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ABSTRACT. In the context of a metric measure space (X,d, 1), we ex-

plore the potential-theoretic implications of having a finite-dimensional

Besov space. We prove that if the dimension of the Besov space Bf ,(X)

is k > 1, then X can be decomposed into k& number of irreducible com-

ponents (Theorem 1.1). Note that 6 may be bigger than 1, as our

framework includes fractals. We also provide sufficient conditions under

which the dimension of the Besov space is 1. We introduce critical expo-

nents 6,(X) and 6, (X) for the Besov spaces. As examples illustrating

Theorem 1.1, we compute these critical exponents for spaces X formed

by glueing copies of n-dimensional cubes, the Sierpinski gaskets, and of

the Sierpiriski carpet.
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1. INTRODUCTION

Given a compact metric space (X, d) equipped with a doubling measure ,
a viable theory of local Dirichlet-type energy forms is obtained by considering
the Newton-Sobolev class N1P(X) of functions on X if we know that (X, d, )
supports a p-Poincaré inequality for some 1 < p < oo. However, when
no Poincaré type inequality is available on (X,d, 1), a more natural local
energy form is given by the so-called Korevaar-Schoen space K 5’; (X), see

for instance [20]. We are interested in the function-classes Bf,yp(X ) (Besov),
Bg’oo(X ), and K Sg(X ) (Korevaar-Schoen). These are spaces of functions in
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LP(X) for which the following respective energies are finite:
fully, // SO du(y) du(o)
B, d(@, )% p(B(x, d(z y)))

[T pp—— / ][ )y dpu(y) dyu();
B0 t>0 B(x,t) tGp
’LL *U
gy _hmsup/][Bm [uy) —u(@)P ( P duty) dute),

t—0t+

where, by F' =~ H we mean that there is a constant C' > 1, independent of
the parameters F' and H depend on (in the above it would be u), so that
C~! < F/H < C. (For the equivalence on HuHBg LX) under the volume
doubling property, see [13, Theorem 5.2].) While the energy ||ul| KS8(x) 18
local, the energy H“HBg,m(X) is not. In general we do not know that the two
norms ||ul ’B,?,OO(X) and HuHKSg(X) are comparable, but because p is doubling,
we have that as sets, Bf,,oo(X) = KSg(X), see Lemma 2.6 below.

The goal of this paper is to investigate what the potential-theoretic impli-
cations are of knowing that ng(X ) has finite dimension. The following two
critical exponents 0,(X) and 6,,(X) for the Besov space will play important
roles. Throughout the paper, we assume that X has infinitely many points.

Inspired by the ground-breaking result of Bourgain, Brezis and Mironescu [6],
we define

0,(X) =0, :=sup{f > 0: Bg’p(X ) contains non-constant functions};
0,(X) = 0, :==sup{f > 0: Bg’p(X) is dense in LP(X)}.

Note that 6,(X) > 1 if (X,d,p) is a doubling metric measure space (see
Lemma 2.3), and that 6,(X) > 65(X). When the measure on X is doubling
and supports a p-Poincaré inequality for all function-upper gradient pairs
as in (2.2), then we must have 6, = 1. If the dimension of Bg,p(X) is
1, then Bg,p(X ) consists solely of constant functions and 6,(X) < 6. The
following theorem tells us that if the dimension of sz(X ) is finite but larger
than 1, then X can be decomposed into as many pieces as the dimension
of Bg,p(X ) so that there is no potential-theoretic communication between
different pieces.

Theorem 1.1. Let (X,d, u) be a doubling metric measure space as in (2.1)
and 0 > 0. Suppose that the dimension of sz(X) 1s finite. Then either

w(X) = oo and Bf,{p(X) = {0} (in which case 8 > 0,(X)), or there exist
measurable sets Eq,--- , Ey, with k the dimension of Bg,p(X), such that the
following hold:
(1) 0 < u(E;) < oo fori=1,---k,
(2) If w(X) < o0, then (X \ Ui, Ei) =0,
(3) xE, € Bgm(X) fori=1,--- k, and {xg, : i =1,--- ,k} forms a
basis for Bgm(X).
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(4) BS (X) = @ BY (E;) = {f € LP(X) : flg, € BY,(Ei),i =
,k} as sets. Moreover, the dimension of Bg’p(Ei) is 1 for all
i=1,-- k.
(5) ||XE¢”KSI€,(X) =0fori=1,--- k.
(6) If u e KSI(X) N L*®(X), then forj =1,---,k we have

luxE, Hng = hmsup/ / —u(@)P du(y) dp(z).

r—0+ rNE; TGPN B(x T))

(7) 0 < 0,(X) if k> 1 or p(X —oowzthkfl and 0 > 0,(X) if
u(X) < oo and k= 1.

In Condition (6) above, we do not know whether we can remove the re-
quirement that u € L*>(X).

As a consequence of the above theorem, if & > 1, we have a decomposition
of X into measurable pieces E;, i = 1,--- ,k (up to a null-measure set) so
that there is no potential theoretic communication between different pieces;
this is encoded in the claim ||xg,|| Ks8(x) = 0. Moreover, Condition (4) also
encodes the property that pu(£; N E;) =0 when i,j € {1,--- ,k} with i # j.

We now introduce the notion of irreducible p-energy form for convenience.

Definition 1.2 (Irreducible p-energy form). Assume that u(X) < co. Let
Fp be a linear subspace of LP(X, u) and let &,: F, — [0,00) be such that
Ey(-)'/P is a seminorm on F,. We say that (£,,F,) is a irreducible p-energy
form on (X, ) if whenever u € F, with £,(u) = 0, we must have that u is a
constant function (p-a.e.). Otherwise, we say (&, Fp) is a reducible p-energy
form.

Remark 1.3. The above definition is inspired by the theory of symmet-
ric Dirichlet forms (i.e. p = 2 case). See [11, Theorem 2.1.11] for other
(equivalent) formulations of the irreducibility of recurrent symmetric Dirich-
let forms.

By Theorem 1.1 (5), we have the following; if the dimension of Bgﬂp(X) is
finite and larger than 1, then (]| - ]]ng(x), KS’z(X)) is reducible. Note that
if the dimension of Ba »(X) is 1 and pu(X) < oo, then clearly (||-||%,

p,p

p(X)7
BY (X)) is irreducible, and only constant functions are in Bf (X). Next
we pr0V1de a sufficient condition regarding the behaviors of || - || By, (x) and

of || || xgo(x) under which the dimension of ng(X ) is 1.
P p

Definition 1.4. We say that X satisfies the weak mazimality property, or
(w-max), ¢ property, for Bgm(X ) if there is a constant C' > 1 such that for

each u € Bﬁ,oo(X) we have that
lullgs _(x) < Cllullkssx)- (W-max)y, g

Theorem 1.5. We fixr 1 < p < o0 and § > 0. If (X,d,u) is a doubling
metric measure space that satisfies the (w-max),g property for Bf (X)),
then the dimension of ng(X) is at most 1, and 0,(X) < 0.

In the spirit of |7] we prove the following theorem, which also gives a
sufficient condition for the dimension of Bguv(X ) to be at most 1. For p = 2,
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a similar result was proved in [23] under certain estimates on the heat kernel,
in particular, the cases of Sierpiniski gasket and the Sierpiniski carpet are
included in [23].

