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A B S T R A C T 

We introduce a new approach for analysing the intergalactic medium (IGM) damping wings imprinted on the proximity zones 

of quasars in the epoch of reionization (EoR). Whereas past work has typically forgone the additional constraining power 

afforded by the blue side continuum ( λ � 1280 Å) and/or opted not to model the large correlated IGM transmission fluctuations 

in the proximity zone ( λ � 1216 Å), we construct a generative probabilistic model for the entire spectrum accounting for all 

sources of error – the stochasticity induced by patchy reionization, the impact of the quasar’s ionizing radiation on the IGM, 

the unknown intrinsic spectrum of the quasar, and spectral noise. This principled Bayesian method allows us to marginalize 

out nuisance parameters associated with the quasar’s radiation and its unknown intrinsic spectrum to precisely measure the 

IGM neutral fraction, 〈 x H I 〉 . A key element of our analysis is the use of dimensionality reduction (DR) to describe the intrinsic 

quasar spectrum via a small number of nuisance parameters. Using a large sample of 15 559 SDSS/BOSS quasars at z � 2 . 15 

we trained and quantified the performance of six distinct DR methods, and find that a six parameter principal component 

analysis model (five coefficients plus a normalization) performs best, with complex machine-learning approaches providing no 

advantage. By conducting statistical inference on 100 realistic mock EoR quasar spectra, we demonstrate the reliability of the 

credibility contours that we obtain on 〈 x H I 〉 and the quasar lifetime, t Q . The new method introduced here will transform IGM 

damping wings into a precision probe of reionization, on the same solid methodological and statistical footing as other precision 

cosmological measurements. 
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1  I N T RO D U C T I O N  

About 380 000 yr after the big bang, primordial plasma recombined 

to form the first atoms, releasing the cosmic microwave background 

(CMB) and initiating the cosmic ‘dark ages’, which pre v ailed until 

radiation from stars and black holes in prime v al galaxies reionized 

the Uni verse. Understanding ho w this epoch of reionization (EoR) 

emerged and the nature of the early sources that dro v e it are 

among the most important open questions in cosmology and key 

science drivers for numerous major observatories ( Planck , LOFAR, 

SKA, HERA, Keck, VLT, Hubble Space Telescope , Euclid , and 

JWST ). 

Our understanding of the evolution of the average intergalactic 

medium (IGM) neutral fraction with cosmic time, 〈 x H I ( z) 〉 , currently 

rests upon two pillars. The first is the CMB electron scattering 

optical depth τe , which provides an integral constraint on 〈 x H I ( z) 〉 , 
b ut lea ves its shape poorly determined. The second is the Gunn–

Peterson (GP) Ly α opacity measured towards distant z � 6 quasars, 

which only robustly constrains the end of reionization (e.g McGreer, 

� E-mail: joe@physics.ucsb.edu 

Mesinger & D’Odorico 2015 ; Jin et al. 2023 ), because the o v erly 

sensitive Ly α transition saturates for neutral fractions of 〈 x H I 〉 � 

10 −4 . The final Planck CMB constraints on reionization history, 

which incorporate the GP Ly α opacity constraint on the end of 

the reionization, indicate that the IGM was 50 per cent neutral at 

a redshift in the range z reion � 5 . 9 − 8 . 0 (2 σ ; Planck Collaboration 

VI 2020 ), considerably lower than the z reion ∼ 17 initially inferred 

by WMAP ( Wilkinson Micr owave Anisotr opy Pr obe ; Spergel et al. 

2003 ), and pulling reionization into the realm of the highest- z quasars 

known. 

Low-frequency radio observations of the 21-cm line have been 

touted as the premier probe of reionization and are steadily increasing 

in sensitivity (e.g. The HERA Collaboration 2022 ). They aim to 

detect the minuscule cosmic 21-cm background beneath foregrounds 

and instrumental systematics that are 10 5 times larger (Cheng et al. 

2018 ), b ut ha v e yet to pro vide quantitativ e constraints on 〈 x H I ( z) 〉 . 
Similarly, the so-called kinetic Sun yaev–Zeldo vich (kSZ) effect, 

which must be disentangled from other small-scale secondary CMB 

anistropies as well as post-reionization kSZ contributions (e.g. Dor ́e, 

Hennawi & Spergel 2004 ; Ferraro & Smith 2018 ), also holds 

promise, but current 〈 x H I ( z) 〉 constraints are weak (Nikoli ́c et al. 

2023 ) and model-dependent (Zahn et al. 2012 ; George et al. 2015 ). 
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In a neutral IGM, the GP optical depth is so large, τLy α ∼ 10 5 , 

that the red Lorentzian wing of the Ly α absorption cross-section can 

imprint an observable IGM damping wing on the spectrum of a 

background astronomical source (Miralda-Escud ́e 1998 ). Multiple 

methods have been proposed to leverage this unique signature 

to obtain quantitative constraints on 〈 x H I ( z) 〉 using either high- z 

galaxies or quasars as the background sources. For quasars, one can 

either analyse the damped Ly α (DLA) absorption signature arising 

from the IGM in the immediate vicinity of the quasar, or in the 

foreground (closer to the observer) where it could be imprinted 

upon the lower- z fluctuating Ly α forest transmission (Malloy & Lidz 

2015 ). 1 Whereas the former case is the subject of this paper, several 

recent studies investigate the latter in the vicinity of individual GP 

troughs embedded in the 5 . 5 � z � 6 Ly α forest (Becker et al. 2024 ), 

or stacks thereof (Spina et al. 2024 ; Zhu et al. 2024 ) with the hope 

of constraining 〈 x H I ( z) 〉 . In addition, IGM damping wings strongly 

suppress Ly α emission lines from EoR galaxies, and it has been 

argued that constraints on 〈 x H I ( z) 〉 can be obtained from the statistics 

of Ly α line strengths (Dijkstra, Mesinger & Wyithe 2011 ; Mesinger 

et al. 2015 ), moti v ating a large body of work exploring this technique 

(e.g. Mason et al. 2018 , 2019 ; Hoag et al. 2019 ; Jung et al. 2020 ). 

Another approach recently enabled by the exquisite spectra of EoR 

galaxies provided by JWST is to try to measure the IGM damping 

wing signature from the continua of individual or stacked galaxy 

spectra (Umeda et al. 2024 ; Keating et al. 2024a ). 

Ho we ver, Heintz et al. ( 2025 , see also Heintz et al. 2024 ; Umeda 

et al. 2024 ; D’Eugenio et al. 2024 ; Chen et al. 2024 ) recently 

demonstrated that a significant fraction ∼ 60 − 70 per cent of EoR 

galaxies with 5 . 5 � z � 13 exhibit strong intrinsic DLA absorp- 

tion with N H I � 10 21 cm 
−2 , far stronger than the corresponding 

intrinsic DLAs seen in star-forming galaxies at lower- z ( z � 4), 

and importantly, than the expected damping wings from a neutral 

IGM (typical N H I ∼ 10 21 cm 
−2 ). It is perhaps not surprising that 

this intrinsic absorption, which arises from the interstellar medium 

(ISM) or circumgalactic medium (CGM) of galaxies, should rapidly 

evolve as one approaches the EoR. Estimates of the ultraviolet 

background (UVB) from the statistics of Ly α forest transmission 

indicate rapid evolution towards z � 5 . 5 (Davies et al. 2018a , 2024 ; 

Gaikwad et al. 2023 ), which is further supported by the similarly 

rapidly evolving mean-free path of ionizing photons ( λmfp ; Becker 

et al. 2021 ; Zhu et al. 2023 ), since the UVB is proportional to the 

mean-free path. CGM absorbers in ionization equilibrium with this 

evolving UVB are thus expected to be stronger and more abundant in 

the EoR (Bolton & Haehnelt 2013 ), which is empirically supported 

by both the strong increase in the abundance of low-ionization metal 

absorption lines at z � 6 (Becker et al. 2019 ; Christensen et al. 

2023 ) as well as the strong redshift evolution in the occurrence of 

DLAs in star-forming galaxies observed by Heintz et al. ( 2025 ). 

