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Construction of a Dirichlet form on metric measure spaces of
controlled geometry

Almaz Butaev, Liangbing Luo, and Nageswari Shanmugalingam

ABSTRACT. Given a compact doubling metric measure space X that supports a 2-Poincaré
inequality, we construct a Dirichlet form on N2 (X) that is comparable to the upper gra-
dient energy form on N 1’2(X ). Our approach is based on the approximation of X by a
family of graphs that is doubling and supports a 2-Poincaré inequality (see [18]). We
construct a bilinear form on N1’2(X) using the Dirichlet form on the graph. We show
that the I-limit & of this family of bilinear forms (by taking a subsequence) exists and
that £ is a Dirichlet form on X. Properties of £ are established. Moreover, we prove that
& has the property of matching boundary values on a domain 2 C X. This construction
makes it possible to approximate harmonic functions (with respect to the Dirichlet form
&) on a domain in X with a prescribed Lipschitz boundary data via a numerical scheme
dictated by the approximating Dirichlet forms, which are discrete objects.
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1. Introduction

The idea of approximating a compact doubling metric space by graphs now is well-
established, with the work of Christ |[13] containing a prototype of such an idea. This idea
blossomed into the construction of hyperbolic fillings of compact doubling spaces to obtain
a Gromov hyperbolic space whose boundary is (homeomorphic to) the given space (see for
instance |7, 18,10, [18]). Under the additional condition that the compact doubling metric
space is equipped with a doubling measure that supports a Poincaré inequality, much can be
said about the approximating graphs, see [18]. In the non-smooth setting of metric measure
spaces equipped with a doubling measure supporting a Poincaré inequality, it is now known
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that there is a rich theory of harmonic functions (see for instance [5, 16, 29]). What is
missing in the current literature is a construction of a Dirichlet form which is compatible
with the upper gradient structure on the underlying metric measure space and, in addition,
a way of approximating the Dirichlet form via its discrete couterparts defined on graphs
approximating the metric space so that solutions to a Dirichlet boundary value problem for
functions that are harmonic with respect to the limit Dirichlet form can be approximated
by solutions to Dirichlet boundary value problem for the approximating sequence of graph-
Dirichlet forms. The goal of this present note is to demonstrate one way of constructing
such an approximation.

The notion of Dirichlet forms has its roots in the work of Beurling and Deny |3, |4].
The theory of Dirichlet forms has been fleshed out in the textbook [17], and an excellent
exposition of the notions of I'-convergence and Mosco-convergence of Dirichlet forms can
be found for instance in |9, [15} (25, 126, [27]. Of these expositions, the works of |9, [15, [27]
consider sequences of Dirichlet forms on Euclidean spaces, while the works |25, [26] consider
sequences of Dirichlet forms, each defined on a (potentially) different metric measure space,
converging in a sense akin to measured Gromov-Hausdorff convergence (see [12] for more
on Gromov-Hausdorff convergence) of Dirichlet forms.

The paper [|25] discusses convergence of graphs to graphs and the convergence of cor-
responding Dirichlet forms, while [26] studies Gromov-Haudorff convergence of function
classes and Dirichlet forms. The papers |24, [1] construct a Dirichlet form that is equiv-
alent to the Korevaar-Schoen energy, but their approximations are not discrete and hence
do not lend themselves to numerical schemes. Neither of them work for us as we consider
graphs that approximate a potentially non-graph metric measure space, and we do not know
Gromov-Hausdorff convergence of corresponding Sobolev classes. Hence we have instead
used graphs X, 7 > 0, to construct a family of Dirichlet forms & on N12(X), see (B.2).
We then show that this family of Dirichlet forms has a subsequence that I'-converges to
a Dirichlet form on X so that the domain of this limit form coincides with the Newton-
Sobolev class N%2(X), but with Dirichlet energy that is comparable to the upper gradient
energy therein. The definition of I'-convergence is given in Definition 3.15 below.

THEOREM 1.1. Let p be a doubling measure on the complete metric space (X,d) so that
(X, d, n) supports a 2-Poincaré inequality. Then for forms &, defined by [B.2), the following
is true for every u € NV2(X) and its minimal 2-weak upper gradient g, € L*(X):

(1) There is a constant C' > 0 such that

1

— sup&,fu] < / g2 dp < C liminf & [u).

O r>0 X e—0T

(2) There is a sequence {ri}ren with limgry = 0, such that &, T'-converges to a
Dirichlet form € on X, defined on N2(X). Moreover, for each u € N“2(X) we
have that

L e < / godp < CEul.
C X

(3) The form & is a positive-definite symmetric Markovian closed bilinear form on

NY2(X).
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This above theorem enables us to have a way of numerically computing Dirichlet energies
on a compact doubling metric measure space supporting a 2-Poincaré inequality, and in so-
doing, we improve on the goal set in [16]. In this goal, we rely on the type of Poincaré
inequality on graphs as found in [18]. This forms the first part of the present note. While
our construction of approximating Dirichlet forms is based on the work of [18], there are
alternate constructions based on the notion of Korevaar-Schoen energy, see [1]. As the
construction of [1] is not immediately related to the notion of Poincaré inequalities (via
averages of functions on balls), and as numerical approximations are not relevant to the
construction found in [I], we do not consider their construction in the present paper.

The primary reason for considering this specific construction of a Dirichlet form &
on X is to have a notion of harmonic functions on X (related to this form) that is easily
approximated by graph-harmonic functions. Since X is compact, each approximating graph
for X is a finite graph, and then given boundary data for each of these graphs, it is an
exercise in computational linear algebra together with the mean value property for harmonic
functions on graphs |22, [23| to obtain harmonic functions on an approximating domain in
the graph by considering the adjacency matrix of the domain in the graph. Here, given the
boundary data f € N%2(X) for the Dirichlet problem for £ on a domain  in X, we may
consider a discrete mollification of f as the boundary data for the Dirichlet form &, with
respect to the approximating domain €2, C X. Observe that given a function v € N'2(X),
the I-convergence gives us some sequence v, € NV2(X) with vy — u in NY2(X) such that
Efv] = limy &, [vg]. However, in solving the Dirichlet boundary value problem, we would
need the approximating functions vi to have the same boundary values as u. We establish
this in the second main theorem of this paper.

THEOREM 1.2. Let u € NY2(X) and Q be a domain. If there exist v; — u in N%?(X)
and E[u] = lim &, [v;], then there exists a sequence u; € N'2(X) such that
j—o0

Elu] = lim & [uy]
Jj—o00
and
1,2
u—u; € Ny*(2).