Theorem 1.6. Let 1 < p < oo and (X, d, ) be a doubling metric measure
space. Assume that (X, d, 1) supports the following Sobolev-type inequality:
there exist positive real numbers 0, C' such that for any u € ng(X),

/X|u—ux| duSC’hmlnf/X]{g(m’t) e du(y)dp(z).  (1.7)

t—0t
Then for that choice of 8 we have that ng(X) has dimension at most 1.

In the case that (X,d, ) supports a p-Poincaré inequality for function—
upper gradient pairs, it is known that N1P(X) = KS;(X) (see, e.g., |20,
Section 4] or [15, Section 10.4, Theorem 10.4.3, and Corollary 10.4.6]) and
that 6,(X) =1 (see [1, Theorem 5.1]). These facts, along with Theorem 1.6,
imply the following corollary.

Corollary 1.8. Suppose that 1 < p < oo and (X,d, u) is a doubling metric
measure space that supports a p-Poincaré inequality for function—upper gra-
dient pairs (see (2.2)). Then 0,(X) =1 and By, ,(X) has at most dimension
1.

We emphasize that, in Theorems 1.1, 1.5, and 1.6, we do not confine
ourselves to the case 0 < 8 < 1 in view of some recent studies of Sobolev
spaces on fractals; see, e.g., [1, 18, 19, 22, 24]. For example, in the case that
X is the Sierpinski carpet, M. Murugan and the third-named author [22]
proposed a way to define the (1, p)-Sobolev space F, on X through discrete

approximations of X, and demonstrated that F, = KSgw’p/p(X) (see |22,
Theorem 7.1]) with dy, > p (see 24, Theorem 2.27|). Hence a Korevaar—
Schoen space KSﬁ(X) with 8 > 1 appears as a function space playing the
role of a (1, p)-Sobolev space on a fractal space. Here the parameter dy
is called the p-walk dimension of the Sierpinski carpet, X, given by dy , =
log (8pp)/ log 3, where p, € (0,00) is a value called the p-scaling factor of
X as defined in [22, Theorem 8.5 and Definition 8.7|, 3 is the reciprocal of
the common contraction ratio of the family of similitudes associated with
X and 8 is the number of similitudes in this family. (For X = [0,1]", we
can decompose X into 3" cubes with side lengths 1/3 and then see that the
p-scaling factor with respect to this decomposition is given by 3P~". Hence
dyp = log(3™ - 37"™)/log3 = p.) In the case p = 2, (p2)~! coincides with
the resistance scaling factor of X. As a connection with quasiconformal
geometry, it is known that p, > 1 if and only if p > darc, where darc is
the Ahlfors regular conformal dimension of the Sierpinski carpet. See [22,
Definitions 1.6] and [10] for further details on dagrc.

When p is doubling and 0 < 6 < 1, the corresponding space B£7P(X ) can
be seen as the trace space of a strongly local energy form on a larger space
(Q,v) with X = 0Q and p and v are related in a co-dimensional manner,
as demonstrated in [4]. From the viewpoint of trace theorems on fractals, a
Besov space Bz(ip(X ) with @ > 1 can appear as indicated in [16, Theorem 2.5
and 2.6| for the case p = 2.
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In some circumstances the reason for 6,(X) > 1 may be due to X being
obtained as a gluing of smaller metric measure spaces along sets that are
too small to allow communication between these component spaces via the
gluing set, as seen in Example 3.1 below, where the gluing set of two n-
dimensional hypercubes is discussed. In this case, when 1 < p < n, we
have that 6,(X) = n/p > 1, but once we have decomposed X into the two
constituent component cubes E and X\ E, we have that 6,(E) = 0,(X\E) =
1, and Bz,p(X ) is well-understood when 0 < 6 < 1 as trace of a larger local
process, and when 1 < 6§ < 0,(X) as piecewise constant functions. Our main
theorem, Theorem 1.1, gives a way of identifying this possibility. However,
there are many situations where the need for > 1 is more integral to the
space, as is the case of the Sierpinski gasket and the Sierpinski carpet, as
explained in the previous paragraph. For these spaces, typically, Bg’p(X )
has either infinite dimension or dimension 1.

We conclude the introduction by reviewing some concrete examples dis-
cussed in this paper. In Example 3.1, for n € N with n > 2, as mentioned
above we consider the metric measure space X obtained as the union of two
n-dimensional hypercubes glued at a vertex, and observe that the dimension
of B} (X) is 2 when 1 < p < n. Note that each cubical component of X
supports a p-Poincaré inequality for any p > 1, while X does not support
a p-Poincaré inequality when 1 < p < n. Similar observations will be made
in the case X is the union of two copies of the Sierpinski carpet glued at
a vertex in Example 3.10; indeed, the dimension of Bgf;,’p /p (X) is 2 when
1 < p < darc. Note that the Ahlfors regular conformal dimension darc
and the p-walk dimension of the n-dimensional hypercube are n and p re-
spectively. In both examples mentioned above, the two critical exponents
0p(X) and 6 (X) turn out to be different when 1 < p < darc. Namely, the
following holds, where d; is the Hausdorff dimension of X.

Theorem 1.9. Let X be one of the glued metric measure spaces as in Fx-

amples 3.1 and 3.10. Then 6,(X) = %max{df, dwp} and 05 (X) = d“;T’p.

By [5, Corollary 3.7] and [10, Corollary 1.4], we know that dy , > dy if
and only if p > darc, that dy, < dr if and only if p < darc, and that
dwp = df for p = darc for these examples. This result suggests that the
case 1 < p < dagrc requires a careful treatment of the “potential-theoretic
decomposability” of the underlying example spaces. See also [8] for a few
examples of self-similar sets that have a similar spirit, and [3]| for the va-
lidity /invalidity of Poincaré type inequalities on a general bow-tie, which is
obtained by gluing two metric spaces at a point. Note that darc = 1 for
the standard Sierpinski gaskets (see, e.g., [17, Theorem B.8|), so the case
1 < p < dagrc does not occur in this example. If X is the space obtained
by gluing two copies of the Sierpifiski gasket, then 6,(X) = 6;(X) holds for
any p € (1,00); see Example 3.5 and Theorem 3.9.

2. BACKGROUND AND GENERAL RESULTS

2.1. Background. Throughout this paper, the triple (X, d, i) is a separable
metric space (X,d), equipped with a Borel measure u; we require in this
paper that X has infinitely many points and that 0 < u(B(z,r)) < oo for
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each x € X and r > 0, where B(xz,r) denotes the set of all points y € X
such that d(z,y) < r. We also fix p € (1,00). Note that y is o-finite in this
setting.

We say that (X, d, ) is a doubling metric measure space, or u is a doubling
measure on (X, d), if there exists a constant Cp such that

0 < u(B(z,2r)) < Cp u(B(z,r)) <oo forall ze X, r>0. (2.1)

Without loss of generality, we may assume that Cp > 1 if needed.

In this paper the primary function-spaces of interest are the Besov spaces
and the Korevaar-Schoen spaces Bg’p(X), Bf)’oo(X), and KSg(X), as de-
scribed at the beginning of Section 1 above. In addition, the Newton-Sobolev
class N1P(X) will play an auxiliary role, and we describe this class next.