Regardless of the physical explanation, the incr eased pr evalence of 

strong intrinsic DLA absorption in EoR galaxies calls into question 

the entire enterprise of using galaxies, whether via the statistics of 

their Ly α lines or via damping wing absorption imprinted on their 

continua, as background sources to probe reionization. No study 

to date has demonstrated that the intrinsic ISM/CGM absorption 

in galaxies can be disentangled from the damping wing absorption 

induced by the neutral IGM. Further obstacles arise from the poorly 

understood intrinsic nebular continuum shape of galaxy spectra near 

1 In practice, the demarcation between these two regimes depends on the 

extent of the region that is overionized by the quasar, i.e. the size of its 

proximity zone. 

the Ly α line (Raiter, Schaerer & Fosbury 2010 ; Byler et al. 2017 ), 

and from the challenge of modelling their Ly α emission lines, which 

is complicated by resonant scattering effects (Sadoun, Zheng & 

Miralda-Escud ́e 2017 ). 

In contrast, quasars provide several advantages over galaxies as 

background sources for IGM damping wing measurements. First, 

quasars are far brighter, allowing one to obtain high signal-to-noise 

ratio (S/N � 10) and high-resolution ( R ∼ 3000 − 10000) spectra 

with far less telescope time than required for galaxies. Second, 

analogous to the way O-stars transform their nearby ISM, the 

quasar’s own ionizing radiation sources a giant Mpc-scale H II region 

(Cen & Haiman 2000 ) known as a proximity zone, manifest as 

enhanced Ly α transmission near the quasar itself (e.g. Fan et al. 

2006 ; Eilers et al. 2017a ) Although this reduces the strength of 

the IGM damping wing and adds a nuisance physical process to 

the modelling, it provides the great advantage that neutral gas in 

the ISM/CGM of the quasar’s host galaxy is completely ionized 

away, eliminating systematics associated with poorly understood 

ISM/CGM absorption. This simplifies the modelling dramatically, 

as one only needs to treat 1D radiative transfer (RT) of the quasar 

radiation through the diffuse IGM, which is a well-posed problem 

that can be solved ab initio – IGM density fluctuations can be 

predicted from first principles and the IGM damping wing strength 

(being an integral constraint) is insensitive to the exact details of 

the reionization topology at fixed 〈 x H I 〉 (Davies et al. 2018b ; Chen 

2024 ; Keating et al. 2024a ). Furthermore, this approach is also 

largely insensitive 2 to the details of the quasar’s radiative history 

(Davies et al. 2019 , 2020 ), which can be encapsulated by a single 

nuisance parameter, t Q , the quasar lifetime (assuming a ‘light-bulb’ 

light curve). The third advantage is that modelling the intrinsic quasar 

spectrum near Ly α is straightforward. Because there is very little 

evidence that quasar spectra evolve from z ∼ 2 − 7 (Shen et al. 

2019 ), large training sets of thousands of z ∼ 2 − 3 quasar spectra 

from surv e ys like SDSS/DESI can be used to train empirical models 

for their intrinsic spectra (e.g. Greig et al. 2017a ; Davies et al. 2018c ). 

The intrinsic quasar spectrum constitutes a nuisance stochastic 

process that must be marginalized out to obtain constraints on the 

astrophysical parameters 〈 x H I 〉 and t Q . Indeed, a critical aspect of 

measuring the IGM damping wing signature in EoR quasar spectra 

is obtaining a reliable estimate of and uncertainty for the intrinsic 

unabsorbed quasar spectrum in the region near the Ly α line. To 

date, the approach adopted in most past work is to use the spectrum 

redward of the absorbed Ly α region (e.g. λ > 1280 Å) to predict the 

blue part of the unabsorbed quasar spectrum in the vicinity of the 

2 For a quasar shining into a completely neutral IGM, the size of its 

surrounding ionized region is primarily set by the total number of ionizing 

photons emitted o v er the age of the Universe, and is largely insensitive 

to its light curve due to the long recombination time-scale relative to the 

Hubble time. In contrast, for a quasar in a highly ionized IGM, the light 

curve can more strongly affect IGM transmission in the proximity zone. This 

sensitivity arises if the quasar’s radiation varies on timescales comparable to 

the equilibration time, t eq ≡ � 
−1 
H I ∼ 3 × 10 4 yr , the time-scale on which the 

IGM responds to quasar radiation or recombines to its baseline neutral fraction 

in the absence of the quasar (Davies, Hennawi & Eilers 2020 ). Observations 

of quasar proximity zones are broadly consistent with a simple light-bulb light 

curve (Eilers et al. 2017a ; Davies et al. 2020 ), with lognormally distributed 

lifetimes t Q centred around ∼ 10 6 yr and a standard deviation of ∼ 1 dex 

(Eilers et al. 2020 , 2021 ; Khrykin et al. 2021 ; Morey et al. 2021 ; Satya v olu 

et al. 2023 ; Ďuro v ̌c ́ıko v ́a et al. 2024 ). Thus, even in an ionized IGM, current 

evidence suggests light-curve variability has limited impact on proximity 

zone transmission, though this remains an important topic for future study. 
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Ly α line (e.g. λ < 1280 Å), an idea first suggested by Suzuki et al. 

( 2005 ) in the context of studies of the z � 4 Ly α forest (P ̂ aris et al. 

2011 ; Lee, Suzuki & Spergel 2012 ; Lee et al. 2015 ; Eilers et al. 

2017a ). Mortlock et al. ( 2011 ) were the first to apply this red-blue 

prediction approach to search for an IGM damping wing imprinted 

on a z = 7 . 1 quasar spectrum. This approach was elaborated upon 

by Greig et al. ( 2017a ), who adopted a parametric model for the 

unabsorbed spectrum – a sum of a power law plus multiple Gaussian 

emission-line components – and used the statistical correlations 

between these parameters, inferred from a large training data set, 

to generate the red–blue predictions. Building on past Ly α forest 

work using principal component analysis (PCA; P ̂ aris et al. 2011 ; 

Lee et al. 2012 , 2015 ; Eilers et al. 2017a ), Davies et al. ( 2018b ) 

developed a PCA-based red–blue continuum prediction algorithm 

(see also Eilers, Hennawi & Lee 2017b ), trained on a set of > 10 000 

quasar spectra at z � 2 from the SDSS/BOSS (Baryon Oscillation 

Spectroscopic Surv e y) DR12 quasar catalogue (P ̂ aris et al. 2017 ). 

They quantified the covariant uncertainties in the predicted continua, 

and found them to have a typical relative error of ∼ 6 − 12 per cent 

at the rest-frame wavelengths most rele v ant for IGM damping wing 

absorption. These studies moti v ated the de velopment of a plethora 

of red–blue continuum prediction methods for studying quasar 

proximity zones and IGM damping wings ( ̌Duro v ̌c ́ıko v ́a et al. 2020 ; 

Fathi v avsari 2020 ; Reiman 2020 ; Chen et al. 2022 ) as well as the 

Ly α forest (Bosman et al. 2021 ; Liu & Bordoloi 2021 ). Greig et al. 

( 2024b ) recently conducted a detailed comparison of the ∼ 10 red–

blue quasar continuum prediction pipelines in existence (see also 

Bosman et al. 2021 ), and found that they all yield roughly comparable 

precision of ∼ 10 − 20 per cent at the rele v ant blue-side rest-frame 

wavelengths near the Ly α line. 

The disco v ery of the first z > 7 quasar ULASJ1120 + 0641 (Mort- 

lock et al. 2011 ) led to significant interest in using such sources 

to obtain quantitative constraints on reionization (Mortlock et al. 

2011 ; Bolton et al. 2011 ; Keating et al. 2015 ; Greig et al. 2017b ). 