The rest of the paper is organized as follows. The next section, Section [2, will provide
the background information regarding Sobolev spaces N2(X) and the related notions.
Towards the beginning of this section we also provide the description of approximating
grapns X, of the metric space X. In Section 3 we give the construction of the approximating
forms &, on X. Sections B and @ contain the proofs of Theorem [L.T] and Theorem

Theorem will be proved near the end of Section Bl Theorem [[.T] will be proved in
stages. The first claim of Theorem [[.I] will follow from Theorem [3.13] and the existence of
the I'-limit will be established in Proposition [B.16. The last part of Theorem [1.1] listing
the properties of the I'-limit form &, will be established via the lemmas in Section 4. Since
the approximating forms &, are not known to be Markovian on N12(X), the fact that & is
Markovian does not follow directly from the theory of I'-limits; instead, we establish this
property in Proposition [4.8]
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2. Background

In this note (X, d, u) will denote a complete geodesic metric space (X, d), equipped with
a Radon measure p supported on X, such that p is doubling; that is, there is a constant
Cy > 1 such that for all z € X and r > 0 we have

p(B(x,2r)) < Cap(B(x, 7).

Here, B(x,7) := {y € X : d(x,y) < r} is the open metric ball, and B(z,r) := {y € X :
d(z,y) < r} is the closed ball; note that the topological closure of B(x,r) is contained in

B(z,r), but need not equal.

DEFINITION 2.1. With D C L?(X) a vector subspace, a positive-definite symmetric
bilinear form £ : D x D — R is said to be a Dirichlet form on D if

(1) D is dense in L?(X) in the norm of L?(X),

(2) with & (u,v) := E(u,v) + [y uvdp for u,v € D, (D, &) is a Hilbert space (in [17]
this property identified as the closedness property of £, see Definition [4.3| below),

(3) E(ur,ur) < E(u,u) whenever u € D and up := max{0, min{u,1}} (in [17] this
property is identified as the Markovian property).

Associated to the Dirichlet form there is an energy form, also denoted &, with u] := & (u, u)
for each v € D.

While [17] sets a Dirichlet form to be £ : L?(X) x L?(X) — [~00, 0o] and then sets D to
be the collection of all functions u € L?(X) for which &(u,u) < oo, this is not necessary and
recent papers on Dirichlet forms do not require £ to act on all of L?(X), see for instance [25]
Section 5], [11], or [30, page 7, Section 2C].

Since the doubling measure is supported on X, it follows that (X, d) is itself a doubling
metric space; that is, there is some positive integer Ny such that for each z € X and
r > 0, there are at most Nz number of points in B(x,r) that are separated by a distance
at least /2 from each other; that is, whenever A C B(x,r) such that for z,y € A we have
d(xz,y) > r/2 or x = y, we must have that A has at most Ny number of elements. It follows
that for each » > 0 we can find a set X,, C X such that

(a) d(z1,22) > r whenever z1,x2 € X, with z1 # x9,

(b) X = Uzex, B(7,7).
The set X, can be given the structure of a graph, with elements of X, being the vertices
of the graph and two vertices Z,5 € X, neighbors if Z # ¢ and B(&,2r) N B(y,2r) # 0.
We denote the neighborhood relationship by z ~ 4. By gluing an interval of length r to
the two neighboring vertices T, §, we obtain a metric graph, equipped with the path-metric
d,. Note that because X is a connected metric space, necessarily we must also have X, be
a connected metric space. We refer the interested reader to [20] for details regarding this
construction.

Note that € X, now has two identities; one as a point in the graph X,., and one as a

point in the metric space X. The following lemma compares the two metrics on X,., namely
the metrics d, and d.
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LEMMA 2.2. Let (X,d) be a doubling geodesic metric space and (X,,d,) be defined as

above. Then

1

forallz,y € X,.
PrOOF. For T,y € X, with Z # g, we have that
dr(jy g) = Nr,

where N is the smallest number for which there is a collection of points {Z;}, so that
To=2,Zny =y and T;_1 ~ T; for t = 1,...,N. Such a collection is called an X,—chain
between & and g. Given the shortest such chain, we see that

N N
d(z,9) < d(Ti1,2) <Y 2r = 2d.(Z,7).
=1 =1

Since X is a geodesic space, we also have a reverse relationship between d and d,. as well.
Let z,y € X, be two distinct points, connected in X by a geodesic v. If d.(z,y) = r,
then r < d(z,y) < 4r. If d.(Z,y) > 2r, then d(Z,y) > 4r, and we can find points

20 =T, 21,..-,2N—1,2N = gy on v with the property that

d(zNny—1,2N,) <17, d(zi—1,2;)) =7, fori=1,...,Ng— 1,
and r < (Ng — 1)r < d(z,y) < Nor with Ny > 3. Furthermore, each z; lies in the ball
B(zi,r), for some z; € X, for i = 1,---, Ny — 1, where we set zy = T,zy, = y. Then

d(Zi—1, %) < d(Zi—1, zi—1) + d(zi—1,2) + d(2, %) < 3r, and so d,(Z—1,%) < r (with the
value either 0, if Z;,_1 = Z;, or r otherwise). Thus
No
d(2,9) <> dp(Zi1,7) < Nor < 3(Np — 1)r < 3d(, 7).
i=1
O

The graph metric space X, plays the role of a discrete approximation of the metric
space (X, d) at scale r. By equipping X, with a “lift” of the measure u, given by

pr(A) = Z n(B(z,2r))
TEA

whenever A C X, we obtain a metric measure space (X,,d,, i1,) with the measure u, a
doubling Radon measure on X,. For more on the approximation nature of (X, d,, j1,) we
refer the reader to |18].

Given a function v : X — R, we say that a non-negative Borel measurable function g
on X is an upper gradient of w if for every non-constant, compact, rectifiable curve v in X
we have

u(y) — u()| < / gds,

y
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where x and y denote the two end points of . If u is a locally Lipschitz-continuous function
on X, then the local Lipschitz-constant function Lip u, given by

Lipu(z) = lim sup [uty) = u()|
r—0t x#yEB(z,r) d(y7 LL’)
is an upper gradient of u.

For 1 < p < oo, we say that u € N'P(X) if u is measurable with [ [u|P dy < co such
that u has an upper gradient g € LP(X). We refer the reader to |21] for more on upper
gradients and the Sobolev class N1P(X).

