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FINITE DIMENSIONALITY OF BESOV SPACES AND
POTENTIAL-THEORETIC DECOMPOSITION OF METRIC

SPACES

TAKASHI KUMAGAI, NAGESWARI SHANMUGALINGAM,
AND RYOSUKE SHIMIZU

Abstract. In the context of a metric measure space (X, d, µ), we ex-
plore the potential-theoretic implications of having a finite-dimensional
Besov space. We prove that if the dimension of the Besov space Bω

p,p(X)
is k > 1, then X can be decomposed into k number of irreducible com-
ponents (Theorem 1.1). Note that ω may be bigger than 1, as our
framework includes fractals. We also provide su!cient conditions under
which the dimension of the Besov space is 1. We introduce critical expo-
nents ωp(X) and ω→p(X) for the Besov spaces. As examples illustrating
Theorem 1.1, we compute these critical exponents for spaces X formed
by glueing copies of n-dimensional cubes, the Sierpi"ski gaskets, and of
the Sierpi"ski carpet.
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p-energy form, Newton-Sobolev spaces, p-Poincaré inequality, Sierpi!ski fractals,
decomposition.
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1. Introduction

Given a compact metric space (X, d) equipped with a doubling measure µ,
a viable theory of local Dirichlet-type energy forms is obtained by considering
the Newton-Sobolev class N1,p(X) of functions on X if we know that (X, d, µ)
supports a p-Poincaré inequality for some 1 → p < ↑. However, when
no Poincaré type inequality is available on (X, d, µ), a more natural local
energy form is given by the so-called Korevaar-Schoen space KS

1
p(X), see

for instance [20]. We are interested in the function-classes B
ω
p,p(X) (Besov),

B
ω
p,→(X), and KS

ω
p(X) (Korevaar-Schoen). These are spaces of functions in
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L
p(X) for which the following respective energies are finite:

||u||p
Bω

p,p(X)
:=

ˆ
X

ˆ
X

|u(y)↓ u(x)|p

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

↔
ˆ diam(X)

0

ˆ
X

ˆ
B(x,t)

|u(y)↓ u(x)|p

tωp
dµ(y) dµ(x)

dt

t
;

||u||p
Bω

p,↑(X)
:= sup

t>0

ˆ
X

ˆ
B(x,t)

|u(y)↓ u(x)|p

tωp
dµ(y) dµ(x);

||u||p
KSω

p(X)
:= lim sup

t↑0+

ˆ
X

ˆ
B(x,t)

|u(y)↓ u(x)|p

tωp
dµ(y) dµ(x),

where, by F ↔ H we mean that there is a constant C ↗ 1, independent of
the parameters F and H depend on (in the above it would be u), so that
C

↓1 → F/H → C. (For the equivalence on ||u||p
Bω

p,p(X)
under the volume

doubling property, see [13, Theorem 5.2].) While the energy ||u||KSω
p(X) is

local, the energy ||u||Bω
p,↑(X) is not. In general we do not know that the two

norms ||u||Bω
p,↑(X) and ||u||KSω

p(X) are comparable, but because µ is doubling,
we have that as sets, Bω

p,→(X) = KS
ω
p(X), see Lemma 2.6 below.

The goal of this paper is to investigate what the potential-theoretic impli-
cations are of knowing that Bω

p,p(X) has finite dimension. The following two
critical exponents ωp(X) and ω

↔
p(X) for the Besov space will play important

roles. Throughout the paper, we assume that X has infinitely many points.
Inspired by the ground-breaking result of Bourgain, Brezis and Mironescu [6],
we define

ωp(X) := ωp := sup{ω > 0 : Bω
p,p(X) contains non-constant functions};

ω
↔
p(X) := ω

↔
p := sup{ω > 0 : Bω

p,p(X) is dense in L
p(X)}.

Note that ωp(X) ↗ 1 if (X, d, µ) is a doubling metric measure space (see
Lemma 2.3), and that ωp(X) ↗ ω

↔
p(X). When the measure on X is doubling

and supports a p-Poincaré inequality for all function-upper gradient pairs
as in (2.2), then we must have ωp = 1. If the dimension of B

ω
p,p(X) is

1, then B
ω
p,p(X) consists solely of constant functions and ωp(X) → ω. The

following theorem tells us that if the dimension of Bω
p,p(X) is finite but larger

than 1, then X can be decomposed into as many pieces as the dimension
of B

ω
p,p(X) so that there is no potential-theoretic communication between

di!erent pieces.

Theorem 1.1. Let (X, d, µ) be a doubling metric measure space as in (2.1)
and ω > 0. Suppose that the dimension of B

ω
p,p(X) is finite. Then either

µ(X) = ↑ and B
ω
p,p(X) = {0} (in which case ω ↗ ωp(X)), or there exist

measurable sets E1, · · · , Ek, with k the dimension of Bω
p,p(X), such that the

following hold:
(1) 0 < µ(Ei) < ↑ for i = 1, · · · , k,
(2) If µ(X) < ↑, then µ(X \

⋃k
i=1Ei) = 0,

(3) εEi ↘ B
ω
p,p(X) for i = 1, · · · , k, and {εEi : i = 1, · · · , k} forms a

basis for B
ω
p,p(X).
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(4) B
ω
p,p(X) = ≃k

i=1B
ω
p,p(Ei) := {f ↘ L

p(X) : f |Ei ↘ B
ω
p,p(Ei), i =

1, · · · , k} as sets. Moreover, the dimension of B
ω
p,p(Ei) is 1 for all

i = 1, · · · , k.
(5) ||εEi ||KSω

p(X) = 0 for i = 1, · · · , k.
(6) If u ↘ KS

ω
p(X) ⇐ L

→(X), then for j = 1, · · · , k we have

⇒uεEj⇒
p
KSω

p(X)
= lim sup

r↑0+

ˆ
Ej

ˆ
B(x,r)↗Ej

|u(y)↓ u(x)|p

rωp µ(B(x, r))
dµ(y) dµ(x).

(7) ω → ωp(X) if k > 1 or µ(X) = ↑ with k = 1, and ω ↗ ωp(X) if
µ(X) < ↑ and k = 1.

In Condition (6) above, we do not know whether we can remove the re-
quirement that u ↘ L

→(X).
As a consequence of the above theorem, if k > 1, we have a decomposition

of X into measurable pieces Ei, i = 1, · · · , k (up to a null-measure set) so
that there is no potential theoretic communication between di!erent pieces;
this is encoded in the claim ||εEi ||KSω

p(X) = 0. Moreover, Condition (4) also
encodes the property that µ(Ei ⇐Ej) = 0 when i, j ↘ {1, · · · , k} with i ⇑= j.

We now introduce the notion of irreducible p-energy form for convenience.

Definition 1.2 (Irreducible p-energy form). Assume that µ(X) < ↑. Let
Fp be a linear subspace of Lp(X,µ) and let Ep : Fp ⇓ [0,↑) be such that
Ep( · )1/p is a seminorm on Fp. We say that (Ep,Fp) is a irreducible p-energy
form on (X,µ) if whenever u ↘ Fp with Ep(u) = 0, we must have that u is a
constant function (µ-a.e.). Otherwise, we say (Ep,Fp) is a reducible p-energy
form.

Remark 1.3. The above definition is inspired by the theory of symmet-
ric Dirichlet forms (i.e. p = 2 case). See [11, Theorem 2.1.11] for other
(equivalent) formulations of the irreducibility of recurrent symmetric Dirich-
let forms.

By Theorem 1.1 (5), we have the following; if the dimension of Bω
p,p(X) is

finite and larger than 1, then (⇒ · ⇒KSω
p(X),KS

ω
p(X)) is reducible. Note that

if the dimension of Bω
p,p(X) is 1 and µ(X) < ↑, then clearly (⇒ · ⇒p

Bω
p,p(X)

,
B

ω
p,p(X)) is irreducible, and only constant functions are in B

ω
p,p(X). Next

we provide a su"cient condition regarding the behaviors of ⇒ · ⇒Bω
p,p(X) and

of ⇒ · ⇒KSω
p(X) under which the dimension of Bω

p,p(X) is 1.

Definition 1.4. We say that X satisfies the weak maximality property, or
(w-max)p,ω property, for B

ω
p,→(X) if there is a constant C ↗ 1 such that for

each u ↘ B
ω
p,→(X) we have that

||u||Bω
p,↑(X) → C ||u||KSω

p(X). (w-max)p,ω

Theorem 1.5. We fix 1 < p < ↑ and ω > 0. If (X, d, µ) is a doubling
metric measure space that satisfies the (w-max)p,ω property for B

ω
p,→(X),

then the dimension of Bω
p,p(X) is at most 1, and ωp(X) → ω.

In the spirit of [7] we prove the following theorem, which also gives a
su"cient condition for the dimension of Bω

p,p(X) to be at most 1. For p = 2,
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a similar result was proved in [23] under certain estimates on the heat kernel,
in particular, the cases of Sierpi#ski gasket and the Sierpi#ski carpet are
included in [23].

