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ABSTRACT

We introduce a new approach for analysing the intergalactic medium (IGM) damping wings imprinted on the proximity zones
of quasars in the epoch of reionization (EoR). Whereas past work has typically forgone the additional constraining power
afforded by the blue side continuum (A < 1280 A) and/or opted not to model the large correlated IGM transmission fluctuations
in the proximity zone (A < 1216 A), we construct a generative probabilistic model for the entire spectrum accounting for all
sources of error — the stochasticity induced by patchy reionization, the impact of the quasar’s ionizing radiation on the IGM,
the unknown intrinsic spectrum of the quasar, and spectral noise. This principled Bayesian method allows us to marginalize
out nuisance parameters associated with the quasar’s radiation and its unknown intrinsic spectrum to precisely measure the
IGM neutral fraction, (xyp). A key element of our analysis is the use of dimensionality reduction (DR) to describe the intrinsic
quasar spectrum via a small number of nuisance parameters. Using a large sample of 15559 SDSS/BOSS quasars at z 2 2.15
we trained and quantified the performance of six distinct DR methods, and find that a six parameter principal component
analysis model (five coefficients plus a normalization) performs best, with complex machine-learning approaches providing no
advantage. By conducting statistical inference on 100 realistic mock EoR quasar spectra, we demonstrate the reliability of the
credibility contours that we obtain on (xy1) and the quasar lifetime, 7g. The new method introduced here will transform IGM
damping wings into a precision probe of reionization, on the same solid methodological and statistical footing as other precision
cosmological measurements.
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1 INTRODUCTION

About 380000 yr after the big bang, primordial plasma recombined
to form the first atoms, releasing the cosmic microwave background
(CMB) and initiating the cosmic ‘dark ages’, which prevailed until
radiation from stars and black holes in primeval galaxies reionized
the Universe. Understanding how this epoch of reionization (EoR)
emerged and the nature of the early sources that drove it are
among the most important open questions in cosmology and key
science drivers for numerous major observatories (Planck, LOFAR,
SKA, HERA, Keck, VLT, Hubble Space Telescope, Euclid, and
JWST).

Our understanding of the evolution of the average intergalactic
medium (IGM) neutral fraction with cosmic time, (xg1(z)), currently
rests upon two pillars. The first is the CMB electron scattering
optical depth 7., which provides an integral constraint on (xy;(z)),
but leaves its shape poorly determined. The second is the Gunn—
Peterson (GP) Ly« opacity measured towards distant z 2 6 quasars,
which only robustly constrains the end of reionization (e.g McGreer,
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Mesinger & D’Odorico 2015; Jin et al. 2023), because the overly
sensitive Ly transition saturates for neutral fractions of (xyp) 2>
10~*. The final Planck CMB constraints on reionization history,
which incorporate the GP Ly opacity constraint on the end of
the reionization, indicate that the IGM was 50 per cent neutral at
a redshift in the range Zyejon = 5.9 — 8.0 (20; Planck Collaboration
VI 2020), considerably lower than the zo, ~ 17 initially inferred
by WMAP (Wilkinson Microwave Anisotropy Probe; Spergel et al.
2003), and pulling reionization into the realm of the highest-z quasars
known.

Low-frequency radio observations of the 21-cm line have been
touted as the premier probe of reionization and are steadily increasing
in sensitivity (e.g. The HERA Collaboration 2022). They aim to
detect the minuscule cosmic 21-cm background beneath foregrounds
and instrumental systematics that are 10° times larger (Cheng et al.
2018), but have yet to provide quantitative constraints on (xy(z)).
Similarly, the so-called kinetic Sunyaev—Zeldovich (kSZ) effect,
which must be disentangled from other small-scale secondary CMB
anistropies as well as post-reionization kSZ contributions (e.g. Doré,
Hennawi & Spergel 2004; Ferraro & Smith 2018), also holds
promise, but current (xyj(z)) constraints are weak (Nikoli¢ et al.
2023) and model-dependent (Zahn et al. 2012; George et al. 2015).
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In a neutral IGM, the GP optical depth is so large, t1,, ~ 10°,
that the red Lorentzian wing of the Lyo absorption cross-section can
imprint an observable IGM damping wing on the spectrum of a
background astronomical source (Miralda-Escudé 1998). Multiple
methods have been proposed to leverage this unique signature
to obtain quantitative constraints on (xyi(z)) using either high-z
galaxies or quasars as the background sources. For quasars, one can
either analyse the damped Lyo (DLA) absorption signature arising
from the IGM in the immediate vicinity of the quasar, or in the
foreground (closer to the observer) where it could be imprinted
upon the lower-z fluctuating Ly« forest transmission (Malloy & Lidz
2015).! Whereas the former case is the subject of this paper, several
recent studies investigate the latter in the vicinity of individual GP
troughs embedded inthe 5.5 < z < 6 Ly« forest (Becker et al. 2024),
or stacks thereof (Spina et al. 2024; Zhu et al. 2024) with the hope
of constraining (xy1(z)). In addition, IGM damping wings strongly
suppress Lyo emission lines from EoR galaxies, and it has been
argued that constraints on (xy1(z)) can be obtained from the statistics
of Lya line strengths (Dijkstra, Mesinger & Wyithe 2011; Mesinger
etal. 2015), motivating a large body of work exploring this technique
(e.g. Mason et al. 2018, 2019; Hoag et al. 2019; Jung et al. 2020).
Another approach recently enabled by the exquisite spectra of EoR
galaxies provided by JWST is to try to measure the IGM damping
wing signature from the continua of individual or stacked galaxy
spectra (Umeda et al. 2024; Keating et al. 2024a).

However, Heintz et al. (2025, see also Heintz et al. 2024; Umeda
et al. 2024; D’Eugenio et al. 2024; Chen et al. 2024) recently
demonstrated that a significant fraction ~ 60 — 70 per cent of EoR
galaxies with 5.5 < z < 13 exhibit strong intrinsic DLA absorp-
tion with Ny 2> 102! cm™2, far stronger than the corresponding
intrinsic DLAs seen in star-forming galaxies at lower-z (z < 4),
and importantly, than the expected damping wings from a neutral
IGM (typical Nyi ~ 10?' cm™2). It is perhaps not surprising that
this intrinsic absorption, which arises from the interstellar medium
(ISM) or circumgalactic medium (CGM) of galaxies, should rapidly
evolve as one approaches the EoR. Estimates of the ultraviolet
background (UVB) from the statistics of Ly forest transmission
indicate rapid evolution towards z 2 5.5 (Davies et al. 2018a, 2024;
Gaikwad et al. 2023), which is further supported by the similarly
rapidly evolving mean-free path of ionizing photons (Ang; Becker
et al. 2021; Zhu et al. 2023), since the UVB is proportional to the
mean-free path. CGM absorbers in ionization equilibrium with this
evolving UVB are thus expected to be stronger and more abundant in
the EoR (Bolton & Haehnelt 2013), which is empirically supported
by both the strong increase in the abundance of low-ionization metal
absorption lines at z 2> 6 (Becker et al. 2019; Christensen et al.
2023) as well as the strong redshift evolution in the occurrence of
DLAs in star-forming galaxies observed by Heintz et al. (2025).
Regardless of the physical explanation, the increased prevalence of
strong intrinsic DLA absorption in EoR galaxies calls into question
the entire enterprise of using galaxies, whether via the statistics of
their Lya lines or via damping wing absorption imprinted on their
continua, as background sources to probe reionization. No study
to date has demonstrated that the intrinsic ISM/CGM absorption
in galaxies can be disentangled from the damping wing absorption
induced by the neutral IGM. Further obstacles arise from the poorly
understood intrinsic nebular continuum shape of galaxy spectra near

'In practice, the demarcation between these two regimes depends on the
extent of the region that is overionized by the quasar, i.e. the size of its
proximity zone.
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the Ly line (Raiter, Schaerer & Fosbury 2010; Byler et al. 2017),
and from the challenge of modelling their Ly emission lines, which
is complicated by resonant scattering effects (Sadoun, Zheng &
Miralda-Escudé 2017).

In contrast, quasars provide several advantages over galaxies as
background sources for IGM damping wing measurements. First,
quasars are far brighter, allowing one to obtain high signal-to-noise
ratio (S/N 2 10) and high-resolution (R ~ 3000 — 10000) spectra
with far less telescope time than required for galaxies. Second,
analogous to the way O-stars transform their nearby ISM, the
quasar’s own ionizing radiation sources a giant Mpc-scale H Il region
(Cen & Haiman 2000) known as a proximity zone, manifest as
enhanced Lya transmission near the quasar itself (e.g. Fan et al.
2006; Eilers et al. 2017a) Although this reduces the strength of
the IGM damping wing and adds a nuisance physical process to
the modelling, it provides the great advantage that neutral gas in
the ISM/CGM of the quasar’s host galaxy is completely ionized
away, eliminating systematics associated with poorly understood
ISM/CGM absorption. This simplifies the modelling dramatically,
as one only needs to treat 1D radiative transfer (RT) of the quasar
radiation through the diffuse IGM, which is a well-posed problem
that can be solved ab initio — IGM density fluctuations can be
predicted from first principles and the IGM damping wing strength
(being an integral constraint) is insensitive to the exact details of
the reionization topology at fixed (xy;) (Davies et al. 2018b; Chen
2024; Keating et al. 2024a). Furthermore, this approach is also
largely insensitive® to the details of the quasar’s radiative history
(Davies et al. 2019, 2020), which can be encapsulated by a single
nuisance parameter, fq, the quasar lifetime (assuming a ‘light-bulb’
light curve). The third advantage is that modelling the intrinsic quasar
spectrum near Ly« is straightforward. Because there is very little
evidence that quasar spectra evolve from z ~2 — 7 (Shen et al.
2019), large training sets of thousands of z ~ 2 — 3 quasar spectra
from surveys like SDSS/DESI can be used to train empirical models
for their intrinsic spectra (e.g. Greig et al. 2017a; Davies et al. 2018c).

The intrinsic quasar spectrum constitutes a nuisance stochastic
process that must be marginalized out to obtain constraints on the
astrophysical parameters (xyp) and tg. Indeed, a critical aspect of
measuring the IGM damping wing signature in EoR quasar spectra
is obtaining a reliable estimate of and uncertainty for the intrinsic
unabsorbed quasar spectrum in the region near the Lya line. To
date, the approach adopted in most past work is to use the spectrum
redward of the absorbed Lya region (e.g. A > 1280 A) to predict the
blue part of the unabsorbed quasar spectrum in the vicinity of the

2For a quasar shining into a completely neutral IGM, the size of its
surrounding ionized region is primarily set by the total number of ionizing
photons emitted over the age of the Universe, and is largely insensitive
to its light curve due to the long recombination time-scale relative to the
Hubble time. In contrast, for a quasar in a highly ionized IGM, the light
curve can more strongly affect IGM transmission in the proximity zone. This
sensitivity arises if the quasar’s radiation varies on timescales comparable to
the equilibration time, feq = I'yy { ~3x 10* yr, the time-scale on which the
IGM responds to quasar radiation or recombines to its baseline neutral fraction
in the absence of the quasar (Davies, Hennawi & Eilers 2020). Observations
of quasar proximity zones are broadly consistent with a simple light-bulb light
curve (Eilers et al. 2017a; Davies et al. 2020), with lognormally distributed
lifetimes #q centred around ~ 10° yr and a standard deviation of ~ 1 dex
(Eilers et al. 2020, 2021; Khrykin et al. 2021; Morey et al. 2021; Satyavolu
et al. 2023; Durovéikova et al. 2024). Thus, even in an ionized IGM, current
evidence suggests light-curve variability has limited impact on proximity
zone transmission, though this remains an important topic for future study.
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Ly line (e.g. A < 1280 A), an idea first suggested by Suzuki et al.
(2005) in the context of studies of the z < 4 Lya forest (Péris et al.
2011; Lee, Suzuki & Spergel 2012; Lee et al. 2015; Eilers et al.
2017a). Mortlock et al. (2011) were the first to apply this red-blue
prediction approach to search for an IGM damping wing imprinted
on a z = 7.1 quasar spectrum. This approach was elaborated upon
by Greig et al. (2017a), who adopted a parametric model for the
unabsorbed spectrum — a sum of a power law plus multiple Gaussian
emission-line components — and used the statistical correlations
between these parameters, inferred from a large training data set,
to generate the red—blue predictions. Building on past Ly« forest
work using principal component analysis (PCA; Paris et al. 2011;
Lee et al. 2012, 2015; Eilers et al. 2017a), Davies et al. (2018b)
developed a PCA-based red-blue continuum prediction algorithm
(see also Eilers, Hennawi & Lee 2017b), trained on a set of > 10000
quasar spectra at z > 2 from the SDSS/BOSS (Baryon Oscillation
Spectroscopic Survey) DR12 quasar catalogue (Paris et al. 2017).
They quantified the covariant uncertainties in the predicted continua,
and found them to have a typical relative error of ~ 6 — 12 per cent
at the rest-frame wavelengths most relevant for IGM damping wing
absorption. These studies motivated the development of a plethora
of red-blue continuum prediction methods for studying quasar
proximity zones and IGM damping wings (Durov&ikovi et al. 2020;
Fathivavsari 2020; Reiman 2020; Chen et al. 2022) as well as the
Ly« forest (Bosman et al. 2021; Liu & Bordoloi 2021). Greig et al.
(2024b) recently conducted a detailed comparison of the ~ 10 red—
blue quasar continuum prediction pipelines in existence (see also
Bosman et al. 2021), and found that they all yield roughly comparable
precision of ~ 10 — 20 per cent at the relevant blue-side rest-frame
wavelengths near the Ly« line.

The discovery of the first z > 7 quasar ULASJ1120+4-0641 (Mort-
lock et al. 2011) led to significant interest in using such sources
to obtain quantitative constraints on reionization (Mortlock et al.
2011; Bolton et al. 2011; Keating et al. 2015; Greig et al. 2017b).
Greig et al. (2017b) combined the Greig et al. (2017a) contin-
uum prediction algorithm with seminumerical simulations of the
reionization topology (Mesinger, Greig & Sobacchi 2016) to model
the distribution of IGM damping wing strengths as a function of
(xu1(z)), but their analysis pipeline only fits rest-frame wavelengths
redward of the Lyx line. However, it is well known that the size
of the proximity zone and the strength of the damping wing are
sensitive to the quasar lifetime 7 (Bolton & Haehnelt 2007b; Bolton
et al. 2011; Keating et al. 2015; Eilers et al. 2017a; Davies et al.
2018c), which can vary from 10* — 10® yr (Eilers et al. 2017a,
2021; Khrykin et al. 2021), and thus must be treated as a nuisance
parameter. Davies et al. (2018b) presented the first complete model
of the proximity zone and damping wing region of quasar spectra
by combining the Davies et al. (2018c) estimator for the intrinsic
quasar continuum and its associated uncertainty, with a model for
the small-scale density fluctuations in the IGM, a description of the
reionization topology surrounding the massive dark matter haloes
hosting quasars (Davies & Furlanetto 2022), and time-dependent
ionizing photon RT (Davies, Furlanetto & McQuinn 2016). To date,
the Davies et al. (2018b) modelling approach has been applied to
four 7 < z < 7.5 quasars (Bafiados et al. 2018; Davies et al. 2018c;
Wang et al. 2020; Yang et al. 2020) yielding robust constraints on
(xu1(z)) that are competitive with the CMB. Furthermore, the two
independent modelling pipelines of Greig et al. (2017b) and Davies
etal. (2018c¢), which adopt distinct approaches for treating the impact
of the quasar radiation, reionization topology, and the intrinsic quasar
continuum Yyield results in very good agreement (Greig et al. 2022).
Progress on analysing larger samples of quasars, and specifically
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z < 7 quasars for which (xy(z)) should be lower, has recently been
made by Durovéikovi et al. (2024) who analysed stacks of a sample
of 18 quasars at 6 < z < 7, and by Greig et al. (2024a) who applied
the Greig et al. (2017b) pipeline to a sample of 42 quasar spectra at
58Sz 56.6.

These IGM damping wing analyses show that, after marginal-
izing out nuisance parameters describing the quasar’s intrinsic
continuum and lifetime, each quasar measures (xgi(zgso)) to ~
10 — 25 per cent precision at the quasar redshift, zgso (see also
Kist, Hennawi & Davies 2025). Higher precision constraints on
(xm1(z)) thus require averaging independent measurements over large
statistical samples of quasars. The recently launched ESA/Euclid
satellite is poised to discover over 100 quasars with 7.0 < z < 7.5,
and ~ 25 quasars beyond the current record of z = 7.6, including ~ 8
beyond z = 8.0 (Euclid Collaboration 2019). The JWST will obtain
exquisite spectra of these Euclid EoR quasars, many of which will be
too faint to be observed with ground-based telescopes in a reasonable
observing allocation. Indeed, five existing z > 6.8 quasars have
already been observed by JWST (e.g. Christensen et al. 2023). The
combination of large Euclid quasar samples and sensitive JWST
spectra have the potential to revolutionize the study of IGM damping
wings towards quasars and constrain the cosmic reionization history
to unprecedented precision.

But exploiting the tremendous potential of these facilities to yield
precise measurements of (xyi(z)) requires the quantitative study of
reionization using quasar damping wings to be on the same solid
methodological and statistical footing as other precision cosmologi-
cal measurements. It is well known that the CMB electron scattering
optical depth, t,, is degenerate with other cosmological parameters
such as the Hubble constant, Hy, the amplitude of matter fluctuations,
og, or the sum of neutrino masses Xm,. Growing tensions between
CMB determinations of these parameters and their values measured
from late-time probes such as baryon acoustic oscillations (e.g. DESI
Collaboration 2025), weak-lensing (e.g. Hikage et al. 2019; van den
Busch et al. 2022; Abbott et al. 2022), the cosmic distance ladder (e.g.
Riess et al. 2022; Murakami et al. 2023), and laboratory beta-decay
experiments (e.g. Di Valentino & Melchiorri 2022; Kreisch, Cyr-
Racine & Doré 2020) has spawned an industry of research on these
putative anomalies. It is telling that this enormous body of work only
uses Planck Collaboration VI (2020) reionization constraints because
measurements from the spectra of distant astronomical objects are,
apparently, not yet considered credible.