In this note we will also assume that (X, d, ) supports a p-Poincaré inequality, that is,
there is a constant Cp > 1 such that for each ball B C X and each function-upper gradient
pair (u,g) on X we have

1/p
][ |lu —up|du < Cp rad(B) <][ gpd,u> .
B B

A more general version of Poincaré inequality would have the existence of a constant © > 1
such that the right-hand side of the above inequality has ©B rather than B. However,
when X is a geodesic space (and a biLipschitz change in the metric does provide a geodesic
space), it is possible to choose ® = 1 at the expense of increasing the value of Cp, and
this is what we choose to do here. We refer the interested reader to [19} [21] for more on
this. A theorem of Cheeger [12] tells us that there is a linear differential structure on such
X, commensurate with a notion of Taylor approximation by Lipschitz charts on X, and a
measurable inner product structure on this differential structure, so that the inner product
norm of the differential of a Lipschitz function u on X is comparable to Lip u. However,
this proof, as given in [12], is that of existence.

In the rest of the paper we consider only the case p = 2. The goal of this note is to
give a construction of a Dirichlet form on X, by using the ideas of [16}, (18], together with a
modification of the notion of Mosco convergence, by considering the natural Dirichlet forms
on the approximating graphs.

REMARK 2.3. It was shown in [18] that (X, d, ) is doubling and supports a 2-Poincaré
inequality if and only if the family of approximating spaces (X;,d,, u,) also is doubling
and supports a 2-Poincaré inequality, with the relevant doubling constant and the Poincaré
constant independent of r. We will make use of this result in our paper.

PRropPOSITION 2.4 (Gill-Lopez [18]). Let (X,d, ) be a doubling metric measure space
and (X, dy, ) be defined as above. If (X,d, u) admits a Poincare inequality with constants
Cpr >0 and A > 1, then (X, d,, i) admits a Poincare inequality in the Holopainen-Soardi
sense: there are constants Cgg > 0 and 0 > 1 independent of r such that for any Tg € X,
R >0 and u defined on X,, we have

> la(o) - @el 2 < Cusor | XY

TEGyR Y~T

1/p
u(z) — u(y) ‘p pir (Z)
r /’[/T’(GGR)
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where Ggr = G(Zo; R) = {z € X, : d.(Z,Z9) < R}.

Given the graph X, as above, the graph energy of a function wu, : X,, — R is given by

Ur(Y) — Up (T 2
Z Z| (9) ()] 117 (3). (2.5)

L r2
TeX, J~T

Kl

We straddle three realms here; the graph energy on the graph X,., the energy &, induced
on X by the graph energy (see (3.2) below), and the I'-limit energy £ on X. The graph
energy is directly seen to be derived from a Dirichlet form, and we will see in the last section
that the I'-limit energy £ is also derived from a Dirichlet form. The energy &,, however,
is not known to be from a Dirichlet form, though it is derived from a positive-definite
symmetric bilinear form.

3. Constructing approximating energy forms &,

In this section we use the structure of X, to construct an approximating Dirichlet form
E + NY2(X) x N¥2(X) — [~o0,00] on X as follows. For functions u € NY2(X) and
T € X,, weset u, : X, = R by

up(z) == ][ udp, (3.1)
B(z,r/4)

and set the Dirichlet form by the formula

57»(u,1)) — Z Z [uT(g) — uT(j)H,UT(j) — UT(?)] NT’(LZ') (32)

r2

zEX, Y~T

whenever u,v € NY2(X). It is clear that &, is a bilinear form on the Hilbert space N12(X).
We set & [u] = & (u,u).

REMARK 3.3. The form &, is a bilinear energy form but is not known to satisfy the
Markov property, and so should, according to the definition of [3, [17], not be called a
Dirichlet form. Moreover, & need not be closed as it acts only on N12(X), but it is closable
in L2(X). The point here is that we can have a sequence (u,), of functions in N?(X)
that converges to a function in L?(X) \ N12(X) and so that &(un — Um, Up — Um) — 0 as
n,m — oo. However, &, is induced by a bilinear energy form on the graph X, which is indeed
a Dirichlet form, and so we allow ourselves the liberty of calling &, also a Dirichlet form as
this does not give rise to any confusion. The I'-limit energy form on N'2(X) obtained from
the forms &, will indeed be a Dirichlet form, see Proposition 4.8 and Lemma below.

We are also concerned with the natural energy form on X inherited from the upper
gradient structure; for u € NP(X) we set

E[u] ::inf/ g dp,
9 JXx
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where the infimum is over all upper gradients g of u. From the results in [21] we know that
there is a minimal 2-weak upper gradient, g,, associated with each u € N*2(X), such that

EM:Aﬁ@.

When w is locally Lipschitz on X, it follows from [12] together with |21] that g, = Lip u.
For functions v € L?(X) that do not have (a modification on a set of measure zero)
representative in N12(X) we set Efu] := oo.

The following proposition gives us a comparison between the family &. and E.

PROPOSITION 3.4. Let X be a doubling metric measure space admitting a 2-Poincaré
inequality. Then there exists C' > 0 such that &.[u] < CEu] for allr > 0 and u € NY2(X).
Moreover, whenever Lip u is continuous and belongs to L?(X,du) ,we have

Elu] < Climinf &, [u).
r—0+
The constant of comparison, C, is dependent solely on the doubling constant Cy associated
with p, the metric doubling constant Ny associated with the doubling metric space (X,d),
and the scaling constant 0 from Proposition|2.4]; in particular, it is independent of u and r.

This proposition will be proved using Lemma [3.5] below.

LEMMA 3.5. Let u € NY2(X) be a locally Lipschitz function such that Lipu is a con-
tinuous function on X. Then for any rg > 0 and any x € X there exists a ball B, centered
at x and of radius r(By) < ro, such that for all ¢ < rad(B;)/36 we have
Z |ue (@) — ue ()| pe(Z) e ()

2

Lipu(r) < r(B,) M(B:)

, (3.6)
z,ycE(z,r(Bz))
where we set
E(z,r(By)) ={z € X. : B(Z;¢) C By}.
PROOF. We fix rp > 0 and = € X. Without loss of generality we may assume that

Lipu(z) > 0. Then by the continuity of Lip u, there is some positive number r; < rg such
that

1
sup |Lipu(y) — Lipu(z)| < = Lipu(z). (3.7)
yeB(x,r1) 2

Next, by the definition of Lip u(x), there exists a positive number 7o < /2 and a point
y € B(x,re) such that

3
B0 < 5 Lipu(z 3.8
PeBxrs) AT, 7)) 2 () (3.8)
and
L ) (3.9)
) 3
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To see this claim, we argue as follows. By the definition of Lip u(x) we know that there is
some y € B(z,71/2) such that y # z and

uly) —uw(@)] _ 2.
— = >_1L .
dym) — 3
Setting ro = d(z,y), we obtain (3.9)). By (3.7) we know that
sup Lipu(w) < §Lip u(x),
weB(x,r1) 2

and as for each 2/ € B(x,72) we know that B(z',r2) C B(xz,71), we know that wu is
3 Lip u(z)-Lipschitz continuous on B(x,73), and so (3.8 follows.