Theorem 1.6. Let 1 < p < ↑ and (X, d, µ) be a doubling metric measure
space. Assume that (X, d, µ) supports the following Sobolev-type inequality:
there exist positive real numbers ω, C such that for any u ↘ B

ω
p,p(X),ˆ

X
|u↓ uX |p dµ → C lim inf

t↑0+

ˆ
X

ˆ
B(x,t)

|u(x)↓ u(y)|p

tωp
dµ(y) dµ(x). (1.7)

Then for that choice of ω we have that Bω
p,p(X) has dimension at most 1.

In the case that (X, d, µ) supports a p-Poincaré inequality for function–
upper gradient pairs, it is known that N

1,p(X) = KS
1
p(X) (see, e.g., [20,

Section 4] or [15, Section 10.4, Theorem 10.4.3, and Corollary 10.4.6]) and
that ωp(X) = 1 (see [1, Theorem 5.1]). These facts, along with Theorem 1.6,
imply the following corollary.

Corollary 1.8. Suppose that 1 < p < ↑ and (X, d, µ) is a doubling metric
measure space that supports a p-Poincaré inequality for function–upper gra-
dient pairs (see (2.2)). Then ωp(X) = 1 and B

1
p,p(X) has at most dimension

1.

We emphasize that, in Theorems 1.1, 1.5, and 1.6, we do not confine
ourselves to the case 0 < ω → 1 in view of some recent studies of Sobolev
spaces on fractals; see, e.g., [1, 18, 19, 22, 24]. For example, in the case that
X is the Sierpi#ski carpet, M. Murugan and the third-named author [22]
proposed a way to define the (1, p)-Sobolev space Fp on X through discrete
approximations of X, and demonstrated that Fp = KS

dw,p/p
p (X) (see [22,

Theorem 7.1]) with dw,p > p (see [24, Theorem 2.27]). Hence a Korevaar–
Schoen space KS

ω
p(X) with ω > 1 appears as a function space playing the

role of a (1, p)-Sobolev space on a fractal space. Here the parameter dw,p

is called the p-walk dimension of the Sierpi#ski carpet, X, given by dw,p :=
log (8ϑp)/ log 3, where ϑp ↘ (0,↑) is a value called the p-scaling factor of
X as defined in [22, Theorem 8.5 and Definition 8.7], 3 is the reciprocal of
the common contraction ratio of the family of similitudes associated with
X and 8 is the number of similitudes in this family. (For X = [0, 1]n, we
can decompose X into 3n cubes with side lengths 1/3 and then see that the
p-scaling factor with respect to this decomposition is given by 3p↓n. Hence
dw,p = log(3n · 3p↓n)/ log 3 = p.) In the case p = 2, (ϑ2)↓1 coincides with
the resistance scaling factor of X. As a connection with quasiconformal
geometry, it is known that ϑp > 1 if and only if p > dARC, where dARC is
the Ahlfors regular conformal dimension of the Sierpi#ski carpet. See [22,
Definitions 1.6] and [10] for further details on dARC.

When µ is doubling and 0 < ω < 1, the corresponding space B
ω
p,p(X) can

be seen as the trace space of a strongly local energy form on a larger space
(!, ϖ) with X = ϱ! and µ and ϖ are related in a co-dimensional manner,
as demonstrated in [4]. From the viewpoint of trace theorems on fractals, a
Besov space B

ω
p,p(X) with ω ↗ 1 can appear as indicated in [16, Theorem 2.5

and 2.6] for the case p = 2.
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In some circumstances the reason for ωp(X) > 1 may be due to X being
obtained as a gluing of smaller metric measure spaces along sets that are
too small to allow communication between these component spaces via the
gluing set, as seen in Example 3.1 below, where the gluing set of two n-
dimensional hypercubes is discussed. In this case, when 1 < p < n, we
have that ωp(X) = n/p > 1, but once we have decomposed X into the two
constituent component cubes E and X\E, we have that ωp(E) = ωp(X\E) =
1, and B

ω
p,p(X) is well-understood when 0 < ω < 1 as trace of a larger local

process, and when 1 → ω < ωp(X) as piecewise constant functions. Our main
theorem, Theorem 1.1, gives a way of identifying this possibility. However,
there are many situations where the need for ω ↗ 1 is more integral to the
space, as is the case of the Sierpi#ski gasket and the Sierpi#ski carpet, as
explained in the previous paragraph. For these spaces, typically, B

ω
p,p(X)

has either infinite dimension or dimension 1.
We conclude the introduction by reviewing some concrete examples dis-

cussed in this paper. In Example 3.1, for n ↘ N with n ↗ 2, as mentioned
above we consider the metric measure space X obtained as the union of two
n-dimensional hypercubes glued at a vertex, and observe that the dimension
of B1

p,p(X) is 2 when 1 < p < n. Note that each cubical component of X
supports a p-Poincaré inequality for any p ↗ 1, while X does not support
a p-Poincaré inequality when 1 < p → n. Similar observations will be made
in the case X is the union of two copies of the Sierpi#ski carpet glued at
a vertex in Example 3.10; indeed, the dimension of B

dw,p/p
p,p (X) is 2 when

1 < p < dARC. Note that the Ahlfors regular conformal dimension dARC

and the p-walk dimension of the n-dimensional hypercube are n and p re-
spectively. In both examples mentioned above, the two critical exponents
ωp(X) and ω

↔
p(X) turn out to be di!erent when 1 < p < dARC. Namely, the

following holds, where df is the Hausdor! dimension of X.

Theorem 1.9. Let X be one of the glued metric measure spaces as in Ex-
amples 3.1 and 3.10. Then ωp(X) = 1

p max{df , dw,p} and ω
↔
p(X) = dw,p

p .

By [5, Corollary 3.7] and [10, Corollary 1.4], we know that dw,p > df if
and only if p > dARC, that dw,p < df if and only if p < dARC, and that
dw,p = df for p = dARC for these examples. This result suggests that the
case 1 < p < dARC requires a careful treatment of the “potential-theoretic
decomposability” of the underlying example spaces. See also [8] for a few
examples of self-similar sets that have a similar spirit, and [3] for the va-
lidity/invalidity of Poincaré type inequalities on a general bow-tie, which is
obtained by gluing two metric spaces at a point. Note that dARC = 1 for
the standard Sierpi#ski gaskets (see, e.g., [17, Theorem B.8]), so the case
1 < p < dARC does not occur in this example. If X is the space obtained
by gluing two copies of the Sierpi#ski gasket, then ωp(X) = ω

↔
p(X) holds for

any p ↘ (1,↑); see Example 3.5 and Theorem 3.9.

2. Background and general results

2.1. Background. Throughout this paper, the triple (X, d, µ) is a separable
metric space (X, d), equipped with a Borel measure µ; we require in this
paper that X has infinitely many points and that 0 < µ(B(x, r)) < ↑ for



6 T. KUMAGAI, N. SHANMUGALINGAM, AND R. SHIMIZU

each x ↘ X and r > 0, where B(x, r) denotes the set of all points y ↘ X

such that d(x, y) < r. We also fix p ↘ (1,↑). Note that µ is ς-finite in this
setting.

We say that (X, d, µ) is a doubling metric measure space, or µ is a doubling
measure on (X, d), if there exists a constant CD such that

0 < µ(B(x, 2r)) → CD µ(B(x, r)) < ↑ for all x ↘ X, r > 0. (2.1)

Without loss of generality, we may assume that CD > 1 if needed.
In this paper the primary function-spaces of interest are the Besov spaces

and the Korevaar-Schoen spaces B
ω
p,p(X), B

ω
p,→(X), and KS

ω
p(X), as de-

scribed at the beginning of Section 1 above. In addition, the Newton-Sobolev
class N

1,p(X) will play an auxiliary role, and we describe this class next.
A function f : X ⇓ [↓↑,↑] is said to have a Borel function g : X ⇓

[0,↑] as an upper gradient if we have

|f(φ(a))↓ f(φ(b))| →
ˆ
ε
g ds

whenever φ : [a, b] ⇓ X is a rectifiable curve with a < b. (We interpret
the inequality as also meaning that

´
ε g ds = ↑ whenever at least one of

f(φ(a)), f(φ(b)) is not finite.) We say that f ↘ Ñ1,p(X) if

⇒f⇒N1,p(X) :=

(ˆ
X
|f |p dµ

)1/p

+ inf
g

(ˆ
X
g
p
dµ

)1/p

is finite, where the infimum is over all upper gradients g of f . Then one
can see that Ñ1,p(X) is a vector space. For f1, f2 ↘ Ñ1,p(X), we say that
f1 ⇔ f2 if ⇒f1 ↓ f2⇒N1,p(X) = 0. Now the Newton–Sobolev class N

1,p(X) is
defined as the collection of the equivalence classes with respect to ⇔, i.e.,
N

1,p(X) := Ñ1,p(X)/ ⇔. For more on this space we refer the interested
reader to [15].