The goal of this paper is to introduce a framework that will elevate
the study of IGM damping wings towards quasars to be a precision
cosmological probe of reionization. The most significant limitation
of past IGM damping wing studies is that they are fundamentally
suboptimal for two reasons. First, the commonly adopted red—blue
prediction approach forgoes the additional continuum constraining
power afforded by spectral pixels blueward of the typically chosen
dividing line of 1280 A. But these blue spectral pixels (A < 1280 A)
contain an abundance of information about the intrinsic quasar
continuum and the astrophysical parameters (xu1) and fg. The most
intuitive way to see this is that red-blue continuum prediction
provides no mechanism to explicitly prevent the blue-side continuum
from lying several spectral noise standard deviations, o;, below
the observed spectrum, f;, for large swaths of pixels, although
such continua are clearly unphysical. Furthermore, jointly fitting
the spectral range A < 1280 A, where the smooth damping wing
absorption is imprinted, for both the continuum and the astrophysical
parameters, (xy) and fq, will surely help break the degeneracy
between damping wing strength and intrinsic continuum shape.
Second, nearly all past work has not modelled the highly absorbed
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proximity zone region blueward of the Ly« line (A < 1216 A), owing
to the dual challenge of modelling both the impact of the quasar
radiation and the large correlated IGM transmission fluctuations
at these wavelengths. Exceptions are Davies et al. (2018b) who
performed ionizing RT (see also Bolton et al. 2011) and used
simulation-based inference to approximate the intractable likelihood
for the correlated transmission fluctuations, and Durov&ikova et al.
(2024), who similarly performed RT and modelled the correlated
transmission fluctuations with a Gaussian likelihood — accurate only
because they analysed stacked and hence effectively Gaussianized
spectra (although stacking is suboptimal and significantly degrades
the precision on {xy;(z))*). But an accurate likelihood that allows
one to fit these absorbed proximity zone pixels would clearly
provide information about both the astrophysical parameters and the
underlying continuum, since the former determines the distribution
of IGM transmission fluctuations, which in turn constrains the latter
in a statistical sense (and vice versa). Finally, to be taken seriously
as a precision cosmological probe, one must use mock observations
to establish that the measurements and the parameter uncertainties
quoted are reliable, which has to date never been undertaken.

Building upon the modelling approach presented in Davies et al.
(2018b, c), we present an improved technique for constraining
reionization with EoR quasar spectra and establish the statisti-
cal robustness of the inferred astrophysical parameter constraints.
Whereas past work failed to exploit the full constraining power of
the blue side spectral region, our key innovation is the construction
of a single Bayesian likelihood for the entire spectrum, allowing
us to fit the continuum and the IGM damping wing signature
simultaneously. We use dimensionality reduction (DR) to describe
the intrinsic quasar continuum with a parametric model, but in
contrast with most previous IGM damping wing work there is no red—
blue prediction, but rather a single latent variable model for the entire
quasar spectrum. Using a large training set of 15559 SDSS/BOSS
quasars at z 2 2.15, we trained and quantified the performance of
six distinct DR methods, including machine-learning approaches,
and find that a six parameter PCA model (five PCA coefficients
plus a normalization) performs best, with complex machine learning
providing no improvements in performance. All sources of error — the
stochasticity induced by the ionization topology, the unknown QSO
lifetime ¢, continuum reconstruction errors, and spectral noise — are
accounted for in a principled manner, allowing us to marginalize out
all continuum nuisance parameters. Finally, by conducting statistical
inference on 100 realistic mock EoR quasar spectra, we show that our
posterior distributions pass a coverage test, establishing the reliability
of the credibility contours that we obtain on (xy1(z)) and #q from this
new method.

In our companion paper (Kist et al. 2025), we quantify the
precision with which IGM damping wings analysed with this new
inference approach can measure the astrophysical parameters, (xy)
and log,(tg/yr), and the dependence of this precision on the
dimensionality of the DR latent variable model, as well as on the
spectral resolution, S/N, and spectral coverage of the quasar spectra
that are analysed.

The structure of this paper is as follows. In Section 2, we derive
the expression for the likelihood of the quasar spectrum that is at the
heart of the technique. An exploration of the six DR methods and
a description of the training data and procedure are the subject of

3The constraints from the Duroviikové et al. (2024) stacked spectra are
scarcely more precise than those from individual quasars obtained by other
workers (Greig et al. 2017b; Davies et al. 2018c; Greig et al. 2022, 2024a).
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Section 3. In Section 4, we summarize the Davies et al. (2018b)
approach for simulating quasar transmission spectra with IGM
damping wing absorption and quasar lifetime effects, describe how
these simulations are used to determine the ingredients required
for the quasar spectrum likelihood, and explain our procedure
for creating mock quasar spectra. In Section 5, we describe our
Hamiltonian Monte Carlo (HMC) based statistical inference, show
examples of the inference on mock spectra, present the procedure
and results from the coverage testing, and compare the accuracy
of our continuum reconstructions to previous work based on red—
blue prediction. Finally, we summarize and conclude in Section 6.
Appendix A introduces the formalism behind our coverage tests as
well as a novel approach to reweight the HMC parameter samples to
guarantee that we pass a coverage test even if our original posterior
distributions are overconfident.

In this work, we assume a flat Lambda-cold dark matter cosmology
with i = 0.685, @, = 0.047, ©,, = 0.3, 2, = 0.7, and o3 = 0.8.

2 FORMALISM

Our goal is to derive an expression for the likelihood of a quasar
spectrum f with noise vector o (with elements f; and o;, respec-
tively) to be observed in a possibly neutral IGM. If we unrealistically
assume perfect knowledge of the IGM transmission field, ¢, and the
underlying unabsorbed quasar spectrum, s, then because the spectral
noise is Gaussian distributed, the probability of measuring f is
simply

P(flo.t.s)=N(f:tes, X), M

where N'(f; i, K) is the standard normal distribution with mean
and covariance matrix K, o represents an element wise (Hadamard)
product of vectors, and X = diag(e) is the diagonal matrix formed
from the measured noise vector o (throughout we denote vectors
with bold lowercase letters/symbols and matrices with bold capital
letters/symbols).

The intrinsic quasar spectrum s and the IGM transmission ¢ are
latent stochastic processes, which is to say that they are random
variables that are not directly observable. Instead, they are related
to observables, but we must marginalize over their probability
distributions in order to measure the astrophysical parameters of
interest. We will adopt this approach in what follows.

First consider the intrinsic quasar spectrum, s — our knowledge is
clearly limited by spectral noise, and, blueward of rest-frame Lyc,
by IGM absorption. Furthermore, quasar spectra cannot be modelled
from first principles. As a result it is common to adopt a data-driven
approach and describe s with a DR algorithm, of which PCA (e.g.
Suzuki et al. 2005; Suzuki 2006; Paris et al. 2011; Davies et al. 2018c¢)
is the simplest example. This results in a parametric model, spr(n),
where 3 is a new latent variable describing the unabsorbed quasar
spectrum which lives in a space with dimensionality lower than the
number of spectral pixels (i.e. wavelengths) in s. For example, in a
PCA decomposition, n would be the vector of PCA coefficients plus
an overall normalization parameter. Since the unabsorbed spectral
pixels redward of the Lyo line provide considerable information
about n, it is advantageous to fit for these parameters, rather
than completely marginalize over the quasar continuum stochastic
process s.

However, no DR algorithm is perfect, which motivates defining
the relative reconstruction error

§= 5 — SDR(U), )
s
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where division here is understood to be element wise (i.e. analogous
to the Hadamard products of vectors defined in equation 1). It then
follows that s = spr(n)o(1 + §) to lowest order in §. We assume
that § is a stochastic process that follows a Gaussian probability
distribution function (PDF) given by

N(8:(8), A), 3

where (8) and A are the mean and covariance matrix of the
relative reconstruction error, 8, respectively, which can be empirically
determined by applying the DR algorithm to a ‘test’ data set. We carry
out this procedure in Section 3, where it is shown that a Gaussian
form is indeed a very good approximation. Given these assumptions,
we can finally write for the PDF of the latent variable s:

P(s|p) = N(s; (s(m), Cs(), @

where we have defined (s(n)) = spr(n)o(1+ (8)), Cs(n) =
Spr(7)ASpr(1), and Spr(n) = diag(spr(1)).

Next, consider the stochastic process governing the IGM transmis-
sion ¢. While noise and the unknown continuum, s, also limits our
knowledge of this latent variable, the primary source of stochasticity
is ‘cosmic variance’, resulting from the unknown initial conditions of
the Universe. To make this more concrete, consider how realizations
of t are generated. A common approach is to post-process cosmolog-
ical hydrodynamical simulation outputs with ionizing RT (Bolton &
Haehnelt 2007a; Davies et al. 2016, 2018b; Chen & Gnedin 2021;
Satyavolu et al. 2023; Zhou et al. 2024), as we discuss further in
Section 4. As such, the IGM transmission, #(¢, #) depends on a
vector, ¢, which are the random phases and amplitudes of Gaussian
distributed complex latent variables used to initialize the simulation,
which represents the unknown initial conditions of the Universe
in the vicinity of the quasar, as well as a vector of astrophysical
parameters 6, which for IGM damping wing analysis, would be the
average IGM neutral fraction (xyp) and the quasar lifetime #q, in the
simplest description (e.g. Davies et al. 2018b). Our aim is to measure
0, whereas it is clearly computationally intractable to attempt to fit
for the latent variables ¢, unless one had an incredibly fast way of
simulating the IGM and performing the RT. As it is unclear whether
fitting for ¢ would be advantageous (but see Horowitz et al. 2019)
and it is clearly computationally intractable, the obvious strategy is
to marginalize over the initial conditions, ¢.

Based on the foregoing considerations, we perform the marginal-
ization over the relative reconstruction error, §, and the initial
conditions, ¢, to arrive at an expression for the likelihood of the data
f given observed noise vector o, astrophysical model parameters 6,
and DR latent variables »:

L(flo.0.7) = / / P(flo. t(.0). )P(sIHP@)sd.  (5)

Using the definition of the Dirac delta function

1= /SD[t — (¢, 0)]dt, (6)

we can introduce an additional integral over the stochastic variable ¢
in equation (5) giving

L(flo.0.7)
- / / / P(flo. t.5)P(sin)solt — 1(p, O)IP()dsdddr.  (7)

The probability distribution of IGM transmission, P(¢|6), can now
be defined as

P(t10) = / Solt — 19, )1 P($)dg, ®)
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which is the pushforward distribution of the prior over initial condi-
tions, P(¢), through the deterministic mapping #(¢, €). Intuitively,
P(t]60) describes the distribution of IGM transmission fields that
results from drawing random initial conditions ¢ according to P(¢)
and evolving them forward under the simulation specified by the
astrophysical parameters €. Finally, we can write the likelihood as

L(flo,0,n)= // P(flo,t, s)P(s|y)P(¢|0)deds. )

Note that two of the PDFs under the integral in equation (9),
P(flo,t,s) and P(s|np) have a Gaussian form, but P(£|0) poses
a challenge since, whether at random locations in the Universe
(e.g. Lee et al. 2015; Davies et al. 2018a) or in quasar proximity
zones (Davies et al. 2018b), it is well known that the PDF of the
IGM transmission is non-Gaussian. While generating samples from
P(t|0)is straightforward — simply randomly select IGM transmission
skewers generated from a simulation with parameters 6 — there exists
no tractable analytical expression for P(£|@). It thus follows that it
is impossible to derive an exact analytical expression for the desired
likelihood both because P(¢|#) is intractable, and because even if an
expression for it existed, it would be extremely challenging to per-
form the high-dimensional marginalization integrals in equation (9).

Our approach going forward is to approximate P(¢|f) with a
Gaussian form,

P(t]0) = N(t; (£(9)), C1(0)), 10)

where (¢(#)) and C,(@) are the mean IGM transmission and its co-
variance, which are easily measured from realizations using forward
simulations of quasar proximity zones. With this approximation, we
can now obtain an approximate analytic expression for the likelihood.
Substituting the Gaussian PDFs for f, s, and ¢ from equations (1),
(4), and (10) into the marginalization integral in equation (9) gives

L(flo. 0. = [ [ NFites, B (st €t

x N(¢; (¢(8)), C((0))dsdt. (11)
Re-arranging to express the integral over ¢ in terms of the variable
tos gives
L(flo,0,n) = / [//\f(f;tos, N (tos; (t)os, SC S)d(tos)

x N(s; (s), Cy)ds, (12)

where S = diag(s) and we suppress explicit dependencies of the
means and covariances on @ and » for notational brevity. Exploiting
the fact that Gaussians are closed under convolution, the integral in
brackets can be analytically evaluated giving

L(f|0,0,1]):/N(f; (t)os, T + SCS)N(s; (s), C)ds.  (13)

Analogous to above, we can re-arrange equation (13) in terms of the
variable (¢)os giving

L(flo,0,n) = //\/(f;<t)os, ¥ + SC,S)

x N((t)os; (t)o(s), (T)C (T ))d((t)os). (14)

where (T') = diag((¢)). While the form of equation (14) suggests one
use the closure of Gaussians under convolutions again to evaluate the
integral over (f)os, note that s also now appears in the covariance
of the first normal distribution via the term SC,S (recall that § =
diag(s)), which instead renders this integral intractable. To make
progress we approximate

s = spr(M)o(1 + 8) ~ spr()o(1 + (8)) = (s(n)) 15)
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in the problematic covariance term such that
SC:S ~ (8)C(S) (16)

where (S) = diag({s(n))) = diag[spr(7)o(1 + (8))]. This removes
the s dependence from the covariance” so that the likelihood becomes

L(flo.0.7) = / N (85, 5+ (S)CL(S))
X NC({8)es: () s). (T)C, (T)A({8)os).
— N3 {05(8). B 4 (SICUS) + (T)CL(T)).  (17)

where the last equality again follows from the closure of Gaussians
under convolution.

The primary virtue of the likelihood in equation (17) is that it
operates on the entire quasar spectrum, and constitutes a significant
departure from the now standard approach in quasar IGM damping
wing analysis of using the spectrum redward of the Lywx line to
predict the intrinsic spectrum bluward of Lyw, and then performing
inference on the resulting normalized spectrum (e.g. Davies et al.
2018b; Durov&ikova et al. 2020; Fathivavsari 2020; Reiman 2020;
Chen et al. 2022). Clearly pixels blueward of the typical red—blue
dividing line of =~ 1280 A contain an abundance of information about
the intrinsic spectrum and the astrophysical parameters 6. As it
operates on the entire spectrum, the likelihood in equation (17) fully
incorporates information from pixels with A < 1280 A, where the
smooth damping wing absorption is imprinted. Fitting this region
helps break the degeneracy between damping wing strength and
intrinsic spectrum shape. Finally, even partly absorbed pixels in
the proximity zone constrain Spr(n), since each model 6 predicts
the distribution of ¢, which in turn constrains spr(%) in a statisti-
cal sense. Because 1, = exp(—71;) and s; = f,/t,, the uncertainty
in the continuum arising from stochastic IGM fluctuations |3,/
syl = |6t /t,| = |67T,] will be the smallest at low optical depth,
and hence the highest transmission, #, inner proximity zone pixels
(i.e. closest to the Ly wavelength 1215.67 A in the rest frame)
arising from regions illuminated by the quasars intense radiation
will contain the most information about the intrinsic spectrum
s. This also suggests that observations with resolution sufficient
to spectrally resolve transmission spikes in the proximity zone
could afford additional constraining power (but see Kist et al.
2025).

The main disadvantage of the likelihood in equation (17) is thatitis
approximate, with the most significant errors incurred from assuming
a Gaussian form for P(¢|6) in equation (10), which we investigate in
detail in Section 5.6. In Section 5, we show that this approximation
yields biased and overconfident parameter inference, but a strategy
for mitigating these shortcomings is introduced. In our companion
paper, we conduct more detailed tests of the precision and fidelity
of the statistical inference delivered by equation (17) and better
understand the conditions under which the Gaussian approximation
for the PDF of the proximity zone transmission is valid (Kist et al.
2025).

Finally, we note that our approach bares some resemblance to
the likelihoods derived by Garnett et al. (2017) and Sun, Ting &
Cai (2023) in the context of the lower-z Ly« forest. However, our

4This approximation suppresses the modulation of the covariance by the
fluctuations due to the relative reconstruction error §. While these fluctuations
are small, ignoring them is not obviously mathematically justifiable in terms
of an expansion in powers of 8. But given the already crude approximation of
a Gaussian transmission PDF (i.e. equation 10), this inconsistency is tolerable
as it yields a closed form analytical expression.

MNRAS 539, 2621-2653 (2025)

likelihood is more accurate since both Garnett et al. (2017) and Sun
et al. (2023) incorporate IGM absorption via an additive noise term.
Although it simplifies the math, this approximation surely breaks
down for the highly opaque IGM of interest to us here, whereas
our analysis treats IGM absorption as multiplicative and is both
more accurate and applicable to low-z and high-z IGM absorption
alike. Furthermore, Garnett et al. (2017) assume that the intrinsic
quasar spectrum, § in our notation, follows a Gaussian distribution,
whereas Sun et al. (2023) assume that the latent variables describing
the intrinsic spectrum, 7 in our notation, are Gaussian distributed
and that the covariance of the continuum reconstruction errors,
C(n) in our notation, is a diagonal matrix. In contrast, we only
assume Gaussianity for the relative reconstruction error, §, which
is a far weaker assumption, and treat fully covariant continuum
reconstruction errors (see Fig. 7). The main advantage of their
approaches relative to ours is that they present a method to determine
the quasar continuum DR model, spr(#) directly from a low-z Lyo
forest data set in addition to the astrophysical parameters, whereas in
our approach, we derive the latent variable model from an external
training set, which as we discuss in the next section, comes from
SDSS/BOSS 2.15 < z < 4 quasar spectra fit with an automated
continuum fitting algorithm. It is worth exploring in future work if,
analogous to Garnett et al. (2017) and Sun et al. (2023), one can use
the likelihood in equation (17) to fit for both the latent variable model
that describes the continua of SDSS/BOSS 2.15 < z < 4 quasar
spectra and the astrophysical parameters that govern the low-z Ly«
forest.

3 QUASAR DIMENSIONALITY REDUCTION

A critical component of the formalism presented in the previous
section is the representation of the intrinsic quasar spectrum, s, with
a DR algorithm. Specifically, before we can compute the likelihood
in equation (17) we need to: (1) apply a DR algorithm to an ensemble
of quasar spectra to determine the function spgr(#), (2) demonstrate
that the probability distribution of the relative reconstruction error §
(equation 2) is well described by a multivariate Gaussian distribution
(equations 3 and 4), and (3) measure the mean (§) and covariance A
of this distribution.

An important question is which DR algorithm to employ. We will
compare several different DR approaches in this section. DR methods
are commonly divided into linear and non-linear models. We will start
with most widely adopted linear model which is PCA, which will be
compared to two non-linear models, namely a Gaussian Process
Latent Variable Model (GPLVM), and a variational autoencoder
(VAE). Although PCA is provably optimal among linear methods
in the sense that it minimizes the average-squared reconstruction
error for a fixed dimension of the latent space, njen, this optimality
does not extend to non-linear methods. In particular, non-linear
DR algorithms such as the GPLVM and VAE could, in principle,
more efficiently capture the structure of the data manifold, and thus
achieve smaller reconstruction errors. For this reason, we assess the
performance of each method empirically. First, we will describe the
procedure for generating the training data for the DR algorithms
(Section 3.1), then we will discuss our implementation of each
DR method (Section 3.2), and finally we quantify and compare
their performance for representing quasar spectra (Section 3.3).
Ultimately, we will conclude that a PCA with npr = 6 parameters
(i.e. Migent = 5 PCA coefficients plus a normalization parameter,
Snorm) 18 the best choice for our application. The reader who is not
interested in the details can skip ahead to Section 3.4.
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3.1 Training and test data

3.1.1 Automated continuum fits of SDSS quasars

Our training set of quasar spectra is drawn from the SDSS-III BOSS
and the SDSS-IV Extended BOSS (eBOSS) surveys which obtained
moderate resolution (R ~ 2000) spectra of a large sample of z = 2
quasars (Dawson et al. 2013, 2016). Specifically, we consider objects
identified as quasars in the eBOSS DR 14 quasar catalogue (Paris et al.
2018) using the compilation in the i gmspec database of public spec-
tra probing the IGM, which uses the specdb database framework
(Prochaska 2017). Our aim is to use DR to describe quasars over the
rest-frame wavelength range relevant to IGM damping wing analysis
1170-2040 A. As the (upgraded) SDSS spectrograph covers the
wavelength range 3580-10350 A, the requirement that our desired
rest-frame wavelength range be fully covered restricts the range of
usable quasar redshifts. Adding a small buffer on the blue end of
the spectra to avoid edge effects, and excluding quasars with z > 4
where the Ly forest transmission is smaller and harder to correct
with automated continuum fitting algorithms (see below), we arrive at
the redshift range 2.149 < z < 4.0. There are 199 530 quasars in this
range in the eBOSS DR14 quasar catalogue, of which we removed
13391 objects that are likely broad absorption line (BAL) quasars
given non-zero values of the BALnicity index characterizing C1v
absorption troughs (see e.g. Paris et al. 2018), resulting in a sample
of 186 139 quasars. We further require that the median signal-to-noise
ratio, S/N > 10 within a 5.0 A region centred at rest-frame 1285 A.
After imposing this S/N requirement and removing a small number
of problematic spectra with large gaps in their spectral coverage, we
are left with a parent sample of 20 201 quasars.