A function f: X — [—o00,00] is said to have a Borel function g: X —
[0, 0] as an upper gradient if we have

wa»—ﬂwwﬂg/gw

Y

whenever v: [a,b] — X is a rectifiable curve with a < b. (We interpret
the inequality as also meaning that f7 gds = oo whenever at least one of

F(y(a)), f(4(b)) is not finite.) We say that f € NLp(X) if

1/p 1/p
fllvvocey = ([ 17 )t ([ o an)

is finite, where the infimum is over all upper gradients g of f. Then one
can see that N1P(X) is a vector space. For fi, fo € NLP(X), we say that
fi~ f2if [fi = fall yie(x) = 0. Now the Newton-Sobolev class NYP(X) is
defined as the collection of the equivalence classes with respect to ~, i.e.,
N'P(X) == NLP(X)/ ~. For more on this space we refer the interested
reader to [15].

We say that (X, d, ) supports a p-Poincaré inequality (with respect to
upper gradients) if there are constants C' > 0 and A > 1 such that for every
measurable function f on X and every upper gradient g of f and ball B(z,r),

1/p
][ \f = fB@r| du < Cr <][ g’ du) . (2.2)
B(z,r) B(z,Ar)

From [20, Theorem 4.1] or [15, Section 10.4] we know that if u € LP(X)
such that there is a non-negative function g € LP(X) with (u,g) satisfying
the p-Poincaré inequality (2.2), then u € K.S3(X). In [20] the space K'S}(X)
is denoted by £1?(X). Moreover, from [15, Theorems 10.5.1 and 10.5.2] we
know that K'S}(X) C N'?(X) even if X does not support a p-Poincaré
inequality, and that when X supports a p-Poincaré inequality in addition,
we also have KS}(X) = N'P(X). Thus the index 6 = 1 plays a key role in
the theory of Sobolev spaces in nonsmooth analysis.

2.2. General results. We present some lemmata on Besov spaces Bgyp(X),
BgOO(X ) and the Korevaar—Schoen space K Sg(X ).

Lemma 2.3. Suppose that p is a doubling measure. Then 6,(X) > 1.
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Proof. Fix positive § < 1 and zg € X. We fix a positive number Ry <
1 diam(X) so that B(zg, Ry) has at least two points, and set u : X — R by

u(z) = max{1 — d(zo,x)/Ro,0}.

Note that u is 1/Ry-Lipschitz continuous on X, 0 < u < 1 on X, and is zero
outside the bounded set that is B := B(x, Ry). Now

8 0= [ [ i g e ) duto)
d(z,y)?
<[, RE d(e,y)% u(B(z,d(x. y)))d uly) du()
w2 /X\wd PG Gy ) @)

For each non-negative integer j and z € X, we set 4;(z) == B(z, 271 Ry) \
7,2/ Ry). Since X \ 2B C X \ B(z, Ry) for x € B, we see that

du(y) du(x)

/ /X\wdz B IE )
1 d d
</ Z/A 1.y (Ba, dia,y)) W) @)

S/Z/m S ( g ) @)

1(B) < S ot u(B(x, 2711 Ry))

N Rgp =0 M( ( 72jR0>)
2-0p Ch /L(B)
— < 00

-1 _9-0 0
1—2-bVp ROP

Moreover, setting Ey(z) := B(z,27**2Ry) \ B(x,2 %" Ry) for non-negative
integers k and x € X, we have

d(z,y)P
//RO 0.y p(Bla, (. g))) ") )
d 7y)(179)
<n [ ] s #(B. ) duly) dyu(x)

1-6
<Rp22(19 / /2[k19p]Rp( )

dp(y) d
Bz 2 F1Ry)) 1(y) dp(x)
< Ry 1(2B) Cp Z 9~ FP(1-0) < o,
k=-2
It follows that u € Bf (X). O

2B =0 5,
I

A function v is called a normal contraction of a function u if the following
holds for all z,y € X:

[o(z) = v(y)] < fu(z) - u(y)] and v(@)] < fu(@)].
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Examples of normal contractions include functions v of the form wv(x) =
max{0, u(x) — ap} for any non-negative number ag. In the case a9 = 0, we
define uy (z) := max{0, u(z)}. The following lemma is easy to check by the
definition of sz(X). Note that if a € R, u € ng(X) and p(X) < oo, then
u+ a is also in Bgyp(X).

Lemma 2.4. Letu € ng(X) and v be a normal contraction of u. Thenv €
0 P P :
B, ,(X) and HvHBgyp(X) < HuHBg’p(X). As a consequence, we also have that if

ue BY (X) and a, 8 € R with a <0 < B, then wq,p := max{c, min{u, B}}
is also in Bf;p(X) with HwaﬁHBg,p(X) < HuHBg,p(X)'

The following lemma is also immediate from the definition of ng(X ).

Lemma 2.5. Let u,v € B (X)NL>®(X). Then uv € BY (X) with

luvllpg, ) < lll ooy 1ol g, 0y + Noll ooy Nl -

Lemma 2.6. Suppose that p is a doubling measure on X and that 6 > 0.

(1) BgOO(X) = KSf,(X) cew sets andeas vector speacées.
(2) Forany 0 <6 <0, By ,(X) C By (X) C B,°(X).

Proof. The assertions (1) and (2) are proved in [1, Lemma 3.2] and [12,
Proposition 2.2] respectively, but we give the proof for the reader’s conve-
nience.

(1): It is direct that Bg’oo(X) C KS}?(X), and so it suffices to show the

reverse inclusion. To this end, let u € K Sg (X). Then there is some r,, > 0
such that

o [ [ OO ) @) < Il +1 0D

O<T’S"’u

For r > r, we have that

/. ][ -, 1) Z WO () )

_ M(B(fﬂﬂ‘u)) |u(z) —u(y)|?
B /X /L(B(.T7 T)) ]i(x Tu) r0p du(y) dlu(x)

i /X u(B(z,r)) /B(M)\B(x,ru) 70p dply) dp(w)

< Il s, )+1+/XM(BZ?:T))/B(M) |u<y)|pTEP|U(x)|p ) i
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Note that
2 [u(m) [P + [u(z)]?
S Lo - ly) duo)
= 0p/|u )P dp(a // uly |XB”(y) dp(y) p()
< Tl ) + 2 / ol | XB@'("’(T))) ) duy)
u+@

H ||LP(X)a

where we have used the doubling property of 1 and Tonelli’s theorem in the
penultimate step. Now from (2.8) and (2.7) above we see that for each r > 0
we have

/]{3(:177“) T‘Bp (y)| d,u,( )d,u,( )< ||UHKSB )+1+

and as the right-hand side of the above inequality is independent of r, it
follows that u € BgOO(X ).

(2): The inclusion ng(X) C Bg,oo(X) follows from Lemma 2.9 below
together with claim (1) above, and so we prove BY (X) C Bg;‘;(X) here.

Let u € Bfmo(X) and fix a choice of « satisfying 0 < o < diam(X). Then
we see that

diam (X
/0 ( )/X]{B(z’t)Wdu(y)du(x)?
:/a/][ - Iu(x)e—_;iy)lp dﬂ(y)du(i)%
[ [ s e
It
Hu“%g’m(x)/o P~ qt 4 207! </dlam %dt

[ gy )

op op—
(6%

p
< ully o +

( >|| I,

IN

1
o0 (X) (9—5) [a(9—5)P diam (X )(0—9) }Hu” X)

. diam(X I Xy, (@)
+2 1CD/ //Xt9 5)p+1B EJ)) du(x) du(y) dt

2°=1 (14 Cp) 1 1
7” ” o (X) (0 6) a(g 5)p _diam(X)(9 8)p HUH X)»

where we have used the doubling property of p and Tonelli’s theorem in
the third inequality. Note if X is unbounded, then m = 0. This

estimate shows that u € Bg;f;(X). O
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In general, unlike the energy related to Bg o0 (X), the energy |[ufl kg0 18
) p

0
zero whenever u € B, ,(X).