We set B, := B(z,r2) and will show that (3:6]) holds for ¢ < r9/36. In order to do
this, consider the balls By = B(x,r2/9) and By = B(y,r2/9). Then by the choice of 3 and
by [3.8), for all 2’ € By we have

lu(x") — u(z)] < ; Lipu(z) d(z,2") < %2 Lip u(z).

Therefore
[u(z’) — u(z)|

1
< 2L .
- <35 ipu(x)

Similarly, because X is a geodesic space and Lipu is an upper gradient of the Lipschitz
function w (see [20], |21]) and by (3.7) we see that for all ¥’ € Ba,

> Lip u(x) n_ Lip u(x).

lu(y') —u(y)] < sup Lipu(z) d(y,y’) < 5=

z€B(y,r2) 2

Note that d(x,y) = r2, and so
E(x,r2/9) :={z € X, : B(z,e) C B1} C E(x,r2),
E(y,r2/9) :={z € X, : B(Z,e) C By} C E(x,r9).

For z € E(x,1r2/9) and § € E(y,r2/9) we have

|ue(Z) — u(@)] (@) —w(@)| 1
) : ]{3(:0,6/4) T2 dule) < 6 Lipu(z)

and

(5) ~ u(y) ) =)y < it
s f ) <  Lipu).

Hence by (3.9), for all z € E(z,r2/9) and § € E(y,r2/9),

[ue (%) — ue(y)]
T2

> % Lip u(x). (3.10)
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As the balls B(Z,e/2) are disjoint in X and the measure u is doubling, we have

w(B@ra/9) = Y w@= 3 uB@e)

ZEE(x,r2/9) ZEE(x,r2/9)
S Y u(B(E;e/2)
z€E(x,r2/9)
< u(B).

Similarly we obtain
pe(E(y,r2/9)) S pn(Ba).

On the other hand, as € < ry/36 and X, is an e-net, we have that
%Bl C U B(Z;¢e) and %Bg C U B(y;e).
z€E(z,r2/9) GEE(y,r2/9)
Therefore

pw(B) Su(3B) < > wB(&;e)) = pe(E(x,r2/9)),
z€E(x,r2/9)

WB2) SuEB) < Y p(B(@;e) = pe(Ely,2/9))-
yeE(y,r2/9)
Combining the above two sets of comparisons, we obtain
pe(E(x,r2/9)) ~ p(B1) and pe(E(y,r2/9)) =~ u(Ba),

and as r(B1) = r(Bg2) = r(By)/9 with the centers x and y, of B; and By respectively, in
B,, we obtain from the doubling property of u that

pe(E(z,72/9)) = p(Be) and pe(E(y,r2/9)) = p(By).
Finally, by (B.10) we obtain

i ulz |u€(3_3) - ue(g)| Ns(j) ,ue(g)
T D B M (XY ) RO Y)Y
|u€(:i) - u€(§)| ,ue(ﬂ_j) Ns(g)
<3 D e h(Ewra/0) m (B 12]9))

Z,y€E(x,r(Bz))

S S L B PG TE UL

€
~ T2 N( x)2

zZ,jeE(z,r(Bgz))
O

Now we are ready to prove Proposition [3.4]

PROOF OF PROPOSITION 3.4 Let u € NV2(X) be a locally Lipschitz continuous func-
tion on X such that its local Lipschitz constant function Lipwu is also continuous on X.
Without loss of generality, we assume that | +(Lip u)? dy is positive, for otherwise u is con-
stant and all the relevant Dirichlet energies are zero. Now we introduce a large parameter
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A > 1 that we will fix at the end (indeed, it can be any choice of A > 126+ 1 with 6 from the
Poincaré inequality given in Proposition [2.4] above). Let K be a closed ball of sufficiently
large radius so that

/ (Lipu)? du < 2/ (Lipu)? du.
X K

Note that as X is complete and doubling, it is proper; hence K is compact. By uniform
continuity of Lipwu on 10\K, we can find r € (0,1) small enough so that 2r; is less than
the radius of K and

. . 1 .
sup |(Lipu(x))? — (Lipu(y))?| < K][ (Lipu)? du. (3.11)
2,y€10AK K
d(z,y)<2r1
Here we have fixed a number A > 2, to be chosen later.

For each x € K we find a ball B, satisfying the conclusions of Lemma [3.5] with the
choice of 19 = r1/(5\). Such a family of balls is a cover of the compact set K, and so we
can obtain a a finite subcover of K. Moreover, by the 5r-covering lemma (see e.g. |20,
Theorem 1.2] or |21} page 60]), we can further find a subcollection of balls {B;}¥ ; such
that

N
{AB;} are disjoint and U 5AB; D K. (3.12)

i=1
With this subcover, we get

[ v au < Z (]ng Lipu)? du) - (37,

where the balls B; satisfy the conclusmns of Lemma [3.5l We denote the centers of these
balls by x;. Since the radii of each 5AB; is no more than r; and the center of 5AB; lies in
K, it follows from (3.11) that

][ (Lipu)? dp < (Lip u(z;)) ][ Lip u)?
5AB; A

We now obtain from the above observations that
N

/K(Lip u)®dp < iv:(Lip u(w;))? - u(5AB;) + <][ (Lip u) d,u) Z,u (5AB;)

=1 =1
N

(Lip u(z;))? - w(5AB;) + % ][ (Lip u)? d,uZu

=1

(Lipu()? - u(2B;) + LX) ]f{ (Lip)? dj

AN
.MZ

@
Il
—

-

@
Il
,_.