We say that (X, d, µ) supports a p-Poincaré inequality (with respect to
upper gradients) if there are constants C > 0 and ↼ ↗ 1 such that for every
measurable function f on X and every upper gradient g of f and ball B(x, r),

ˆ
B(x,r)

∣∣f ↓ fB(x,r)

∣∣ dµ → Cr

(̂

B(x,ϑr)
g
p
dµ

)1/p

. (2.2)

From [20, Theorem 4.1] or [15, Section 10.4] we know that if u ↘ L
p(X)

such that there is a non-negative function g ↘ L
p(X) with (u, g) satisfying

the p-Poincaré inequality (2.2), then u ↘ KS
1
p(X). In [20] the space KS

1
p(X)

is denoted by L1,p(X). Moreover, from [15, Theorems 10.5.1 and 10.5.2] we
know that KS

1
p(X) ↖ N

1,p(X) even if X does not support a p-Poincaré
inequality, and that when X supports a p-Poincaré inequality in addition,
we also have KS

1
p(X) = N

1,p(X). Thus the index ω = 1 plays a key role in
the theory of Sobolev spaces in nonsmooth analysis.

2.2. General results. We present some lemmata on Besov spaces Bω
p,p(X),

B
ω
p,→(X) and the Korevaar–Schoen space KS

ω
p(X).

Lemma 2.3. Suppose that µ is a doubling measure. Then ωp(X) ↗ 1.
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Proof. Fix positive ω < 1 and x0 ↘ X. We fix a positive number R0 <
1
2 diam(X) so that B(x0, R0) has at least two points, and set u : X ⇓ R by

u(x) = max{1↓ d(x0, x)/R0, 0}.
Note that u is 1/R0-Lipschitz continuous on X, 0 → u → 1 on X, and is zero
outside the bounded set that is B := B(x0, R0). Now

||u||p
Bω

p,p(X)
=

ˆ
X

ˆ
X

|u(x)↓ u(y)|p

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

→
ˆ
2B

ˆ
2B

d(x, y)p

R
p
0 d(x, y)

ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

+ 2

ˆ
B

ˆ
X\2B

1

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x).

For each non-negative integer j and x ↘ X, we set Aj(x) := B(x, 2j+1
R0) \

B(x, 2jR0). Since X \ 2B ↖ X \B(x,R0) for x ↘ B, we see thatˆ
B

ˆ
X\2B

1

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

→
ˆ
B

→∑

j=0

ˆ
Aj(x)

1

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

→
ˆ
B

→∑

j=0

ˆ
Aj(x)

1

(2jR0)ωp µ(B(x, 2jR0))
dµ(y) dµ(x)

→ µ(B)

R
ωp
0

→∑

j=0

2↓jωp µ(B(x, 2j+1
R0))

µ(B(x, 2jR0))

→ 2↓ωp
CD

1↓ 2↓ωp

µ(B)

R
ωp
0

< ↑.

Moreover, setting Ek(x) := B(x, 2↓k+2
R0) \B(x, 2↓k+1

R0) for non-negative
integers k and x ↘ X, we haveˆ

2B

ˆ
2B

d(x, y)p

R
p
0 d(x, y)

ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

→ R
↓p
0

ˆ
2B

ˆ
B(x,4R0)

d(x, y)(1↓ω)p

µ(B(x, d(x, y)))
dµ(y) dµ(x)

→ R
↓p
0 22(1↓ω)p

ˆ
2B

→∑

k=0

ˆ

Ek(x)

2[↓k (1↓ω) p]
R

p(1↓ω)
0

µ(B(x, 2↓k+1R0))
dµ(y) dµ(x)

→ R
↓ωp
0 µ(2B)CD

→∑

k=↓2

2↓kp(1↓ω)
< ↑.

It follows that u ↘ B
ω
p,p(X). ↭

A function v is called a normal contraction of a function u if the following
holds for all x, y ↘ X:

|v(x)↓ v(y)| → |u(x)↓ u(y)| and |v(x)| → |u(x)|.
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Examples of normal contractions include functions v of the form v(x) =
max{0, u(x) ↓ a0} for any non-negative number a0. In the case a0 = 0, we
define u+(x) := max{0, u(x)}. The following lemma is easy to check by the
definition of Bω

p,p(X). Note that if a ↘ R, u ↘ B
ω
p,p(X) and µ(X) < ↑, then

u+ a is also in B
ω
p,p(X).

Lemma 2.4. Let u ↘ B
ω
p,p(X) and v be a normal contraction of u. Then v ↘

B
ω
p,p(X) and ||v||p

Bω
p,p(X)

→ ||u||p
Bω

p,p(X)
. As a consequence, we also have that if

u ↘ B
ω
p,p(X) and ↽,⇀ ↘ R with ↽ → 0 → ⇀, then wϖ,ϱ := max{↽, min{u, ⇀}}

is also in B
ω
p,p(X) with ||wϖ,ϱ ||Bω

p,p(X) → ||u||Bω
p,p(X).

The following lemma is also immediate from the definition of Bω
p,p(X).

Lemma 2.5. Let u, v ↘ B
ω
p,p(X) ⇐ L

→(X). Then uv ↘ B
ω
p,p(X) with

⇒uv⇒Bω
p,p(X) → ⇒u⇒L↑(X) ⇒v⇒Bω

p,p(X) + ⇒v⇒L↑(X) ⇒u⇒Bω
p,p(X) .

Lemma 2.6. Suppose that µ is a doubling measure on X and that ω > 0.

(1) B
ω
p,→(X) = KS

ω
p(X) as sets and as vector spaces.

(2) For any 0 < ⇁ < ω, Bω
p,p(X) ↖ B

ω
p,→(X) ↖ B

ω↓ς
p,p (X).

Proof. The assertions (1) and (2) are proved in [1, Lemma 3.2] and [12,
Proposition 2.2] respectively, but we give the proof for the reader’s conve-
nience.

(1): It is direct that B
ω
p,→(X) ↖ KS

ω
p(X), and so it su"ces to show the

reverse inclusion. To this end, let u ↘ KS
ω
p(X). Then there is some ru > 0

such that

sup
0<r↘ru

ˆ
X

ˆ
B(x,r)

|u(x)↓ u(y)|p

rωp
dµ(y) dµ(x) → ||u||p

KSω
p(X)

+ 1. (2.7)

For r > ru we have that

ˆ
X

ˆ
B(x,r)

|u(x)↓ u(y)|p

rωp
dµ(y) dµ(x)

=

ˆ
X

µ(B(x, ru))

µ(B(x, r))

ˆ
B(x,ru)

|u(x)↓ u(y)|p

rωp
dµ(y) dµ(x)

+

ˆ
X

1

µ(B(x, r))

ˆ
B(x,r)\B(x,ru)

|u(x)↓ u(y)|p

rωp
dµ(y) dµ(x)

→ ||u||p
KSω

p(X)
+ 1 +

ˆ
X

2p

µ(B(x, r))

ˆ
B(x,r)

|u(y)|p + |u(x)|p

r
ωp
u

dµ(y) dµ(x).

(2.8)
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Note thatˆ
X

2p

µ(B(x, r))

ˆ
B(x,r)

|u(y)|p + |u(x)|p

r
ωp
u

dµ(y) dµ(x)

=
2p

r
ωp
u

ˆ
X
|u(x)|p dµ(x) + 2p

r
ωp
u

ˆ
X

ˆ
X

|u(y)|p εB(x,r)(y)

µ(B(x, r))
dµ(y)µ(x)

→ 2p

r
ωp
u

⇒u⇒pLp(X) +
2pC

r
ωp
u

ˆ
X

|u(y)|p
ˆ
X

εB(y,r)(x)

µ(B(y, r))
dµ(x) dµ(y)

=
2p(1 + C)

r
ωp
u

⇒u⇒pLp(X),

where we have used the doubling property of µ and Tonelli’s theorem in the
penultimate step. Now from (2.8) and (2.7) above we see that for each r > 0
we haveˆ
X

ˆ
B(x,r)

|u(x)↓ u(y)|p

rωp
dµ(y) dµ(x) → ||u||p

KSω
p(X)

+1+
2p(1 + C)

r
ωp
u

⇒u⇒pLp(X),

and as the right-hand side of the above inequality is independent of r, it
follows that u ↘ B

ω
p,→(X).

(2): The inclusion B
ω
p,p(X) ↖ B

ω
p,→(X) follows from Lemma 2.9 below

together with claim (1) above, and so we prove B
ω
p,→(X) ↖ B

ω↓ς
p,p (X) here.