Lemma 2.9. Let jv be a doubling measure on X and 0 > 0. Then sz(X) C
KSg(X) with HU||K59(X) = 0 whenever u € Bg,p(X)-

Proof. Let u € B} (X). Then we have that

/dlamX/][xt |u(y) — u(x)[? —U( )‘p du(y) d ()%<oo.

For t > 0 we set

2(u, 1) /][ - ) WP () ).

Let ks € Z U {oo} be the maximum of all the positive integers k such that
2F=1 < diam X. By the doubling property of ;1 we have
ki—2  noitl

diam X ’U(y) - u(:p)‘p it M
/0 /X][B(x,t) Tdﬂ(y) d“(‘r)? = Z / 5@(U,1t)7

1=—0Q
kv—2
Z Ep(u,2).
1=—00
Since the left-most expression is finite, it follows that the series on the right-
hand side of the above estimate is also finite, and therefore
lim Ep(u,2) = 0.
1—>—00

By the doubling property of u we also have that for positive real numbers
t < diam(X),

1 . . , :
Vol Ep(u, 2071 < E(u,t) < C E(u,2") whenever 2071 < ¢ < 2.

It follows that
limsup & (u,t) < C lim Ey(u,2') =0,

t—0+ =00

completing the proof. ]

3. EXAMPLES

The following examples show that even though the two vector spaces con-
sidered in Lemma 2.9 are the same as sets, their energy norms can be in-
comparable.

Example 3.1. In this example we consider X to be the union of two n-
dimensional hypercubes glued at the vertex o = (0,--- ,0), given by

X =10,1" |JI-1,0",
equipped with the Euclidean metric and the n-dimensional Lebesgue measure
L". Here, with u := x g where E = [0, 1]", we see that u € ng(X) precisely
when pf < n, but we have HuHBg _(x) > 0 (see (3.2) for a detailed calcula-
tion) but from Lemma 2.9 we also have that HUHng(X) = 0. To see that u €
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FIGURE 1. Gluing of two unit cubes at the origin

ng(X ) when pf < n, we decompose the two pieces E and X \ E into dyadic

annuli given by L; := {(z1,...,2,) € E : 277IR < /a2 4+ +22 <
27'R} and R; = {(z,y) € X\ E : 27 'R < \/2? + -+ + 22 < 27'R} with
R = \/n, we have that

/ / ’XE x y n_,_g(py”p dﬁ”(y) dﬁn($>
Z / / |XE d(x,y) n+9(py)|p dL™(y) dL" ()

1,jENU{0}

S5 [ arpsene
29— mRn n]Rn
NZOZ 92— z_|_2 7 n+€pRn+9p
7 j=i

NZZ 210p2 n]NZ2 i(n— 6’p

=0 j=1

The above sum is finite if and only if p < n. Thus xg € Bgyp(X) if and

only if fp < n, and so xg € KSg(X) with ||u||ng(X) = 0 whenever 0p < n.
In addition, in computing fB(x r) w dL"(y) for x € E, we need

r

only consider x = (x1,--- ,x,) € E for which /27 + -+ 22 < r, and so

by restricting our attention to the slices L; for which 279 R < r, we obtain

/][ |XE ,rpg (y)|p dﬁ”(y) dﬁ”(w) ~ r”_Pe. (3.2)
B(z,r)

Hence xp € KSf(X) whenever pfl < n; note that lull kso(x) =0 if pf < n.
p
The following proposition states a relation between K S} (X) and N1 (X).
Set By :==[0,1]", By :=[—1,0]" and o := (0,...,0) € Ey N Ey for simplicity.
In what follows, if u is a function defined on a set £ C X, then the zero-
extension of u to X \ E is denoted by uxg.
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Proposition 3.3. In the above setting X = [0,1]" U[—1,0]", it follows that
(1)

KSy(X) = {U1XE1 + u2XE,

U; € Nl’n(Ei>,i S {1,2}, IKS(ul,uQ) < OO},
where

Iks(ug,ug) == lim sup/ / [ () ;:Q(y” dL™(y) dL™ (z).
Ei1NnB(o,r) J E2NB(o,r) r

r—0+

(2) KS,(X) & NY(X).

Proof. We first note that the n-modulus of the all rectifiable curves in X
through o is 0 by [15, Corollary 5.3.11], and that KS!(X) ¢ N'*(X) by
[15, Theorem 10.5.1] and [21, Corollary 6.5]. As a consequence, we have

Nl’n(X) = {ulel +U2XE2 ‘ u; € Nl’n(Ei) for ¢ = 1,2}.

In addition, KS}(E;) = N™(E;) with comparable norms by [15, Theo-
rem 10.5.2]. When u € KS}(X), necessarily uxg, € KS}(E;). This is
because when z € E; and 0 < r < 1, we must have that £"(B(z,r)) =~ r" =
L"(B(x,r)NE;).

Proof of (1): Let u; € NY™(E;) for i = 1,2, and set u = uj xg, + U2XE,-
We define

EXS (v; Ay, Ay) + / / _n“( I gen ) der (@),
Ay J AsNB(x,r) r

for v € L™(A; U Ay) and Borel sets A; of X. Observe that

/]{B(wr)‘u r O g ) aca

1
~ —(ETKS(ul;El,El) + EKS (uy: By, By)

Tn

+ EXS (uy By, By) + EKS (u; Ez,El)).

Since
EES (us; By, E)
’I"

lim sup
r—0+

/]VuZ )" dL" (x)

it suffices to prove that u € KSL(X) if and only if Ixg(ui,us) < oo.
Given the above discussion, we know that u € KS}(X) if and only if

hmsup — (SKS(u E1, Eo) 4+ 55 (u; Eg,El)) < 0. (3.4)

r—0t

Let us focus our attention on £X%(u; Ey, E), with the second term above
being handled in a similar manner. Note that

XS (us By, By) = / / () =W jeniy) acn @),
E; JEonB(z,r r
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and so in order for Fo N B(x,r) to be non-empty when = € Fj, it must be
the case that x € B(o,7). Thus

lug

eSwmm = [ @)= w2 gy aen (@)
EinB(o,r) J EoNB(z,r) r
EinB(o,r) J E2NB(o,r) r
and moreover,

SKS ’LL El,EQ :/
EinB(o,r)

lui(x) —
= o
EinB(o,r/4) JE2nB(o,r/4)

Similarly, we also see that

5KS u EQ,El /
EiNB(o,r)

|u1(a:) _UQ(y)‘n n n
[E i 4L" (y) dL" ()

7«-77,

V

/\

T.n

/ ‘ul(x) — u2(y)’n dﬁ"(y) dﬁ"(x)
E>nB(o,r) ’

/ |u1(:c) B u2(y)‘ dﬁ"(y) dﬁ”(x)
E1nB(o,r/4) J ExnB(o,r/4) r

It follows that (3.4) holds if and only if

EXS (u; By, By) >

Ixs(uy,u)

= limsup/ / () 727?2(?/” dL"(y)dL" (z) < oo.
E1nB(o,r) J E2nB(o,r) r

r—0t

These complete the proof of (1).