In order to define a continuous smooth spectrum that covers our
desired rest-frame wavelength range, we use automated continuum
fitting algorithms following the approaches adopted by previous work
on quasar continua (Davies et al. 2018c; Durov&ikova et al. 2020;
Bosman et al. 2021). Davies et al. (2018c) and Bosman et al. (2020)
used the automated fitting procedure developed by Young et al.
(1979) and Carswell et al. (1982) as implemented by Dall’ Aglio,
Wisotzki & Worseck (2008), which determines a smooth continuum
in the presence of absorption lines and noise both blueward and
redward of the Lyo emission line. This algorithm iteratively fits
the spectra with a cubic spline with breakpoints initially spaced
by ~ 1400 kms~! in the Lya forest (i.e. 20 SDSS pixels, each
pixel is 70kms™!) and ~ 1100 km s~' redward of the Ly« line (16
pixels). Pixels that lie more than two standard deviations below the
fit are iteratively rejected. Additional spline breakpoints are added
if the slope between neighbouring breakpoints exceeds a threshold,
and spline points are merged if the variations between neighbouring
breakpoints are small. We applied this algorithm to all 20 201 quasars
in our target redshift range, which we will henceforth refer to as the
autofit continua. For simplicity, our DR does not attempt to capture
luminosity-dependent changes in quasar spectral shape. As such, DR
will work best if all quasars are on a common flux scale, and we thus
rescale each of the autofit continua to be unity at a rest wavelength
of 1285 A and rescale each of the training data spectra by the same
factor.

Durovéikova et al. (2020) followed a different approach to au-
tomatically fit continua to SDSS spectra, which we will refer to
as the QSMOOTH continua. Briefly, they first compute a running
median with a width of 50 SDSS spectral pixels to capture the salient
continuum and emission features in the spectrum. Peak finding is
then performed on the spectrum with the requirement that the peaks
lie above a local threshold set by this running median spectrum, and
these peaks are spline interpolated to define an upper envelope for
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the spectrum. After subtracting this envelope from the spectrum, the
RANSAC regression algorithm is applied to the residuals to define
inliers (the continuum level) and outliers (the absorption lines). The
data points that are identified as inliers are interpolated and smoothed
by computing a running median with a bin size of 20 pixels, resulting
in the final automated continuum fit to the spectrum. We apply a
slightly modified version of the publicly available QSMOOTH> code
to the 20201 quasars in our target redshift range. Note that the
QSMOOTH algorithm was applied to the quasar spectra after rescaling
them such that their autofit continua equal unity at 1285 A, so we do
not independently renormalize the QSMOOTH continua.

Once we have these two independent estimates of the quasar
continuum, we use them to attempt to further remove problematic
objects from the training data. Associated absorption around the Lyo
and N v emission-line complex resulting from either BAL absorption,
proximate DLA or Lyman limit systems (PDLAs or PLLSs), or strong
metal absorption due to proximate N V or intervening absorbers, will
result in artefacts in the automated continuum fits. We remove these
cases by simply discarding objects for which either the autofit or
QSMOOTH continua fall below 0.6 in the wavelength range 1170
A < <1285 A (recall that the spectra are normalized to unity
at 1285 A). In a similar spirit, we attempt to also exclude BALs
by removing any objects which have either of their automated
continua < 0.1 in the wavelength range 1285 A <1 <199 A,
or which have automated continua < 0.7 in the wavelength range
1300 A < A < 1570 A. These thresholds and wavelength ranges
were all determined via trial and error, and collectively these cuts
remove 4433 objects, leaving 15 768 quasars.

The SDSS spectra are reported on their native observed frame
wavelength grid, but the DR analysis requires a common rest-
frame wavelength grid. We convert the observed wavelengths to
rest wavelengths by dividing by 1 + zqso, where the quasar redshift,
Zgso is taken to be the pipeline redshift, Z_PIPE, in the DR14
quasar catalogue. We construct a rest-frame wavelength grid that is
linearly spaced in velocity (or equivalently log,, A) with a pixel size
of dvyix = 140 km s~! (roughly twice the native SDSS pixel scale)
spanning from 1170 — 2040 A, resulting in a total of Nspec = 1190
spectral pixels. The spectra are rebinned onto this wavelength grid
by averaging the flux values of the spectral pixels that land in a given
wavelength bin. The autofit and QSMOOTH continua are interpolated
onto this wavelength grid.

A small fraction of objects in the eBOSS DR14 quasar cata-
logue have incorrect redshifts. We found that an effective way to
automatically identify and remove these objects is to analyse their
Lya forest transmission. Specifically, we use the autofit continua
to normalize the rebinned SDSS spectra and compute the mean
Lyo forest transmission of each object in the wavelength range
1170 A <A <1190 A. We compare this measured mean flux
(F) to the empirically determined value (F')y,., Where the latter
is obtained by evaluating the fit from Ofiorbe, Hennawi & Lukié
(2017) at the average Lya absorption redshifts, z1,, probed by the
quasar spectrum. For the redshift range, we consider the Ofiorbe
et al. (2017) fit is anchored by the Becker et al. (2013) mean flux
measurements. For each spectrum a flux contrast can then be defined
as §r = ((F) — (F)uue)/{F)we. We then use the median absolute
deviation® (MAD) to estimate the effective standard deviation, os,,
of -, from all of the quasars which allows us to define x5, = 67 /05,

Shttps://github.com/DominikaDu/QSmooth

6Because occasional large outliers, in this section and in other places in the
aper we estimate standard deviations from the MAD using o = 1.4826 x

pap g

MAD.
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Empirically, we find that large positive fluctuations ys, correspond to
spurious redshifts, which are typically lower redshift quasars which
do not exhibit Ly forest absorption in their SDSS spectra because
another emission line has been incorrectly identified as Lya. From
trial and error we find that applying a cut of x;s, > 5 removes the
vast majority of misidentified redshifts, which removes 54 objects
from our sample.

Finally, we found that the difference between the autofit and the
QSMOOTH continua provides a reasonable proxy for the continuum
fitting ‘error’. If we define As;; = Sauofit,ix — SQSmooth,ir, Where i is
the index of the quasar in question and A is the wavelength, then the
inverse variance of the continuum fit can be defined is

2
1 1 }sauloﬁt.ik ‘

—— =+ 5 (18)

Ogin  As S/Naip

where S/N;, applies a flux-dependent floor to the noise that

guarantees that the signal-to-noise ratio, S/N = Suyofit,ir /Os,ix NEver
exceeds S/Nj,, which we set to be /Ny, = 30. We also define the
relative fluctuation §s;; = As;y /Sauofit,in, and analogous to above,
quantify fluctuations relative to the typical scatter via

3si5. — (8s5)

Oss,

Xs,in , (19)
where the (§s,) and oy, are the wavelength-dependent mean
and standard deviation of §s;;, i.e. these moments are computed
by averaging out the quasar dimension i. The rms fluctuation of
Xs.ix» across 1170 A <1< 1240 A, provides a summary statistic
quantifying the relative differences between the two autofit continua
for each quasar in the range relevant to IGM damping wings. We
require that this rms fluctuation is less than four, which removes
another 155 quasars, or about 1 per cent, yielding the final size of
our DR quasar sample of 15 559.

We opt to use the autofit continua since they visually appear to be
closer to the truth than the QSMOOTH continua. The data thus used
to train the DR algorithms are the autofit continua, Sayofit.ir, and the
error oy ;;. Fig. 1 shows seven objects randomly chosen from the DR
quasar sample. Following standard practice in machine learning, we
split this DR sample of 15559 quasars into a training set of 14781
objects and a test set of 778 objects, corresponding to a roughly
95 per cent — 5 per cent split. The training set will be used to train
our DR algorithms and the test set, which we refer to as our autofit
test set, will constitute the unseen data that will be used to quantify
performance.

3.1.2 Hand-fit continua

The previous section discussed the automated continuum fitting, but
it is also possible (although tedious) to fit quasar continua by hand.
Whether this approach results in continua that are more accurate
than the aforementioned automated algorithms is unclear. But hand-
fit continua provide an additional ‘test’ data set that can be used to
quantify the efficacy of DR algorithms which motivates us to compile
a set for this purpose. Paris et al. (2011) hand fit a set of 78 high
signal-to-noise ratio, S/N > 14, quasar spectra in the redshift range
2.82 < z < 3.0, where the S/N was evaluated at rest-frame 1280 A.
The continua were fit by selecting cubic spline breakpoints at regular
intervals and adjusting the height and spacing of these breakpoints.
In the Lyo forest, where this procedure is particularly challenging
and subjective, the breakpoint heights were chosen to follow the
peaks of the flux. We renormalize the 78 Paris et al. (2011) continua
to be unity at 1285 A (for consistency with our autofit continua).

MNRAS 539, 2621-2653 (2025)

We augment the Paris et al. (2011) continua, with continua from
the XQ-100 survey (L6pez et al. 2016), which acquired a set of 100
high signal-to-noise-ratio (S/N ~ 33 at rest-frame 1700 A) echelle
spectraof quasarsat3.5 < z < 4.5 using the X-shooter instrument on
the Very Large Telescope (VLT). The public data release of XQ-100
provides hand-fit continua for every quasar following an algorithm
that is similar in spirit to that used by Paris et al. (2011). As the
public release of the XQ-100 data set provided continuum fits only
for the spectra obtained by the individual arms of the X-shooter
spectrograph, we restrict attention to the VIS arm, which covers the
observed frame 5500 A < A < 10200 A. As our mock high-z quasar
spectra with IGM damping wings (see Section 4) cover the rest-
frame wavelength range 1185 A < A < 2000 A, the requirement that
this entire range is covered by the VIS arm restricts the number of
quasars to be 43, and the redshift range to be 3.65 < z < 4.09. We
similarly renormalize the XQ-100 continua to be unity at 1285 A.
For the quasar redshifts, zgso, we used the values adopted by Paris
etal. (2011) and the XQ100 survey. Combining the Paris et al. (2011)
and XQ-100 spectra, we finally arrive at a sample of 121 hand-fit
continua, which we henceforth refer to as our hand-fit test data set.

3.2 Dimensionality reduction algorithms

A DR algorithm transforms data from a high-dimensional space into
a lower dimensional latent space, such that the lower dimensional
representation retains as much information as possible from the
higher dimensional process. In more concrete terms, our training
set COmprises Ny,in = 14 781 quasars with n; = 1190 spectral pixels
per quasar. The smooth appearance of a quasar continuum (see
Fig. 1) implies these n; spectral pixels are highly correlated, and
hence the bulk of the information content can be encapsulted by
a vector n in a lower dimensional latent space of dimension, npg,
which parametrizes a DR model spr(%). Recall from the discussion
in Section 3.1 that we normalized all of our training and test set
spectra to unity at 1285 A which removes the amplitude degree
of freedom from the stochastic process s. But since our goal is
to eventually fit spr(y) to quasar spectra with arbitrary flux, we
add an additional multiplicative normalization parameter, Sporm. This
implies our DR quasar continuum model will have npr = Ryyene + 1
free parameters, i.e. the normalization and the 7,y latent variables
that parametrize a latent variable model for the normalized spectra.
We define & to be a vector whose elements are the parameters in
the nuene dimensional latent space that describes the normalized
spectra, whereas 7 = (Snorm, 1, &2, -+vs &njyen)> 1S the vector in the
NpR = Mjaene + 1-dimensional latent space that describes the non-
normalized spectra.

DR methods are commonly divided into linear and non-linear
algorithms, and we consider both in this study. We start with the
most widely adopted linear model, which is PCA.

3.2.1 Principal component analysis

PCA is a commonly used tool to understand correlations in quasar
spectra (e.g. Boroson & Green 1992; Francis et al. 1992; Yip et al.
2004; Suzuki 2006). Suzuki et al. (2005) first proposed PCA as a
method to predict the continuum absorbed regions of quasar spectra,
which was later improved upon by Péris et al. (2011). This approach,
which uses pixels redward of Ly« to predict the continuum in the
Lya forest, has been used in many IGM absorption studies (e.g.
Kirkman et al. 2005; Lee et al. 2012, 2013, 2015; Eilers et al. 2017a,
b; Eilers, Hennawi & Davies 2018; Durov&ikova et al. 2020, 2024;
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Figure 1. Seven randomly selected quasars from our DR quasar sample. Black and green histograms show the quasar spectrum and lo spectral noise,
respectively. Automated continuum fits from the autofit and QSMOOTH algorithms are shown in blue and red, respectively. The orange-shaded region indicates
the error on the continuum fit derived from the differences between the autofit and QSMOOTH fits, as defined in equation (18). The autofit continua (red) appear
to provide good estimates for the continuum and the continuum errors (orange shaded) are generally larger in regions where the continuum is less certain owing
to strong absorption.
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Bosman et al. 2021). Motivated by this technique, Davies et al.
(2018c) developed a PCA-based model from a far larger sample of
spectra encompassing a wide range of spectral properties with an
eye toward predicting the quasar continua for IGM damping wing
analysis. A similar stack was followed by Bosman et al. (2021)
who modelled a broader spectral region relevant to the Ly and
Lyg forests. While the training data and PCA models used here
are qualitatively very similar to those used by Davies et al. (2018c)
and Bosman et al. (2021), the primary difference is that these works
applied PCA to the blue and red spectral regions independently, using
the latter to predict the former, whereas here we apply PCA and other
DR algorithms to the entire spectrum, since our inference approach
models the IGM and the continuum simultaneously using all spectral
pixels (see Section 2).

The principal components of a collection of ny,, quasars that
reside in a n; dimensional spectrum space can be thought of as a set
of unit vectors (with n, components) where the ith vector defines
the direction of a line in the n; dimensional space that best fits
the variations among the spectra while being orthogonal to the first
i — 1 unit vectors. The components are rank ordered according to the
amount of variation in the data set that they describe, and typically
one truncates the latent space at some value njyen < 1, such that
the dimensionality of the process is reduced.

A quasar PCA decomposition can be written as

sDR(ﬂ) = Shorm ((S) + ETA) ) (20)

where & is the 7jyen dimensional latent variable (commonly referred
to as the PCA coefficients) and A is the set of njyen PCA vectors or
principal components, each of which has n; spectral pixels, i.e. A;; is
the n, dimensional PCA vector corresponding to the ith component.

Davies et al. (2018c) argued that the dominant mode of variations
between quasar spectra are their power-law continua, which are more
naturally described by PCA decomposition in log space, motivating

Inspr(p) = InSporm + (Ins) + &7 A, (@3))

or equivalently

$DR() = Snorm [exp ((In's)) exp (§7A)] . (22)

where 7 = (Snorm, &1, &2, -oovs Enp)- We Will refer to these two
decomposition choices as PCA and InPCA, respectively.

Given that we have an estimate of the errors for our continuum
fits (equation 18), we also explore whether there is an advantage
to using a weighted PCA.” Whereas in standard PCA one performs
a singular value decomposition of the sample covariance, weighted
PCA instead decomposes a weighted covariance matrix to compute
the set of principal component vectors A (Delchambre 2015). For
our weighted PCA, we set the weights for each spectral pixel to be
the inverse variance defined in equation (18).

To summarize, there are four different variations of PCA that we
explore: standard (PCA), log PCA (InPCA), weighted PCA (WPCA),
and weighted log PCA (wInPCA).

3.2.2 Gaussian process latent variable model

Gaussian processes (GPs) are a supervised learning method for
solving regression and classification problems in a powerful non-
parametric probabilistic framework. A GPLVM (Lawrence 2005)
uses GPs for unsupervised learning tasks like DR or searching for

"We use the WPCA implementation available here: https:/github.com/
jakevdp/wpca.
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hidden structure in high-dimensional data. In the current context,
the GPLVM will act as a decoder, providing a probabilistic mapping
from the latent space variables & to the data space variables s. The
smoothness of this mapping is controlled by kernel functions whose
hyperparameters are fit during the training process. This is analogous
to GP regression, where given inputs X and outputs y, one chooses
a kernel and learns hyperparameters that best describe the mapping
from X to y. In the GPLVM, one is not given the latent variables
& (i.e. X), but is rather only given s (i.e. y). The latent variables
& representing each example in the training set must be learned
along with the kernel hyperparameters. It is in this sense that the
GPLVM acts a decoder, or equivalently a forward mapping from
latent space to data space. Once the latent variables that encode each
training instance and the kernel hyperparameters are learned, one can
evaluate the model, sgpLvm(£), at any location in the latent space.
This forward mapping is governed by GPs which are independently
defined for each dimension of the data space, which is to say that each
spectral pixel s, has its own GP (and associated hyperparameters)
which regresses & to produce s,. See Eilers et al. (2022) for a recent
application of GPLVMs for DR of quasar spectra.

In the canonical formulation of GPLVM (Lawrence 2005), the
covariance hyperparameters and point estimates for the unknown
latent variables are determined jointly, by optimizing the likelihood
of the data. But it is well known that the optimization required for
GP regression scales as O(n?) for a data set of size n, such that
applying canonical GPLVM to ‘big data’ is computationally pro-
hibitive. Hensman, Fusi & Lawrence (2013) showed how stochastic
variational inference (SVI; Hoftman et al. 2013) techniques can be
used to apply GPs to very large data sets by stochastically optimizing
over mini-batches of the data set. Building upon this, Lalchand,
Ravuri & Lawrence (2022) re-formulated the Bayesian incarnation
of the GPLVM (Titsias & Lawrence 2010) in an SVI framework
by using a structured doubly stochastic lower bound (Titsias &
Lazaro-Gredilla 2014) which enables training on very large data
sets.