Let u ↘ B
ω
p,→(X) and fix a choice of ↽ satisfying 0 < ↽ < diam(X). Then

we see that
ˆ diam(X)

0

ˆ
X

ˆ
B(x,t)

|u(x)↓ u(y)|p

t(ω↓ς)p
dµ(y) dµ(x)

dt

t

=

ˆ ϖ

0

ˆ
X

ˆ
B(x,t)

|u(x)↓ u(y)|p

t(ω↓ς)p
dµ(y) dµ(x)

dt

t

+

ˆ diam(X)

ϖ

ˆ
X

ˆ
B(x,t)

|u(x)↓ u(y)|p

t(ω↓ς)p
dµ(y) dµ(x)

dt

t

→ ⇒u⇒p
Bω

p,↑(X)

ˆ ϖ

0
t
ςp↓1

dt+ 2p↓1

(ˆ diam(X)

ϖ

⇒u⇒pLp(X)

t(ω↓ς)p+1
dt

+

ˆ diam(X)

ϖ

ˆ
X

ˆ
X

|u(y)|p εB(x,t)(y)

t(ω↓ς)p+1µ(B(x, t))
dµ(y) dµ(x) dt

)

→ ↽
ςp

⇁p
⇒u⇒p

Bω
p,↑(X)

+
2p↓1

(ω ↓ ⇁)p

[
1

↽(ω↓ς)p
↓ 1

diam(X)(ω↓ς)p

]
⇒u⇒pLp(X)

+ 2p↓1
CD

ˆ diam(X)

ϖ

ˆ
X

ˆ
X

|u(y)|p εB(y,t)(x)

t(ω↓ς)p+1µ(B(y, t))
dµ(x) dµ(y) dt

→ ↽
ςp

⇁p
⇒u⇒p

Bω
p,↑(X)

+
2p↓1 (1 + CD)

(ω ↓ ⇁)p

[
1

↽(ω↓ς)p
↓ 1

diam(X)(ω↓ς)p

]
⇒u⇒pLp(X) ,

where we have used the doubling property of µ and Tonelli’s theorem in
the third inequality. Note if X is unbounded, then 1

diam(X)(ω↓ε)p = 0. This
estimate shows that u ↘ B

ω↓ς
p,p (X). ↭
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In general, unlike the energy related to B
ω
p,→(X), the energy ⇒u⇒KSω

p(X) is
zero whenever u ↘ B

ω
p,p(X).

Lemma 2.9. Let µ be a doubling measure on X and ω > 0. Then B
ω
p,p(X) ↖

KS
ω
p(X) with ⇒u⇒KSω

p(X) = 0 whenever u ↘ B
ω
p,p(X).

Proof. Let u ↘ B
ω
p,p(X). Then we have thatˆ diamX

0

ˆ
X

ˆ
B(x,t)

|u(y)↓ u(x)|p

tωp
dµ(y) dµ(x)

dt

t
< ↑.

For t > 0 we set

Eω(u, t) :=
ˆ
X

ˆ
B(x,t)

|u(y)↓ u(x)|p

tωp
dµ(y) dµ(x).

Let k↔ ↘ Z ↙ {↑} be the maximum of all the positive integers k such that
2k↓1

< diamX. By the doubling property of µ we have
ˆ diamX

0

ˆ
X

ˆ
B(x,t)

|u(y)↓ u(x)|p

tωp
dµ(y) dµ(x)

dt

t
↗

k→↓2∑

i=↓→

ˆ 2i+1

2i
Eω(u, t)

dt

t

↔
k→↓2∑

i=↓→
Eω(u, 2i).

Since the left-most expression is finite, it follows that the series on the right-
hand side of the above estimate is also finite, and therefore

lim
i↑↓→

Eω(u, 2i) = 0.

By the doubling property of µ we also have that for positive real numbers
t < diam(X),

1

C
Eω(u, 2i↓1) → Eω(u, t) → C Eω(u, 2i) whenever 2i↓1 → t → 2i.

It follows that
lim sup
t↑0+

Eω(u, t) → C lim
i↑↓→

Eω(u, 2i) = 0,

completing the proof. ↭

3. Examples

The following examples show that even though the two vector spaces con-
sidered in Lemma 2.9 are the same as sets, their energy norms can be in-
comparable.

Example 3.1. In this example we consider X to be the union of two n-
dimensional hypercubes glued at the vertex o = (0, · · · , 0), given by

X = [0, 1]n
⋃

[↓1, 0]n,

equipped with the Euclidean metric and the n-dimensional Lebesgue measure
Ln. Here, with u := εE where E = [0, 1]n, we see that u ↘ B

ω
p,p(X) precisely

when pω < n, but we have ⇒u⇒Bω
p,↑(X) > 0 (see (3.2) for a detailed calcula-

tion) but from Lemma 2.9 we also have that ⇒u⇒KSω
p(X) = 0. To see that u ↘
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Figure 1. Gluing of two unit cubes at the origin

B
ω
p,p(X) when pω < n, we decompose the two pieces E and X \E into dyadic

annuli given by Li := {(x1, . . . , xn) ↘ E : 2↓i↓1
R <

√
x
2
1 + · · ·+ x2n →

2↓i
R} and Ri = {(x, y) ↘ X \ E : 2↓i↓1

R <

√
x
2
1 + · · ·+ x2n → 2↓i

R} with
R =

∝
n, we have thatˆ

X

ˆ
X

|εE(x)↓ εE(y)|p

d(x, y)n+ωp
dLn(y) dLn(x)

↔
∑

i,j≃N⇐{0}

ˆ
Li

ˆ
Rj

|εE(x)↓ εE(y)|p

d(x, y)n+ωp
dLn(y) dLn(x)

↔
→∑

i=0

→∑

j=i

ˆ
Li

ˆ
Rj

1

d(x, y)n+ωp
dLn(y) dLn(x)

↔
→∑

i=0

→∑

j=i

2↓ni
R

n 2↓nj
R

n

(2↓i + 2↓j)n+ωpRn+ωp

↔
→∑

i=0

→∑

j=i

2iωp 2↓nj ↔
→∑

i=0

2↓i(n↓ωp)
.

The above sum is finite if and only if ωp < n. Thus εE ↘ B
ω
p,p(X) if and

only if ωp < n, and so εE ↘ KS
ω
p(X) with ⇒u⇒KSω

p(X) = 0 whenever ωp < n.

In addition, in computing
´
B(x,r)

|φE(x)↓φE(y)|p
rpω

dLn(y) for x ↘ E, we need
only consider x = (x1, · · · , xn) ↘ E for which

√
x
2
1 + · · ·+ x2n < r, and so

by restricting our attention to the slices Lj for which 2↓j
R ↫ r, we obtainˆ

X

ˆ
B(x,r)

|εE(x)↓ εE(y)|p

rpω
dLn(y) dLn(x) ↔ r

n↓pω
. (3.2)

Hence εE ↘ KS
ω
p(X) whenever pω → n; note that ⇒u⇒KSω

p(X) = 0 if pω < n.
The following proposition states a relation between KS

1
n(X) and N

1,n(X).
Set E1 := [0, 1]n, E2 := [↓1, 0]n and o := (0, . . . , 0) ↘ E1 ⇐ E2 for simplicity.
In what follows, if u is a function defined on a set E ↖ X, then the zero-
extension of u to X \ E is denoted by uεE .
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Proposition 3.3. In the above setting X = [0, 1]n ↙ [↓1, 0]n, it follows that
(1)

KS
1
n(X) =

{
u1εE1 + u2εE2

∣∣∣∣ ui ↘ N
1,n(Ei), i ↘ {1, 2}, IKS(u1, u2) < ↑

}
,

where

IKS(u1, u2) := lim sup
r↑0+

ˆ
E1↗B(o,r)

ˆ
E2↗B(o,r)

|u1(x)↓ u2(y)|n

r2n
dLn(y) dLn(x).

(2) KS
1
n(X) ⊋ N

1,n(X).

Proof. We first note that the n-modulus of the all rectifiable curves in X

through o is 0 by [15, Corollary 5.3.11], and that KS
1
n(X) ↖ N

1,n(X) by
[15, Theorem 10.5.1] and [21, Corollary 6.5]. As a consequence, we have

N
1,n(X) =

{
u1εE1 + u2εE2

∣∣ ui ↘ N
1,n(Ei) for i = 1, 2


.

In addition, KS
1
n(Ei) = N

1,n(Ei) with comparable norms by [15, Theo-
rem 10.5.2]. When u ↘ KS

1
n(X), necessarily uεEi ↘ KS

1
n(Ei). This is

because when x ↘ Ei and 0 < r < 1, we must have that Ln(B(x, r)) ↔ r
n ↔

Ln(B(x, r) ⇐ Ei).
Proof of (1): Let ui ↘ N

1,n(Ei) for i = 1, 2, and set u = u1εE1 +u2εE2 .
We define

EKS
r (v;A1, A2) :=

ˆ
A1

ˆ
A2↗B(x,r)

|v(x)↓ v(y)|n

rn
dLn(y) dLn(x),

for v ↘ L
n(A1 ↙A2) and Borel sets Ai of X. Observe that
ˆ
X

ˆ
B(x,r)

|u(x)↓ u(y)|n

rn
dLn(y) dLn(x)

↔ 1

rn


EKS
r (u1;E1, E1) + EKS

r (u2;E2, E2)

+ EKS
r (u;E1, E2) + EKS

r (u;E2, E1)

.

Since

lim sup
r↑0+

EKS
r (ui;Ei, Ei)

rn
↔
ˆ
Ei

|′ui(x)|n dLn(x)

it su"ces to prove that u ↘ KS
1
n(X) if and only if IKS(u1, u2) < ↑.