Proof of (2): It suffices to find v € N (X) \ KS!(X); note that u €
N1 (X) if and only if u|g, € NV(E;) for i = 1,2. By direct computation
or by [14], we know that the function v(x) := log (—log |z|) for x € E; \ {o}
belongs to N1 (Ey). Note that

lim essinf |v|=
r—0t E1NB(o,r)

Now we define u € N'"(X) by u(z) = v(x) for z € E; and u(x) := 0 for
x € Ey \ {o}. Then we easily see that

Foo ) - el ae ) i) > ( essinf |v|) ,
E1nB(o,r)J EaNB(o,r) E1nB(o,r)

and so u & KS}(X) though u € N'"™(X), since essinf g, np(,r) [v] = 00 as
r—0t. U

Note that the dimension of B}ap(X ) is 2 when 1 < p < n . Moreover,
thanks to 6] applied to each of the two n-dimensional hypercubes of X and
(3.2), we know that 6,(X) = n/p, in particular, 6,(X) > 1 when 1 < p < n.

Proof of Theorem 1.9 for the glued hypercubes. Note that dy = n and dy p =
p in this case. As already mentioned, ,(X) = n/p = d¢/p when p < n.
The estimate (3.2), along with the fact that 6,([0,1]") = 1, shows 6,(X) =
1 = dywp/p when p > n. Moreover, for ng(X) to be dense in LP(X) it is
necessary to have that Bgyp([O, 1]™) be dense in LP([0, 1]™), and this requires
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FIGURE 2. Gluing of two copies of the Sierpiniski gasket

0 < 1. Tt follows that 5(X) < 1. On the other hand, when 0 < 1, ng(X)
is dense in LP(X) due to the results of [4] because the class of Lipschitz
continuous functions forms a dense subclass of both spaces. Hence we have

0:(X) = 1 = dy /p. 0

A similar example can be considered by gluing two copies of the Sierpiriski
gasket, but the resultant example has dramatically different phenomena in
comparison to Example 3.1 above. Precisely, for any p € (1,00), 6,(X) =
0,(X) for this example as shown in Theorem 3.9 below. In comparison, in
Example 3.1 we have that §,(X) = n/p. However, when 6 > 1 we necessarily
have that any function u € Bg,p(X ) must be constant on each of the two
cubes [0,1]" and [~1,0]", thanks to the results in [6]. Therefore 6;(X) =1
in Example 3.1.

Example 3.5 (Gluing copies of the Sierpinski gasket). In this example, we
consider X to be the union of two copies of the n-dimensional standard
Sierpifiski gasket glued at a point. Let n € N with n > 2, let K be the
standard n-dimensional Sierpinski gasket, rotated so that it is symmetric
about the z,-axis in R" and located in the half-space {z,, > 0} and has a
vertex at o = (0,0,---,0), KT := K and K~ the reflection of K in the
hyperplane {z,, = 0}, and then set X = KT UK~ (see Figure 2 for the case
n = 2). Let d be the Euclidean metric (restricted to X) and u be the ds-
dimensional Hausdorff measure on X, where d¢ := log (n + 1)/log2. Then
w is Ahlfors d¢-regular on X i.e., there exists ¢; > 1 such that

' < p(B(a,r)) < err® forany x € X, 0<r<dam(X). (3.6)

Now let us focus on the following Besov-type energy functional of yp+:

/][ X5+ () —peXKJr(?/)\p du(y) du(z), r> 0.
XJ B(z,r) r
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Note that if z € K~ and B(z,r) N KT # (), then o € B(x,r) and hence
B(z,r) C B(o,2r). Therefore,

/ ][ e 2] e Wy ) )
p

< —ds XK+ (%) — XK+ (y)]
<cr /B(O’%)QK /B(O’%)QK+ 0 p(dy) p(dx)

< e r %P0 (B(o,2r))? < & rdiT, (3.7)

Since u(B(o0,7/4) N K*) > cordt, we also have

/][ bexs (@ rpé)XK+(y)‘p p(dy) p(dx)

> cl_lr_df/ / ‘XK*(x) _peXK+(y)| u(dy) /,L(dl')
B(o,r/4)NK~ J B(o,r/4)NK+ r

> e "0 u(Blo,7/4) N K ) u(B(o,r/4) N KT) > ey teard=P. (3.8)

Hence xx+ € Bgyp(X) if and only if 0 < 6 < d¢/p, and x g+ € KSp(X) if
and only if 0 < 0 < d¢/p. Moreover, ||XK+HK59 x) =0 for 6 € (0,d¢/p), and
X+ HKSdf/p( x) > 0. In particular, the p-energy form (|| - KSg(X))
is reducible when 6 € (0,d¢/p).

Let dy ;, be the p-walk dimension of the n-dimensional standard Sierpiriski
gasket KT, ie., dy, =log((n+ 1)p,)/log2 where p, is the p-scaling factor
of K used in constructing the analog of the Sobolev space F,, on the gasket
(see [17, Subsection 9.2] for further details on the p-walk dimension of Sier-
pinski gaskets). From [18, Theorems 5.16, 5.26, Corollary 5.27, Proposition
5.28] and Lemma 2.6(2) above, we know that 8,(K*) = 05(K*) = dy.,/p.
It is known that dy, > p and dy,, > df for any p € (1,00); see [17, The-
orems 9.13, B.8 and (8.39)| and [19, Proposition 3.3]. In the next theorem
we determine 60,(X) and ;(X) (note that the Ahlfors regular conformal di-
mension of the n-dimensional standard Sierpinski gasket is 1; see, e.g., [17,
Theorem B.§]).

HKSG X))

Theorem 3.9. In the above setting of X = K+ U K~, where each K+ is
the n-dimensional Sierpiiski gasket, we have 0,(X) = 05(X) = dWT’p for
1 <p<oo.

Proof. We first show that 6,(X) = dy ,/p. Since Bdfé’é’/p(Ki) C C(K%) and

Bg%/p(Ki) is dense in C'(K*) by [17, Corollary 9.11] and [18, Theorem
5.26], we have 6,(X) > dy,/p. Indeed, by this density we can find a non-

constant function u € Bgﬁ‘é’/ P(K™), and then its reflection v given by

(2) = u(z) ifze KT,
vi@) = u(—z) fzxe K™,

belongs to Bpw ”/p(X) and so we have a non-constant function in B, o p/p(X).
For any 6 > dy p/p and u € p’p(X), we have from Lemma 2.6 (2) that

U+ € ngoo(Ki). Then u|g+ and u|x- must be constant functions since
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0,(K*) = dyp/p. Since ygx+ & ngp(X) by the discussion preceding the
statement of the theorem being proved here, and since § > dy ,,/p > di/p,
the function u has to be constant on X. Hence, 6,(X) < dy ,/p. The proof
of 6,(X) = dyp/p is completed.