Greig et al. ( 2017b ) combined the Greig et al. ( 2017a ) contin- 

uum prediction algorithm with seminumerical simulations of the 

reionization topology (Mesinger, Greig & Sobacchi 2016 ) to model 

the distribution of IGM damping wing strengths as a function of 

〈 x H I ( z) 〉 , but their analysis pipeline only fits rest-frame wavelengths 

redward of the Ly α line. Ho we ver, it is well known that the size 

of the proximity zone and the strength of the damping wing are 

sensitive to the quasar lifetime t Q (Bolton & Haehnelt 2007b ; Bolton 

et al. 2011 ; Keating et al. 2015 ; Eilers et al. 2017a ; Davies et al. 

2018c ), which can vary from 10 4 − 10 8 yr (Eilers et al. 2017a , 

2021 ; Khrykin et al. 2021 ), and thus must be treated as a nuisance 

parameter. Davies et al. ( 2018b ) presented the first complete model 

of the proximity zone and damping wing region of quasar spectra 

by combining the Davies et al. ( 2018c ) estimator for the intrinsic 

quasar continuum and its associated uncertainty, with a model for 

the small-scale density fluctuations in the IGM, a description of the 

reionization topology surrounding the massive dark matter haloes 

hosting quasars (Davies & Furlanetto 2022 ), and time-dependent 

ionizing photon RT (Davies, Furlanetto & McQuinn 2016 ). To date, 

the Davies et al. ( 2018b ) modelling approach has been applied to 

four 7 � z � 7 . 5 quasars (Ba ̃ nados et al. 2018 ; Davies et al. 2018c ; 

Wang et al. 2020 ; Yang et al. 2020 ) yielding robust constraints on 

〈 x H I ( z) 〉 that are competitive with the CMB. Furthermore, the two 

independent modelling pipelines of Greig et al. ( 2017b ) and Davies 

et al. ( 2018c ), which adopt distinct approaches for treating the impact 

of the quasar radiation, reionization topology, and the intrinsic quasar 

continuum yield results in very good agreement (Greig et al. 2022 ). 

Progress on analysing larger samples of quasars, and specifically 

z < 7 quasars for which 〈 x H I ( z) 〉 should be lower, has recently been 

made by Ďuro v ̌c ́ıko v ́a et al. ( 2024 ) who analysed stacks of a sample 

of 18 quasars at 6 � z � 7, and by Greig et al. ( 2024a ) who applied 

the Greig et al. ( 2017b ) pipeline to a sample of 42 quasar spectra at 

5 . 8 � z � 6 . 6. 

These IGM damping wing analyses show that, after marginal- 

izing out nuisance parameters describing the quasar’s intrinsic 

continuum and lifetime, each quasar measures 〈 x H I ( z QSO ) 〉 to ∼
10 − 25 per cent precision at the quasar redshift, z QSO (see also 

Kist, Hennawi & Davies 2025 ). Higher precision constraints on 

〈 x H I ( z) 〉 thus require averaging independent measurements o v er large 

statistical samples of quasars. The recently launched ESA/ Euclid 

satellite is poised to disco v er o v er 100 quasars with 7 . 0 � z � 7 . 5, 

and ∼ 25 quasars beyond the current record of z = 7 . 6, including ∼ 8 

beyond z = 8 . 0 (Euclid Collaboration 2019 ). The JWST will obtain 

exquisite spectra of these Euclid EoR quasars, many of which will be 

too faint to be observed with ground-based telescopes in a reasonable 

observing allocation. Indeed, fiv e e xisting z > 6 . 8 quasars hav e 

already been observed by JWST (e.g. Christensen et al. 2023 ). The 

combination of large Euclid quasar samples and sensitive JWST 

spectra have the potential to revolutionize the study of IGM damping 

wings towards quasars and constrain the cosmic reionization history 

to unprecedented precision. 

But exploiting the tremendous potential of these facilities to yield 

precise measurements of 〈 x H I ( z) 〉 requires the quantitative study of 

reionization using quasar damping wings to be on the same solid 

methodological and statistical footing as other precision cosmologi- 

cal measurements. It is well known that the CMB electron scattering 

optical depth, τe , is degenerate with other cosmological parameters 

such as the Hubble constant, H 0 , the amplitude of matter fluctuations, 

σ8 , or the sum of neutrino masses �m ν . Growing tensions between 

CMB determinations of these parameters and their values measured 

from late-time probes such as baryon acoustic oscillations (e.g. DESI 

Collaboration 2025 ), weak-lensing (e.g. Hikage et al. 2019 ; van den 

Busch et al. 2022 ; Abbott et al. 2022 ), the cosmic distance ladder (e.g. 

Riess et al. 2022 ; Murakami et al. 2023 ), and laboratory beta-decay 

experiments (e.g. Di Valentino & Melchiorri 2022 ; Kreisch, Cyr- 

Racine & Dor ́e 2020 ) has spawned an industry of research on these 

putative anomalies. It is telling that this enormous body of work only 

uses Planck Collaboration VI ( 2020 ) reionization constraints because 

measurements from the spectra of distant astronomical objects are, 

apparently, not yet considered credible. 

The goal of this paper is to introduce a framework that will ele v ate 

the study of IGM damping wings towards quasars to be a precision 

cosmological probe of reionization. The most significant limitation 

of past IGM damping wing studies is that they are fundamentally 

suboptimal for two reasons. First, the commonly adopted red–blue 

prediction approach forgoes the additional continuum constraining 

po wer af forded by spectral pixels blue ward of the typically chosen 

dividing line of 1280 Å. But these blue spectral pixels ( λ < 1280 Å) 

contain an abundance of information about the intrinsic quasar 

continuum and the astrophysical parameters 〈 x H I 〉 and t Q . The most 

intuitive way to see this is that red–blue continuum prediction 

provides no mechanism to explicitly prevent the blue-side continuum 

from lying several spectral noise standard de viations, σλ, belo w 

the observed spectrum, f λ, for large swaths of pixels, although 

such continua are clearly unphysical. Furthermore, jointly fitting 

the spectral range λ < 1280 Å, where the smooth damping wing 

absorption is imprinted, for both the continuum and the astrophysical 

parameters, 〈 x H I 〉 and t Q , will surely help break the de generac y 

between damping wing strength and intrinsic continuum shape. 

Second, nearly all past work has not modelled the highly absorbed 
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proximity zone region blueward of the Ly α line ( λ � 1216 Å), owing 

to the dual challenge of modelling both the impact of the quasar 

radiation and the large correlated IGM transmission fluctuations 

at these wavelengths. Exceptions are Davies et al. ( 2018b ) who 

performed ionizing RT (see also Bolton et al. 2011 ) and used 

simulation-based inference to approximate the intractable likelihood 

for the correlated transmission fluctuations, and Ďuro v ̌c ́ıko v ́a et al. 

( 2024 ), who similarly performed RT and modelled the correlated 

transmission fluctuations with a Gaussian likelihood – accurate only 

because they analysed stacked and hence ef fecti vely Gaussianized 

spectra (although stacking is suboptimal and significantly degrades 

the precision on 〈 x H I ( z) 〉 3 ). But an accurate likelihood that allows 

one to fit these absorbed proximity zone pixels would clearly 

provide information about both the astrophysical parameters and the 

underlying continuum, since the former determines the distribution 

of IGM transmission fluctuations, which in turn constrains the latter 

in a statistical sense (and vice versa). Finally, to be taken seriously 

as a precision cosmological probe, one must use mock observations 

to establish that the measurements and the parameter uncertainties 

quoted are reliable, which has to date never been undertaken. 

Building upon the modelling approach presented in Davies et al. 

( 2018b , c ), we present an impro v ed technique for constraining 

reionization with EoR quasar spectra and establish the statisti- 

cal robustness of the inferred astrophysical parameter constraints. 