We apply the Lalchand et al. (2022) implementation® of Bayesian
GPLVM, built in the gpytorch® GP framework (Gardner et al.
2018), to our quasar training set. The loss function optimized
in this formalism exploits the errors on the quasar continua that
were defined in equation (18). The training set is passed through a
scaler transformation to ‘whiten’ the data. Namely, the wavelength-
dependent mean, (s; ), and standard deviation, o; ;, of the training set
are computed by averaging over the sample of quasars. We rescale
the spectra s; using the transformation y, = (s — (5;.))/Omedian, and
correspondingly rescale their errors oy ;. Here, omedian 1S a single
number which is the median value of o, ;.1

3.2.3 Variational autoencoder

An autoencoder is an unsupervised learning method that uses an
artificial neural network to learn a latent space representation, or

8https:/docs.gpytorch.ai/en/latest/examples/045_GPLVM/Gaussian_
Process_Latent_Variable_Models_with_Stochastic_Variational Inference.
html

“https://gpytorch.ai

9 A more common whitening procedure would be to adopt y, = (s5 — (s1))/
05,5, Where oy is the standard deviation of each feature (wavelength).
However, this transformation changes the shape of the spectra that are fit by
the GPLVM by effectively downweighting larger emission-line fluctuations
and upweighting smaller continuum variations. We found that scaling by a
single wavelength independent number, Omedian, Yielded better results.
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encoding, of a data set. The essential property of autoencoders are
their architecture, which consists of an encoder that maps the input
into the code, and a decoder that maps the code to a reconstruction of
the input. The code or equivalently the latent variables, &, correspond
to the output of a specific layer of a multilayer perceptron (MLP).
Typically, the encoder passes the inputs through a sequence of
gradually smaller hidden layers of an MLP until hitting a bottleneck
which has 7, neurons. The decoder then passes the code back up
through gradually larger hidden layers to generate the reconstruction
of the input. When the latent space has dimensionality smaller than
the data space, autoencoders can be used for DR. A VAE (Kingma &
Welling 2013) is similar in spirit to an autoencoder, but it essentially
replaces the deterministic decoder, which generates the data from
latent variables s(&), with a probablistic decoder p(s|£), and likewise
for the encoder p(&|s). One application of the VAE is to address
a limitation of autoencoders, which is that their resulting latent
space could have a very complex structure, i.e. small changes in
latent variables could produce large variations in the data, and/or
the PDF of the latent variables for an ensemble of data could be
highly multimodal. By virtue of their design, VAEs tend to produce
better behaved latent space PDFs. Specifically, the B-VAE is an
implementation which explicitly aims to disentangle the latent space
manifold via a tunable parameter B (Higgins et al. 2017), which
sets the relative weighting of two competing loss functions. The
first loss term is a standard reconstruction loss (mean squared error;
MSE) typically adopted in autoencoders, whereas the second is the
Kullback—Leibler (KL) divergence between the conditional encoder
distribution p(&|s) and an isotropic diagonal Gaussian distribution
with unit variances.

We implemented a B-VAE in the pytorch machine-learning
framework. The same scaler transformation was applied to the
training data as was used for the GPLVM, and the MSE loss was
generalized to include our estimates for the continuum fitting ‘error’
(see equation 18).

The design of the autoencoder architecture is as follows. The
encoder constitutes an MLP with two hidden layers. The first layer
is non-linear, and maps the input spectral pixels to 1024 neurons
passing through a SELU activation. Then two distinct linear layers
convert these 1024 outputs into the mean, u, and log variance, In a2
(both have size njyeqn) of the normal distribution which forms the
probalistic description of the latent variables underlying the VAE.
During training or evaluation, a sample from this normal distribution
produces a latent space vector that is then passed through the decoder.
Our decoder constitutes an MLP with two linear layers, one that maps
the latent space vector to 1024 outputs, and another that maps these
1024 outputs to the n; data vector.

Following standard practice, we optimized to determine the MLP
weights via stochastic gradient descent using the Adam optimizer
with weight decay. We adopted a 90—10 per cent split of the 14 781
training spectra, using 90 per cent for training and 10 percent for
validation, where the validation set was used to evaluate performance
on data unseen during training and mitigate against overfitting. The
loss was computed from a mini-batch size of Npyen, = 128 training
set quasars per optimizer step, or epoch. To prevent overfitting, the
validation set loss was also computed each epoch, and the best model
was chosen to be the one that achieved the smallest value of the
validation set loss. A learning rate of 10~ was used and we employed
early stopping, which is to say that we stopped training if the
validation loss did not improve after 100 epochs. Hyperparameters
were tuned via trial and error and with a more rigorous grid scan
strategy. Surprisingly, we found that a very small value of 8 = 10~
produced the best results, which reduces the influence of the KL loss
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term. Nevertheless, visual inspection of the latent space indicated
that it was not significantly multimodal.

3.3 Comparison of DR algorithms

In this subsection, we compare and contrast the performance of
the DR algorithms discussed in the previous section. Since our
ultimate goal is to fit models to quasar spectra, the quantitative
metric that we adopt for evaluating DR algorithm performance will
be an estimate of the variance of the relative reconstruction error
& defined in equation (2). How does one determine the spr(7)
representation of the spectrum s which appears there? Whereas
for PCA and autoencoders, the inverse function £(s) is tractable
and easy to evaluate, the same is not true for GPLVMs, for which
determining the encoding of a new test data point requires additional
assumptions (Lawrence 2005). Since our specific application of DR
is the construction of a parametric model to fit quasar spectra, the
most natural definition of » is to fit the function spg () to the spectrum
s. That is, for each spectrum in our test set, we determine the value
Nwue that minimizes the mean square error

MSE = (s — spra(m)” (23)

A

where the ‘true’ subscript denotes that this represents the best DR
representation of the quasar continuum for the hypothetical case
where we directly fit a noiseless spectrum with no IGM absorption.
Note that the sum in equation (23) weights each spectral pixel equally
in the MSE loss computation. Indeed, the formally correct choice for
the relative weighting of the terms in the equation above is rather
subtle'! and here we adopt a uniform weighting for simplicity.

As previously discussed, the hyperparameter governing the dimen-
sionality of the latent space, 711yen, S€ts the number of free parameters
NpR = Migene + 1, and generally the variance of § (equation 2) will
decrease with increasing njyen, because the DR model is more
flexible. We trained each of the aforementioned DR algorithms
on our training set data for njyen from 1 to 25 in unit steps from
1-15 and then in steps of two from 15-25. After training, we
fit the models to both the 778 spectra in our autofit test set (see
Section 3.1.1) and the 121 hand-fit continua in our hand-fit test set
(see Section 3.1.2). Fig. 2 shows examples of our fits from the PCA,
GPLVM, and B-VAE algorithms for njyen = 5 for five randomly
selected quasars from the autofit test set, where the lower set of panels
shows &.

We define a simple summary statistic for the purposes of compar-
ing the different DR algorithms. The covariance, A, of the relative
reconstruction error (see equation 4) is defined by

Asr = {8 — (808w — (8)2)), (24)

where the angle brackets denote an average over the members of the
test set. The variance of § as a function of wavelength is given by the

Our formalism in Section 2 suggests that one should take the covariant
relative reconstruction errors into account when fitting for 5 (see equation 4),
which would amount to maximizing a likelihood implied by equation (4)
which would differ markedly from the uniform weighting in the MSE in
equation (23). There is thus a chicken-and-egg problem in that, formally
the likelihood one should maximize to fit for y depends on the mean, (§),
and covariance, A, of the relative reconstruction error (equation 4), which
can only be determined by analysing the distribution of residuals § of an
ensemble of such fits. For this reason, we adopt the simple approach of fitting
for » with uniform unit ‘errors’ as in equation (23) and define § to be the
relative reconstruction error resulting from those fits.
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Figure 2. DR reconstructions of five randomly selected quasars from our the SDSS test set for n1yent = 5. Upper panels show the quasar continuum s; where
the black curves are the autofit continuua and the blue, yellow, and green curves are the DR reconstructions for the PCA, GPLVM, and S-VAE, respectively.
The lower panels show the relative reconstruction errors, 8, , defined in equation (2), where the horizontal dotted line indicates the zero level.

diagonal elements of the covariance matrix A;;. As our metric for
comparing DR algorithms, we adopt the root-mean-square variation
per spectral pixel with the mean computed over the N, spectral pixels
in the wavelength interval [Apin, Amax]

. 12
1 max

RMS(Amins Amax) = | — A . 25

( ) ( N, E u) (25)

Amin

We consider a blue region [Amin, Amax] =[1185 A, 1260 A] covering
the continuum relevant to the proximity zone and IGM damping

MNRAS 539, 2621-2653 (2025)

wing, and a red region [Ayin, Amax] =[1260 A, 20004] constituting
the rest of the spectrum.

Fig. 3 shows DR algorithm performance as a function of 7jent
for the autofit test set (left) and the hand-fit test set (right) for
the blue wavelength range, and Fig. 4 is the analogous plot for
the red wavelengths. These plots generalize the canonical explained
variance versus number of components plots that one constructs in
applications of PCA that are used to determine which dimensionality
to compress down to. All of the DR algorithms show the expected
trend of decreasing RMS(A iy, Amax) With increasing 7y, — smaller
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Performance for handfit continua; 1185A <A < 1260A
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Figure 3. Comparison of DR algorithm performance for ‘blue’ pixels in the wavelength range 1185 A < A < 1260 A for the six DR algorithms considered.
The curves show the summary statistic RMS(Amin, Amax) (s€€ equation 25), for the relative reconstruction error, 8, (see equation 2 or the lower panels of the
examples in Fig. 2) as a function of latent dimension. Left panels show results when the DR algorithms were fit to the 778 autofit continua in the SDSS test
data set, whereas the right panel shows the same for the 121 hand-fit continua. Comparison of the left and right panels indicates that the behaviour of the DR
algorithms does not depend on the test set used. Furthermore, the fact that the level of relative reconstruction error as a function of latent dimension is very
nearly the same for autofit and hand-fit continua, suggests that the automated algorithms do not add a significant amount of extra ‘noise’ to the continua.
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Performance for handfit continua; 1260A <A < 2000A
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Figure 4. Comparison of DR algorithm performance for ‘red’ pixels in the rest-frame wavelength range 1260 A < A < 2000 A for the six DR algorithms
considered. Curves and panels are the same as Fig. 3. The difference in amplitude as compared to Fig. 3 likely occurs because the ratio of pixels in emission
lines to pixels in the continuum is smaller in the 1260 A < A < 2000 A wavelength range, as compared to 1185 A < A < 1260 A, where the Lya 11216 A,
NV 1240 A, and SinA1260 A emission lines constitute a large fraction of the pixels and inflate the variation.

reconstruction errors will always result from a more flexible model.
The most striking conclusion that one draws from Figs 3 and 4 is
that simple linear DR, i.e. standard PCA or InPCA, performs as
well or better than the more sophisticated ML based non-linear DR
techniques. Furthermore, this conclusion holds for both the autofit
(left panels) and hand-fit (right panels) test sets, and the comparable
values of RMS(Apin, Amax) achieved indicates that both continuum
test data sets have comparable levels of noise. Finally, there appears to
be no obvious advantage to the variations of PCA that we discussed,
standard PCA performs just as well as InPCA or weighted PCA.
These results motivate us to adopt PCA as our DR algorithm, and to
use the larger autofit test set continua for the construction of mock
data in the rest of this work.

How should we choose the value of the 7y hyperparameter?
As is often the case with DR algorithms, the rate of decrease of
the reconstruction error for a unit increment of 7, varies with
Nyaene- All curves decrease steeply around njue, of a few, and all
flatten out at the largest values of nj,en. Such behaviour is expected
on physical grounds — the steep decrease occurs as one approaches
the number of parameters required to capture the salient features of
quasar spectra, whereas the flattening occurs when this number is
significantly exceeded. At the largest values of njyen, incremental
decreases in reconstruction error likely result from fitting noise in
the autofit or hand-fit continua, or ‘intrinsic noise’ in the quasar
continuum stochastic process, marginally better with a more flexible
model. Often in the DR literature, one sets the nj,., hyperparameter

MNRAS 539, 2621-2653 (2025)
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to the location of a ‘knee’ in such plots where the slope begins to
flatten. Whereas for red wavelengths, Fig. 4 shows the reconstruction
error starts to saturate around 2.5-3 per cent around njyen 2~ 6, for
blue wavelengths the curves in Fig. 3 exhibit a more gradual trend
with njaen With 2.5-3 per cent errors reached around 7y 2~ 10. It
is possible that the red wavelengths compress harder because the
approximately power-law continuum of quasar spectra contributes
relatively more pixels to this wavelength range, whereas the blue
wavelengths are dominated by strong emission lines complexes from
Lya 1216 A, NV 1240 A, and ST 1260 A that exhibit more intrinsic
variation in shape. Another possibility is that IGM absorption
blueward of Lyo results in more noise in the continuum estimates,
making it harder to describe and compress the blue wavelengths. Our
companion paper quantifies the variation in the precision with which
the two IGM damping wing parameters (volume-averaged IGM
neutral fraction (xyp) and the quasar lifetime #q) can be recovered
as a function of njyen (Kist et al. 2025). There, adopting the same
autofit continuum test data set used here for the mock spectra (see
Section 4.2), it is found that parameter precision does not increase
significantly beyond njyen > 5, which motivates us to use fjyent = 5
as our fiducial value for the rest of this paper, corresponding to
npr = 6 after adding the additional normalization parameter, Spomm.

3.4 Rebinning onto coarser wavelength grids

As discussed in Section 3.1.1, our DR test and training set spectra
cover from 1170 — 2040 A with dv = 140 kms~! pixels resulting
in n; = 1190 total spectral pixels. However, these continua are
smooth and can be interpolated onto a finer grid to construct mock
observations of quasars with a finer spectral sampling. Whereas a
spectrum of a high-z quasar might have fixed spectral resolution
(given by the instrument full width at half-maximum, FWHM in
kms~!) and spectral sampling (the number of pixels per FWHM),
for the purposes of IGM damping wing analysis, there are several
reasons why rebinning the spectrum onto a coarser wavelength grid
is advantageous. Note that here rebinning refers not to interpolation,
but rather to averaging the flux values of finer grid pixels that land
within a given low-resolution pixel. First, at a typical resolution
of FWHM = 100 km s~! a uniform velocity grid would result in
> 103 pixels, making the matrix computations in the likelihood
in equation (17) costly to evaluate during HMC sampling. A fine
velocity grid is only required blueward of rest-frame Ly« where there
are narrow Lyo forest absorption lines, whereas redward of the Ly«
line, the smooth damping wing signature and the broad emission
lines imply that a coarse velocity grid will suffice. Second, as we
discuss further in Section 5, adopting a Gaussian form (equation 10)
for the transmission PDF, P(¢|6), in quasar proximity zones is
an approximation which compromises the fidelity of the inference
with the likelihood in equation (17). However, rebinning a high-
resolution spectrum onto a coarser wavelength grid, ameilorates the
problems with the inference, because it follows from the central limit
theorem that the averaging involved in rebinning Gaussianizes the
non-Gaussian Lyo forest transmission stochastic process, making
the Gaussian approximation more valid.

Motivated by these considerations, one can consider ‘hybrid’
wavelength grids which have a distinct velocity grid with size
dvppye, for blue wavelengths A < Appe—red, Where it may be neces-
sary to resolve narrow absorption features in the proximity zone,
concatenated with a coarse uniform grid with pixel size dv,q for red
wavelengths A > Ape—req for which the damping wing absorption
and intrinsic quasar spectrum are smooth. Whereas such hybrid grids
are considered in our companion paper (Kist et al. 2025) to assess the
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impact of spectral resolution on the resulting measurement precision,
in this paper we simply adopt dv = dvpe = dvred = 500km s~!
throughout.

3.5 Properties of the PCA decomposition

Having arrived at PCA with n1jyen = 5 as our preferred DR algorithm
we now briefly describe and quantify the properties of the decompo-
sition. Fig. 5 shows the mean spectrum (s;) and the njyen = 5 PCA
basis spectra. Recall that our approach differs from previous work
using PCA to predict quasar continua (e.g. Suzuki et al. 2005; Paris
et al. 2011; Eilers et al. 2017a; Davies et al. 2018c; Durovéikova
et al. 2020, 2024; Bosman et al. 2021) in that we do not construct
separate red- and blue-side PCA decompositions, but rather a single
PCA decomposition of the entire spectral range (the blue—red split in
Fig. 5 is only to better visualize the blue side). PCA basis vectors are
sorted in terms of the amount of variance they explain, and we see that
the first component A, describes correlated variation in the strengths
of various broad emission lines, with the subsequent components
encoding more subtle correlated variations in shape.

We now compute the mean, (§), and covariance, A, of the
relative reconstruction error (see equation 4) required to evaluate the
likelihood in equation (17). In general, these must be computed from
the test set data on the wavelength grid adopted (i.e. see the rebinning
discussion in Section 3.4) for the IGM damping wing fits. Here,
we show results for the wavelength grid used for the mock quasar
spectra generated in this paper (see Section 4.2), which extends
from 1185 — 2000 A with a uniform pixel size of dv = 500 kms™!,
resulting in n;, = 313 pixels. To obtain the § field we interpolate each
test set spectrum s onto this wavelength grid using a cubic spline and
fit for spr(n). As we discussed in the previous section, we fit for §ye
by minimizing the MSE loss function in equation (23). Adopting the
uniform weighting of the spectral pixels that we discussed there,'?
we fit the PCA with npr = 6 (i.€. njyent = 5 plus the normalization
parameter s,o,) to each member of the autofit and the hand-fit test
sets.

Fig. 6 shows the mean () (dashed curves) and standard deviation
os = A Kz (solid curves; see equation 24) of the relative reconstruc-
tion error evaluated from the autofit (red) and hand-fit (blue) test sets.
For the autofit test set, we see that the fits are unbiased — the mean is
consistent with zero to within ~ 0.1 per cent. The factor of ~ 2 — 4
larger variations in the mean for the hand-fit test set results from the
factor of ~ 6 times fewer quasars and as a result possibly increased
sensitivity to outliers. The results for os are consistent between
the two sets and indicate typical relative reconstruction errors of
~ 4 — 5 per cent, which are relatively independent of wavelength,
although larger errors occur in the vicinity of the strong emission
lines, particularly the C1v A1549 line.

Finally, we can visualize the full covariant structure of & by
computing the correlation matrix

Ay
VAR

which is shown in Fig. 7 computed from the autofit test set.
One clearly sees that the fit residuals are highly correlated for

Corr(A),,r = (26)

12Note we use a uniform grid with dv = 500 kms~ in this paper so each
pixel receives the same weight. However, on a hybrid wavelength grid with
different blue and red pixel scales, a naive uniform weighting implies the
more numerous finer blue-side pixels would receive a higher relative weight.
To equally treat all spectral regions, one would then need to instead upweight
the red pixels by the factor dvreq/dvplue-
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Figure 5. PCA vectors from the PCA decomposition of 14 781 SDSS quasar spectra for njyen: = 5. The upper panel labelled (s) represents the mean spectrum,
while the lower panels show the principal components ordered in terms of the amount of explained variance from top to bottom. Strong broad emission lines in
the quasar spectra are indicated by the vertical dashed lines and labelled in the upper panel.
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Figure 6. Moments of the relative reconstruction error as a function of wavelength for the PCA model with njyene = 5. The lower panels show the mean (§)
(dashed) and standard deviation o5 = A;f (solid) of the relative reconstruction error evaluated from the 778 spectra in the autofit (red) and 121 spectra in the
hand-fit (blue) test sets, respectively. For reference, the upper panel shows the mean quasar spectrum (s) constructed from the autofit test set with prominent

emission lines labelled.
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Figure 7. Correlation matrix of the relative reconstruction errors for the
PCA model with njaent = 5 evaluated from 778 autofit test set spectra. The
mean quasar spectrum (s) constructed from the autofit test set is shown for
reference and prominent emission lines are labelled.

neighbouring pixels as is also apparent from the lower panels
showing the relative reconstruction error, §, in Fig. 2. However,
whereas correlations are typically positive in continuum regions, in
the vicinity of the stronger emission lines like Ly and C1v, one
sees oscillation between correlation and anticorrelation at smaller
wavelength separations. Such behaviour is expected since in general
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there is more small-scale wavelength structure in the emission
lines than in the smoother continuum. As for the correlations of
residuals between different emission lines, the structure appears
rather complex. For example, residuals around the peak of C1v
are anticorrelated with the Al m—Si11]-C 11] complex at ~1900 A,
whereas for pairs of pixels from the C1v and Lya-N V emission-line
complex, one observes both correlated and anticorrelated residuals.