Next we prove that 0)(X) = dyp/p. It suffices to show that Bpw p/p(X)
is dense in C'(X); indeed, if this is true, then we have from Lemma 2.6 (2)
and the fact that C'(X) is dense in Lp(X) that Bo »(X) is dense in LP(X) for
any 0 < dyp/p and hence 05 (X) > dwp/p. (Recall that 05 (X) < 0,(X) =
dw,p/p-)

To show that Bg;’gé’/p(X) is dense in C(X), let u € C(X). We can as-
sume that u(o) = 0 by adding a constant function. Recall that uy(x) =
max{0,u(x)} and set u_ = uy — u. Since Bg,wo’é’/p(Ki) is dense in C(K%),
for any € > 0 there exist four continuous functions ufz € Bdﬁ.’op/ P(KT),
uis € Bdw ”/p(K_) such that

uy(x )—ufﬁi(m)‘ <eg, and sup ‘ui(z) — uf;(z‘)) <e.

sup <
zeK—

zeK+

+ - . .
We can also assume that uf | and ui(’s are nonnegative. Since u(0) = 0 and

+ . .
uis,ufée are continuous, there exists 4 > 0 such that

ufg(x)’ < 2¢ and sup ui(; (1’)’ < 2e.

sup ‘
z€B(0,0)NK~

z€B(0,6)NK+
Now we set
. _
ue = [(uh; = 2e) 1 — (uf ] —2e) Ixger + [(uf . —26)1 — (. —26) 4 ]xi—
Then u. € C(X). Note that u. = 0 on B(o0,6) and that ||u — ucl,,, < 3e.

sup —
We conclude that u. € Bﬁf&f/p(X) by using the “locality” of || - ||
indeed,

KSZW’p/p(X) )

e sty < 1 elc+l” + [Jte| - 117

(X) Ky P (K+) Ky /P (K-)

Therefore, Bﬁy.g/ P(X) is dense in C(X). O

Example 3.10 (Gluing copies of the Sierpinski carpet). In this example, we
consider X to be the union of two isometric copies of the planar standard
Sierpinski carpet glued at a point. We confine ourselves to the planar case
unlike in Examples 3.1 and 3.5, because the construction of a self-similar
p-energy form and its corresponding Sobolev analog F, for all 1 < p <
oo including the case where p is less than or equal to the Ahlfors regular
conformal dimension (denoted by darc below) is currently known only for
the planar carpet.

Let K be the standard Sierpiniski carpet, rotated so that it is symmetric
about the line {y = x} in R? and located in the quadrant {z < 0,y < 0}
and has a vertex at o := (0,0), Kt := K and K~ be the reflection of K in
the line {y = —z}, and then set X = KT UK~ (see Figure 3). Let d be the
Euclidean metric (restricted on X) and p be the de-dimensional Hausdorff
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FIGURE 3. Gluing of two copies of the Sierpinski carpet

measure on X, where d¢ := log8/log3. Then pu is Ahlfors d¢-regular on X,
ie., (3.6 holds Similar to (3 7) and (3.8), we can estimate

/ ][ el TpeXK+ W (dy) wido) = 7. 3.11)

Hence x g+ € Bp’p( ) if and only if § € (0,d¢/p), and x g+ € KSf,(X) if
and only if 6 € (0,ds/p]. Also, we have HXK+||K59(X) =0 for 6 € (0,d¢/p)

0 . .
, KS,(X)) is reducible

> 0. In particular, (]| - ||K59

and e+ lgirn
when 0 € (0,d;/p).
Similar to Example 3.5, from [22, Theorems 1.1 (ii), 1.4 and proof of
Theorem 7.1] and Lemma 2.6 (2), we know that 6,(K*) = 5(K*) = dy,/p
where dy, 5, is the p-walk dimension of the Sierpinski carpet. By [24, Theorem
2.24] or [17, Theorem 9.8|, we have dy, > p for any p € (1,00). Next let
us recall a relation with the Ahlfors reqular conformal dimension darc of
the Sierpiniski carpet that is discussed in the end of introduction. From [5,
Corollary 3.7] and [10, Corollary 1.4] (see also [8, Proof of Proposition 1.7]),
we know that dy, > dr if and only if p > darc, that dy, < df if and only
if p < darc, and that dy,, = dr for p = darc. Also, darc > 1+ 125 by
[2, Remark 1]. We can determine 6,(X) and 65(X) as in Theorem 1.9, in

particular, there is a gap between 0,(X) and 6;(X) when 1 < p < dagrc-

Proof of Theorem 1.9 for the glued Sierpinski carpets. By [22, Theorems 1.1
and 1.4], Bgf)g”/p(Ki)ﬂC(Ki) is dense in C'(K*) for any p € (1,00). Hence
we can show 60,(X) = dyp/p when dy, > df in the same way as Theorem
3.9. Assume that dy, < ds. Since xx+ € Bg’p(X) if and only if 6 < dy/p,
we have 0,(X) > d¢/p. To see that 6,(X) < d¢/p, let 0 > di/p > dy 5, /p and
let u € Bg’p(X). Then by Lemma 2.9 we know that u € KS}?(X) and so by

Lemma 2.6(2) we also have that u € Bdvv p/p(X). Note that then u|g+ €

dw p/P(Ki) Now by Lemma 2.9 again, we know that ||u| g+ HKSgW,p/p(Kﬂ =

||u|K—HKSdW,p/p(K_) = 0. Hence we have from [22, Theorems 1.1 and 1.4]
p

that u|g+ and wu|g- are constant. Since yg+ ¢ Bf,yp(X), u has to be a
constant function, whence it follows that 6,(X) < d;/p.
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Next we prove that 65 (X) = dy,p/p. Since Bgfég’/p(Ki) NC(K*) is dense
in C(K®*), we can show that 0,(X) > dwp/p in the same manner as in the
proof of Theorem 3.9. Since Bgm(K *) and Bgm(K ~) have only constant
functions when 6 > dy ,/p, Bg,oo(X) can not be dense in LP(X, uu) for such
6. Hence, by Lemma 2.6 (2), Bg,p(X) is not dense in LP(X,pu) for any
0 > dw p/p, from which it follows that 0 (X) < dy/p. O

The following proposition is an analog of Proposition 3.3 where now X
is the glued Sierpiriski carpet. In this case, when p is the Ahlfors regular
conformal dimension darc of the carpet, we must have 6,(X) = 05(X).

Proposition 3.12. Let X be the glued Sierpiniski carpet and let p = darc-
Set By := K+ and Ey := K~ for ease of notation.
(1) 1t follows that

Uu; € LP(X,/J,),UZ“EZ. S KSgp(Ei),}

0.
KS)P(X) = +
b (X) {ulm YIXE2 | e 01, 9), Tres(un, un) < 00

where

. |ur (@) — ua(y)l”
Ixs(ui,uz) = lim sup/ / dy dzx.
( ) Ei1NnB(o,r) J E2NB(o,r) 70

r—0+

0 0 .
(2) KSp"(X) & {waixp +uaxe, | wi € LP(X, p),uilp, € KSp"(Ei),i €
{1,2}}.

Proof. The proof of (1) can be obtained via minor modifications of the proof
of Proposition 3.3 (1), and we leave it to the interested reader to verify. By
|9, Proof of Theorem 2.7|, [22, Theorem 1.4| and the fact that dy, = df
when p = darc (see |22, Remark 9.17]), there exists v € KSgp(K+) such
that lim, o+ essinf g+qp (o) [v] = 00. Once we obtain such a discontinuous
function, then using the zero-extension w of such a function v to K~ the
proof of Proposition 3.3 verbatim tells us that u ¢ KSgW”’/p(X). The proof
of (2) is now completed. O

4. PROOF OF THEOREM 1.1

We now prove Theorem 1.1; the proof is broken down step by step by the
following lemmata.