-

@
Il
—

(Lipu(rs))® - n(GAB:) + 1 /K (Lipu)? d.
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The last few steps in the above argument was arrived at by using the fact that the balls B;
are pairwise disjoint and are contained in 2K. The comparison constant associated with
the above series of inequalities, C,, depends solely on the doubling constant of p and the
choice of A\. We choose A > 2C,. It follows that C,/A < 1/2, and so

N
[ Wipuau <200 Y Mipute)? - usAB).
i=1

Recall that in Lemma [3.5] the parameter £y depended on the radius of the ball B,.
We will indicate this dependence by denoting e¢ by eg(z). Therefore, choosing any & <
minlSiSN 60(:1%), we get

N — — _ _
|ue (%) — ue ()] pe(T) e (¥)
(Lipu)® dys 3 w(Bi)
/K ; f,yeE(zz;MBi)) r(B1) H(Bs)?
[ 2

< iv: Z ‘ua(.’i’) - (UE)G(ZBi,T(Bi))’ /Le(i‘) (B)
P r(By) w(By |
i=1 | ZEE(x4,7(B;))

where, as in Lemma [3.5] we have
> () ~ p(B)
QEE(Z‘i,T’(Bi))
and
E(x;,r(B;)) ={z € X; : B(Z;e) C B;} C G(ay,r(B;)) ={Z € X¢ : de(x;,%) <r(B;)}.

By the doubling property of i again, we have that u.(G(z;,7(B;))) ~ u(B;). Now we apply
Proposition 2.4} to obtain

N _ _
U (T) — ue(Y)|° pe(Z
/K Llpu2 )* du < Z Z Z| < )62 =) ME(B; w(B;)
i=1 feG(mi,Gr(Bi)) y~T !
S Jue(@) —ue @)
S > pe(®)
i=1 | 2€G(z;,0r(B;)) I~

Y% [ o] @) @l
= G(as,0r(B)) (T = pe (),

z€Xe Yy~ Li=1
where we used Tonelli’s theorem to obtain the last inequality. Since A > 120 + 1 and the

balls AB;, i = 1,--- , N are pairwise disjoint, and as for each i we have that G(z;,0r(B;)) C
20B; C AB;, we have that

U 2
/ Lipu)? du < Z Z fue( @)l pe(z) = Eful.

TEXe YT
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The above holds for all sufficiently small £ > 0, and so we have that

/ g2 dp = / (Lipu)?dp < 2 / (Lipu)? dp < liminf & [u],
X X K e—0+

which verifies the claimed latter inequality in the statement of the proposition.

We now complete the proof of the proposition by verifying the first inequality stated in
the claim. To this end, let u € N%?(X). We fix r > 0 such that r < diam(X)/2. Recall
that for distinct Z,y € X, with  ~ § we have d(z,y) € [r,4r). Thus

B(y;r) € B(z;5r) C B(y;9r).
As p is doubling, it follows that

1(B(z,5r))
nw(B(y,7))

Hence, if  ~ ¢, then

up (7) — ur(5)] < ][

N(B(:gr)) 4 an M(B(£75T)) 3
=BG =™ uBEn) =9

57)
So
£.[u] = Z Z ur(T) . ur(y)‘ 10 (2)
zeX, T~y
2
. r)~! w(z) —u r(Z),
SN 3 i) 7[3(%57“ (2) = e |dp(@)| pr(3)

where Ny is the doubling constant of the metric space (X, d). Next, applying the Poincaré
inequality, we get

Z / Llpu dp

zeX,

<N} [ Wipw? dn
X

Erfu] S ][ (Lipu)* dp - (B
xg);r B(z;5r)

where we have used the fact that two balls B(Z, 5r) and B(Z', 5r) intersect with Z # #’ if and
only if r < d(Z,%’) < 5r. The constants of comparison in the above inequalities all depend
only on the doubling constant Cy of the measure p, and in particular are independent of u

and 7. O



14 ALMAZ BUTAEV, LIANGBING LUO, AND NAGESWARI SHANMUGALINGAM

THEOREM 3.13. Let X be a doubling metric measure space admitting a 2-Poincaré
inequality. Then there is a constant C > 0 such that for each u € N2(X) we have

1 sup &lu] < Efu] = / g2 dp < C liminf & [u)]. (3.14)
C r>0 X e—0t

Moreover, if u, k € N, is a sequence of functions in NY2(X) with u, — u in NY2(X),
then limy, & [ux| = &-[u] for each r > 0.

PROOF. The first inequality follows immediately from Proposition [3.4] and so only the
second inequality needs verification. That is the focus of this proof.

Let u € NY2(X), and (u)s be a sequence of compactly supported Lipschitz functions
on X with compactly supported Lipschitz upper gradients, such that uy — u in NP(X);
see [12, Theorem 5.3] (note that in [12], the continuous upper gradient oy ;) used to
construct the approximating function u; = fk,j(k)» by the construction of ug, necessarily
has the property that Lipuy = 9y, j)). By passing to a subsequence if necessary, we may
assume that |[u — ug||y12(xy < 1/k. Then by the first part of Proposition [3.4] again, we
have that

C

&l — i) 30/ G i <
X

Note that the constant C' independent of r. Therefore, for each ¢ > 0 we can find a positive
integer k. such that whenever k. < k € N, for all » > 0 we have 1/k < e and

Erlu—ug) <e

Now by the last inequality in the statement of Proposition B4, there is some r. > 0 such
that for each 0 < r < r., we have

/ gik dp < C EpJuy].
b's

For such r and k, we have by triangle inequality,

1/2
gr[u]1/2 > gr[uk]l/z - (“:T[’LL - uk]1/2 > é </ gik d/‘) —¢&.
X

The desired conclusion follows from letting 7 — 0™ and then € — 0.