Given the above discussion, we know that u ↘ KS
1
n(X) if and only if

lim sup
r↑0+

1

rn


EKS
r (u;E1, E2) + EKS

r (u;E2, E1)

< ↑. (3.4)

Let us focus our attention on EKS
r (u;E1, E2), with the second term above

being handled in a similar manner. Note that

EKS
r (u;E1, E2) =

ˆ
E1

ˆ
E2↗B(x,r)

|u1(x)↓ u2(y)|n

rn
dLn(y) dLn(x),
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and so in order for E2 ⇐ B(x, r) to be non-empty when x ↘ E1, it must be
the case that x ↘ B(o, r). Thus

EKS
r (u;E1, E2) =

ˆ
E1↗B(o,r)

ˆ
E2↗B(x,r)

|u1(x)↓ u2(y)|n

rn
dLn(y) dLn(x)

→
ˆ
E1↗B(o,r)

ˆ
E2↗B(o,r)

|u1(x)↓ u2(y)|n

rn
dLn(y) dLn(x),

and moreover,

EKS
r (u;E1, E2) =

ˆ
E1↗B(o,r)

ˆ
E2↗B(x,r)

|u1(x)↓ u2(y)|n

rn
dLn(y) dLn(x)

↗
ˆ
E1↗B(o,r/4)

ˆ
E2↗B(o,r/4)

|u1(x)↓ u2(y)|n

rn
dLn(y) dLn(x).

Similarly, we also see that

EKS
r (u;E2, E1) →

ˆ
E1↗B(o,r)

ˆ
E2↗B(o,r)

|u1(x)↓ u2(y)|n

rn
dLn(y) dLn(x),

EKS
r (u;E2, E1) ↗

ˆ
E1↗B(o,r/4)

ˆ
E2↗B(o,r/4)

|u1(x)↓ u2(y)|n

rn
dLn(y) dLn(x).

It follows that (3.4) holds if and only if
IKS(u1, u2)

= lim sup
r↑0+

ˆ
E1↗B(o,r)

ˆ
E2↗B(o,r)

|u1(x)↓ u2(y)|n

r2n
dLn(y) dLn(x) < ↑.

These complete the proof of (1).
Proof of (2): It su"ces to find u ↘ N

1,n(X) \ KS
1
n(X); note that u ↘

N
1,n(X) if and only if u|Ei ↘ N

1,n(Ei) for i = 1, 2. By direct computation
or by [14], we know that the function v(x) := log (↓ log |x|) for x ↘ E1 \ {o}
belongs to N

1,n(E1). Note that
lim
r↑0+

ess inf
E1↗B(o,r)

|v| = ↑.

Now we define u ↘ N
1,n(X) by u(x) := v(x) for x ↘ E1 and u(x) := 0 for

x ↘ E2 \ {o}. Then we easily see thatˆ
E1↗B(o,r)

ˆ
E2↗B(o,r)

|u(x)↓ u(y)|n dLn(y) dLn(x) ↗
(

ess inf
E1↗B(o,r)

|v|
)n

,

and so u ⇑↘ KS
1
n(X) though u ↘ N

1,n(X), since ess infE1↗B(o,r) |v| ⇓ ↑ as
r ⇓ 0+. ↭

Note that the dimension of B
1
p,p(X) is 2 when 1 < p < n . Moreover,

thanks to [6] applied to each of the two n-dimensional hypercubes of X and
(3.2), we know that ωp(X) = n/p, in particular, ωp(X) > 1 when 1 < p < n.

Proof of Theorem 1.9 for the glued hypercubes. Note that df = n and dw,p =
p in this case. As already mentioned, ωp(X) = n/p = df/p when p < n.
The estimate (3.2), along with the fact that ωp([0, 1]n) = 1, shows ωp(X) =
1 = dw,p/p when p ↗ n. Moreover, for B

ω
p,p(X) to be dense in L

p(X) it is
necessary to have that Bω

p,p([0, 1]
n) be dense in L

p([0, 1]n), and this requires
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Figure 2. Gluing of two copies of the Sierpi#ski gasket

ω < 1. It follows that ω
↔
p(X) → 1. On the other hand, when ω < 1, Bω

p,p(X)
is dense in L

p(X) due to the results of [4] because the class of Lipschitz
continuous functions forms a dense subclass of both spaces. Hence we have
ω
↔
p(X) = 1 = dw,p/p. ↭

A similar example can be considered by gluing two copies of the Sierpi#ski
gasket, but the resultant example has dramatically di!erent phenomena in
comparison to Example 3.1 above. Precisely, for any p ↘ (1,↑), ωp(X) =
ω
↔
p(X) for this example as shown in Theorem 3.9 below. In comparison, in

Example 3.1 we have that ωp(X) = n/p. However, when ω ↗ 1 we necessarily
have that any function u ↘ B

ω
p,p(X) must be constant on each of the two

cubes [0, 1]n and [↓1, 0]n, thanks to the results in [6]. Therefore ω
↔
p(X) = 1

in Example 3.1.

Example 3.5 (Gluing copies of the Sierpi#ski gasket). In this example, we
consider X to be the union of two copies of the n-dimensional standard
Sierpi#ski gasket glued at a point. Let n ↘ N with n ↗ 2, let K be the
standard n-dimensional Sierpi#ski gasket, rotated so that it is symmetric
about the xn-axis in Rn and located in the half-space {xn ↗ 0} and has a
vertex at o := (0, 0, · · · , 0), K

+ := K and K
↓ the reflection of K in the

hyperplane {xn = 0}, and then set X = K
+ ↙K

↓ (see Figure 2 for the case
n = 2). Let d be the Euclidean metric (restricted to X) and µ be the df -
dimensional Hausdor! measure on X, where df := log (n+ 1)/ log 2. Then
µ is Ahlfors df -regular on X, i.e., there exists c1 ↗ 1 such that

c
↓1
1 r

df → µ(B(x, r)) → c1r
df for any x ↘ X, 0 < r < diam(X). (3.6)

Now let us focus on the following Besov-type energy functional of εK+ :

ˆ
X

ˆ
B(x,r)

|εK+(x)↓ εK+(y)|p

rpω
dµ(y) dµ(x), r > 0.
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Note that if x ↘ K
↓ and B(x, r) ⇐ K

+ ⇑= ∞, then o ↘ B(x, r) and hence
B(x, r) ↖ B(o, 2r). Therefore,ˆ

X

ˆ
B(x,r)

|εK+(x)↓ εK+(y)|p

rpω
µ(dy)µ(dx)

→ c1 r
↓df

ˆ
B(o,2r)↗K↓

ˆ
B(o,2r)↗K+

|εK+(x)↓ εK+(y)|p

rpω
µ(dy)µ(dx)

→ c1 r
↓df↓pω

µ(B(o, 2r))2 → c
3
1 r

df↓pω
. (3.7)

Since µ(B(o, r/4) ⇐K
±) ↗ c2r

df , we also haveˆ
X

ˆ
B(x,r)

|εK+(x)↓ εK+(y)|p

rpω
µ(dy)µ(dx)

↗ c
↓1
1 r

↓df

ˆ
B(o,r/4)↗K↓

ˆ
B(o,r/4)↗K+

|εK+(x)↓ εK+(y)|p

rpω
µ(dy)µ(dx)

↗ c1r
↓df↓pω

µ(B(o, r/4) ⇐K
↓)µ(B(o, r/4) ⇐K

+) ↗ c
↓1
1 c

2
2 r

df↓pω
. (3.8)

Hence εK+ ↘ B
ω
p,p(X) if and only if 0 < ω < df/p, and εK+ ↘ KS

ω
p(X) if

and only if 0 < ω → df/p. Moreover, ⇒εK+⇒KSω
p(X) = 0 for ω ↘ (0, df/p), and

⇒εK+⇒
KS

df/p
p (X)

> 0. In particular, the p-energy form (⇒ · ⇒p
KSω

p(X)
,KS

ω
p(X))

is reducible when ω ↘ (0, df/p).
Let dw,p be the p-walk dimension of the n-dimensional standard Sierpi#ski

gasket K
+, i.e., dw,p = log ((n+ 1)ϑp)/ log 2 where ϑp is the p-scaling factor

of K+ used in constructing the analog of the Sobolev space Fp on the gasket
(see [17, Subsection 9.2] for further details on the p-walk dimension of Sier-
pi#ski gaskets). From [18, Theorems 5.16, 5.26, Corollary 5.27, Proposition
5.28] and Lemma 2.6(2) above, we know that ωp(K±) = ω

↔
p(K

±) = dw,p/p.
It is known that dw,p > p and dw,p > df for any p ↘ (1,↑); see [17, The-
orems 9.13, B.8 and (8.39)] and [19, Proposition 3.3]. In the next theorem
we determine ωp(X) and ω

↔
p(X) (note that the Ahlfors regular conformal di-

mension of the n-dimensional standard Sierpi#ski gasket is 1; see, e.g., [17,
Theorem B.8]).

Theorem 3.9. In the above setting of X = K
+ ↙ K

↓, where each K
± is

the n-dimensional Sierpi!ski gasket, we have ωp(X) = ω
↔
p(X) = dw,p

p for
1 < p < ↑.

Proof. We first show that ωp(X) = dw,p/p. Since Bdw,p/p
p,→ (K±) ↖ C(K±) and

B
dw,p/p
p,→ (K±) is dense in C(K±) by [17, Corollary 9.11] and [18, Theorem

5.26], we have ωp(X) ↗ dw,p/p. Indeed, by this density we can find a non-
constant function u ↘ B

dw,p/p
p,→ (K+), and then its reflection v given by

v(x) =


u(x) if x ↘ K

+
,

u(↓x) if x ↘ K
↓
,

belongs to B
dw,p/p
p,→ (X), and so we have a non-constant function in B

dw,p/p
p,→ (X).