Fig. 8 allows us to visualize the reliability of our approximation
that the distribution of relative reconstruction errors is a multivariate
Gaussian (see equation 3). The left and centre panels show the distri-
bution of g, for two different wavelengths relevant to studies of IGM
damping wings, A = 1217.90 A (left) and A = 1230.35 A (centre)
for the 778 spectra in our autofit test set. The right panel shows the
distribution of the quantity

x=B7'@— (&), 27

where B = V - diag(+/1), is the product of the matrix of eigenvectors,
V, of the covariance matrix A, and the diagonal matrix, diag(~/1),
formed from the square root of the vector of eigenvalues A of A. For
a stochastic variable described by a general multivariate Gaussian
distribution (i.e. equation 3), the transformed variable x will be a
draw from A(x;0,I) where 0 is a vector of zeros and I is the
identity matrix. The histogram shows the distribution of B for all
313 spectral pixels for the 778 autofit test set spectra. Inspection of
the distribution x marginalized over the spectral pixel dimension,
generalizes the intuitive method of using (x — p)/o to assess the
Gaussianity of a stochastic variable x, to the case of a multivariate
Gaussian distribution with a non-diagonal covariance matrix. The
panels in Fig. 8 all paint a similar picture for the distribution of
relative reconstruction errors. Namely, the distribution generally
follows a Gaussian shape, but has stronger tails. These strong tails
result in larger variance estimates than implied by the values in the
‘core’ of the distribution.
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Figure 8. Distribution of relative reconstruction errors determined from fits to 778 autofit test set spectra. Left and centre: histograms show the distribution
of §, for two different wavelengths relevant to studies of IGM damping wings, A = 1217.90 A (left) and A = 1230.35 A (centre). Red curves show a normal
distribution (8, | 14, o) with mean and standard deviation set to that measured from the distribution. The histograms appear consistent with Gaussianity but with
stronger tails. Right: the histogram shows the distribution of transformed residuals x (see equation 27) for the full set of spectral pixels and quasars. The green
curve shows a zero-centred unit variance normal distribution A/(x |0, 1) for comparison. If the relative reconstruction errors & follow a multivariate Gaussian
distribution (equation 3), then the distribution of x should follow the green curve. Similar to the left and centre panels, the histogram appears consistent with

Gaussianity but with stronger tails.

4 SIMULATING DAMPING WING
OBSERVATIONS

This section describes our procedure for generating mock z > 7
quasar spectra with IGM damping wing absorption. First, we
introduce the IGM damping wing simulations used to generate
transmission skewers, then describe how these skewers are combined
with our autofit continuum test set and a noise model to create realistic
mock spectra. While we adopt a specific physical model to generate
the reionization topology and use a hydrodynamical simulation to
describe the IGM opacity, we note that our approach does not explore
uncertainties in the underlying reionization model or the impact
of galaxy formation physics on the IGM opacity. We will discuss
these limitations further when we summarize our conclusions in
Section 6.

4.1 Damping wing simulations

We generate IGM transmission skewers following the procedure
developed in Davies et al. (2018b) to simulate spectra of quasar
proximity zones with IGM damping wing absorption and quasar
lifetime effects. Here, we briefly summarize the most important
elements and refer the reader to Davies et al. (2018b) for additional
details. Owing to the complexity of the problem, this is a hydrid
model that combines three main components: (1) a high-resolution
density field from a large volume cosmological hydrodynamical
simulation, (2) a reionization topology generated from a seminu-
merical model of reionization, and (3) 1D ionizing RT to treat
the impact of the quasar’s ionizing radiation on its surrounding
IGM.

Density, velocity, and temperature skewers are taken from the
z = 7.0 output of a Nyx hydrodynamical simulation (Almgren et al.
2013; Luki¢ et al. 2015) in a box with side equal to 100 2~'cMpc
run with a 4096 baryon grid and 4096° dark matter particles. The
skewers were extracted along an axis of the simulation domain and
were chosen to originate on the 200 most massive dark matter haloes,
Mo 2 2 X 10! My, identified with a custom halo finder adapted
specifically to grid hydro codes (see Sorini et al. 2018, for additional
details).

To compute a realistic topology of reionization around massive
quasar-hosting haloes, we use a modified version of the 21CMFAST!?
code (Mesinger, Furlanetto & Cen 2011), with an improved treatment
of the ionizing photon mean-free path (Davies & Furlanetto 2022). As
the Nyx simulation volume is too small to characterize the distribu-
tion of ionized/neutral regions around the rare massive haloes hosting
quasars, we compute the ionization field in a larger volume, 400
cMpc on a side. The seminumerical model starts with cosmological
initial conditions using the Zel’dovic approximation (Zel’Dovich
1970) generated on a 20483 grid, and then produces evolved density
and ionization fields output at a lower resolution of 5123. We keep
all parameters that govern the reionization topology fixed except
the ionizing efficiency, ¢, which sets the total number of ionizing
photons emitted per collapsed baryon. Increasing ¢ decreases the
fraction of the volume that is neutral and vice-versa. By tuning ¢,
we generate ionization fields with global volume-averaged neutral
fractions (xg1) = 0.05 — 0.95, in steps of A(xgy) = 0.05. The 21cMm-
FAST code constructs dark matter haloes from the initial conditions
following the approach of Mesinger & Furlanetto (2007). Starting
at the location of the 500 most massive haloes My, = 3 x 10'! in
the 400 cMpc domain, we randomly sampled them to extract 1200
randomly oriented skewers of the neutral fraction, xy, for each value
of the parameter (xyp). We trivially add a completely ionized model,
(xg1) = 0.0, and a completely neutral model, (xy;) = 1.0, by setting
Xy to a constant everywhere to arrive at 21 total reionization models
spanning the range (xyy) = 0.0 — 1.0.

To model the impact of the quasar radiation on the IGM, we
perform ionizing RT using an updated version of the 1D RT code
described in Davies et al. (2016), which computes the time-dependent
evolution of the ionized fractions of hydrogen and helium, as well
as the gas temperature. This time evolution is governed by the
quasar’s radiative history, and we assume a so-called light bulb light
curve parametrized by the quasar lifetime, fq, whereby the quasar
turned on at some point fg in the past, and has been shining at
constant luminosity ever since. The ionizing photon output from the
quasar was computed using the Lusso et al. (2015) spectral energy

Bhttps://github.com/andreimesinger/21cmFAST
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distribution normalized to agree with the photometric measurements
of the quasar. In this paper, we use models constructed for the quasar
ULAS J1342+40928 at z = 7.54, which has an apparent J-band AB
magnitude of Jog = 20.3 (Bafados et al. 2018).

To generate IGM transmission skewers originating from quasars,
we use the density and temperature fields from the Nyx simulations
and the xy; skewers from the seminumerical ionization topology
as initial conditions for the RT code. For ionized regions which
have values of xy; = 0 in the seminumerical ionization skewers, we
initialize to xy; ~ 1073 by adopting a fixed amplitude of the UVB
photoionization rate, I'y;. The IGM temperature was initialized to
the values from the Nyx simulation in ionized regions, whereas we
assume a temperature of 7 = 2000 K inside neutral regions. For each
value of the global IGM neutral fraction (xyj) parametrizing the
reionization topology, we ran RT calculations using 1200 distinct
random Nyx skewers (six per halo for 200 Nyx haloes), and
associated them with each of the 1200 seminumerical xy; skewers.
The RT was computed on a uniform logarithmic grid of quasar
lifetimes spanning from log,,(fq/yr) = 3 — 8 in steps of A log,,(tq/
yr) = 0.1 dex (this grid of RT computations were generated in
Davies et al. 2019) and IGM transmission skewers were computed
over the velocity range —10, 000kms™' < Av < 10,000kms~! on
a uniform velocity grid with 5000 pixels of size dv = 4kms~!. This
was done by performing the optical depth velocity integral using the
neutral hydrogen density and temperature outputs from the RT, the
peculiar velocity field from the Nyx simulation, and weighting by
the Voigt line profile that describes the frequency dependence of the
Ly absorption cross-section. Because the Nyx simulations do not
have star or galaxy formation subgrid recipes, hydro grid elements in
collapsed structures can evolve to have unrealistically high densities,
which would not be present in a simulation with galaxy formation
prescriptions. These high overdensities are problematic for several
reasons. First, the RT can get stuck modelling self-shielding from
such high-density systems, because the convergence criteria push the
adaptive time-step to very short values. Second, when analysing IGM
damping wings, objects with strong proximate absorbers (PDLAs or
PLLSs), are excluded from analysis, so it is sensible to do the same
for the simulations. To mitigate the undesired effects of unphysically
large densities, we omit the first 35 pkpc from consideration when
extracting the density, temperature, and velocity fields from the Nyx
simulation, and we clip the gas overdensity to always be below
200, i.e. roughly the virial overdensity. Nevertheless, even for the
combination of model parameters where proximate DLAs are least
expected (xg1 = 0.0 and log,(tq/yr) = 8), we still found that a small
fraction (17 of 1200) of the simulated IGM transmission spectra
exhibited proximate DLA absorption,'* which we chose to exclude
from consideration for all models. Thus, the final output of our IGM
transmission simulations is a set of 1183 transmission spectra at
each location of a coarse 21 x 51 grid corresponding to the two
IGM parameters, 8 = ((xu1), log,((tq/yr)). Figures illustrating our
numerical simulation procedure can be found in Davies et al. (2018b).

To evaluate the likelihood in equation (17), we require the mean,
(¢(@)), and covariance, C,() of the proximity zone Lyw transmission
as a function of model parameters 6 = ((xy1), log,,(tq/yr)). Fig. 9

14These were identified as skewers with transmission deviating by more than
2 per cent from unity at a pixel 1000 kms~! redward of the quasar redshift
for the model with xy1 = 0.0 and log;y(tq/yr) = 8. This model choice is
conservative, since it is least likely to exhibit damping wing absorption both
because the IGM is reionized and the longest quasar lifetime maximizes the
likelihood of photoevaporating proximate absorbers.
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Figure 9. Mean transmission and covariance structure of the proximity zone
Ly« transmission field ¢ evaluated from the 1183 transmission spectra for
a model (xy1) = 0.50 and log;((tq/yr) = 6 on a velocity grid with dv =
500 kms~!. Top and left panels show the mean transmission (¢) (black)
and its 1o variation 4/diag(C;) (orange), whereas the 2D image shows the
correlation matrix with the level of correlation indicated by the colour bar.
The wavelength of Lye at line centre, 1215.67 A, is shown by the vertical
dotted line. The smooth coherent IGM damping wing signature results in
highly correlated transmission fluctuations redward of Lyw; whereas, for
1 < 1215.67 A, the correlations are smaller owing to Lya forest fluctuations
in the proximity zone, although they are not insignificant.

illustrates these quantities at the wavelengths relevant for IGM
damping wings on our velocity grid with dv = 500 kms~! pixels
for a model with (xy1) = 0.50 and log,(tq/yr) = 6. The top and left
panels show the mean transmission (¢) (black) and its 1o variation
+/diag(C;) (orange). The covariant structure of the transmission
can be visualized via the correlation matrix shown in the 2D
image, computed from C; (see the definition in equation 26). The
smooth coherent IGM damping wing signature results in highly
correlated transmission fluctuations redward of Lya; whereas, for
A <1215.67 A, the correlations are smaller owing to Lya forest
fluctuations, although not insignificant.

4.2 Creating mock quasar spectra

In this section we describe our procedure for generating realistic
mock quasar spectra with IGM damping wings. As described in
Section 4.1, we focus on models of the quasar ULAS J1342+4-0928
at z = 7.54 with Jag = 20.3. The simulated spectra cover the rest-
frame (observed-frame) wavelength range 1185 — 2000 A (10120 —
17080 10\). As discussed in Section 3.4, it is advantageous to rebin
the spectra from the native sampling of the simulations onto a
coarser wavelength grid with dv =500 kms~'. We assume ob-
servations at a spectral resolution described by a Gaussian line-
spread function (LSF) with FWHM = 100 kms~'. To forward
model the impact of spectral resolution and rebinning onto the coarse
dv = 500 km s~! grid, we convolve our ensemble of 1183 x 21 x 51
IGM transmission skewers (1183 skewers, 21 x 51 models) defined
on the simulation spectral grid dvg,s = 4 km s~!, with this Gaussian
LSF and then rebin them onto the coarse wavelength grid. Mock
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quasar spectra are generated by randomly selecting a continuum
from our 778 autofit test set, cubic spline interpolation of the
continuum onto the coarse wavelength grid, and then multiplying
by a randomly selected resolution convolved and rebinned IGM
transmission skewer.!®

We simulate observational data collected with a ground-based 8-
m class telescope with a hypothetical instrument with a constant
throughput of 30 per cent. To correctly model the noise, we used the
SKYCALC_IPY'® PYTHON package to generate realistic models of the
sky background and atmospheric transmission, which are used to
construct a full spectrum simulator including telluric absorption and
noise contributions from object photons, sky background, and detec-
tor read noise (assumed to be four electrons per dv = 500 kms~!
spectral pixel). We tuned a hypothetical exposure time to achieve a
median signal-to-noise ratio of S/N = 10 per 100 km s~! velocity
interval, computed over the telluric absorption free observed frame
(rest-frame) wavelength range 11750 — 13300 A (1376 — 1557 A).
This in turns allows us compute the correct relative contributions of
photon counting and detector read noise to the noise budget, resulting
in a realistic noise vector o. Multiplying this noise vector into a
random draw from a unit variance Gaussian distribution, generates
a realistic realization of heteroscedastic noise (due to OH sky lines
and telluric absorption features), which is then added to the mock
quasar spectrum. Three examples of mock quasar spectra generated
via this procedure are shown in Fig. 10.

5 INFERENCE RESULTS

In this section, we present the results from statistical inference
performed on the mock EoR quasar spectra that were introduced
in Section 4.2 using the new likelihood we derived in Section 2
(see equation 17). First we discuss how we use HMC to sample the
posterior distribution, then we describe the coverage test we perform
to assess the reliability of our statistical inference. Our inference
turns out to be overconfident and thus does not pass the coverage
test, but we describe a procedure that reweights the HMC samples
to remedy this problem and thus perform reliable inference. After
showing examples of our inference at work, we build intuition for
why our inference fails the coverage test. We conclude by quantifying
how well we recover the underlying quasar continuum and compare
the accuracy of our reconstructions with past work.

5.1 Hamiltonian Monte Carlo

HMC (Duane et al. 1987) is a powerful variant of the traditional
Markov Chain Monte Carlo (MCMC) algorithm for sampling proba-
bility distributions in high dimensions (see e.g. Betancourt 2017, for
areview). Based on a powerful analogy with Hamiltonian dynamics,
HMC introduces auxiliary momentum variables that interact with
the target variables representing the samples from the distribution of
interest. HMC numerically integrates the equations of Hamiltonian

I5Note that the two operations, (1) multiplication of the full-resolution
IGM transmission with the continuum, and (2) convolution of the resulting
spectrum with the LSF and rebinning do not formally commute. The
correct order is to multiply by the continuum first and then convolve and
rebin, but the differences are negligible. We choose to convolve and rebin
the IGM transmission skewers first, and then multiply by the continuum
afterward because the expensive convolution and rebinning operations can
then be performed only once in pre-processing, dramatically speeding up all
downstream computations.

19https://github.com/AstarVienna/skycalc_ipy
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dynamics, and then interleaves Metropolois—Hastings steps to accept
or reject the proposed target states ensuring that detailed balance is
satisfied. Compared to MCMC, HMC capitalizes on the gradients
of the log-likelihood, making it more efficient for sampling in
high-dimensional spaces and handling correlated target variables.
This advantage enables HMC to generate distant proposals more
effectively, leading to reduced autocorrelation in samples, better
performance for multimodal distributions, and faster convergence.

The main challenge of using HMC is that it requires gradients
of the log-likelihood function with respect to the model parameters,
which can be challenging or costly to compute. Gradients can be
computed in several ways: by numerical approximation using finite
differences, through symbolic manipulation of analytic expressions,
or via automatic differentiation (AD; e.g. Baydin et al. 2018),
a programmatic application of the chain rule that yields exact
derivatives at machine precision by tracing the operations in a
computation. In our case, we rely on AD, which yields exact gradients
for arbitrary compositions of differentiable operations and scales
efficiently even in high-dimensional parameter spaces. Modern AD
frameworks automate this process, making it straightforward to ob-
tain derivatives even for complicated likelihood functions involving
matrix operations, linear algebra, and complex control flow. The
introduction of AD environments in PYTHON such as JAX (Bradbury
et al. 2018), makes exploiting AD to compute the required gradients
for HMC straightforward.

We developed PYTHON software to compute an automatically
differentiable version of the likelihood in equation (17) in JAX.
For the HMC, we use the No-U-Turn Sampler (NUTS; Hoffman
& Gelman 2014) variant of HMC implemented in the JAX-based
NUMPYRO (Bingham et al. 2018; Phan, Pradhan & Jankowiak
2019) probabilistic programming package in the PYTHON module
numpyro.infer.NUTS. The NUTS sampler was run with four
chains of 1000 samples, each with a warmup phase of 1000 samples,
using the ‘vectorized’ chain option. The NUTS algorithm builds a
binary tree that is used to take forward/backwards ‘directional’ steps
to explore the target posterior using gradients to guide it towards
the highest probability regions. The max_tree_depth parameter,
which sets the size of this binary tree, was set to 10 (i.e. up to
a maximum of 1024 steps for each iteration). As alluded to in
Section 3.4, the run time is a strong function of the number of
pixels, npix, in the quasar spectrum, as this sets the dimensionality
of the matrices in equation (17), and several of the required matrix
operations scale as O(ngix). In general, there are order unity variations
in the runtime which depend on details of the warmup phase that
constructs the ‘mass matrix’ determining the Hamiltonian dynamics
in HMC, which in turn will depend on the parameter-dependent
shape of the underlying posterior distribution. The wavelength grid
adopted in this paper has n;, = 313. Running on a single thread of an
AMD EPYC 7763 2.45 GHz processor,'” the typical runtimes were
~ 2.5 hours. Running on a single thread of an Intel Xeon Gold 6126
2.6 GHz processor'® equipped with a NVIDIA GeForce RTX 2080TI
GPU (with 11 GB of memory), the typical runtimes were ~ 15 min.