We now show that if (uy) is a sequence in N*2(X) such that uz — u in NY2(X), then
for each 7 > 0 we have that & [ux —u] — 0 as k — co. We fix r > 0 and consider the balls
Bj, j € N, related to the construction of X,; namely the balls of the form B(z,r), T € X,.
Note that z ~ g if and only if B(Z;2r) N B(y;2r) is nonempty. Now setting vy = uy — u,
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we see that

Efue —ul = &) = > Y (k) i) — (Uk)B(ﬂ;r/4)’2u(B(f; 7))

r2

zEX, YEX 1Ty

S (el + (s ) (B )

zEX, YEX 1Ty

4 ][ ) ) i
5 o dy + f rwrw>m3mm»
DD ( B(air/4) B(gir/4)

zeX, yeEX,r 1Ty

IN

Note that if £ ~ g, then B(y;r) C B(Z;5r); moreover, there is at most N such gy € X, that
are neighbors of Z, with N independent of Z and r (in fact, it depends solely on the metric
doubling constant Ny). Therefore by the doubling property of x we have

1 1
Erluk —u]l =& lvg] S — / kadM,S—/ og|* dp,
A DN N Sy M

zeX,

where in the last step we have used the bounded overlap property » . X, XB(z:5r) < K on
X with K depending solely on the doubling constant Ng. Thus, if u; — u in L?(X), that
is, v — 0 in L2(X), it follows that &.[uy — u] — 0 as well as k — oo. Note that

Efu]'? — Enfup — u)"? < Efug]? < & u]V? + Efuy — ]V

This completes the proof of the theorem; though note that the convergence of &, [ug — u] to
zero is not uniform across r > 0 as we have r2 in the denominator of the above estimate. [J

DEFINITION 3.15. A sequence &, of Dirichlet forms on the Hilbert space N12(X) is
said to I'-converge to a Dirichlet form & if the following two conditions are satisfied:

(i) Whenever (uy);, is a sequence in NY2(X) and v € N2(X) such that uj, — u in
N12(X), we must have £[u] < liminfy &, [ug);
(i) For each u € N12(X) there is a sequence (uy) in N52(X) such that up — u in
NY2(X) and E[u] > lim supy, &, [ug).
Given the first condition above, the second condition is equivalent to knowing the existence
of a sequence (ug)y in N52(X) such that £[u] = limy &, [ug] and uy, — w in NH2(X).

PROPOSITION 3.16. There exists a I'-convergent subsequence &,, of &,.

PROOF. From |2] we know that N12(X) is separable. Therefore, by [14, Theorem 8.5],
there exists a I'-convergent subsequence &,, of &,. From [14], Proposition 6.8] we know that
the I'-limit is a closable bilinear energy form. O

We denote the I'-limit of &,, from the previous proposition by £. We now show that the
energy form induced by the I'-limit £ is comparable to the Newton-Sobolev energy form,
thus proving Condition (2) of Theorem [L.1]
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PROPOSITION 3.17. There is a constant C' > 0 such that the following is true for every
u € NY2(X) and its minimal 2-weak upper gradient g, € L*(X):

l5[u] §/ g2 dp < C E[ul. (3.18)
C X

PRrROOF. If ug, k € N, is the sequence guaranteed by the I'-limit so that limy &, [ux] =
Elu] and [Jup — ul|yr2(x)y — 0 as k — oo, then we have that [y g2 dp = limy, [y g2, dp.
By |14, Proposition 6.8], we know that the I'-limit is lower semicontinuous. Then by
Theorem [3.13 we have that

E[u] < liminf Eug] < Climinf/ gik dp = C’/ 92 dp,
k ko )x X

and so Elu] < C [y g2 dp, which gives the left side of (3.18). On the other hand, by
Theorem [3.13, we have

1 1/2
E[u)? =1im &, [ug]'/? > liminf &, [u]'/? — limsup &, [u — ug]/? > <—/ 92 d,u) ,
k k k C Jx
where we have used the fact that (Again from Theorem B.13),
0 <limsup &, [u — uy] < lim Sup/ gik_u dp = 0. (3.19)
k k X
This proves Claim (2) of Theorem [L.1] O

One of the key properties needed with respect to the I'-convergence is that if the func-
tion being approximated vanishes outside a bounded domain Q C X with p(X \ Q) > 0,
then the sequence approximating this function in the I'-convergence condition (ii) also van-
ishes outside the approximating domain. This property is essential in the discussion on
approximating solutions to the Dirichlet problem on €2, and is called the matching bound-
ary values in |9, Section 4.2.1]. However, the method of De Giorgi, as outlined in [9], uses
a decomposition of the domain €2 into suitable annular rings and constructing a partition
of unity subordinate to this decomposition. An alternate method is to construct different
[-limits for different boundary data as in [14) Chapter 21|, but this again is computation-
ally involved (see [14, Theorem 21.1]). In the second main theorem, Theorem [[.2] we give
a more direct proof of the existence of optimal sequences with matching boundary values
in the sense of [9]. We now prove this theorem.

PROOF OF THEOREM [L.2. For z € X set w(x) = dist(z, X \ ). For j € N let
u; = min{max{u — w,v;},u + w}.
Then,
uj — u = min{max{—w,v; — u},w},

and therefore u; —u € N&’2(Q). Further, note that as w > 0, when z € X we have
that wj(x) — u(x) > 0 if and only if vj(x) — u(xz) > 0, and in which case we also have
uj —u(z) < v;j —u(x). If uj(x) —u(xr) < 0, then necessarily v;(xz) — u(z) < 0 and



CONSTRUCTION OF DIRICHLET FORM AND SOLVING DIRICHLET PROBLEMS 17

uj —u(x) > v; —u(z). Thus, |u;(z) —u(z)| < |vj(xz) —u(z)| for all x € X. Therefore, as
v; — u in L?(X), we have u; — u in L*(X).

To see the N'2-convergence, we use |21, Proposition 6.3.23]. Using this proposition
and the fact that g, < xq, we get

Guj—u < X{vj—u[>w}nQ T Jvj—u * X{|v;—u|<w}nQ-
Note that for any € > 0,

X Q Qe Qe

where Q. = {z € Q : dist(z, X \ Q) > €}. So we get

Gt < it~ > 000 + 0t + (@) 0).

|vj—u|<w}NQ
Note that

1
il =l > § 20 < 5 [ oy —u d.

Since v; — win L*(X), it follows that limsup;_, . u({|v; —u| > €}NQ) = 0, and moreover,
as v; — u in the Hilbert space N*2(X), it also follows that limsup;_,., [, g%j_u dp = 0.
Therefore we have
limsup/ Gy —u A < (R Q).
Jj—r0o0 x

As € > 0 can be chosen arbitrarily small, and (1..,Q \ Qc is empty, it follows that
limsup,_,g+ p#(2\ Q) = 0, and so

lim g2 . du=0.

j—)OO X J
Thus we have that u; — u in NV2(X).

Finally, note that \5}/2 [u;] — 57}3./2[@]-]] < 5}/2 [u; — v;]. By Theorem BI3 we therefore

have that

£} ug] — £} [ws)| < C /Xgij_vj dp=C /Qgﬁj_uj dp — 0 as j — oo.