Whereas past work failed to exploit the full constraining power of 

the blue side spectral re gion, our ke y inno vation is the construction 

of a single Bayesian likelihood for the entire spectrum, allowing 

us to fit the continuum and the IGM damping wing signature 

simultaneously. We use dimensionality reduction (DR) to describe 

the intrinsic quasar continuum with a parametric model, but in 

contrast with most previous IGM damping wing work there is no red–

blue prediction, but rather a single latent variable model for the entire 

quasar spectrum. Using a large training set of 15 559 SDSS/BOSS 

quasars at z � 2 . 15, we trained and quantified the performance of 

six distinct DR methods, including machine-learning approaches, 

and find that a six parameter PCA model (five PCA coefficients 

plus a normalization) performs best, with complex machine learning 

providing no improvements in performance. All sources of error – the 

stochasticity induced by the ionization topology, the unknown QSO 

lifetime t Q , continuum reconstruction errors, and spectral noise – are 

accounted for in a principled manner, allowing us to marginalize out 

all continuum nuisance parameters. Finally, by conducting statistical 

inference on 100 realistic mock EoR quasar spectra, we show that our 

posterior distributions pass a co v erage test, establishing the reliability 

of the credibility contours that we obtain on 〈 x H I ( z) 〉 and t Q from this 

new method. 

In our companion paper (Kist et al. 2025 ), we quantify the 

precision with which IGM damping wings analysed with this new 

inference approach can measure the astrophysical parameters, 〈 x H I 〉 
and log 10 ( t Q / yr ), and the dependence of this precision on the 

dimensionality of the DR latent variable model, as well as on the 

spectral resolution, S/N, and spectral co v erage of the quasar spectra 

that are analysed. 

The structure of this paper is as follows. In Section 2 , we derive 

the expression for the likelihood of the quasar spectrum that is at the 

heart of the technique. An exploration of the six DR methods and 

a description of the training data and procedure are the subject of 

3 The constraints from the Ďuro v ̌c ́ıko v ́a et al. ( 2024 ) stacked spectra are 

scarcely more precise than those from individual quasars obtained by other 

w ork ers (Greig et al. 2017b ; Davies et al. 2018c ; Greig et al. 2022 , 2024a ). 

Section 3 . In Section 4 , we summarize the Davies et al. ( 2018b ) 

approach for simulating quasar transmission spectra with IGM 

damping wing absorption and quasar lifetime effects, describe how 

these simulations are used to determine the ingredients required 

for the quasar spectrum likelihood, and explain our procedure 

for creating mock quasar spectra. In Section 5 , we describe our 

Hamiltonian Monte Carlo (HMC) based statistical inference, show 

examples of the inference on mock spectra, present the procedure 

and results from the co v erage testing, and compare the accuracy 

of our continuum reconstructions to previous work based on red–

blue prediction. Finally, we summarize and conclude in Section 6 . 

Appendix A introduces the formalism behind our co v erage tests as 

well as a no v el approach to reweight the HMC parameter samples to 

guarantee that we pass a co v erage test ev en if our original posterior 

distributions are o v erconfident. 

In this work, we assume a flat Lambda-cold dark matter cosmology 

with h = 0 . 685, 
b = 0 . 047, 
m = 0 . 3, 
� = 0 . 7, and σ8 = 0 . 8. 

2  FOR MALISM  

Our goal is to derive an expression for the likelihood of a quasar 

spectrum f with noise vector σ (with elements f λ and σλ, respec- 

tively) to be observed in a possibly neutral IGM. If we unrealistically 

assume perfect knowledge of the IGM transmission field, t , and the 

underlying unabsorbed quasar spectrum, s , then because the spectral 

noise is Gaussian distributed, the probability of measuring f is 

simply 

P ( f | σ , t , s ) = N ( f ; t ◦s , � ) , (1) 

where N ( f ; μ, K ) is the standard normal distribution with mean μ

and covariance matrix K , ◦ represents an element wise (Hadamard) 

product of vectors, and � ≡ diag ( σ ) is the diagonal matrix formed 

from the measured noise vector σ (throughout we denote vectors 

with bold lowercase letters/symbols and matrices with bold capital 

letters/symbols). 

The intrinsic quasar spectrum s and the IGM transmission t are 

latent stochastic processes, which is to say that they are random 

variables that are not directly observable. Instead, they are related 

to observables, but we must marginalize o v er their probability 

distributions in order to measure the astrophysical parameters of 

interest. We will adopt this approach in what follows. 

First consider the intrinsic quasar spectrum, s – our knowledge is 

clearly limited by spectral noise, and, blueward of rest-frame Ly α, 

by IGM absorption. Furthermore, quasar spectra cannot be modelled 

from first principles. As a result it is common to adopt a data-driven 

approach and describe s with a DR algorithm, of which PCA (e.g. 

Suzuki et al. 2005 ; Suzuki 2006 ; P ̂ aris et al. 2011 ; Davies et al. 2018c ) 

is the simplest example. This results in a parametric model, s DR ( η), 

where η is a new latent variable describing the unabsorbed quasar 

spectrum which lives in a space with dimensionality lower than the 

number of spectral pixels (i.e. wavelengths) in s . For example, in a 

PCA decomposition, η would be the vector of PCA coefficients plus 

an o v erall normalization parameter. Since the unabsorbed spectral 

pixels redward of the Ly α line provide considerable information 

about η, it is advantageous to fit for these parameters, rather 

than completely marginalize o v er the quasar continuum stochastic 

process s . 

Ho we ver, no DR algorithm is perfect, which moti v ates defining 

the relative reconstruction error 

δ ≡
s − s DR ( η) 

s 
, (2) 
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where division here is understood to be element wise (i.e. analogous 

to the Hadamard products of vectors defined in equation 1 ). It then 

follows that s = s DR ( η) ◦( 1 + δ) to lowest order in δ. We assume 

that δ is a stochastic process that follows a Gaussian probability 

distribution function (PDF) given by 

N ( δ; 〈 δ〉 , � ) , (3) 

where 〈 δ〉 and � are the mean and covariance matrix of the 

relative reconstruction error, δ, respectively, which can be empirically 

determined by applying the DR algorithm to a ‘test’ data set. We carry 

out this procedure in Section 3 , where it is shown that a Gaussian 

form is indeed a very good approximation. Given these assumptions, 

we can finally write for the PDF of the latent variable s : 

P ( s | η) = N ( s ; 〈 s ( η) 〉 , C s ( η)) , (4) 

where we have defined 〈 s ( η) 〉 ≡ s DR ( η) ◦( 1 + 〈 δ〉 ), C s ( η) = 

S DR ( η) � S DR ( η), and S DR ( η) ≡ diag ( s DR ( η)). 

Next, consider the stochastic process governing the IGM transmis- 

sion t . While noise and the unknown continuum, s , also limits our 

knowledge of this latent variable, the primary source of stochasticity 

is ‘cosmic variance’, resulting from the unknown initial conditions of 

the Universe. To make this more concrete, consider how realizations 

of t are generated. A common approach is to post-process cosmolog- 

ical hydrodynamical simulation outputs with ionizing RT (Bolton & 

Haehnelt 2007a ; Davies et al. 2016 , 2018b ; Chen & Gnedin 2021 ; 

Satya v olu et al. 2023 ; Zhou et al. 2024 ), as we discuss further in 

Section 4 . As such, the IGM transmission, t ( φ, θ ) depends on a 

vector, φ, which are the random phases and amplitudes of Gaussian 

distributed complex latent variables used to initialize the simulation, 

which represents the unknown initial conditions of the Universe 

in the vicinity of the quasar, as well as a vector of astrophysical 

parameters θ , which for IGM damping wing analysis, would be the 

average IGM neutral fraction 〈 x H I 〉 and the quasar lifetime t Q , in the 

simplest description (e.g. Davies et al. 2018b ). Our aim is to measure 

θ , whereas it is clearly computationally intractable to attempt to fit 

for the latent variables φ, unless one had an incredibly f ast w ay of 

simulating the IGM and performing the RT. As it is unclear whether 

fitting for φ would be advantageous (but see Horowitz et al. 2019 ) 

and it is clearly computationally intractable, the ob vious strate gy is 

to marginalize o v er the initial conditions, φ. 