For any ω > dw,p/p and u ↘ B
ω
p,p(X), we have from Lemma 2.6 (2) that

u|K± ↘ B
ω
p,→(K±). Then u|K+ and u|K↓ must be constant functions since
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ωp(K±) = dw,p/p. Since εK+ ⇑↘ B
ω
p,p(X) by the discussion preceding the

statement of the theorem being proved here, and since ω > dw,p/p > df/p,
the function u has to be constant on X. Hence, ωp(X) → dw,p/p. The proof
of ωp(X) = dw,p/p is completed.

Next we prove that ω
↔
p(X) = dw,p/p. It su"ces to show that B

dw,p/p
p,→ (X)

is dense in C(X); indeed, if this is true, then we have from Lemma 2.6 (2)
and the fact that C(X) is dense in L

p(X) that Bω
p,p(X) is dense in L

p(X) for
any ω < dw,p/p and hence ω

↔
p(X) ↗ dw,p/p. (Recall that ω

↔
p(X) → ωp(X) =

dw,p/p.)
To show that B

dw,p/p
p,→ (X) is dense in C(X), let u ↘ C(X). We can as-

sume that u(o) = 0 by adding a constant function. Recall that u+(x) :=

max{0, u(x)} and set u↓ := u+ ↓ u. Since B
dw,p/p
p,→ (K±) is dense in C(K±),

for any ε > 0 there exist four continuous functions u
K+

±,↼ ↘ B
dw,p/p
p,→ (K+),

u
K↓
±,↼ ↘ B

dw,p/p
p,→ (K↓) such that

sup
x≃K+

∣∣∣u±(x)↓ u
K+

±,↼ (x)
∣∣∣ → ε, and sup

x≃K↓

∣∣∣u±(x)↓ u
K↓
±,↼ (x)

∣∣∣ → ε.

We can also assume that uK+

±,↼ and u
K↓
±,↼ are nonnegative. Since u(o) = 0 and

u
K+

±,↼ , u
K↓
±,↼ are continuous, there exists ⇁ > 0 such that

sup
x≃B(o,ς)↗K+

∣∣∣uK
+

±,↼ (x)
∣∣∣ → 2ε and sup

x≃B(o,ς)↗K↓

∣∣∣uK
↓

±,↼ (x)
∣∣∣ → 2ε.

Now we set

u↼ :=

(uK

+

+,↼ ↓2ε)+↓ (uK
+

↓,↼ ↓2ε)+

εK+ +


(uK

↓
+,↼ ↓2ε)+↓ (uK

↓
↓,↼ ↓2ε)+


εK↓ .

Then u↼ ↘ C(X). Note that u↼ = 0 on B(o, ⇁) and that ⇒u↓ u↼⇒sup → 3ε.
We conclude that u↼ ↘ B

dw,p/p
p,→ (X) by using the “locality” of ⇒ · ⇒

KS
dw,p/p
p (X)

;
indeed,

⇒u↼⇒p
KS

dw,p/p
p (X)

→ ⇒u↼|K+⇒p
KS

dw,p/p
p (K+)

+ ⇒u↼|K↓⇒p
KS

dw,p/p
p (K↓)

.

Therefore, Bdw,p/p
p,→ (X) is dense in C(X). ↭

Example 3.10 (Gluing copies of the Sierpi#ski carpet). In this example, we
consider X to be the union of two isometric copies of the planar standard
Sierpi#ski carpet glued at a point. We confine ourselves to the planar case
unlike in Examples 3.1 and 3.5, because the construction of a self-similar
p-energy form and its corresponding Sobolev analog Fp for all 1 < p <

↑ including the case where p is less than or equal to the Ahlfors regular
conformal dimension (denoted by dARC below) is currently known only for
the planar carpet.

Let K be the standard Sierpi#ski carpet, rotated so that it is symmetric
about the line {y = x} in R2 and located in the quadrant {x → 0, y → 0}
and has a vertex at o := (0, 0), K+ := K and K

↓ be the reflection of K in
the line {y = ↓x}, and then set X = K

+ ↙K
↓ (see Figure 3). Let d be the

Euclidean metric (restricted on X) and µ be the df -dimensional Hausdor!
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o

Figure 3. Gluing of two copies of the Sierpi#ski carpet

measure on X, where df := log 8/ log 3. Then µ is Ahlfors df -regular on X,
i.e., (3.6) holds. Similar to (3.7) and (3.8), we can estimateˆ

X

ˆ
B(x,r)

|εK+(x)↓ εK+(y)|p

rpω
µ(dy)µ(dx) ↔ r

df↓pω
. (3.11)

Hence εK+ ↘ B
ω
p,p(X) if and only if ω ↘ (0, df/p), and εK+ ↘ KS

ω
p(X) if

and only if ω ↘ (0, df/p]. Also, we have ⇒εK+⇒KSω
p(X) = 0 for ω ↘ (0, df/p)

and ⇒εK+⇒
KS

df/p
p (X)

> 0. In particular, (⇒ · ⇒p
KSω

p(X)
,KS

ω
p(X)) is reducible

when ω ↘ (0, df/p).
Similar to Example 3.5, from [22, Theorems 1.1 (ii), 1.4 and proof of

Theorem 7.1] and Lemma 2.6 (2), we know that ωp(K±) = ω
↔
p(K

±) = dw,p/p

where dw,p is the p-walk dimension of the Sierpi#ski carpet. By [24, Theorem
2.24] or [17, Theorem 9.8], we have dw,p > p for any p ↘ (1,↑). Next let
us recall a relation with the Ahlfors regular conformal dimension dARC of
the Sierpi#ski carpet that is discussed in the end of introduction. From [5,
Corollary 3.7] and [10, Corollary 1.4] (see also [8, Proof of Proposition 1.7]),
we know that dw,p > df if and only if p > dARC, that dw,p < df if and only
if p < dARC, and that dw,p = df for p = dARC. Also, dARC ↗ 1 + log 2

log 3 by
[2, Remark 1]. We can determine ωp(X) and ω

↔
p(X) as in Theorem 1.9, in

particular, there is a gap between ωp(X) and ω
↔
p(X) when 1 < p < dARC.

Proof of Theorem 1.9 for the glued Sierpi!ski carpets. By [22, Theorems 1.1
and 1.4], Bdw,p/p

p,→ (K±)⇐C(K±) is dense in C(K±) for any p ↘ (1,↑). Hence
we can show ωp(X) = dw,p/p when dw,p > df in the same way as Theorem
3.9. Assume that dw,p → df . Since εK+ ↘ B

ω
p,p(X) if and only if ω < df/p,

we have ωp(X) ↗ df/p. To see that ωp(X) → df/p, let ω > df/p ↗ dw,p/p and
let u ↘ B

ω
p,p(X). Then by Lemma 2.9 we know that u ↘ KS

ω
p(X) and so by

Lemma 2.6(2) we also have that u ↘ B
dw,p/p
p,p (X). Note that then u|K± ↘

B
dw,p/p
p,p (K±). Now by Lemma 2.9 again, we know that ⇒u|K+⇒

KS
dw,p/p
p (K+)

=

⇒u|K↓⇒
KS

dw,p/p
p (K↓)

= 0. Hence we have from [22, Theorems 1.1 and 1.4]

that u|K+ and u|K↓ are constant. Since εK+ ⇑↘ B
ω
p,p(X), u has to be a

constant function, whence it follows that ωp(X) → df/p.
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Next we prove that ω↔p(X) = dw,p/p. Since B
dw,p/p
p,→ (K±)⇐C(K±) is dense

in C(K±), we can show that ω
↔
p(X) ↗ dw,p/p in the same manner as in the

proof of Theorem 3.9. Since B
ω
p,→(K+) and B

ω
p,→(K↓) have only constant

functions when ω > dw,p/p, Bω
p,→(X) can not be dense in L

p(X,µ) for such
ω. Hence, by Lemma 2.6 (2), B

ω
p,p(X) is not dense in L

p(X,µ) for any
ω > dw,p/p, from which it follows that ω

↔
p(X) → dw,p/p. ↭

The following proposition is an analog of Proposition 3.3 where now X

is the glued Sierpi#ski carpet. In this case, when p is the Ahlfors regular
conformal dimension dARC of the carpet, we must have ωp(X) = ω

↔
p(X).

Proposition 3.12. Let X be the glued Sierpi!ski carpet and let p = dARC.
Set E1 := K

+ and E2 := K
↓ for ease of notation.

(1) It follows that

KS
ωp
p (X) =

{
u1εE1 + u2εE2

∣∣∣∣
ui ↘ L

p(X,µ), ui|Ei ↘ KS
ωp
p (Ei),

i ↘ {1, 2}, IKS(u1, u2) < ↑

}
,

where

IKS(u1, u2) := lim sup
r↑0+

ˆ
E1↗B(o,r)

ˆ
E2↗B(o,r)

|u1(x)↓ u2(y)|p

rdf+pωp
dy dx.

(2) KS
ωp
p (X) ⊋ {u1εE1 + u2εE2 | ui ↘ L

p(X,µ), ui|Ei ↘ KS
ωp
p (Ei), i ↘

{1, 2}}.