It follows that Efu] = lim; o0 &, [v5] = lim;j o0 &, [u;] as desired. O

4. Properties of £

In this section we will consider some key basic properties of the limit form £. There is
a property of £ that would be essential in order to call £ a Dirichlet form; namely, that £
is Markovian. In this section we will also prove that £ is Markovian and that it is local.
The first lemma follows from [14), Proposition 11.9(e) and Theorem 11.10].

DEFINITION 4.1. Let £ be a symmetric bilinear form from a Hilbert space H to [—o0, 00].

Let D(€) be a dense linear subspace of H such that £ is a symmetric bilinear form mapping
D(€) to R. Then we say D(E) is the domain of £.
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DEFINITION 4.2. Let C(X) be the collection of all real-valued continuous functions with
compact support on X. A core of a symmetric biliear form £ is a subset C of D(E)NC.(X)
such that C is dense in D(E) under the norm /(+,-)g + £(-) and dense in C.(X) under the
uniform norm.

DEFINITION 4.3. We say that £ is closed if for any (uy), C D(E) satisfying (u, —
Uy U — Um ) H + E[Un, — um] — 0 as m,n — oo, there exists u € D(E) such that (u, —
Uy Uy —u)g + Euy —u] = 0 as n — co.

In our setting, we have chosen the Hilbert space H = N'2(X), and consequent to
Proposition BI7 (or Theorem [L1]), we also have that N2(X) = D(&). This is because the
comparability of £ and the energy form on N%2(X) (Proposition B.I7) guarantees that &
should always be finite on N12(X).

We can choose the core C to be the collection of all Lipschitz functions on X. Since the
measure g on X is doubling and supports a 2-Poincaré inequality, it follows that Lipschitz
functions are dense in N12(X), see for instance |21, Section 8.2].

LEMMA 4.4. € is a symmetric bilinear form on N%2(X).

The above lemma follows from [14, Proposition 11.9 and Theorem 11.10], where sym-
metric bilinear forms are called quadratic forms.

LEMMA 4.5. The form & is a local form on NV2(X). Moreover, for each u € N*2(X)
we have that

Elu] = kh—>n;o Erpul].

PROOF. We first prove the locality property of £. Let u,v € NY2(X) such that the
support K, of u and the support K, of v are disjoint. Then, as X is compact, there is some
p > 0 such that dist(K,, K,) > 10p. By the bilinearity and symmetry properties of £, we
have E[u+v] = E[u—v]+4E(u,v). To show that £(u,v) = 0 (the definition of locality for a
symmetric bilinear form), it suffices to show that E[u+v] = £[u —v]. Note that u+v,u—wv
are both zero in X \ (K, UK,). Let (fx)r € N'2(X) be an approximating sequence for
u 4+ v as guaranteed by the I'-convergence. Then, thanks to Theorem [1.2] we can also
assume that each fk =0on X\ (K, UK,). Then for each positive integer k, the functions
fe = fk Xk, and hy = fk Xk, both belong to N%2(X) and fk = fr + hg. Indeed, as there
is a positive distance between K, and K,, we can find two compactly supported Llpschltz
functions ¢, and ¢, so that ¢, =1 on K, ¢, = 1 on K, and f; = cpufk, h = gpvfk
Thus fi, hi, € NY2(X), as seen from [21 Proof of Proposition 7.1.35]. Moreover, fr — u
in N'2(X) and hy, — v in NY2(X). It follows that fr — hy — u — v in NV2(X). It follows
that

€[u - U] < lim inf 5Tk [fk - hk]
k—o0

On the other hand, when r, < p, we have that
Erplfe — Pie) = & [ fi] + ErpThi] = & [fi + D],
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and so as limg_,o0 &, [fk] = EJu + v], we have that
Elu—v] < Eu+ .

Replacing v with —v in the above argument also gives that E[u 4 v] < E[u — v], and so we
have that E[u + v] = E[u — v]. It follows that £ is a local form.

Next, for u € N2(X), let (ug)x be a sequence in N1?(X) such that uj, — u in N?(X)
and limy_,o &, [ur] = E[u]; existence of such sequence is guaranteed by the definition of
I'-convergence. Then

E[u)/? < liminf &, [u]/? < lim inf <5m [u—wup ] + &, [uk]l/z) .
k—o0 k—o0
By Theorem [3.13 and by the fact that uy — u in N12(X) we have limy_,o0 &, [u —ux] = 0,
see for example (3.19). It follows that Eu] < liminfy_, &, [ux] = E[u], from which the
desired conclusion now follows. 0

In [27, page 372|, it is shown that the I'-limit of bilinear forms on L?(X) is closed.
In our setting, we consider a I'-convergence with the ambient Hilbert space itself being
N12(X). Therefore for completeness of the exposition, we include our proof here.

LEMMA 4.6. The symmetric bilinear form £ is closed.

PROOF. We first show that if (f,), is a sequence in N12(X) and f € L?(X) such that
fn — fin L*(X) and E[f, — fm] — 0 as m,n — oo, then by modifying f on a set of
p-measure zero on X if necessary, we have that f € N%2(X) and || f, — fmllnt2(xy — 0
as n,m — oo. Indeed, as E[f, — fm] — 0 as m,n — oo, it follows from Theorem BI3]
(or more specifically, from its limit version given in (2) of Theorem [[I]), we have that
fX g?n_fm dpu — 0 as n,m — oo. It follows that (fy), is Cauchy in the Banach space
N'2(X), and so such modification of f exists.

Now let (fn)n C D(E) be a sequence such that [|fn, — fullnr2(x) + E[fn — fn] = 0 as
m,n — oo. Then necessarily (f,), is a Cauchy sequence in N12(X), and as N'2(X) is a
Banach space (see [28]), there exists f € N'?(X) = D(E) such that || f, — flly12(x) = 0
as n — 0o. By Lemma 4.5 we know that f € D(E). To complete the proof of closedness
of & we now show that E[f, — f] = 0 as n — .

By [14) Proposition 6.8], we know that the I'-limit is lower semicontinuous. Therefore,
for each fixed n, using the lower semicontinuity of £, we have

Elfn — f] < liminf E[f,, — foml.

m—ro0

Hence, we have

0 <limsup&[f, — f] <limsupliminf &[f,, — fi] = lUm E[fn, — fm] =0. (4.7

n—00 n—oo M—00 m,n—00

0

PROPOSITION 4.8. The bilinear form & is Markovian.
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PROOF. To show that the form is Markovian, it suffices to show that if u € N%2?(X),
setting v = max{0, min{1, u}}, we have E[v] < EJu]. Since (X,d, ) is doubling and sup-
ports a 2-Poincaré inequality, we know that Lipschitz functions form a dense subclass of
N12(X); hence it suffices to prove this property for the case that u is Lipschitz continuous.