Based on the foregoing considerations, we perform the marginal- 

ization o v er the relativ e reconstruction error, δ, and the initial 

conditions, φ, to arrive at an expression for the likelihood of the data 

f giv en observ ed noise v ector σ , astrophysical model parameters θ , 

and DR latent variables η: 

L ( f | σ , θ , η) = 

∫ ∫ 

P ( f | σ , t ( φ, θ ) , s ) P ( s | η) P ( φ)d s d φ. (5) 

Using the definition of the Dirac delta function 

1 = 

∫ 

δD [ t − t ( φ, θ )] d t , (6) 

we can introduce an additional integral over the stochastic variable t 

in equation ( 5 ) giving 

L ( f | σ , θ , η) 

= 

∫ ∫ ∫ 

P ( f | σ , t , s ) P ( s | η) δD [ t − t ( φ, θ )] P ( φ)d s d φd t . (7) 

The probability distribution of IGM transmission, P ( t | θ ), can now 

be defined as 

P ( t | θ ) = 

∫ 

δD [ t − t ( φ, θ )] P ( φ)d φ, (8) 

which is the pushforward distribution of the prior o v er initial condi- 

tions, P ( φ), through the deterministic mapping t ( φ, θ ). Intuitively, 

P ( t | θ ) describes the distribution of IGM transmission fields that 

results from drawing random initial conditions φ according to P ( φ) 

and evolving them forward under the simulation specified by the 

astrophysical parameters θ . Finally, we can write the likelihood as 

L ( f | σ , θ , η) = 

∫ ∫ 

P ( f | σ , t , s ) P ( s | η) P ( t | θ)d t d s . (9) 

Note that two of the PDFs under the integral in equation ( 9 ), 

P ( f | σ , t , s ) and P ( s | η) have a Gaussian form, but P ( t | θ ) poses 

a challenge since, whether at random locations in the Universe 

(e.g. Lee et al. 2015 ; Davies et al. 2018a ) or in quasar proximity 

zones (Davies et al. 2018b ), it is well known that the PDF of the 

IGM transmission is non-Gaussian. While generating samples from 

P ( t | θ ) is straightforward – simply randomly select IGM transmission 

skewers generated from a simulation with parameters θ – there exists 

no tractable analytical expression for P ( t | θ ). It thus follows that it 

is impossible to derive an exact analytical expression for the desired 

likelihood both because P ( t | θ ) is intractable, and because even if an 

expression for it existed, it would be extremely challenging to per- 

form the high-dimensional marginalization integrals in equation ( 9 ). 

Our approach going forward is to approximate P ( t | θ ) with a 

Gaussian form, 

P ( t | θ ) = N ( t ; 〈 t ( θ ) 〉 , C t ( θ )) , (10) 

where 〈 t ( θ ) 〉 and C t ( θ ) are the mean IGM transmission and its co- 

variance, which are easily measured from realizations using forward 

simulations of quasar proximity zones. With this approximation, we 

can now obtain an approximate analytic expression for the likelihood. 

Substituting the Gaussian PDFs for f , s , and t from equations ( 1 ), 

( 4 ), and ( 10 ) into the marginalization integral in equation ( 9 ) gives 

L ( f | σ , θ , η) = 

∫ ∫ 

N ( f ; t ◦s , � ) N ( s ; 〈 s ( η) 〉 , C s ( η)) 

×N ( t ; 〈 t ( θ ) 〉 , C t ( θ ))d s d t . (11) 

Re-arranging to express the integral over t in terms of the variable 

t ◦s gives 

L ( f | σ , θ , η) = 

∫ [∫ 

N ( f ; t ◦s , � ) N ( t ◦s ; 〈 t 〉 ◦s , S C t S )d( t ◦s ) 

]

×N ( s ; 〈 s 〉 , C s )d s , (12) 

where S ≡ diag ( s ) and we suppress explicit dependencies of the 

means and covariances on θ and η for notational brevity. Exploiting 

the fact that Gaussians are closed under convolution, the integral in 

brackets can be analytically e v aluated gi ving 

L ( f | σ , θ , η) = 

∫ 

N ( f ; 〈 t 〉 ◦s , � + S C t S ) N ( s ; 〈 s 〉 , C s )d s . (13) 

Analogous to abo v e, we can re-arrange equation ( 13 ) in terms of the 

v ariable 〈 t 〉 ◦s gi ving 

L ( f | σ , θ , η) = 

∫ 

N ( f ; 〈 t 〉 ◦s , � + S C t S ) 

×N ( 〈 t 〉 ◦s ; 〈 t 〉 ◦〈 s 〉 , 〈 T 〉 C s 〈 T 〉 )d( 〈 t 〉 ◦s ) . (14) 

where 〈 T 〉 ≡ diag ( 〈 t 〉 ). While the form of equation ( 14 ) suggests one 

use the closure of Gaussians under convolutions again to e v aluate the 

inte gral o v er 〈 t 〉 ◦s , note that s also now appears in the co variance 

of the first normal distribution via the term S C t S (recall that S ≡
diag ( s )), which instead renders this integral intractable. To make 

progress we approximate 

s = s DR ( η) ◦( 1 + δ) ≈ s DR ( η) ◦( 1 + 〈 δ〉 ) ≡ 〈 s ( η) 〉 (15) 
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in the problematic covariance term such that 

S C t S ≈ 〈 S 〉 C t 〈 S 〉 (16) 

where 〈 S 〉 ≡ diag ( 〈 s ( η) 〉 ) = diag [ s DR ( η) ◦( 1 + 〈 δ〉 )]. This remo v es 

the s dependence from the covariance 4 so that the likelihood becomes 

L ( f | σ , θ, η) = 

∫ 

N ( f ; 〈 t 〉 ◦s , � + 〈 S 〉 C t 〈 S 〉 ) 

×N ( 〈 t 〉 ◦s ; 〈 t 〉 ◦〈 s 〉 , 〈 T 〉 C s 〈 T 〉 )d( 〈 t 〉 ◦s ) . 

= N ( f ; 〈 t 〉 ◦〈 s 〉 , � + 〈 S 〉 C t 〈 S 〉 + 〈 T 〉 C s 〈 T 〉 ) , (17) 

where the last equality again follows from the closure of Gaussians 

under convolution. 

The primary virtue of the likelihood in equation ( 17 ) is that it 

operates on the entire quasar spectrum, and constitutes a significant 

departure from the now standard approach in quasar IGM damping 

wing analysis of using the spectrum redward of the Ly α line to 

predict the intrinsic spectrum bluward of Ly α, and then performing 

inference on the resulting normalized spectrum (e.g. Davies et al. 

2018b ; Ďuro v ̌c ́ıko v ́a et al. 2020 ; Fathi v avsari 2020 ; Reiman 2020 ; 

Chen et al. 2022 ). Clearly pixels blueward of the typical red–blue 

dividing line of � 1280 Å contain an abundance of information about 

the intrinsic spectrum and the astrophysical parameters θ . As it 

operates on the entire spectrum, the likelihood in equation ( 17 ) fully 

incorporates information from pixels with λ < 1280 Å, where the 

smooth damping wing absorption is imprinted. Fitting this region 

helps break the de generac y between damping wing strength and 

intrinsic spectrum shape. Finally, even partly absorbed pixels in 

the proximity zone constrain s DR ( η), since each model θ predicts 

the distribution of t , which in turn constrains s DR ( η) in a statisti- 

cal sense. Because t λ = exp ( −τλ) and s λ = f λ/t λ, the uncertainty 

in the continuum arising from stochastic IGM fluctuations | δs λ/ 
s λ| = | δt λ/t λ| = | δτλ| will be the smallest at low optical depth, 

and hence the highest transmission, t , inner proximity zone pixels 

(i.e. closest to the Ly α wavelength 1215.67 Å in the rest frame) 

arising from regions illuminated by the quasars intense radiation 

will contain the most information about the intrinsic spectrum 

s . This also suggests that observations with resolution sufficient 

to spectrally resolve transmission spikes in the proximity zone 

could afford additional constraining power (but see Kist et al. 

2025 ). 

