2 1024 32 bit

GPT NEO (2.7B) MDLM (110M) ddpm cache 20 2 1024 32 bit
M

T

Ours Vicuna (33B) MDLM (141M) ddpm cache 15 2 512 16 bit

Table 5: Additional details on parametric setups for reported results.

Figure 4: Accepted draft lengths for MT Bench evalua-
tion.

C Implementation Details

For all evaluation we utilize the following hyper-
parameter setups. If not explicitly noted here, pa-
rameters are consistent with those specified by the
authors of MDLM (Sahoo et al., 2024). For re-
ported results on CNN/DM and OWT, 200 itera-
tions are conducted on samples randomly selected
from the datasets. For evaluation on MT bench,
160 iterations are conducted.

D Choice of Diffusion Model

The selection of a discrete diffusion model as the
drafter plays a critical role in optimizing the over-
all framework’s speedup performance. The models
explored, MDLM and SEDD, represent the current
state-of-the-art in discrete diffusion, achieving near
auto-regressive perplexity results with comparably
sized models. We observe significant speedups
over SpS when using MDLM as our drafter, as
MDLM demonstrates superior generation speeds
overall. These gains are not observed in SEDD
for two primary reasons: first, SEDD exhibits
lower perplexity compared to MDLM, resulting
in a lower acceptance rate and second, MDLM’s
generation speed surpasses that of SEDD.

Mp Mq ω ε Speedup

O
W

T

O
u

r
s GPT-2 XL SEDD Small 10 0.70 2.13x

GPT NEO SEDD Small 10 0.77 2.96x

Table 6: Performance of SpecDiff utilizing SEDD as
the drafter. Note that unlike experiments in Tables 2 and
4, the draft model has been finetuned on the selected
datasets; without finetuning, acceptance rates are below
ε = 0.2, making SEDD impractical as a solely pre-
trained drafter.

E Temperature Impact on Acceptance

Rate

As discussed in Section 8, overconfidence exhib-
ited by discrete diffusion models, a result of poor
model calibration, results in the top-1 token hav-
ing a probability close to 1 for the vast majority of
generations. For these outputs, the temperature is
effectively zero. In the speculative decoding frame-
work, this overconfidence is reflected as higher
q(x) values, which has a significant impact on the
token acceptance rate when sampling stochastically.
Specifically, high q(x) values lead to a decrease in
the number of accepted tokens because it increases
the frequency of q(x) > p(x). Increasing the tem-
perature has a smoothing effect on p(x) leading
to misaligned distributions between p(x) and q(x).
Consequently, tokens are more frequently rejected
with a probability of 1↔ p(x)

q(x) , where a larger q(x)
further increasing the likelihood of rejections.

This obstacle is avoided when sampling deter-
ministically (temperature=0) as in the results re-
ported. This challenge motivates future study of
discrete diffusion model calibration.
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