So let u € N2(X) be Lipschitz on X, and set F_ = {u < 0}, E; = {u > 1}, and
Eo = {0 < u < 1. Then as X is compact, and as E_ and E, are disjoint, we have that
p:=dist(E_, Ey) > 0. Soif 0 <7 < p/16, then we have that for z € X, and § € X, with
y ~ @, the set B(Z,7/4) U B(yj,r/4) cannot intersect both £, and E_.

Now let #,9 € X, with Z ~ ¢. If B(Z,r/4)UB(j,r/4) C E_ or B(z,r/4)UB(gy,r/4) C
E; or B(z,r/4) U B(j,r/4) C Ey, then we have |v,(Z) — v.(§)] < |ur-(Z) — uq(g)|. If
either B(Z,r/4)U B(y,r/4) intersects both E_ and Ey (the case that B(z,r/4) U B(y,r/4)
intersects both E and Ey will be handled in s very similar manner). In this case, we have

[0r(2) = v (9)] < [0r(Z) = ur ()] + [ur (Z) = ur (G)] + |ur(5) = 0r(9)].

For such Z, we have to estimate |v,(Z) — ur(:i)] and |v,(7) — ur(y)|. Note that

1
fura’;—ura’: (u—v)dp Si/ u2d,u
o ‘][ B(z,r/4) w(B(z,r/4)) B(#,r/4)NE_ [u
v (§) — ur(y (u—wv)dp S — ul? du.
)d 1 24
B(g,r/4) :u( (y,r/4)) B(g,r/4)NE_

Setting L to be a Lipschitz constant of w and that B(z,r/4) U B(y,r/4) intersects E_ and
Ey, and d(z,y) < 4r, necessarily |u| < 5Lr on B(z,r/4) U B(y,r/4). Hence
[0 (Z) — up(Z)2 < 25L%2 and |v,.(7) — u,(7)]* < 25L%r2.
Similar estimates hold if B(z,r/4) U B(y,r/4) intersects both E, and Ep, now with |u|?
replaced by |u — 1|2. Note also that when B(%,r/4) U B(j,r/4) intersects both E_ and Ej
and Z ~ 7, necessarily we must have B(Z,r/4) U B(y,7/4) C U,cpr_ B(z,6r) because X
is a geodesic space and w is continuous. We set
0E-), = |J B(z6r), and 0Ey)r = |J B(z6r),
z€0E_ z€0E 4
and let
X, v ={z e X, : B(z,r/4) C (OE_), U (0E1),}.
Note that

Vr(Z) — vp (Y 2 _
zeX, y~T
Z Z (Jvr(®) — ur (T)| + |ur(Z) — up (§)] + ur(§) — UT’@)D2

r2

up (Z —ur 2
+ > Z' o) i (Z).

ze€X\Xr[v] Y~T

zeX, [’U] Yy~
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It follows that

lu, (T _ur )|2 _
I pr ()

-’EGXTyN:B
lv-(Z) — ur _ e (§) —u@)*
+ Z Z ,u,(:n)—l— Z Z 3 pr(Z)
TeX, [v] I~ zEX,[v] Y~T
5 [or(Z) — up(@)] - Jur(®) —ur (P)]
2 Y Y 5 ir(7)
zeX,[v] Y~T
UT’ - 7” Ur\T urg _
b2y 3 O @@ —w@l
Z‘eXrny
Ve(T) — Up(Z)] - |Ur(Y) — ur (Y _
b2 Y D@ w@l @ —w@l, o
zEX,[v] Y~T

Using Hélder’s inequality, we have

vr —ur 2 _ Ur —Ur _
shl<ehl+s Y Y ey Y, P @@, g

Z'EXT [’U] ym;p SUEXT ['U] ywx
, 1/2
Vr(Z) — up(T _
+257»[U]1/2' Z Z| ( )72 ( )| ,Ufr(w)
z€Xr[v] YT
) 1/2
Vp(Y) — Ur(Y _
g |y 3 @@, o
zeX,[v] Y~T
o (Z) — up (7)]2 _ 'Urg_urg2 _
Y1 S o) o EeuriColamy i o o CAC) et
zeEX,[v] I~T z€X,[v] Y~T

It now suffices to show that both the term 3 ;v 11 > 7z %ﬁﬂ tr(Z) and the term

2
D zeX, o] 2ogri w,ur( ) tend to 0 as r — 0. From the discussion prior to the
above estimates, we see that

7) — u,. (2)]? v (Z) — u (T)]?
> Y@@, oy v @@,

zeX,[v] Y~T zZ€Xr[v]

< C25L2 u((OE_), U (DEL),),

where we have used the fact that for each T € X, there are at most N number of vertices
1y € X, such that £ ~ g, with N depending only on the doubling constant associated with

1/2
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w; and we also used fact that there is at most bounded overlap property of the balls B(y, ),
7y € X, to obtain the last inequality. A similar argument also gives

Z Z [0 (7) — ur(9)]? pr(Z) < C25L2 p((0E_), U (OEL),).

T€X,[v] Y~T r?
It follows that
Ev] < & fu] + 10C LE [ p((0B-), U (DE4),)"/? +25C L? p((0E-), U (DE4),).
So if u(OE_) 4+ u(0E4) = 0, then we have that
Ev] < liklgggf & lv] < liklgggf & u] = Elu).

The last equality follows from Lemmald.5labove. The assumption of u(0E_)+u(0E) = 01is
not a serious obstacle, as we know that for almost every ¢ € R we have that pu({u =t}) =0,
and so we can approximate 0 from below by such ¢_ < 0, and approximate 1 from above by
such ¢4 > 1, and consider v;_;, = max{t_, min{ty,u}} and obtain the Markov property
for these, and then let £ — 0, £y — 1 and note that v;_;, — v in N'2(X); we know
that £ is bounded (from Theorem [3.13| above) bilinear form on N'2(X). The fact that
Er[vi_ 1, ] converges to &£.[v] can be obtained from the closability of £ (lemma 4.6/ above)
and Theorem [3.13, together with the fact that v, ,, — v in N'*(X) as t_ — 0 and
t+ — 1. O
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