The main disadvantage of the likelihood in equation ( 17 ) is that it is 

approximate, with the most significant errors incurred from assuming 

a Gaussian form for P ( t | θ ) in equation ( 10 ), which we investigate in 

detail in Section 5.6 . In Section 5 , we show that this approximation 

yields biased and o v erconfident parameter inference, but a strategy 

for mitigating these shortcomings is introduced. In our companion 

paper, we conduct more detailed tests of the precision and fidelity 

of the statistical inference delivered by equation ( 17 ) and better 

understand the conditions under which the Gaussian approximation 

for the PDF of the proximity zone transmission is valid (Kist et al. 

2025 ). 

Finally, we note that our approach bares some resemblance to 

the likelihoods derived by Garnett et al. ( 2017 ) and Sun, Ting & 

Cai ( 2023 ) in the context of the lo wer- z Ly α forest. Ho we ver, our 

4 This approximation suppresses the modulation of the covariance by the 

fluctuations due to the relative reconstruction error δ. While these fluctuations 

are small, ignoring them is not obviously mathematically justifiable in terms 

of an expansion in powers of δ. But given the already crude approximation of 

a Gaussian transmission PDF (i.e. equation 10 ), this inconsistency is tolerable 

as it yields a closed form analytical expression. 

likelihood is more accurate since both Garnett et al. ( 2017 ) and Sun 

et al. ( 2023 ) incorporate IGM absorption via an additive noise term. 

Although it simplifies the math, this approximation surely breaks 

down for the highly opaque IGM of interest to us here, whereas 

our analysis treats IGM absorption as multiplicative and is both 

more accurate and applicable to low- z and high- z IGM absorption 

alike. Furthermore, Garnett et al. ( 2017 ) assume that the intrinsic 

quasar spectrum, s in our notation, follows a Gaussian distribution, 

whereas Sun et al. ( 2023 ) assume that the latent variables describing 

the intrinsic spectrum, η in our notation, are Gaussian distributed 

and that the covariance of the continuum reconstruction errors, 

C s ( η) in our notation, is a diagonal matrix. In contrast, we only 

assume Gaussianity for the relative reconstruction error, δ, which 

is a far weaker assumption, and treat fully covariant continuum 

reconstruction errors (see Fig. 7 ). The main advantage of their 

approaches relative to ours is that they present a method to determine 

the quasar continuum DR model, s DR ( η) directly from a low- z Ly α

forest data set in addition to the astrophysical parameters, whereas in 

our approach, we derive the latent variable model from an external 

training set, which as we discuss in the next section, comes from 

SDSS/BOSS 2 . 15 � z � 4 quasar spectra fit with an automated 

continuum fitting algorithm. It is worth exploring in future work if, 

analogous to Garnett et al. ( 2017 ) and Sun et al. ( 2023 ), one can use 

the likelihood in equation ( 17 ) to fit for both the latent variable model 

that describes the continua of SDSS/BOSS 2 . 15 � z � 4 quasar 

spectra and the astrophysical parameters that go v ern the low- z Ly α

forest. 

3  QUA SA R  DIMENSIONA LIT Y  R E D U C T I O N  

A critical component of the formalism presented in the previous 

section is the representation of the intrinsic quasar spectrum, s , with 

a DR algorithm. Specifically, before we can compute the likelihood 

in equation ( 17 ) we need to: (1) apply a DR algorithm to an ensemble 

of quasar spectra to determine the function s DR ( η), (2) demonstrate 

that the probability distribution of the relative reconstruction error δ

(equation 2 ) is well described by a multi v ariate Gaussian distribution 

(equations 3 and 4 ), and (3) measure the mean 〈 δ〉 and covariance � 

of this distribution. 

An important question is which DR algorithm to employ. We will 

compare several different DR approaches in this section. DR methods 

are commonly divided into linear and non-linear models. We will start 

with most widely adopted linear model which is PCA, which will be 

compared to two non-linear models, namely a Gaussian Process 

Latent Variable Model (GPLVM), and a variational autoencoder 

(VAE). Although PCA is provably optimal among linear methods 

in the sense that it minimizes the average-squared reconstruction 

error for a fixed dimension of the latent space, n latent , this optimality 

does not extend to non-linear methods. In particular, non-linear 

DR algorithms such as the GPLVM and VAE could, in principle, 

more efficiently capture the structure of the data manifold, and thus 

achieve smaller reconstruction errors. For this reason, we assess the 

performance of each method empirically. First, we will describe the 

procedure for generating the training data for the DR algorithms 

(Section 3.1 ), then we will discuss our implementation of each 

DR method (Section 3.2 ), and finally we quantify and compare 

their performance for representing quasar spectra (Section 3.3 ). 

Ultimately, we will conclude that a PCA with n DR = 6 parameters 

(i.e. n latent = 5 PCA coefficients plus a normalization parameter, 

s norm ) is the best choice for our application. The reader who is not 

interested in the details can skip ahead to Section 3.4 . 
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3.1 Training and test data 

3.1.1 Automated continuum fits of SDSS quasars 

Our training set of quasar spectra is drawn from the SDSS-III BOSS 

and the SDSS-IV Extended BOSS (eBOSS) surv e ys which obtained 

moderate resolution ( R ∼ 2000) spectra of a large sample of z � 2 

quasars (Dawson et al. 2013 , 2016 ). Specifically, we consider objects 

identified as quasars in the eBOSS DR14 quasar catalogue (P ̂ aris et al. 

2018 ) using the compilation in the igmspec database of public spec- 

tra probing the IGM, which uses the specdb database framework 

(Prochaska 2017 ). Our aim is to use DR to describe quasars o v er the 

rest-frame wavelength range rele v ant to IGM damping wing analysis 

1170–2040 Å. As the (upgraded) SDSS spectrograph co v ers the 

wavelength range 3580–10 350 Å, the requirement that our desired 

rest-frame wavelength range be fully covered restricts the range of 

usable quasar redshifts. Adding a small buffer on the blue end of 

the spectra to a v oid edge effects, and excluding quasars with z > 4 

where the Ly α forest transmission is smaller and harder to correct 

with automated continuum fitting algorithms (see belo w), we arri ve at 

the redshift range 2 . 149 < z < 4 . 0. There are 199 530 quasars in this 

range in the eBOSS DR14 quasar catalogue, of which we remo v ed 

13 391 objects that are likely broad absorption line (BAL) quasars 

gi ven non-zero v alues of the BALnicity index characterizing C IV 

absorption troughs (see e.g. P ̂ aris et al. 2018 ), resulting in a sample 

of 186 139 quasars. We further require that the median signal-to-noise 

ratio, S / N > 10 within a 5.0 Å region centred at rest-frame 1285 Å. 

After imposing this S / N requirement and removing a small number 

of problematic spectra with large gaps in their spectral co v erage, we 

are left with a parent sample of 20 201 quasars. 

In order to define a continuous smooth spectrum that co v ers our 

desired rest-frame wavelength range, we use automated continuum 

fitting algorithms following the approaches adopted by previous work 

on quasar continua (Davies et al. 2018c ; Ďuro v ̌c ́ıko v ́a et al. 2020 ; 

Bosman et al. 2021 ). Davies et al. ( 2018c ) and Bosman et al. ( 2020 ) 

used the automated fitting procedure developed by Young et al. 

( 1979 ) and Carswell et al. ( 1982 ) as implemented by Dall’Aglio, 

Wisotzki & Worseck ( 2008 ), which determines a smooth continuum 

in the presence of absorption lines and noise both blueward and 

redward of the Ly α emission line. This algorithm iteratively fits 

the spectra with a cubic spline with breakpoints initially spaced 

by ∼ 1400 km s −1 in the Ly α forest (i.e. 20 SDSS pixels, each 

pixel is 70 km s −1 ) and ∼ 1100 km s −1 redward of the Ly α line (16 

pix els). Pix els that lie more than two standard deviations below the 

fit are iteratively rejected. Additional spline breakpoints are added 

if the slope between neighbouring breakpoints exceeds a threshold, 

and spline points are merged if the variations between neighbouring 

breakpoints are small. We applied this algorithm to all 20 201 quasars 

in our target redshift range, which we will henceforth refer to as the 

autofit continua. For simplicity, our DR does not attempt to capture 

luminosity-dependent changes in quasar spectral shape. As such, DR 

will work best if all quasars are on a common flux scale, and we thus 

rescale each of the autofit continua to be unity at a rest wavelength 

of 1285 Å and rescale each of the training data spectra by the same 

factor. 