Lemma 4.1. Let p be a doubling measure on X. Suppose that Bg,p(X) is

k-dimensional for some k € N as a vector space (hence Bgyp(X) # {0}).

Then the following hold.

(i)  Ewery function in Bg,p(X) is bounded.

(il)  Ewvery function f € sz(X) is a simple function. Moreover, if u(X) <
oo and k =1, then f is necessarily constant, and if p(X) < oo and

kE>1 or u(X)=o00 and k > 1, then outside of a set of measure zero,
f takes on at most k + 1 values.

(iii) Suppose k > 1. Then there is a collection of measurable subsets Ej,
i=1,---,k, of X such that the collection {xg, : 1 < i <k} forms
a basis for ng(X) and in addition, 0 < p(E;) < oo for each i =
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1,---,k, p(E; N Ej) = 0 whenever i # j, and if in addition we have
that p(X) < oo, then p(X \ U§:1 E;) =0.

(iv) Bg’p(X) = @leBg’p(Ei) as sets. Moreover, the dimension of Bgyp(Ei)
is1 foralli=1,--- k.

Proof. Proof of (i): Suppose that the dimension of Bg’p(X) is finite and
that there is an unbounded function f € sz(X ). By considering fy, f—
separately, we may consider without loss of generality that f > 0 (note
that if f € B (X), then fy,f- € B? (X) by Lemma 2.4). Then we
can find a strictly increasing sequence of positive integers (n;);en such that
pw(f~1((ni,nit1])) > 0 for each i € N. Set

fi(z) := max{ f(z) — n;, 0},

then f; € B (X) by Lemma 2.4.

Note that f; is not a linear combination of any of up to £ many choices
of functions f;,,---, fi, with 4q,--- 4, distinct from 1, for all such linear
combinations will vanish on the set f~!((n1,ns]) where f; is nonzero. Note
also that fy cannot be a linear combination of fi and other f;, j # 2, either,
as on the set f~!((n2,n3]) the functions f;, j > 3, vanish and so if fo were
to be such a linear combination, on that set we must have fo = af; for some
a # 0. This also is not possible as f; is nonzero on the set f~!((n1,n2]) and
fo and all f;, j > 2, vanish there. Hence f1 and fo are linearly independent
of each other and of all the other f;, j > 3. We have also proved that
232':1 ajfj =0on f~1((n1,ns]) implies that a1 = ag = 0.

Now we proceed by induction. Suppose we have shown that fi,--- | f; are
linearly independent of each other and of all the other f;, 7 > ¢+ 1 and
that 3% a;f; =0 on f71((n1,ni41]) implies that a; = 0 for j = 1,-- ,i.
We wish to show that f;y; is also independent of the other functions fj,
j # i+ 1. Indeed, if it is not, then by considering the set f~((n1,n;12]), we
see that on this set we must have f;1; = Zl a; f; with at least one of a;

Jj=1 :
nonzero. But then, on the set f~!((n1,n;11]) we have that > =105 fi =0,
which then indicates that each a; = 0 for j = 1,--- ,7. That is, f;41 cannot

be a linear combination of the other functions f;, j # . It follows that the
collection {f; : i € N} is a linearly independent subcollection of Bgm(X ),
violating the finite dimensionality of Bgyp(X ). Thus f must be bounded.

Proof of (ii): Let f € Bg,p(X) such that f is not the zero function. Then

both fi and f_ are in sz(X ), and so we first focus on the possibility that
f > 0 with f £ 0. We want to prove that there are positive real numbers
b1,ba, -+ by with [ < k and b; < b1 for i =1,...,1 — 1 such that

p(X\ S ({br, - B, 0) =0,

or equivalently the support of the push-forward measure f,u, supp(fip), is
contained in {by,---,b;,0}. (Note that supp(fip) C [0, |||l ;o] since f is
bounded due to (i).) We prove this by contradiction. Suppose the above
claim fails. Then recalling that f > 0,

#{aeR|a>0and u({|f —al <e})>0foralle >0} >k+2
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and we can find positive numbers ag, - - , ag2 with a1 = 0, agy2 = ||l ;0
and a; < aj11 for i = 1,--- k + 1, such that u(f~*((a;,air1])) > 0 for
i=1,- k+1.

As in the proof of (i), we consider the functions f;, i =1,--- ,k+ 1, given
by

fi(x) = max{f(x) — a;, 0}.

Since a; > 0, it follows from Lemma 2.4 that f; € Bgm(X ). Now a repeat
of the proof of (i) tells us that the collection {f1, -, frs1} C ng(X) is
linearly independent, violating the hypothesis that the dimension of ng(X )
is k. The claim now follows for non-negative functions that are not identically
zero. In particular, for such functions, we can set E; := f~1({b;}) for i =

1,---,1 <k, and see that
l
f=> bixs,.
i=1

We now set by := 0, and by Lemma 2.4, note that for ¢ = 1,--- [, the
function h; given by h;(x) = max{0, min{f(z) — bi—1,b; — bi_1}} belongs
to BY ,(X) with h; = (b; — bi—1)Xr,, where F; := {J\_; Ej. It follows that
Xk = (b —bi_1) "t h; € Bgm(X) and hence xp, € Bg,p(X). It follows that
XE; € Bf,’p(X) as well for i = 1,--- ,1. Note that u(E; N Ej) = 0 when i # j.

If f is not non-negative and not identically zero, then we apply the above
conclusion to fy and f_ separately, and so we have distinct positive num-
bers aq,--- ,a; and distinct positive numbers bq,--- , b with j,[ < k, and
measurable sets F1,---, E; and Fy,--- , F] such that

i l
f=fr=f-=) aixs — Y bnXpn
i=1 m=1

We can also ensure that u(E; N F,,) = 0 for all (i,m). Moreover, as f €
LP(X), we must have p(FE;) and u(F,,) are finite whenever 1 < ¢ < j and
1 <m <. Thus the collection {xg,, xr,, : i € {1,---,j},me{1,---,l}}
is a linearly independent collection of functions in Bgyp(X ), and hence we
must have that m+1 < k, that is, there are at most k non-zero real numbers
ci,-+ ,cp such that

/L(X \ f_l({cb T 7Cna0})) =0.

Proof of (iii): Let {fi,---, fx} be a basis for Bg’p(X). By (ii), we know

that for each j =1,--- , k there are measurable subsets Ej1,--- , Ej N, of X
with xg,, € Bf ,(X) and distinct non-zero real numbers a1, - -, a; N, such
that

N;
fi= E aji XEj,-
i1

We can make this simple-function decomposition of f; so that u(E;;NE; ) =
0fori,k e {1,---,N;} with ¢ # k and in addition we require that p(E;;) > 0
for each ¢ =1,--- , Nj.