5.2 Coverage testing

Let ® be the parameter vector of interest for a Bayesian inference
problem that will be applied to experimental data x. In the current
context of IGM damping wings, ® = {#, 5}, where 0 are the

7 These processors have 64 cores, 128 threads, and 256 MB of L3 Cache.
18These processors have 12 cores, 24 threads, and 19.25 MB of L3 Cache.
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Figure 10. Examples of inference performed on mock spectra for three different combinations of (xy1) and logo(tq/yr). Black shows the noisy mock quasar
spectra, orange the 1o spectral noise level, purple the true noiseless flux, green the true underlying continuum, blue the median inferred continuum model, and
red the median inferred damping wing model flux. Shaded regions indicate the 16th and 84th percentiles of the continuum model (blue) and model flux (red).
For the continuum model, the median and shaded regions incorporate parameter variations, continuum reconstruction errors, and spectral noise, whereas for the
model flux the incorporate these effects as well as IGM transmission fluctuations (see Section 5.5 for details). True model parameters are annotated in green,
whereas median inferred parameters and 16th and 84th percentile credibility intervals (determined from marginalized posteriors) are annotated in red. The
inferred constraints are those determined after the marginal coverage correction weights (which slightly dilate the contours) have been applied (see Section 5.4).
A corner plot illustrating the full 8D posterior for the mock with (xy1) = 0.96 and log;((tq/yr) = 5.88 in the upper panel is shown in Fig. 12 (also coverage

corrected).

astrophysical parameters and 5 are the DR parameters, and the
data x are the quasar spectrum f and its associated noise vector
o . Following Bayes theorem, the posterior distribution for @, given
experimental data x is
L(x|®)P(O
P(x)
where L(x|®) is the likelihood of the data given the model, P(®)
reflects our prior knowledge of the parameters, and P(x) is known as
the evidence, which is interpreted as a normalization constant since
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it is independent of the parameters @. If the inference procedure is
reliable, one expects that the probability o obtained by integrating
the posterior probability density in equation (28) over a volume V of
parameter space ©,

o= / P(O|x)dO (29)
corresponds to a true probability. In other words, that the parameter

space volume enclosed by the 68 per cent credibility contour contains
the true parameters 68 percent of the time under repetitions of
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Figure 11. Coverage test results determined from N = 100 mock spectra. Left: the black line shows the coverage C(«) of the marginal posterior distributions
P(0|f ;.o ), which empirically quantifies how often the true astrophysical parameters 6yue = ({XH1), log;((tq/yr)) lie within the ath credibility contour. The
red-dashed line shows the expected y = x curve that one would obtain for a perfect inference. The grey-shaded region shows the effective 1o error range on
C(a) determined from 16th and 84th percentile ranges of the binomial distribution. Given that C(«) lies everywhere below the red-dashed line, we see that our
pipeline systematically delivers overconfident inference. Right: coverage test results after enlarging the credibility contours by reweighting the HMC samples.
By construction, C(«) = «, indicating that on average the inference pipeline delivers reliable credibility contours.

the experiment, and analogously for all the other credibility levels.
However, this need not always be the case. Imperfections in an
inference procedure can cause the posterior distribution to exclude
the true parameters more or less often than indicated by the nominal
credibility contours, because the posterior is shifted, or too narrow
and hence overconfident, or too broad and hence underconfident, or
combinations thereof. Such imperfections can result from bugs in
an inference pipeline, or from an inappropriate choice of the prior,
or by adopting an approximate likelihood that fails to accurately
capture the statistical properties of the measurement process. In the
current context, we know that the likelihood in equation (17) is only
approximate, as discussed in Section 2, which motivates us to explore
its coverage.

The coverage probability, C(«), of a posterior credibility level o
is the fraction of the time that the true parameters lie within the
volume enclosed by the corresponding credibility contour under
repetitions of the experiment (see e.g. Sellentin & Starck 2019).
It provides a mathematically rigorous method to quantify whether a
posterior distribution delivers reliable probabilities. If an inference
procedure is robust, then the coverage probability should equal to
the posterior credibility for every level. This approach of comparing
coverage probabilities to posterior credibility levels is referred to as
an ‘inference test’ or a ‘coverage test’.

We conduct a coverage test following the algorithm described in
more detail in Appendix A (see also Wolfson et al. 2023), which we
now summarize:

(i) Draw N = 100 astrophysical parameter vectors @ ; from
uniform priors defined by (xy1) ~ Uniform(0, 1) and log,(tq/yr) ~
Uniform(3, 8). These are the ‘true’ parameters that generate the mock
data sets used to perform the coverage test.

(ii) Generate realizations of mock quasar spectra { f;, o ;} from
these ‘true’ parameters following the approach described in Sec-
tion 4.2.

(iii) Perform HMC inference on each data set as described in
Section 5.1 resulting in a set of 2000 samples for the astrophysical
parameters @ and continuum nuisance parameters 3, from each of
the N = 100 posterior distributions P(@, n|f;, o ;).

(iv) Consider a set of M credibility contour levels « € [0, 1]. For
each value o and each mock, test whether the true astrophysical
parameter values, 0, ;, reside within the volume V, enclosed by
ath contour. For each «, the coverage probability C(w) is the fraction
of the N mock data sets for which the true values lie within the volume
V, defined by equation (29).

As described in Appendix A, a coverage test can be performed for
the entire parameter vector, here @ = {6, 5} using the full posterior
P(@,n|f;,0;), as well as for the astrophysical (i.e. non-nuisance)
parameters 6 using their marginal posterior P(@|f ;, o ;). Obviously,
the coverage of the marginal posterior P(@|f ;, o ;) is most critical,
since nuisance parameters will be marginalized out, which is what
we focus on in what follows.

For o, we consider a vector of 200 linearly spaced values in
the range o € [0, 0.994] concatenated with a vector of 101 linearly
spaced values in the range o € [0.995, 1.0], resulting in M = 301
values of . As will be apparent in the next section, the steep C (o)
versus « curve near o ~ 1 (see Fig. 11) motivates adopting a more
finely spaced grid as o approaches unity.

5.3 Marginal coverage test results

In Fig. 11, we show the marginal coverage test results determined
from the approach described in Section 5.2 and Appendix A for
N = 100 mock quasar spectra. The black line shows the coverage
C(a) of the marginal posterior distributions P(@|f;, o ;), which
empirically quantifies how often the true astrophysical parameters
0wie = ((xu1), log,o(tq/yr)) lie within the ath credibility contour.
The red-dashed line shows the expected y = x curve that one would
obtain for a perfect inference pipeline in the limit N — co. An
overconfident inference pipeline will yield a curve C(«) versus
o that lies systematically below the line y = x, whereas for an
underconfident inference procedure the C(«) will lie above y = x.
As discussed in Appendix A (see also Sellentin & Starck 2019),
since C (o) counts how often the true parameters fall inside the «th
contour, it is the number of successes in a sequence of N independent
experiments each asking a yes-or-no question. Hence, C(«) follows
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the binomial distribution B(N, C(«)), which we use to assign errors.
The grey-shaded region shows the effective 1o error range'® on C(cr)
determined from 16th and 84th percentile ranges of B(N, C(«)).

Given that C () lies everywhere below the red-dashed line, we see
that our pipeline systematically delivers overconfident inference. For
example, for the effective 1o credibility level « = 0.68, i.e. the 68th
percentile credibility contour, the coverage is actually just C(0.68) =
0.48, indicating that on average the contours include the true 6, =
({xu1), log,y(tq/yr)) only 48 per cent of the time. Similarly, for the
effective 20 credibility level of & = 0.95 the coverage is C(0.95) =
0.79.

5.4 Reweighting samples to pass a coverage test

The coverage test for the marginal posterior P(0| f, o) distribution
shown in left panel of Fig. 11 indicates that C(«) lies everywhere
below the red-dashed line y = x, indicating that our pipeline system-
atically delivers overconfident inference. How can we nevertheless
perform statistically reliable inference in light of this overconfidence?

In Appendix A, we introduce a novel procedure whereby the HMC
posterior samples can be assigned weights, such that the reweighted
samples produce reliable inference which passes a coverage test
by construction (see also Wolfson et al. 2023). The mathematics
underlying this procedure is described in detail in Appendix A, but it
can be understood heuristically as follows. Sellentin & Starck (2019)
advocate that one simply relabel the credibility contours to reflect the
fact that inference is overconfident. In other words, since the coverage
plotin Fig. 11 indicates that the 68th percentile contour only contains
the true value 48 per cent of the time, we will simply refer to this
contour as the 48th percentile rather than the 68th. The real 68th
percentile contour containing the true parameters 68 per cent of the
time under the inference test actually corresponds to the value o =
0.85 = C~'(0.68) contour for our original approximate inference.
In other words, we can systematically expand all of the credibility
contours of the original inference by the right amount, such that
they contain the true model the empirically correct fraction of the
time. In general, as we show in Appendix A, this remapping of
the credibility levels « into true coverage probabilities C () can be
achieved by solving for the set of weights for the HMC samples from
the original posterior, which by construction guarantees that we will
pass a coverage test.

The purpose of HMC (or MCMC) samples from a posterior is to
estimate credibility intervals on parameters, perform marginalization
integrals, and compute ‘moments’ of the posterior via Monte Carlo
integration. If we can determine the set of weights that corrects
the imperfect inference such that it passes a coverage test, these
weights can then be used in all of the downstream computations that
one performs with the samples, guaranteeing the reliability of our
statistical inference.

The right panel of Fig. 11 shows the coverage of the marginal
posterior P (6| f, o) distribution after the HMC samples have been
reweighted. Samples from the core of the distribution with higher
P(0|x) are downweighted, whereas samples in the outskirts of the
distribution with lower P(#|x) are upweighted, such that the net
effect is to grow the credibility contours. The agreement of C(w)
with the red-dashed y = x line indicates that we now achieve perfect
coverage, which as explained in Appendix A, occurs by construction
because we solve for the set of weights that guarantees this outcome.

19Note however that the different values of « are clearly correlated since the
same ensemble was used to calculate all of them.
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Note that although we compute the weights to guarantee that the
reweighted HMC astrophysical parameter samples, 6 ;, will pass a
coverage test for their marginal posterior distribution, we neverthe-
less apply these weights to the entire parameter vector @ = {6, p}. In
other words, the contours for all parameters including the nuisance
parameters will also be dilated. In practice, this implies that we
pass the coverage test perfectly for the astrophysical parameters (by
construction, as shown in the left panel of Fig. 11), 6, whereas our
inference is slightly underconfident for the full parameter vector,
©, which includes the nuisance parameters, n (i.e. the contours
are slightly too large). Since underconfident inference is more
conservative, and as this applies only to the nuisance parameters,
we have demonstrated that our full pipeline passes a coverage test
and delivers reliable statistical inference.

5.5 Inference examples

Examples of our inference applied to mock spectra (see Section 4.2)
with reweighted HMC samples (see Section 5.4) are shown for three
different combinations of (xyp) and log,y(tq/yr) in Fig. 10. The
black histograms show the noisy mock quasar spectra, orange the 1o
spectral noise levels, green the true underlying continuua, blue the
median inferred continuum models, and red the median inferred
damping wing model flux profiles. True model parameters are
annotated in green, whereas median inferred parameters and 16th and
84th percentile credibility intervals (determined from marginalized
posteriors after the coverage correction reweighting) are annotated
in red.

Our approach for visualizing the quality of the fits, and hence the
solid lines and shaded regions in Fig. 10, warrants further discussion.
A realization of the model of the spectrum can be determined by
evaluating the model of the spectra (e.g. the DR quasar continuum,
the proximity zone transmission profile, or the product of the two) at
each HMC sample, which has an associated weight. As discussed in
Section 5.4, median model curves and model confidence intervals
can be determined by computing weighted percentiles of these
model curves. However, according to the likelihood in equation (17),
there are multiple sources of scatter that govern how well a model
curve will fit the data, namely spectral noise, IGM fluctuations,
and continuum reconstruction errors. A naive visual data-model
comparison that does not take all these sources of stochasticity into
account can be misleading. As a concrete example, if one compares
the median and lo interval of the PCA continnum to the quasar
spectrum redward of the Lyw region, it will not appear to be a
good fit relative to the spectral noise alone, since this ignores the
continuum reconstruction error budget. Thus in the current context,
choosing sensible ‘error bars’ for visual data-model comparison is
rather subtle.

To generate the median and 16th and 84th percentile model
intervals in Fig. 10 we proceed as follows. For each parameter vector
©® = {0, n} from the HMC posterior Markov chain, we:

(i) Evaluate the PCA DR model spr(n) via equation (20).

(i) Draw a realization of the relative continuum reconstruction
error & from the Gaussian distribution in equation (3), and compute
s = spr(n)o(1 + §).

(iii) Draw a random IGM transmission skewer ¢ for the value of 0
from the set of simulated skewers, allowing us to compute f = sot.

(iv) Draw a realization of Gaussian spectral noise & consistent
with the noise vector o and compute § =s +& and f = f + &
which we refer to as the noisy model continuum and the noisy model
flux.
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The blue histogram and shaded region in Fig. 10 represent the
weighted median and 16th and 84th weighted percentiles of the
noisy model continuum, §, respectively, which reflects parameter
uncertainty, continuum reconstruction errors, and spectral noise. The
red histogram and shaded region are the weighted median and the
same percentiles of the noisy model flux, f , reflecting parameter
uncertainty, continuum reconstruction errors, IGM transmission fluc-
tuations, and spectral noise. Note that IGM transmission fluctuations
are intrinsically accounted for by drawing IGM transmission skewers
from the model for a choice of astrophysical parameters @, whereas
we are explicitly adding the continuum reconstruction errors and
spectral noise by drawing realizations from their respective Gaussian
distributions.

Fig. 12 shows a corner plot illustrating the full 8D posterior for
the mock spectrum in the top panel of Fig. 10, which has true
model parameters (xy) = 0.96 and log,(fq/yr) = 5.88. The red
square and the horizontal and vertical red lines indicate the true
parameter values. Note that Fig. 12 shows the posterior distribution
after applying the marginal coverage correction weights described in
Section 5.4. Fig. 13 compares the nuisance parameter marginalized
posterior distributions for the two astrophysical parameters, (xy) and
log,(tq/yr) for the same mock spectrum in the top panel of Fig. 10
(i.e. the upper left panel of the full posterior in Fig. 12), before
(original HMC; green) and after (reweighted; black) applying the
coverage correction weights to the samples from the HMC chain (see
Section 5.4). Itis evident that this reweighting broadens the posterior,
correcting for the overconfidence of the original marginal posterior
distribution (see Fig. 11), as discussed in Section 5.4. Qualitatively,
the shape of the posterior in the (xg1) — log,((to/yr) plane resembles
the shape of the posteriors recovered in the analysis of real z > 7
quasar spectra by Davies et al. (2018b). Specifically, the well-known
degeneracy (see e.g. Bolton et al. 2011; Davies et al. 2018b) between
IGM neutral fraction and quasar lifetime in determining the shape of
the proximity zone and IGM damping wing profile is apparent.

5.6 Understanding the poor coverage

The overconfidence of our inference arises from the approximate
form of the analytic likelihood adopted in equation (17). Specifically,
the problematic approximation was the assumption of a Gaussian
form for the Ly« forest transmission PDF, P(¢|6), in equation (10).
We have explicitly demonstrated this by generating mocks where the
simulated ¢ transmission skewers are replaced with samples from
the multivariate normal distribution in equation (10). We carried
out a coverage test on N = 100 such Gaussianized mocks for the
same set of mock quasar continua, and find that C(«) = « within the
binomially distributed counting errors, indicating that the assumption
of a Gaussian form for P(¢|@) is responsible for the failure of the
coverage test.

To better visualize how this non-Gaussianity manifests, one could
compare the actual distribution of ¢ from the simulated proximity
zone skewers to the Gaussian adopted in equation (10). However, this
would not be the entire story since the observable is not the noiseless
transmission ¢, but rather the flux f. Notwithstanding the non-
Gaussianity of P(£|@), the resulting distribution of f could still be
close to the Gaussian adopted in equation (17), because convolution
with the Gaussian spectral noise (the X term in equation 17)
and the very nearly Gaussian (see right panel of Fig. 8) relative
reconstruction errors (the (T')C,(T) term in equation 17) could
nevertheless Gaussianize the distribution of f.

However, it is easier to visualize the distribution of a continuum
normalized quantity than the flux f, and this would allow us to
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aggregate mocks with different intrinsic continua s on a single plot.
Motivated by this, we consider the quantity f = fo(s(fiue)) ", Which
we will refer to as the pseudo transmission. It is akin to the real
transmission ¢, but the flux is divided by (s(9u.)) instead of the true
continuum. Here, 9. is the latent variable obtained by fitting the DR
model to the mock continuum with no noise or IGM absorption as
discussed in Section 3.3. Recalling that (s(5)) = spr()o(1 + (3)),
we see that 7 is the flux normalized by the product of our best-
fitting DR estimate to the continuum, Spg (9. ), and the average bias
(1 + (8)) of these estimates. Thus, the distribution of 7 will include
scatter arising from both spectral noise and the imperfection of the
DR continuum model. We can recast the likelihood in equation (17)
as a PDF for 7, which gives

P (flc.6.n)

=N (f; (0, (8)'Z(8)" + €, +

(T) (T)
1+ (8>A1+ (8)) > 30

where we recall that (S) = diag({s(ue))) and hence (S)~!' =

diag((1/s(ie))), and where we define % = diag (%), where
as before the division of one vector by another is performed element-
wise.

To further simplify the expression in equation (30), we assume the
spectral noise vector can be written as ¢ = (§(fiwe))/SDr, where snr
is a vector of spectral signal-to-noise ratio values and again division
of two vectors is performed element wise. By choosing the noise
to be proportional to the continuum level (s(yve)), the dependence
on (S) cancels out of the (S)"!'X(S)~! term of the covariance in
equation (30), yielding an expression that is independent of s and »

() (1)
1+ (S)Al—i— (5)) » G

P (flo,0) =N (t‘; (t),SNR> + C, +

where SNR™? = diag(1/snr?). This expression allows us to express
the distribution of # generated from many different mock spectra
(with different §) via a single PDF, which can be easily visualized.
The form of the PDF in equation (31) is intuitive — as expected #
is distributed about the mean IGM transmission (¢), and the total
covariance is a sum of three matrices, the first SNR™2 quantifying
spectral noise, the second C, quantifying fluctuations of the IGM
transmission field ¢, and the third quantifying continuum reconstruc-
tion errors.

To generate realizations of £ to compare to the Gaussian distri-
bution in equation (31), we start by generating mock IGM damping
wing spectra f using the procedure described in Section 4.2 for
a model with (xyp) = 0.50 and log,(tq/yr) = 6. The continuum
S/N of these mocks is s /o (where ¢ is the noise from our simulator
described in Section 4.2). We then set snr to be the median value (i.e.
median taken over the quasar dimension), thus adopting a single but
representative value of the spectral S/N as a function of wavelength.
We then regenerated the mocks with the noise ¢ = (S(fyye)) /SN,
with snr set to this median value, and divided the fluxes f by
(s(Piue)), yielding realizations of £. Whereas throughout this work
we restricted to the 778 test set autofit continua for constructing mock
IGM damping wing spectra, here for the sole purpose of visualization,
we instead use the larger training set of 14 781 autofit continua to
increase the number of samples.?’