Ďuro v ̌c ́ıko v ́a et al. ( 2020 ) followed a different approach to au- 

tomatically fit continua to SDSS spectra, which we will refer to 

as the QSMOOTH continua. Briefly, they first compute a running 

median with a width of 50 SDSS spectral pixels to capture the salient 

continuum and emission features in the spectrum. Peak finding is 

then performed on the spectrum with the requirement that the peaks 

lie abo v e a local threshold set by this running median spectrum, and 

these peaks are spline interpolated to define an upper envelope for 

the spectrum. After subtracting this envelope from the spectrum, the 

RANSAC regression algorithm is applied to the residuals to define 

inliers (the continuum level) and outliers (the absorption lines). The 

data points that are identified as inliers are interpolated and smoothed 

by computing a running median with a bin size of 20 pixels, resulting 

in the final automated continuum fit to the spectrum. We apply a 

slightly modified version of the publicly available QSMOOTH 
5 code 

to the 20 201 quasars in our target redshift range. Note that the 

QSMOOTH algorithm was applied to the quasar spectra after rescaling 

them such that their autofit continua equal unity at 1285 Å, so we do 

not independently renormalize the QSMOOTH continua. 

Once we have these two independent estimates of the quasar 

continuum, we use them to attempt to further remo v e problematic 

objects from the training data. Associated absorption around the Ly α

and N V emission-line complex resulting from either BAL absorption, 

proximate DLA or Lyman limit systems (PDLAs or PLLSs), or strong 

metal absorption due to proximate N V or intervening absorbers, will 

result in artefacts in the automated continuum fits. We remo v e these 

cases by simply discarding objects for which either the autofit or 

QSMOOTH continua fall below 0.6 in the wavelength range 1170 

Å < λ < 1285 Å (recall that the spectra are normalized to unity 

at 1285 Å). In a similar spirit, we attempt to also exclude BALs 

by remo ving an y objects which hav e either of their automated 

continua < 0 . 1 in the wavelength range 1285 Å < λ < 1990 Å, 

or which have automated continua < 0 . 7 in the wavelength range 

1300 Å < λ < 1570 Å. These thresholds and wavelength ranges 

were all determined via trial and error, and collectively these cuts 

remo v e 4433 objects, leaving 15 768 quasars. 

The SDSS spectra are reported on their native observed frame 

wa velength grid, b ut the DR analysis requires a common rest- 

frame wavelength grid. We convert the observed wavelengths to 

rest wavelengths by dividing by 1 + z QSO , where the quasar redshift, 

z QSO is taken to be the pipeline redshift, Z PIPE , in the DR14 

quasar catalogue. We construct a rest-frame wavelength grid that is 

linearly spaced in velocity (or equi v alently log 10 λ) with a pixel size 

of d v pix = 140 km s −1 (roughly twice the native SDSS pixel scale) 

spanning from 1170 − 2040 Å, resulting in a total of n spec = 1190 

spectral pixels. The spectra are rebinned onto this wavelength grid 

by averaging the flux values of the spectral pixels that land in a given 

wavelength bin. The autofit and QSMOOTH continua are interpolated 

onto this wavelength grid. 

A small fraction of objects in the eBOSS DR14 quasar cata- 

logue have incorrect redshifts. We found that an ef fecti ve way to 

automatically identify and remo v e these objects is to analyse their 

Ly α forest transmission. Specifically, we use the autofit continua 

to normalize the rebinned SDSS spectra and compute the mean 

Ly α forest transmission of each object in the wavelength range 

1170 Å < λ < 1190 Å. We compare this measured mean flux 

〈 F 〉 to the empirically determined value 〈 F 〉 true , where the latter 

is obtained by e v aluating the fit from O ̃ norbe, Hennawi & Luki ́c 

( 2017 ) at the average Ly α absorption redshifts, z Ly α , probed by the 

quasar spectrum. For the redshift range, we consider the O ̃ norbe 

et al. ( 2017 ) fit is anchored by the Becker et al. ( 2013 ) mean flux 

measurements. For each spectrum a flux contrast can then be defined 

as δF = ( 〈 F 〉 − 〈 F 〉 true ) / 〈 F 〉 true . We then use the median absolute 

deviation 6 (MAD) to estimate the effective standard deviation, σδF , 

of δF , from all of the quasars which allows us to define χδF ≡ δF /σδF . 

5 https:// github.com/ DominikaDu/ QSmooth 
6 Because occasional large outliers, in this section and in other places in the 

paper we estimate standard deviations from the MAD using σ = 1 . 4826 ×
MAD . 
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Empirically, we find that large positive fluctuations χδF correspond to 

spurious redshifts, which are typically lower redshift quasars which 

do not exhibit Ly α forest absorption in their SDSS spectra because 

another emission line has been incorrectly identified as Ly α. From 

trial and error we find that applying a cut of χδF > 5 remo v es the 

vast majority of misidentified redshifts, which remo v es 54 objects 

from our sample. 

Finally, we found that the difference between the autofit and the 

QSMOOTH continua provides a reasonable proxy for the continuum 

fitting ‘error’. If we define �s iλ ≡ s autofit ,iλ − s QSmooth ,iλ, where i is 

the index of the quasar in question and λ is the wavelength, then the 

inverse variance of the continuum fit can be defined is 

1 

σ 2 
s ,i λ

≡
1 

�s 2 iλ
+ 

∣

∣s autofit ,iλ

∣

∣

2 

S / N 
2 
clip 

, (18) 

where S / N clip applies a flux-dependent floor to the noise that 

guarantees that the signal-to-noise ratio, S / N ≡ s autofit ,iλ/σs ,i λ never 

exceeds S / N clip , which we set to be S / N clip = 30. We also define the 

relative fluctuation δs iλ ≡ �s iλ/s autofit ,iλ, and analogous to abo v e, 

quantify fluctuations relative to the typical scatter via 

χs ,i λ ≡
δs iλ − 〈 δs λ〉 

σδs,λ

, (19) 

where the 〈 δs λ〉 and σδs,λ are the wavelength-dependent mean 

and standard deviation of δs iλ, i.e. these moments are computed 

by averaging out the quasar dimension i. The rms fluctuation of 

χs ,i λ, across 1170 Å < λ < 1240 Å, provides a summary statistic 

quantifying the relati ve dif ferences between the two autofit continua 

for each quasar in the range rele v ant to IGM damping wings. We 

require that this rms fluctuation is less than four, which remo v es 

another 155 quasars, or about 1 per cent , yielding the final size of 

our DR quasar sample of 15 559. 

We opt to use the autofit continua since they visually appear to be 

closer to the truth than the QSMOOTH continua. The data thus used 

to train the DR algorithms are the autofit continua, s autofit, i λ, and the 

error σs , i λ. Fig. 1 sho ws se ven objects randomly chosen from the DR 

quasar sample. Following standard practice in machine learning, we 

split this DR sample of 15 559 quasars into a training set of 14 781 

objects and a test set of 778 objects, corresponding to a roughly 

95 per cent − 5 per cent split. The training set will be used to train 

our DR algorithms and the test set, which we refer to as our autofit 

test set, will constitute the unseen data that will be used to quantify 

performance. 

3.1.2 Hand-fit continua 

The previous section discussed the automated continuum fitting, but 

it is also possible (although tedious) to fit quasar continua by hand. 

Whether this approach results in continua that are more accurate 

than the aforementioned automated algorithms is unclear. But hand- 

fit continua provide an additional ‘test’ data set that can be used to 

quantify the efficacy of DR algorithms which moti v ates us to compile 

a set for this purpose. P ̂ aris et al. ( 2011 ) hand fit a set of 78 high 

signal-to-noise ratio, S / N > 14, quasar spectra in the redshift range 

2 . 82 < z < 3 . 0, where the S / N was e v aluated at rest-frame 1280 Å. 