Proof. The proof of (1) can be obtained via minor modifications of the proof
of Proposition 3.3 (1), and we leave it to the interested reader to verify. By
[9, Proof of Theorem 2.7], [22, Theorem 1.4] and the fact that dw,p = df

when p = dARC (see [22, Remark 9.17]), there exists v ↘ KS
ωp
p (K+) such

that limr↑0+ ess infK+↗B(o,r) |v| = ↑. Once we obtain such a discontinuous
function, then using the zero-extension u of such a function v to K

↓, the
proof of Proposition 3.3 verbatim tells us that u ⇑↘ KS

dw,p/p
p (X). The proof

of (2) is now completed. ↭

4. Proof of Theorem 1.1

We now prove Theorem 1.1; the proof is broken down step by step by the
following lemmata.

Lemma 4.1. Let µ be a doubling measure on X. Suppose that B
ω
p,p(X) is

k-dimensional for some k ↘ N as a vector space (hence B
ω
p,p(X) ⇑= {0}).

Then the following hold.
(i) Every function in B

ω
p,p(X) is bounded.

(ii) Every function f ↘ B
ω
p,p(X) is a simple function. Moreover, if µ(X) <

↑ and k = 1, then f is necessarily constant, and if µ(X) < ↑ and
k > 1 or µ(X) = ↑ and k ↗ 1, then outside of a set of measure zero,
f takes on at most k + 1 values.

(iii) Suppose k > 1. Then there is a collection of measurable subsets Ei,
i = 1, · · · , k, of X such that the collection {εEi : 1 → i → k} forms
a basis for B

ω
p,p(X) and in addition, 0 < µ(Ei) < ↑ for each i =
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1, · · · , k, µ(Ei ⇐ Ej) = 0 whenever i ⇑= j, and if in addition we have
that µ(X) < ↑, then µ(X \

⋃k
j=1Ej) = 0.

(iv) B
ω
p,p(X) = ≃k

i=1B
ω
p,p(Ei) as sets. Moreover, the dimension of Bω

p,p(Ei)
is 1 for all i = 1, · · · , k.

Proof. Proof of (i): Suppose that the dimension of Bω
p,p(X) is finite and

that there is an unbounded function f ↘ B
ω
p,p(X). By considering f+, f↓

separately, we may consider without loss of generality that f ↗ 0 (note
that if f ↘ B

ω
p,p(X), then f+, f↓ ↘ B

ω
p,p(X) by Lemma 2.4). Then we

can find a strictly increasing sequence of positive integers (ni)i≃N such that
µ(f↓1((ni, ni+1])) > 0 for each i ↘ N. Set

fi(x) := max{f(x)↓ ni, 0},

then fi ↘ B
ω
p,p(X) by Lemma 2.4.

Note that f1 is not a linear combination of any of up to - many choices
of functions fi1 , · · · , fiϑ with i1, · · · , i↽ distinct from 1, for all such linear
combinations will vanish on the set f

↓1((n1, n2]) where f1 is nonzero. Note
also that f2 cannot be a linear combination of f1 and other fj , j ⇑= 2, either,
as on the set f

↓1((n2, n3]) the functions fj , j ↗ 3, vanish and so if f2 were
to be such a linear combination, on that set we must have f2 = af1 for some
a ⇑= 0. This also is not possible as f1 is nonzero on the set f↓1((n1, n2]) and
f2 and all fj , j > 2, vanish there. Hence f1 and f2 are linearly independent
of each other and of all the other fj , j ↗ 3. We have also proved that2

j=1 ajfj = 0 on f
↓1((n1, n3]) implies that a1 = a2 = 0.

Now we proceed by induction. Suppose we have shown that f1, · · · , fi are
linearly independent of each other and of all the other fj , j ↗ i + 1 and
that

i
j=1 ajfj = 0 on f

↓1((n1, ni+1]) implies that aj = 0 for j = 1, · · · , i.
We wish to show that fi+1 is also independent of the other functions fj ,
j ⇑= i+1. Indeed, if it is not, then by considering the set f↓1((n1, ni+2]), we
see that on this set we must have fi+1 =

i
j=1 ai fi with at least one of ai

nonzero. But then, on the set f
↓1((n1, ni+1]) we have that

i
j=1 aj fj = 0,

which then indicates that each aj = 0 for j = 1, · · · , i. That is, fi+1 cannot
be a linear combination of the other functions fj , j ⇑= i. It follows that the
collection {fi : i ↘ N} is a linearly independent subcollection of Bω

p,p(X),
violating the finite dimensionality of Bω

p,p(X). Thus f must be bounded.
Proof of (ii): Let f ↘ B

ω
p,p(X) such that f is not the zero function. Then

both f+ and f↓ are in B
ω
p,p(X), and so we first focus on the possibility that

f ↗ 0 with f ⇑∈ 0. We want to prove that there are positive real numbers
b1, b2, · · · , bl with l → k and bi < bi+1 for i = 1, . . . , l ↓ 1 such that

µ(X \ f↓1({b1, · · · , bl, 0})) = 0,

or equivalently the support of the push-forward measure f↔µ, supp(f↔µ), is
contained in {b1, · · · , bl, 0}. (Note that supp(f↔µ) ∋ [0, ⇒f⇒L↑ ] since f is
bounded due to (i).) We prove this by contradiction. Suppose the above
claim fails. Then recalling that f ↗ 0,

#
{
↽ ↘ R

∣∣ ↽ ↗ 0 and µ({|f ↓ ↽| < ε}) > 0 for all ε > 0

↗ k + 2
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and we can find positive numbers a2, · · · , ak+2 with a1 = 0, ak+2 = ⇒f⇒L↑

and ai < ai+1 for i = 1, · · · , k + 1, such that µ(f↓1((ai, ai+1])) > 0 for
i = 1, · · · , k + 1.

As in the proof of (i), we consider the functions fi, i = 1, · · · , k+1, given
by

fi(x) = max{f(x)↓ ai, 0}.
Since ai ↗ 0, it follows from Lemma 2.4 that fi ↘ B

ω
p,p(X). Now a repeat

of the proof of (i) tells us that the collection {f1, · · · , fk+1} ↖ B
ω
p,p(X) is

linearly independent, violating the hypothesis that the dimension of Bω
p,p(X)

is k. The claim now follows for non-negative functions that are not identically
zero. In particular, for such functions, we can set Ei := f

↓1({bi}) for i =
1, · · · , l → k, and see that

f =
l∑

i=1

bi εEi .

We now set b0 := 0, and by Lemma 2.4, note that for i = 1, · · · , l, the
function hi given by hi(x) = max{0,min{f(x) ↓ bi↓1, bi ↓ bi↓1}} belongs
to B

ω
p,p(X) with hi = (bi ↓ bi↓1)εFi , where Fi :=

⋃l
j=iEj . It follows that

εFi = (bi ↓ bi↓1)↓1
hi ↘ B

ω
p,p(X) and hence εFi ↘ B

ω
p,p(X). It follows that

εEi ↘ B
ω
p,p(X) as well for i = 1, · · · , l. Note that µ(Ei⇐Ej) = 0 when i ⇑= j.

If f is not non-negative and not identically zero, then we apply the above
conclusion to f+ and f↓ separately, and so we have distinct positive num-
bers a1, · · · , aj and distinct positive numbers b1, · · · , bl with j, l → k, and
measurable sets E1, · · · , Ej and F1, · · · , Fl such that

f = f+ ↓ f↓ =
j∑

i=1

ai εEi ↓
l∑

m=1

bm εFm .

We can also ensure that µ(Ei ⇐ Fm) = 0 for all (i,m). Moreover, as f ↘
L
p(X), we must have µ(Ei) and µ(Fm) are finite whenever 1 → i → j and

1 → m → l. Thus the collection {εEi , εFm : i ↘ {1, · · · , j},m ↘ {1, · · · , l}}
is a linearly independent collection of functions in B

ω
p,p(X), and hence we

must have that m+ l → k, that is, there are at most k non-zero real numbers
c1, · · · , cn such that

µ(X \ f↓1({c1, · · · , cn, 0})) = 0.

Proof of (iii): Let {f1, · · · , fk} be a basis for B
ω
p,p(X). By (ii), we know

that for each j = 1, · · · , k there are measurable subsets Ej,1, · · · , Ej,Nj of X
with εEj,i ↘ B

ω
p,p(X) and distinct non-zero real numbers aj,1, · · · , aj,Nj such

that

fj =

Nj∑

i=1

aj,i εEj,i .

We can make this simple-function decomposition of fj so that µ(Ej,i⇐Ej,k) =
0 for i, k ↘ {1, · · · , Nj} with i ⇑= k and in addition we require that µ(Ej,i) > 0
for each i = 1, · · · , Nj .