20 As we only have 1183 IGM transmission skewers for each parameter value
0, we randomly assigned the autofit continua to an IGM transmission skewer
with replacement.
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Figure 12. Corner plot illustrating the full 8D posterior distribution resulting from our statistical inference procedure applied to the mock quasar spectrum in
the top panel of Fig. 10 with xy1 = 0.96 and log;(tq/yr) = 5.88. The red square and the horizontal and vertical red lines indicate the true parameter values.
The posterior distribution shown here is the result after the marginal coverage correction weights described in Section 5.4 have been applied, which slightly

dilates the contours relative to the original HMC inference.

To determine how well the PDF in equation (31) approximates
the true distribution of 7, we plot slices of this distribution in the 2D
f, — by plane, where A and )’ are the wavelengths of two different
spectral pixels. Examples for two distinct pairs of transmission values
are shown in Fig. 14. The left panel of Fig. 14 indicates that at rest-
frame wavelengths where the mean proximity zone transmission
is high, (t,) ~ 0.5 —0.9, the Gaussian approximation is decent,
as indicated by: (1) the similarity of the 2D probability density
contours for the #; — f,; samples (solid lines) and the contours of the
approximate analytical Gaussian PDF (dotted lines; equation 31),
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(2) the same comparison for the 1D marginal distribution (i.e. grey
marginal histograms compared to black dotted lines for the Gaussian
PDF), and (3) the fact that the percentage of samples (indicated
in the legend) within the 68 percent (71.2 percent; dotted blue)
and 95 percent (95.4 percent; dotted green) analytical Gaussian
probability density contours are very close to the expected values for
each contour.

However, the right panel of Fig. 14 indicates that for bluer
wavelengths where the mean proximity zone transmission is lower,
(t,) ~ 0.1 — 0.2, the Gaussian 2D contours and 1D marginal PDFs
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Figure 13. Comparison of the 2D marginal posterior distribution in the
astrophysical parameters, (xg1) and log;((fq/yr) (i.e. the upper left panel
of the full posterior in Fig. 12), before (original HMC; green) and after
(reweighted; black) applying the coverage correction weights to the samples
from the HMC chain (see Section 5.4). The red square and the horizontal and
vertical red lines indicate the true parameter values. Vertical dotted lines in
the marginal posterior panels indicate the 16-50-84 percentile ranges. It is
evident that reweighting the samples broadens the posterior, correcting for the
overconfidence (see Fig. 11) of the original marginal posterior distribution as
discussed in Section 5.4.

poorly approximate the distribution of the f;, — £, samples. Whereas
the Gaussian PDF is symmetric about the mean (z,), the samples
are significantly skewed to positive transmission values. This dis-
agreement is easily understood — whereas a Gaussian centred at
alow (f;) ~ 0.1 — 0.2 must be symmetric by construction and thus
predicts a significant probability for negative values, the transmission
is an inherently positive quantity. Besides the positivity constraint,
additional skewness of the ¢, field PDF results from the reionization
topology and density fluctuations in the IGM. At intermediate and
low values of the average IGM neutral fraction, (xg;) < 0.5, the
distribution of distances from quasar host haloes to the first patch
of neutral gas exhibits a strong tail to large distances (see fig. 2 of
Davies et al. 2018c). The corresponding reionized regions near the
quasar will be further photoionized by the quasar’s radiation resulting
in transmissive proximity zone regions. Thus tails in the distance to
the nearest neutral patch, combined with the strong tails in the in
Ly« forest transmission PDF at the relevant optical depths (see e.g.
Davies et al. 2018a), manifest as a tail towards high transmission,
t,., for bluer proximity zone wavelengths where the average profile
has (#,) ~ 0.1 —0.2. These heavy positive tails bias the Gaussian
transmission covariance, C, high, relative to the width of the core
of the distribution of samples (see marginal histograms in the right
panel of Fig. 14). As a result the percentage of samples within the
68 per cent Gaussian contour (79.8 per cent; dotted blue) deviates
significantly from the Gaussian expectation.

We conclude that despite the Gaussianizing effects of Gaussian
spectral noise and approximately Gaussian continuum reconstruc-
tion errors, our approximate Gaussian form for the likelihood in

IGM damping wings towards quasars 2645

equation (17) is nevertheless a poor approximation at low average
transmission values (#,) ~ 0.1 — 0.2 because of the strong underly-
ing non-Gaussianity of the IGM transmission PDF P(¢|0).

5.7 Continuum reconstruction recovery and comparison to
previous work

The main advantage of the statistical inference method at the heart
of this paper is that it constructs a generative model for the entire
quasar spectrum, including absorbed pixels in the proximity zone,
to perform parameter inference. This contrasts with the red—blue
prediction approach that has been adopted in most past work (e.g.
Davies et al. 2018b; Durovéikova et al. 2020; Fathivavsari 2020;
Reiman 2020; Chen et al. 2022; Greig et al. 2024b) modelling
IGM damping wings, whereby only pixels redward of some cut-off
(typically A > 1280 A) are used to predict the blue-side (A < 1280 A)
continuum and its error, which are then used to perform inference.
Our approach is generically expected to perform better, given that
it uses all of the information available, and specifically the spectral
pixels A < 1280 A where much of the information about the intrinsic
quasar continuum shape around Ly, and all of the information
about the IGM damping wing are manifest. However, quantifying
the improvement in precision on the astrophysical parameters (xg)
and log,,(fq/yr) and directly comparing to previous work would
be challenging, given the heterogeneity of the different modelling
approaches that have been employed to date. Furthermore, such a
comparison might not be fair given that the current study is the
only one to investigate (and explicitly correct for) the coverage of
the inference: if the inference pipelines used in past work were
overconfident, a comparison to our results would not be a fair
one.

In our companion paper (Kist et al. 2025), we quantify the
precision on the astrophysical parameters yielded by our inference
procedure in detail by analysing an ensemble of 1000 mock spectra
spanning the full astrophysical parameter range (0.0 < (xy;) < 1.0;
3 <log,y(tg/yr) < 8). We find that (see table 1 and fig. 9 of Kist
et al. 2025) even for the hypothetical case of perfect knowledge
of the quasar continuum, the median ~ lo precision on (xyp) is
~ 15 per cent and the median precision on log,,(fq/yr) is ~ 0.55
dex. For inference on full mocks generated according to the procedure
in Section 4.2, where we model and marginalize over the unknown
quasar continuum, the typical measurement error increases to ~
28 per cent on (xyp) and ~ 0.80dex for log,,(#q/yr). This analysis
suggests that continuum reconstruction errors contribute roughly an
equal amount to the error budget as the other sources of stochasticity
in the problem, namely the distribution of distances to the nearest
patch of neutral hydrogen (see fig. 2 of Davies et al. 2018c) and
fluctuations in the location of the quasar ionization front due to the
distribution of sinks along the sightline. Thus significant gains in
astrophysical parameter precision should result from an algorithm
that better reconstructs the quasar continuum.

Motivated by this, we perform a careful comparison of the pre-
cision of our continuum reconstructions to the PCA-based red—blue
continuum prediction method introduced in Davies et al. (2018b).
‘While this is only one of the many algorithms that have been used for
quasar continuum reconstruction to date, Greig et al. (2024b) recently
conducted a detailed comparison of all 10 of the quasar continuum
prediction pipelines in existence, and found that while they all yield
roughly comparable precision, the Davies et al. (2018b) pipeline
consistently performed among the best for the various samples and
metrics considered. Hence comparing the performance of our contin-
uum reconstruction approach to the Davies et al. (2018b) algorithm
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Figure 14. Left: 2D slice of the multivariate distribution of the pseudo-transmission field 7, for two rest-frame wavelengths A = 1214.0 A (x-axis) and
A =1218.1 A(y—axis) in the quasar proximity zone, corresponding to mean transmission values of (f214.0) = 0.56 and (t1215.1) = 0.85, which is indicated by
the red cross. The model considered has (xy1) = 0.50 and log;((¢q/yr) = 6. Shading indicates the probability density with a logarithmic stretch. Solid lines
show the 68 per cent (blue) and 95 per cent (green) probability density contours determined from the distribution of # samples, whereas the dotted lines show
the corresponding probability density contours for the Gaussian distribution in equation (31). The legend indicates the percentage of the samples that are within
the Gaussian probability density contours. Histograms show the 1D marginal distributions where black dotted lines show the Gaussian prediction based on
equation (31). Right: same as left except for a different set of rest-frame wavelengths A = 1208.0 A (x-axis) and A = 1210.0 A (y-axis), corresponding to lower

values of the mean transmission (f1205.0) = 0.08 and (t1210.0) = 0.19.

should, broadly speaking, constitute a sufficient comparison to the
diverse set of existing continuum prediction algorithms in existence.

To perform this comparison, we considered the N = 100 mock
quasar spectra on the dv = 500 km s~' wavelength grid that we
conducted inference on (see Fig. 10 for examples) to arrive at the
coverage test results described in Section 5.3 and shown in Fig. 11.
We define the inferred quasar continuum for a given mock spectrum
to be the weighted median (using the marginal coverage weights)
of the PCA DR models, spr(®;), evaluated at each of the HMC
samples n; for each mock spectrum, which we denote by Spr. med-
However, the DR model itself is not perfect and will result in some
relative reconstruction error, 8, even if the PCA is fit to a spectrum
with no noise or IGM absorption (see Section 3.3 and Fig. 6). Thus,
a proper analysis requires comparing the moments of the relative
reconstruction error of the inferred continua

S — SDR.m
Oinf = 7;)]2' =, (32

to the moments of the relative reconstruction error

5= s — sDR(nlrue)7 33)
s
obtained by fitting the PCA to the same mock quasar spectra, but
without noise or IGM absorption. As described in Section 3.3, we
determine the best-fitting PCA DR parameters, 9yye, by minimizing
the MSE loss given in equation (23), and Fig. 6 shows the moments of
the relative reconstruction error, (§) and o5 = A,l\fxz (see equation 24),
computed from the spectra in our continuum test sets. In the current
context, we will compare the moments of §;,¢ directly to the moments
of 8, both computed from the same 100 mock spectra for which we
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performed statistical inference. Since the DR model always results
in reconstruction errors (even in the absence of noise and IGM
absorption), the best continuum reconstruction (in the presence of
noise and IGM absorption) would be one for which &;, is very close
to §.

To compare the accuracy of our continuum reconstructions to
those from the Davies et al. (2018b) method, we applied their red—
blue prediction algorithm to the same set of 100 mock spectra.
Specifically, we followed the Davies et al. (2018b) approach and
fit their red-side PCA vectors to the red spectral pixels (A < 1280 A)
of our mocks yielding 10 PCA coefficients for each mock, and then
we used their transformation matrix to transform each set of 10 red-
side PCA coefficients into six blue-side PCA coefficients, which
finally yields a predicted blue-side continuum (A < 1280 A) for each
mock.

The efficacy of the quasar continuum reconstruction algorithms
is illustrated in Fig. 15. In the lower panel, the dashed lines show
the mean () of the relative reconstruction errors, whereas the solid
lines show the standard deviation o5 = Alﬁz (see equation 24). Black
shows these moments evaluated using the inferred quasar continuum
that results from our joint statistical inference of the PCA coefficients
and the astrophysical parameters. Green shows the moments arising
from the intrinsic imperfections of the DR, i.e. for the case where we
fit our PCA basis (see Fig. 5) to the same set of spectra over the entire
spectral range with no noise or IGM absorption. For A = 1220 A,
the inferred quasar continua (black) achieve the intrinsic limiting
precision of the DR itself (green, i.e. PCA fits without noise or
IGM absorption), whereas at bluer wavelengths, degeneracy with
and censorship by IGM absorption is seen to increase the errors
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Figure 15. Efficacy of quasar continuum reconstruction algorithms as quantified by the moments of the relative reconstruction error §. The lower panels show
the mean (3) (dashed) and standard deviation o5 = A ;\f (solid) of the relative reconstruction error evaluated from N = 100 mock spectra on which we performed
statistical inference (see Fig. 10 and Section 5.3). Black shows these moments evaluated using the inferred quasar continuum (see equation 32) that results
from our joint statistical inference of the PCA coefficients and the astrophysical parameters. Green shows the moments arising from the intrinsic imperfections
of the DR alone, i.e. for the case where we fit the PCA basis to the same set of spectra over the entire spectral range with no noise or IGM absorption (see
equation 33). For A > 1220 A, the inferred quasar continua (black) achieve the intrinsic limiting precision of the DR itself (green, i.e. PCA fits without noise
or IGM absorption), whereas at bluer wavelengths degeneracy with and censorship by IGM absorption is seen to increase the errors as quantified by os. For
comparison, we show the moments of the relative reconstruction error of the red-side continuum fit (red, right) and the blue-side prediction (blue, left) obtained
by applying the Davies et al. (2018b) red—blue prediction algorithm to the same set of N = 100 mock spectra. Over the wavelength range 1216 A<i<1240 A
most critical for measuring IGM damping wings, our inference significantly outperforms the Davies et al. (2018b) algorithm, yielding oj a factor of 1.7-2.5
lower, with an average reduction of og over this range of a factor of 2.1. For reference, the upper panel shows the mean quasar spectrum (s) constructed from
our test set with prominent emission lines labelled.

as quantified by o;. For comparison, we show the moments of 6 SUMMARY AND CONCLUSIONS
the relative reconstruction error of the red-side continuum fit (red,
right) and the blue-side prediction (blue, left) obtained by applying
the Davies et al. (2018b) red-blue prediction algorithm to the
same set of N = 100 mock spectra. Over the wavelength range
1216 A < A < 1240 A most critical for measuring IGM damping
wings, our inference significantly outperforms the Davies et al.
(2018b) algorithm, yielding o5 a factor of 1.7-2.5 lower, with an
average reduction of a factor of 2.1 taken over this wavelength range.

To appreciate the significance of this reduction, consider that
for a model with (xy) = 1.0 and log,(tq/yr) = 6, the mean IGM
transmission varies from (¢) = 0.49 —0.91 over this same range
1216 A < A < 1240 A. Heuristically, the signal-to-noise ratio of
IGM damping wing absorption for a single spectral pixel is S/N ~
(1 — (t))/os. Averaging this quantity over the range 1216 A < 1 <
1240 A, we find that our inference yields an average statistical signif-
icance of 2.9 to be compared to 1.4 for the Davies et al. (2018b) red—
blue prediction algorithm. This heuristic S/N likely underestimates
the actual improvement, since one optimally combines all the spectral
pixels near Lyo when performing a fit, although correlations of the
transmission field (¢) and the covariance of the relative reconstruction
error § make it difficult to quantify the improvement more rigorously.
But it is abundantly clear that our approach of jointly fitting for
the astrophysical parameters governing the IGM absorption and the
latent variables that describe the continuum yields far more accurate
continuum reconstructions than red-blue prediction.

In this paper, we introduced a new approach for analysing the IGM
damping wings that are imprinted on the proximity zones of EoR
quasars. Whereas past work has typically forgone the additional
constraining power afforded by the blue-side continuum (1216 A <
A <1280A) and opted not to model the large correlated IGM
transmission fluctuations in the proximity zone (A < 121613;), we
derived a single Bayesian likelihood for the entire spectrum allowing
us to fit all of the spectral pixels and thus jointly model the fluctuating
transmission in the proximity zone, the smooth IGM damping wing
signature, and the underlying quasar continuum simultaneously. The
latter constitutes a nuisance stochastic process from the standpoint
of constraining the average IGM neutral fraction, (xyp), and quasar
lifetime, #q, that govern the IGM transmission. A key aspect of our
approach is the use of DR to describe the quasar continuum with a
small number of latent variables and then designate the imperfections
of this model, which we refer to as relative reconstruction errors,
as a source of irreducible correlated noise. Using a large sample of
15559 SDSS/BOSS quasars at z 2 2.15 we trained and quantified the
performance of six distinct DR methods, including machine-learning
techniques like GPLVMs and VAEs, and find that a six parameter
PCA model (five PCA coefficients & plus a normalization s,om)
performs best (see also Kist et al. 2025), with complex machine-
learning methods providing no advantage. Fitting this PCA model to
a subset of 778 spectra which were unseen by the training process

MNRAS 539, 2621-2653 (2025)

G20z AInr 60 uo Jasn ungIpaN A 682G | | 8/1292/€/6€SG/0101HE/SBIUW WO dNo"dlWapede//:sd)y woly papeojumoq



2648  J. F. Hennawi et al.

provides an empirical calibration of the relative reconstruction errors,
which are an important ingredient of the likelihood we derived.
Following our approach, all sources of error — the stochasticity
induced by the reionizing IGMs ionization topology, the unknown
quasar lifetime 7q and location of the corresponding ionization
front, continuum reconstruction errors, and spectral noise — are
accounted for by a generative probabilistic model, which enables
us to marginalize out nuisance parameters in a principled manner.

The only drawback of the Gaussian likelihood that we derive
in this paper is that it is approximate, because the true likelihood
is analytically intractable. We used HMC to conduct statistical
inference on an ensemble of 100 realistic mock EoR quasar spectra
to determine the coverage of our inference with this approximate
likelihood, which quantifies the validity of the credibility contours
that we obtain for (xy;) and log,,(tq/yr) from this new method.
We find that our inference is overconfident, which is to say that
the 68 percent credibility contour contains the true astrophysical
parameters ((xy) and log,,(to/yr)) just 48 per cent of the time, and
the 95 per cent credibility contour contains the true parameters just
79 percent of the time (see Fig. 11). We show convincingly that
this overconfidence results from the non-Gaussianity of the IGM
transmission field, ¢, at proximity zone pixels A where the mean
transmission takes on low values, (t,) ~ 0.1 — 0.2, owing both to the
fact that, physically, the transmission must be positive, and because
of an intrinsic strong tail towards higher transmission values (see
Fig. 14). Although the HMC posterior samples from our approximate
likelihood yield biased inference, we introduced a procedure whereby
the HMC samples can be assigned weights, such that the reweighted
samples produce reliable inference which passes a coverage test by
construction. This reweighting procedure, which amounts to a small
dilation of the credibility contours of the original inference, finally
yields a state-of-the-art Bayesian inference pipeline that uses all of
the spectral pixels to reliably measure the cosmic reionization history
and quasar lifetime from quasar spectra.

The accuracy of the quasar continuum reconstructions afforded by
this new method are unprecedented. For A > 1220 A, we find that our
inferred quasar continua achieve the intrinsic limiting precision of the
DR model itself, in other words, they are as good as fits to ‘perfect’
spectra without noise or IGM absorption. At bluer wavelengths,
as expected, degeneracy with and censorship by IGM absorption
degrades our ability to reconstruct the underlying quasar continuum.
But we nevertheless achieve far more accurate reconstructions than
the red-blue prediction algorithms that have been adopted in previous
IGM damping wing measurements. Over the wavelength range
1216 A < A < 1240 A most critical for such measurements, our
continuum reconstructions have a factor of 1.7-2.5 smaller error
than red-blue prediction, which increases the statistical significance
of a putative IGM damping wing per spectral pixel to ~ 2.9 compared
to ~ 1.4 for red-blue prediction.