Next, we break the sets E;;, j=1,--- ,kand ¢ = 1,--- , N; into pairwise
disjoint subsets as follows. Observing that u(E;; N Ej,) = 0 if i # n, it
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suffices to consider pairs of sets Fj; and Ep,, with j # m. Since xg,,
and xg,,, are in Bg’p(X), it follows from Lemma 2.5 that the function
XE;iNEmn = XEj; XEmmn 18 also in BY (X). If u(Ej; N Epy) > 0 and
w(EjiAEy, ;) > 0, then we can replace Ej; and E, , with E;; 0 Ey, ,, and
Ejﬂ‘ \ Em,n if /L(Ej’z' \ Em,n) > 0 and Em,n \ Ej,i if /L(Em’n \ Ej,i) >0 (note
that in the case considered here, we must have at least one of p(Em,n \ Ej ;)
and p(Ej; \ Emy) is positive).

Since the collection {Ej; : j = 1,--- ,k,a = 1,---,N;} is a finite col-
lection of sets, the above procedure involving each pair of sets from this
collection needs to be done only finitely many times; thus we obtain the
collection of sets E;, i =1,--- , N such that

p(E; N Ej) = 0 whenever ¢ # j. (4.2)

As each f; is a linear combination of the characteristic functions of Ej;,

it =1,---,Nj, it follows that f; is a linear combination of the characteris-
tic functions xg,, ¢ = 1,--- , N. Because the collection {fi,---, fr} spans

BY (X)), the collection {xg, : i =1,--- ,N} spans BY (X) as well. More-
over, by (4.2) this collection of functions is also linearly independent; hence
N =k, and this collection forms a basis for sz(X ).

Finally, note that when pu(X) < oo, the constant function v = 1 is in
Bz’p(X), and so necessarily u = Z§:1 XE;, that is, u(X '\ U?Zl E;)=0.
Proof of (iv): By (iii), it is enough to show that B (E;) consists only of
constant functions (i.e. the dimension of Bg’p(Ei) is1) foralli=1,--- k.
Now suppose there is i € {1,---,k} and a non-constant g € BY (E;). By
Lemma 2.4, we may assume that g is bounded. Since xg, € Bg,p(X ), we
have

1
el 0= ), f s, a7 B gy ) )

1
- /E / d(z, )% p(B(x, d(z, 1)) du(y) du(x) < oo. (4.3)

Now define g : X — R by g = gixg,, that is, g|g, = g and g|ge = 0. Then
”g”ip(x) = HQHZD(EZ.) < oo and

o P l9(y)
HgHBg’p(X) = Hg”Bg,p(Ei) +/5/Ei d(z,y)% u(B Y)))

(z,d(z,y
|g(x) [P
! /E / d(z,y)% p(B(z,d(z,y))) du(y) dp(z)

< Nl iy + 191 I () < 00,

’p
x, d(

du(y) dp(z)

where the last inequality is due to (4.3). It follows that g € sz(X ), and so
by (iii) there are real numbers aq,--- , ar such that g = E?:l a;jXE;, which
in turn means that g (and hence g) is constant p-a.e. in E;, contradicting

the non-constant nature of g. It follows that every function in B;ip(Ei) must
be constant. 0
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Remark 4.4. Lemma 4.1 proves claims (1), (2), (3) and (4) of Theorem 1.1.
Lemma 2.9 verifies claim (5) of Theorem 1.1. Claim (7) of Theorem 1.1
follows consequently from the definition of 6,(X).

Lemma 4.5. Under the hypotheses of Lemma 4.1 above, and with the sets
E;,1=1,---,k, as constructed in that lemma, we have that uxg, € KSﬁ(X)

whenever u € KSﬁ(X) is bounded.

Proof. The claim follows immediately from combining Lemma 2.5 and the
fact that g, € Bg’p(X). O

Finally, the next lemma verifies (6) of Theorem 1.1 and completes the
proof of Theorem 1.1.

Lemma 4.6. Under the setting of Theorem 1.1, claim (6) holds true.

Proof. Let u € KS](Z(X) such that [[ul|pec(x) =: M is bounded. Then
x) (y)XE (y)?
[f. ) du(2)

—u(z)P
/ / (z,m)NE; Tepu (x ,,n)) du(y) dﬂ(l‘)

B ()P
//xr\E r"”u (w r))du(y)du(x)

)

Ju(y)xe, ()1? )
* Jeon Joanr, Wiy 0 )

Note that

5, (@)
//mwmu@mmwm)

wf 5O ) due)
X\E; J B(zr)nE; T pM (90 7))
e f P ) dug)

Nz % p(B(x,r))

Han /X\E / (z,7)NE; TeiiE ((iv;)) dp(y) dp(z)

o |><E 2) — xe, (4)P )
M/ / e B ) @)

» IXE; (x) = xg,(y) [P .
M /X\E/ b (Bl W) )

P, (2) = x, ()
v [ f - RERIREW duy) du),
XJB(z,r) r
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and thanks to (5) of Theorem 1.1 (verified above), the last expression above
tends to 0 as 7 — 07. It follows that

o, sy =T [ f )'“ 200 (@) Z WONEWR 4,1 dpr)

r—0+ r0p
: |u(y) — u()[
:hmsup/ / du(y) du(x),
D [ ey, 98B 00
completing the proof. O

5. PROOF OF THEOREM 1.5 AND THEOREM 1.6

In this section we provide a proof of the remaining two main results of
this paper.

Proof of Theorem 1.5. 1t suffices to show that any function in ng(X ) is a
constant function, in particular, the dimension of Bg,p(X) is 1if p(X) < oo,
and ng(X) = {0} if u(X) = oo. Suppose there is a non-constant function

€ Bg,p(X ). Since g is non-constant, at least one of g4 and g_ is non-
constant; hence, without loss of generality, we may assume that ¢ > 0 on
X. Then there is a positive real number a such that u(g~!([a,))) > 0
and p(g~ ([0 a))) > 0. We can then find a positive real number ¢ < a such
that u(g=1([0,a — d])) > 0 as well. Now by Lemma 2.4 and Lemma 2.9,
we know that g, := max{0,min{g — (a — 6),6}} € Bf (X) C KSI(X)
with Hga,cSHng(X) = 0. On the other hand, the choices of a and § mean that
1905l 8¢ _(x) > 0, violating condition (w-max)yg. Thus no such g exists. [

Proof of Theorem 1.6. In [12, Theorem 1.5], a condition called property (NE)
is assumed in addition; however, the proof of inequality (2.8) in the proof
of that theorem in [12] does not need this property, and so we can use [12,
(2.8)] verbatim in our setting. Now, by [12, (2.8)] and by [13, Theorem 5.2],
there exists C' > 1 such that for any u € Bgyoo(X),

. |u(z) — u(y)” . /
lim inf ——d du(z) < Climinf(d — 0") ||u|,,, .
int [ T ) du(a) < Climint 09 [l o,
Now suppose that there is a non-constant function u € Bf%p(X)' Then we
have by the Lebesgue dominated convergence theorem that

hm | |”

_ p
o Ba’ (X) - HuHBg’p(X) > 0,

but then

. . o
lim inf(6 9)||u||39, =0

whence it follows from (1.7) that [y |u—ux|’ du = 0. Hence u must be
constant on X, which is a contradiction of the supposition that u is non-
constant on X. Therefore ngp(X ) consists only of constant functions. I

Proof of Corollary 1.8. Under the hypotheses of Corollary 1.8, we obtain
0,(X) = 1 and (1.7) by [1, Theorem 5.1| and [15, Theorem 10.5.2], so we
can apply Theorem 1.6. U
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