Next, we break the sets Ej,i, j = 1, · · · , k and i = 1, · · · , Nj into pairwise
disjoint subsets as follows. Observing that µ(Ej,i ⇐ Ej,n) = 0 if i ⇑= n, it
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su"ces to consider pairs of sets Ej,i and Em,n with j ⇑= m. Since εEj,i

and εEm,n are in B
ω
p,p(X), it follows from Lemma 2.5 that the function

εEj,i↗Em,n = εEj,i εEm,n is also in B
ω
p,p(X). If µ(Ej,i ⇐ Em,n) > 0 and

µ(Ej,i”Em,n) > 0, then we can replace Ej,i and Em,n with Ej,i ⇐Em,n, and
Ej,i \ Em,n if µ(Ej,i \ Em,n) > 0 and Em,n \ Ej,i if µ(Em,n \ Ej,i) > 0 (note
that in the case considered here, we must have at least one of µ(Em,n \Ej,i)
and µ(Ej,i \ Em,n) is positive).

Since the collection {Ej,i : j = 1, · · · , k, i = 1, · · · , Nj} is a finite col-
lection of sets, the above procedure involving each pair of sets from this
collection needs to be done only finitely many times; thus we obtain the
collection of sets Ei, i = 1, · · · , N such that

µ(Ei ⇐ Ej) = 0 whenever i ⇑= j. (4.2)

As each fj is a linear combination of the characteristic functions of Ej,i,
i = 1, · · · , Nj , it follows that fj is a linear combination of the characteris-
tic functions εEi , i = 1, · · · , N . Because the collection {f1, · · · , fk} spans
B

ω
p,p(X), the collection {εEi : i = 1, · · · , N} spans B

ω
p,p(X) as well. More-

over, by (4.2) this collection of functions is also linearly independent; hence
N = k, and this collection forms a basis for B

ω
p,p(X).

Finally, note that when µ(X) < ↑, the constant function u ∈ 1 is in
B

ω
p,p(X), and so necessarily u =

k
j=1 εEj , that is, µ(X \

⋃k
j=1Ej) = 0.

Proof of (iv): By (iii), it is enough to show that B
ω
p,p(Ei) consists only of

constant functions (i.e. the dimension of Bω
p,p(Ei) is 1) for all i = 1, · · · , k.

Now suppose there is i ↘ {1, · · · , k} and a non-constant g ↘ B
ω
p,p(Ei). By

Lemma 2.4, we may assume that g is bounded. Since εEi ↘ B
ω
p,p(X), we

have

||εEi ||
p
Bω

p,p(X)
=

ˆ
Ec

i

ˆ
Ei

1

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

+

ˆ
Ei

ˆ
Ec

i

1

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x) < ↑. (4.3)

Now define g : X ⇓ R by g = giεEi , that is, g|Ei = g and g|Ec
i
= 0. Then

⇒g⇒pLp(X) = ⇒g⇒pLp(Ei)
< ↑ and

||g||p
Bω

p,p(X)
→ ||g||p

Bω
p,p(Ei)

+

ˆ
Ec

i

ˆ
Ei

|g(y)|p

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

+

ˆ
Ei

ˆ
Ec

i

|g(x)|p

d(x, y)ωp µ(B(x, d(x, y)))
dµ(y) dµ(x)

→ ||g||p
Bω

p,p(Ei)
+ ⇒g⇒pL↑(X)||εEi ||

p
Bω

p,p(X)
< ↑,

where the last inequality is due to (4.3). It follows that g ↘ B
ω
p,p(X), and so

by (iii) there are real numbers a1, · · · , ak such that g =
k

j=1 ajεEj , which
in turn means that g (and hence g) is constant µ-a.e. in Ei, contradicting
the non-constant nature of g. It follows that every function in B

ω
p,p(Ei) must

be constant. ↭
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Remark 4.4. Lemma 4.1 proves claims (1), (2), (3) and (4) of Theorem 1.1.
Lemma 2.9 verifies claim (5) of Theorem 1.1. Claim (7) of Theorem 1.1
follows consequently from the definition of ωp(X).

Lemma 4.5. Under the hypotheses of Lemma 4.1 above, and with the sets
Ei, i = 1, · · · , k, as constructed in that lemma, we have that uεEi ↘ KS

ω
p(X)

whenever u ↘ KS
ω
p(X) is bounded.

Proof. The claim follows immediately from combining Lemma 2.5 and the
fact that εEi ↘ B

ω
p,p(X). ↭

Finally, the next lemma verifies (6) of Theorem 1.1 and completes the
proof of Theorem 1.1.

Lemma 4.6. Under the setting of Theorem 1.1, claim (6) holds true.

Proof. Let u ↘ KS
ω
p(X) such that ⇒u⇒L↑(X) =: M is bounded. Then

ˆ
X

ˆ
B(x,r)

|u(x)εEj (x)↓ u(y)εEj (y)|p

rωp
dµ(y) dµ(x)

=

ˆ
Ej

ˆ
B(x,r)↗Ej

|u(y)↓ u(x)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

+

ˆ
Ej

ˆ
B(x,r)\Ej

|u(x)εEj (x)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

+

ˆ
X\Ej

ˆ
B(x,r)↗Ej

|u(y)εEj (y)|p

rωp µ(B(x, r))
dµ(y) dµ(x).

Note that
ˆ
Ej

ˆ
B(x,r)\Ej

|u(x)εEj (x)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

+

ˆ
X\Ej

ˆ
B(x,r)↗Ej

|u(y)εEj (y)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

→M
p
ˆ
Ej

ˆ
B(x,r)\Ej

|εEj (x)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

+M
p
ˆ
X\Ej

ˆ
B(x,r)↗Ej

|εEj (y)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

=M
p
ˆ
Ej

ˆ
B(x,r)\Ej

|εEj (x)↓ εEj (y)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

+M
p
ˆ
X\Ej

ˆ
B(x,r)↗Ej

|εEj (x)↓ εEj (y)|p

rωp µ(B(x, r))
dµ(y) dµ(x)

→M
p
ˆ
X

ˆ
B(x,r)

|εEj (x)↓ εEj (y)|p

rωp
dµ(y) dµ(x),
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and thanks to (5) of Theorem 1.1 (verified above), the last expression above
tends to 0 as r ⇓ 0+. It follows that

⇒uεEj⇒
p
KSω

p(X)
= lim sup

r↑0+

ˆ
X

ˆ
B(x,r)

|u(x)εEj (x)↓ u(y)εEj (y)|p

rωp
dµ(y) dµ(x)

= lim sup
r↑0+

ˆ
Ej

ˆ
B(x,r)↗Ej

|u(y)↓ u(x)|p

rωp µ(B(x, r))
dµ(y) dµ(x),

completing the proof. ↭

5. Proof of Theorem 1.5 and Theorem 1.6

In this section we provide a proof of the remaining two main results of
this paper.

Proof of Theorem 1.5. It su"ces to show that any function in B
ω
p,p(X) is a

constant function, in particular, the dimension of Bω
p,p(X) is 1 if µ(X) < ↑,

and B
ω
p,p(X) = {0} if µ(X) = ↑. Suppose there is a non-constant function

g ↘ B
ω
p,p(X). Since g is non-constant, at least one of g+ and g↓ is non-

constant; hence, without loss of generality, we may assume that g ↗ 0 on
X. Then there is a positive real number a such that µ(g↓1([a,↑))) > 0
and µ(g↓1([0, a))) > 0. We can then find a positive real number ⇁ < a such
that µ(g↓1([0, a ↓ ⇁])) > 0 as well. Now by Lemma 2.4 and Lemma 2.9,
we know that ga,ς := max{0,min{g ↓ (a ↓ ⇁), ⇁}} ↘ B

ω
p,p(X) ↖ KS

ω
p(X)

with ⇒ga,ς⇒KSω
p(X) = 0. On the other hand, the choices of a and ⇁ mean that

⇒ga,ς⇒Bω
p,↑(X) > 0, violating condition (w-max)p,ω. Thus no such g exists. ↭

Proof of Theorem 1.6. In [12, Theorem 1.5], a condition called property (NE)
is assumed in addition; however, the proof of inequality (2.8) in the proof
of that theorem in [12] does not need this property, and so we can use [12,
(2.8)] verbatim in our setting. Now, by [12, (2.8)] and by [13, Theorem 5.2],
there exists C ↗ 1 such that for any u ↘ B

ω
p,→(X),

lim inf
t↑0+

ˆ
X

ˆ
B(x,t)

|u(x)↓ u(y)|p

tpω
dµ(y) dµ(x) → C lim inf

ω↔↑ω↓
(ω ↓ ω

⇒) ⇒u⇒p
Bω↔

p,p(X)
.

Now suppose that there is a non-constant function u ↘ B
ω
p,p(X). Then we

have by the Lebesgue dominated convergence theorem that
lim

ω↔↑ω↓
⇒u⇒p

Bω↔
p,p(X)

= ⇒u⇒p
Bω

p,p(X)
> 0,

but then
lim inf
ω↔↑ω↓

(ω ↓ ω
⇒) ⇒u⇒p

Bω↔
p,p(X)

= 0,

whence it follows from (1.7) that
´
X |u↓ uX |p dµ = 0. Hence u must be

constant on X, which is a contradiction of the supposition that u is non-
constant on X. Therefore B

ω
p,p(X) consists only of constant functions. ↭

Proof of Corollary 1.8. Under the hypotheses of Corollary 1.8, we obtain
ωp(X) = 1 and (1.7) by [1, Theorem 5.1] and [15, Theorem 10.5.2], so we
can apply Theorem 1.6. ↭
Acknowledgements. The authors are grateful to the anonymous referee
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