In our companion paper (Kist et al. 2025), we quantify the preci-
sion with which IGM damping wings analysed with this new infer-
ence approach can measure the astrophysical parameters, (xy) and
log,,(tq/yr), and the dependence of this precision on the location in
parameter space, the dimensionality of the DR latent variable model,
as well as on the spectral resolution, S/N, and spectral coverage of the
quasar spectra that are analysed. After performing a battery of tests
on 1000 mocks, Kist et al. (2025) find that the precision is highest
when running this new pipeline with a six-parameter DR model (five
PCA coefficients & plus a normalization sy, ) on S/N ~ 10 spectra,
rebinned to a ~ 500kms~! velocity pixel scale, and extending at
least out to the C1v 41549 A emission line. With this configuration,
Kist et al. (2025) find that a single EoR quasar spectrum constrains
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the IGM neutral fraction, (x), to 28.0757 per cent and the quasar

lifetime, log,(to/yr), to 0.807 22 dex, where the error bars indicate
the 16 and 84 percentile ranges, and where the constraints improve
on both parameters for spectra with a stronger IGM damping wing
signature.

Higher precision constraints on (xg(z)) can of course be achieved
by averaging over statistical samples of EoR quasars samples. An
ambitious program to obtain sensitive JWST spectra of the sample of
hundreds of EoR quasars that will be delivered by the ESA/Euclid
satellite would revolutionize the study of IGM damping wings
towards quasars and constrain the cosmic reionization history to
unprecedented precision. Averaging over ~ 30 quasars in a redshift
bin would deliver a precision of ~ 5 per cent on (xyj) at that
redshift, which, when performed as a function of redshift across
the EoR would measure (xy(z)) far more precisely than the CMB.
Furthermore, such an analysis would also yield, as a byproduct,
the distribution of quasar lifetimes (see e.g. Khrykin et al. 2021)
providing novel constraints on the buildup of supermassive black
holes (SMBHs) in the young Universe.

Given that the formal precision achievable on (xy1(z)) is so high,
a natural question arises: will modelling uncertainties due to poorly
understood galaxy formation physics eventually limit the precision
with which we can constrain reionization? How sensitive are our IGM
transmission models (see Section 4) to galaxy formation, which regu-
lates both the ionizing photon sources (via Lyman continuum escape)
and sinks (via Lyman limit systems) that determine the reionization
topology and the size of the ionized bubble powered by the quasar
itself? While galaxy formation physics ultimately determines the
reionization topology, we emphasize that precision constraints on
(xg1(2)) do not require that this topology can be predicted from first
principles. Specifically, we adopted a parametrized seminumerical
21CcMFAST model (Mesinger et al. 2011; Davies & Furlanetto 2022)
in which the source and sink prescriptions are governed by a handful
of tunable subgrid parameters. Although we fix these parameters
in the present study, yielding a fiducial reionization topology as a
function of a single parameter, (xyi(z)), an important direction for
future work would be to vary and marginalize over the full suite of
subgrid source/sink parameters to assess their impact on the inferred
(xg1(2)) constraints. Furthermore, as discussed below, it is likely that
IGM damping wing measurements have the potential to constrain the
reionization topology (or the subgrid parameters that govern it) as
well (Kist et al., in preparation).

Along similar lines, while our 1D RT of the quasar’s radiation
currently neglects dense absorbers in the quasar environment (Lyman
limit systems and DLAs), which are not captured by the Nyx hy-
drodynamical simulations, such absorbers can be directly identified
in high-S/N quasar spectra via associated metal-line absorption
systems (e.g. Davies et al. 2023) and excluded from analysis — anal-
ogous to how ‘gold samples’ are selected in supernova cosmology.
Moreover, if optically thick absorbers introduce additional opacity in
quasar proximity zones, this can be empirically tested using existing
high-resolution spectra of z ~ 5 — 6 quasars (for which the global
IGM is expected to be highly ionized), for example by comparing
the flux PDF of their proximity zones to our models. Any residual
disagreement could be addressed by introducing a simple subgrid
opacity parameter to govern Lyman limit systems in the 1D RT
modelling (e.g. Khrykin et al. 2016; Davies et al. 2016). Thus to
summarize, while the impact of uncertain galaxy formation physics
on the reionization topology and the presence of dense absorbers
in the quasar environment are important considerations that may
require adding additional nuisance parameters, they do not constitute
a fundamental limitation of our approach. Precision constraints on
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reionization do not rest upon a full ab initio solution to galaxy
formation. Rather, the impact of galaxy formation physics can be
treated via a small set of empirically calibratable and marginalizable
modelling uncertainties. This situation is closely analogous to preci-
sion weak lensing analyses, where the impact of baryonic physics on
the matter power spectrum is accounted for using parametric transfer
functions derived from hydrodynamical simulations, which are then
marginalized over to recover unbiased cosmological constraints
(e.g. Heymans et al. 2021; Abbott et al. 2022; Schaller et al.
2024). We therefore argue that IGM damping wings towards quasars
provide a viable and powerful method for precision constraints on
reionization and SMBH growth, but modelling and marginalizing
over uncertainties due to galaxy formation constitutes an important
direction for future work.

In addition to addressing these modelling uncertainties, there are
several other promising avenues for improving upon the results
presented here. First and foremost, our paper argued that an optimal
analysis algorithm must construct a fully generative probabilistic
model for the entire spectrum, however our likelihood is not optimal
because it is only an approximation to the true intractable likelihood.
As aresult, we had to dilate our credibility contours which degraded
the precision of our parameter constraints. Hence, an obvious priority
for the future is to attack this problem in the simulation-based
inference framework (see e.g. Cranmer, Brehmer & Louppe 2020,
for a review) and use machine learning to obtain an expression for the
intractable likelihood that we here approximated as a Gaussian (e.g.
Chen, Speagle & Rogers 2023). This would surely result in higher
precision parameter constraints, both because coverage correction
would not be needed and because only the true likelihood can
achieve the true optimal precision. Finally, our companion paper
(Kist et al. 2025) finds that roughly half of the error budget on (xy)
originates from variations of IGM damping wing strength arising
from the stochastic distribution of the line-of-sight neutral column
density resulting from the topology of reionization itself (Davies
et al. 2018c). Several studies have recently noted that IGM damping
wing transmission profiles are actually well described by a single
parameter (Chen et al. 2024) which is effectively this line-of-sight
neutral column density Ny (Keating et al. 2024b; Kist et al., in
preparation). It follows that models of IGM damping wings can be
parametrized in two distinct ways — either one elects to measure
the volume-averaged neutral fraction (xyp), which in turn governs
the stochastic distribution of the line-of-sight Ny (via an assumed
reionization topology), or one can measure an Ny for each quasar
individually, and use ensembles of quasars to map out the distribution
of Ny empirically as a function of redshift. Whereas this paper
adopted the former formulation, an upcoming study explores the
latter using the inference machinery that we developed here (Kist
et al., in preparation). The great advantage of this latter approach is
that it opens up the exciting possibility of using ensembles of quasars
to actually determine the distribution of a ~ 100 cMpc 1D moment
through the Universe’s ny field, which would not only measure the
Universe’s reionization history, (xy1(z)), but also possibly constrain
its topology. These are the primary objectives of cosmological studies
of reionization in general and 21-cm experiments in particular, and
the methodology that we have presented here paves the way for
achieving them with EoR quasar spectra.
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APPENDIX A: COVERAGE TESTS

In this appendix, we provide details on the coverage test presented
in Section 5.2, the reweighting scheme described in Section 5.4, and
the application of both to marginal posterior distributions.

A1 An algorithm for performing a coverage test

Below we provide a description of an algorithm for carrying out a
coverage test.

(i) Draw N parameter vectors @y ; from the prior distribution
P(O). These are the ‘true’ parameters that generate the mock data
sets used to perform the coverage test.

(ii) Using a forward simulator, generate a set of N mock data sets,
x j, for each of the parameter vectors @y, .

(iii) Inference is carried out on each data set resulting in a set of
N posterior distributions P(®|x ;).

(iv) Consider a set of M credibility contour levels « € [0, 1].
For each value « and each mock data set (@, j, X;), one tests
whether the true parameter value @y ; resides within the volume
V. enclosed by the ath contour, defined by

/ P(6]x,)d0 = a. (A)
For each «, the coverage probability C () is the fraction of the N
mock data sets for which the true value 6., ; lies within the volume
V.

The result of the coverage test is the relation C(«) versus «.
A perfect inference procedure would yield C(«) = « in the limit
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N — oo. An overconfident inference pipeline will yield a curve C(«)
versus « that lies systematically below the line y = x, whereas for an
underconfident inference procedure the C(«) will lie above y = x.
This algorithm yields an unbiased estimate C(«) of the underlying
coverage probability from a finite set of mock data sets N. Since C (&)
counts how often the true parameters fall inside the oth contour,
it is the number of successes in a sequence of N independent
experiments each asking a yes-or-no question — success occurring
with a probability p = C(«) and failure occuring with probability
q =1 — C(«). Thus, by definition our estimate C(«) must follow
the binomial distribution B(N, C(«)), which can be used to assign
error bars to C(«) resulting from the finite number of mock data
sets N.

Underlying this coverage test algorithm is a procedure for testing
whether a true parameter vector resides within the volume V,
enclosed by a contour corresponding to credibility level o. A
contour of the posterior P(®]|x;) containing a fraction o of the
total probability slices the posterior along an isodensity level P,,
such that the volume V,, in equation (A1) is defined by

Vo ={O]| P(O|x;) = Py} (A2)

A parameter value @' will lie within the volume enclosed by the «cth
contour provided that P(®’|x;) > P,, so the procedure boils down
to estimating the set of isodensity levels P, corresponding to the set
of credibility levels «.

In practice, one typically has a number of samples, n, from the
posterior from a run of an MCMC or HMC sampling algorithm. If
we rewrite equation (A1) as an integral over the entire parameter
space ©:

/H[P((-)Ixj) — P,]P(®O|x;)dO = «, (A3)

where the Heaviside function, H(x), enforces the condition on the
volume from equation (A2), then it can be evaluated via Monte Carlo
integration according to

1 n
/H[P(®|x,-) ~ Pa]P(®]x;)d0 = Z H[P(®;|x,) — P,],
(A4)

where the sum is over the n MCMC or HMC posterior samples.
Hence, we can determine the isodensity level, P,, corresponding to
each credibility level, «, by solving the equation:

1

n

> HIP(O]x;)) — Pu]

Number of samples with P(@|x;) > P,
= =

n
= CDF(> P,) = a. (AS)

The second equality in equation (AS) indicates that credibility
contour definition amounts to computing the cumulative probability
distribution, CDF(> P,), of the posterior distribution at the MCMC
or HMC samples, ©;. One can then invert the CDF

P, = CDF (), (A6)

to determine the corresponding isodensity levels. This procedure can
be employed to test each of the N posteriors in the inference test for all
credibility levels. If the true model parameters, @, ;, lie inside the
volume of credibility contour o then the condition P (@ e j|X ;) = Py
will be satisfied. MCMC/HMC samplers typically can return the
value of P(®;|x) at every sample in the chain, allowing one to
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easily estimate CDF(> P,). Then, one only needs to evaluate the
P(Oqye jlx j), which is straightforward since the function P(®|x ;)
is a pre-requisite for performing inference.

A2 Reweighting posterior samples to pass a coverage test

Consider a scenario where our current inference pipeline fails a
coverage test because of some imperfection in our probabilistic
model of the measurement process which it is not straightforward
to correct. For concreteness, imagine we adopted an approximate
form for the posterior distribution because the true form is not
analytically tractable, and that our coverage test indicates these
approximate posteriors are overconfident, which is to say that C(«)
versus « lies systematically below the line y = x. How can we
nevertheless perform statistically reliable inference? Sellentin &
Starck (2019) advocate that one simply relabel the contours to reflect
this unfortunate reality. For example, if the 68th percentile credibility
contour, « = (.68, actually only contains the true model 48 per cent
of the time, i.e. C(@) = 0.48 < «, then label this contour as the
48th percentile rather than the 68th. The real 68th percentile contour
containing the true parameters 68 per cent of the time under the infer-
ence test might say correspond to the value o = 0.85 = C~1(0.68)
contour for the original approximate inference, which in turn maps
to a lower isodensity level of the approximate posterior P(8|x),
i.e. Pygs < Pogs- In other words, by choosing a lower isodensity
threshold P, we expand the contours to contain the true model the
empirically correct fraction of the time.

In general, this remapping of the credibility levels « into true
coverage probabilities C(«) can be achieved by assigning a set of
weights to the samples from the approximate posterior. The purpose
of MCMC or HMC samples from a posterior is to estimate credibility
intervals on parameters, perform marginalization integrals, and
compute ‘moments’ of the posterior via Monte Carlo integration.
If we can determine the set of weights that corrects the imperfect
inference such that it passes an inference test, these weights can then
be used in all of the downstream computations that one performs
with the samples. To achieve this we generalize equation (AS5) to the
case of defining contour levels from reweighted samples

n
> w;H[P(®;|x;) — P,] = wCDF(> P) = a, (A7)
1
where we have simply absorbed the constant 1 /7 normalization factor
into the definition of the weights. Here, wCDF(> P,) is the weighted
cumulative distribution function of the original posterior evaluated
at the samples, ©;. Similar to before, the isodensity levels of the
reweighted posterior can be determined according

P, = wCDF ! (). (A8)

In order for the weighting to correct the inference for e.g. credibility
level @ = 0.68, we need the solution to equation (A8) to yield Pj o3 =
Py g5 where 0.85 = C~!(0.68) and Pygs = CDF'(0.85) is the so-
lution for the isodensity threshold under the original approximate
inference from equation (AS). Furthermore, this remapping must
hold for all of the isodensity levels P, = Pc-1¢) = CDFL{(C~ Y ().

To build intuition, first consider the situation where C(a) = «,
i.e. where we pass the inference test perfectly. In this limiting
case, it is clear that the weighting should be uniform and hence
w; = 1/n. Without loss of generality we can sort the samples in
the sum in equation (A7) in order of increasing P(®;|x ;), adopting
the convention that P(@|x;)) < P(@z]x;)) < --- < P(O,|x;)and
the corresponding weights are similarly ordered such that w; is the
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weight assigned to the sample with smallest value P(©]x;), etc.
Since we need to solve for n weights, w;, we need the same number
of values of o as constraints. If we choose n linearly decreasing
values of « spanning the range o = [1, 1/n], then equation (A7)
implies the following set of linear equations:

wy+wy +... +w, +w, = 1
wy +-oot Wy tw, =1-1/n
(A9)
Wy_1 +w, = 2/n
w, = 1/n,
or equivalently in matrix form
Uw = «a, (A10)

where U is an upper triangular matrix with all non-zero elements
equal to unity, w is a vector of weights to be assigned to the samples,
and o is the vector of uniformly spaced credibility levels. Since
the o constraints that we chose can also be interpreted as the
cumulative distribution of the posterior evaluated at the samples,
i.e. o; = CDF(> P;), equation (A9) is equivalent to

wCDF(> P;) = CDF(> P,). (A1)

It is thus no surprise that the solution to this linear system is obviously
w; = 1/n yielding the uniform weighting we expect.

To generalize to the case C(«) # o, we solve for the weights that
satisfy

Uw = C(o), (A12)

where C(c) is now a vector of coverage values evaluated at the
vector of uniformly spaced credibility levels a. To see why this
works consider for example the kth equation in the linear system
in equation (A12) where k is chosen to be the sum over the 85th
percentile highest rank weights and P(@®;|x;) values (recall the
weights are sorted in order of increasing P(®;|x;))

Wi + Wiyt + - -+ w, = C(0.85) = 0.68. (A13)
or equivalently
wCDF(> Pj ) = 0.68. (Al14)

Because we chose « to be linearly decreasing, the kth ranked sample
will correspond to the 85th percentile of the CDF of the original
approximate posterior values evaluated at the MCMC/HMC samples,
and hence it is guaranteed that Pj. = Pyss = CDF~'(0.85). In
other words, the 68th percentile contour of the new reweighted
posterior distribution will correspond to the 85th percentile contour
of the original approximate posterior, as desired. The rest of the
equations in the linear system similarly enforce the constraints that
P = P14y = CDF /(C~!(a)) for the other credibility levels a.
Since the determinant of an upper triangular matrix is simply the
product of the diagonal elements, det U = 1, and the linear system
in equation (A12) will always yield a unique solution for the vector
of weights w which imposes these constraints.

A3 Coverage tests for marginal distributions

Performing inference requires that one can evaluate P(®|x ;) at any
location within the parameter space. Furthermore, MCMC and HMC
samplers typically return the value of P(®|x;) at every sample in
the chain, allowing one to easily determine the set of isodensity
levels for each posterior and test P(@ e j|X ;) > P,. But what about
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performing inference tests on marginal distributions? To make the
discussion more concrete let us imagine that our parameter vector @
can be split into a set of # physical parameters of interest and a set of
1 nuisance parameters. It is easy to see that one can pass a coverage
test for the full posterior P(®|x ;) but nevertheless fail a coverage
test for the marginal posterior P(f|x j).ZI However, the marginal
physical parameter posterior, P(#|x ;), is what we actually care about,
whereas we would be more willing to tolerate overconfident (or
underconfident) total posteriors and marginal nuisance parameter
posteriors.

The same coverage test algorithm described in Appendix Al
applies to the marginal case. Specifically, all of the steps of the
procedure are the same with the exception of step (iv), where one
must now test whether the true physical parameter values 6. ; lie
within contours of the marginal posterior P(|x ;) for each data set.
There is however an important technical difference. The procedure
outlined in equation (A5) for determining isodensity levels and
testing whether the true physical parameters lie within volumes
enclosed by the credibility contours specified by o presumes that
one can evaluate P(f|x;) at every sample in the MCMC/HMC
chain as well as at the true parameter location. However, in practice
evaluating P(6|x ;) would require performing a typically intractable
marginalization integral over the nuisance parameters. Instead, this
intractable marginalization can be performed via Monte Carlo inte-
gration. By applying a density estimation algorithm (i.e. histogram,

© 2025 The Author(s).
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kernel density estimation, or Gaussian mixture model) to the MCMC
or HMC samples marginalized over the nuisance parameters, an
expression for P(]x ;) can then be determined allowing one to test
whether the true physical parameter values lie within the contours
of the marginal posteriors. While this Monte Carlo integration plus
density estimation procedure may sound complex, it is exactly the
procedure adopted when making a corner plot of MCMC/HMC
samples.

2lConsider a thought experiment where there is a single physical parameter
and a million nuisance parameters. Imagine a trivial true posterior inde-
pendently described by AN (6;]0, 1) for each element of ©. In conducting
inference, suppose we use the correct unit variance for each of the million
elements of », but erroneously adopt oy = 1/2 for the Gaussian describing
6. It is obvious that the incorrect form for the & component will be diluted by
contributions from the million nuisance parameters, and thus have a negligible
impact on the total posterior. Within reasonable numerical precision the
incorrect form of P(®|x;) with og = 1/2 will pass a coverage test. But
since the marginalization integral over the million nuisance parameters here
trivially evaluates to unity, the marginal posterior is P(6|x ;) = N(60, 1/2),
and it is manifestly clear that it will fail the marginal coverage test.
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