The continua were fit by selecting cubic spline breakpoints at regular 

intervals and adjusting the height and spacing of these breakpoints. 

In the Ly α forest, where this procedure is particularly challenging 

and subjective, the breakpoint heights were chosen to follow the 

peaks of the flux. We renormalize the 78 P ̂ aris et al. ( 2011 ) continua 

to be unity at 1285 Å (for consistency with our autofit continua). 

We augment the P ̂ aris et al. ( 2011 ) continua, with continua from 

the XQ-100 surv e y (L ́opez et al. 2016 ), which acquired a set of 100 

high signal-to-noise-ratio ( S / N ∼ 33 at rest-frame 1700 Å) echelle 

spectra of quasars at 3 . 5 � z � 4 . 5 using the X-shooter instrument on 

the Very Large Telescope (VLT). The public data release of XQ-100 

provides hand-fit continua for every quasar following an algorithm 

that is similar in spirit to that used by P ̂ aris et al. ( 2011 ). As the 

public release of the XQ-100 data set provided continuum fits only 

for the spectra obtained by the individual arms of the X-shooter 

spectrograph, we restrict attention to the VIS arm, which co v ers the 

observed frame 5500 Å < λ < 10200 Å. As our mock high- z quasar 

spectra with IGM damping wings (see Section 4 ) co v er the rest- 

frame wavelength range 1185 Å < λ < 2000 Å, the requirement that 

this entire range is co v ered by the VIS arm restricts the number of 

quasars to be 43, and the redshift range to be 3 . 65 ≤ z ≤ 4 . 09. We 

similarly renormalize the XQ-100 continua to be unity at 1285 Å. 

For the quasar redshifts, z QSO , we used the values adopted by P ̂ aris 

et al. ( 2011 ) and the XQ100 surv e y. Combining the P ̂ aris et al. ( 2011 ) 

and XQ-100 spectra, we finally arrive at a sample of 121 hand-fit 

continua, which we henceforth refer to as our hand-fit test data set. 

3.2 Dimensionality reduction algorithms 

A DR algorithm transforms data from a high-dimensional space into 

a lower dimensional latent space, such that the lower dimensional 

representation retains as much information as possible from the 

higher dimensional process. In more concrete terms, our training 

set comprises n train = 14 781 quasars with n λ = 1190 spectral pixels 

per quasar. The smooth appearance of a quasar continuum (see 

Fig. 1 ) implies these n λ spectral pixels are highly correlated, and 

hence the bulk of the information content can be encapsulted by 

a vector η in a lower dimensional latent space of dimension, n DR , 

which parametrizes a DR model s DR ( η). Recall from the discussion 

in Section 3.1 that we normalized all of our training and test set 

spectra to unity at 1285 Å which remo v es the amplitude degree 

of freedom from the stochastic process s . But since our goal is 

to eventually fit s DR ( η) to quasar spectra with arbitrary flux, we 

add an additional multiplicative normalization parameter, s norm . This 

implies our DR quasar continuum model will have n DR = n latent + 1 

free parameters, i.e. the normalization and the n latent latent variables 

that parametrize a latent variable model for the normalized spectra. 

We define ξ to be a vector whose elements are the parameters in 

the n latent dimensional latent space that describes the normalized 

spectra, whereas η ≡ ( s norm , ξ1 , ξ2 , ...., ξn latent ), is the vector in the 

n DR = n latent + 1-dimensional latent space that describes the non- 

normalized spectra. 

DR methods are commonly divided into linear and non-linear 

algorithms, and we consider both in this study. We start with the 

most widely adopted linear model, which is PCA. 

3.2.1 Principal component analysis 

PCA is a commonly used tool to understand correlations in quasar 

spectra (e.g. Boroson & Green 1992 ; Francis et al. 1992 ; Yip et al. 

2004 ; Suzuki 2006 ). Suzuki et al. ( 2005 ) first proposed PCA as a 

method to predict the continuum absorbed regions of quasar spectra, 

which was later impro v ed upon by P ̂ aris et al. ( 2011 ). This approach, 

which uses pixels redward of Ly α to predict the continuum in the 

Ly α forest, has been used in many IGM absorption studies (e.g. 

Kirkman et al. 2005 ; Lee et al. 2012 , 2013 , 2015 ; Eilers et al. 2017a , 

b ; Eilers, Hennawi & Davies 2018 ; Ďuro v ̌c ́ıko v ́a et al. 2020 , 2024 ; 
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Figure 1. Seven randomly selected quasars from our DR quasar sample. Black and green histograms show the quasar spectrum and 1 σ spectral noise, 

respectively. Automated continuum fits from the autofit and QSMOOTH algorithms are shown in blue and red, respectively. The orange-shaded region indicates 

the error on the continuum fit derived from the differences between the autofit and QSMOOTH fits, as defined in equation ( 18 ). The autofit continua (red) appear 

to provide good estimates for the continuum and the continuum errors (orange shaded) are generally larger in regions where the continuum is less certain owing 

to strong absorption. 
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Bosman et al. 2021 ). Moti v ated by this technique, Davies et al. 

( 2018c ) developed a PCA-based model from a far larger sample of 

spectra encompassing a wide range of spectral properties with an 

eye toward predicting the quasar continua for IGM damping wing 

analysis. A similar stack was followed by Bosman et al. ( 2021 ) 

who modelled a broader spectral region rele v ant to the Ly α and 

Ly β forests. While the training data and PCA models used here 

are qualitativ ely v ery similar to those used by Davies et al. ( 2018c ) 

and Bosman et al. ( 2021 ), the primary difference is that these works 

applied PCA to the blue and red spectral regions independently, using 

the latter to predict the former, whereas here we apply PCA and other 

DR algorithms to the entire spectrum, since our inference approach 

models the IGM and the continuum simultaneously using all spectral 

pixels (see Section 2 ). 

The principal components of a collection of n train quasars that 

reside in a n λ dimensional spectrum space can be thought of as a set 

of unit vectors (with n λ components) where the ith vector defines 

the direction of a line in the n λ dimensional space that best fits 

the variations among the spectra while being orthogonal to the first 

i − 1 unit vectors. The components are rank ordered according to the 

amount of variation in the data set that they describe, and typically 

one truncates the latent space at some value n latent < n λ, such that 

the dimensionality of the process is reduced. 

A quasar PCA decomposition can be written as 

s DR ( η) = s norm 

(

〈 s 〉 + ξT A 
)

, (20) 

where ξ is the n latent dimensional latent variable (commonly referred 

to as the PCA coefficients) and A is the set of n latent PCA vectors or 

principal components, each of which has n λ spectral pixels, i.e. A iλ is 

the n λ dimensional PCA vector corresponding to the ith component. 

Davies et al. ( 2018c ) argued that the dominant mode of variations 

between quasar spectra are their power-law continua, which are more 

naturally described by PCA decomposition in log space, moti v ating 

ln s DR ( η) = ln s norm + 〈 ln s 〉 + ξT A , (21) 

or equi v alently 

s DR ( η) = s norm 

[

exp ( 〈 ln s 〉 ) exp 
(

ξT A 
)]

, (22) 

where η ≡ ( s norm , ξ1 , ξ2 , ...., ξn latent ). We will refer to these two 

decomposition choices as PCA and lnPCA, respectively. 

Given that we have an estimate of the errors for our continuum 

fits (equation 18 ), we also explore whether there is an advantage 

to using a weighted PCA. 7 Whereas in standard PCA one performs 

a singular value decomposition of the sample covariance, weighted 

PCA instead decomposes a weighted covariance matrix to compute 

the set of principal component vectors A (Delchambre 2015 ). For 

our weighted PCA, we set the weights for each spectral pixel to be 

the inverse variance defined in equation ( 18 ). 

To summarize, there are four different variations of PCA that we 

explore: standard (PCA), log PCA (lnPCA), weighted PCA (wPCA), 

and weighted log PCA (wlnPCA). 

3.2.2 Gaussian process latent variable model 

Gaussian processes (GPs) are a supervised learning method for 

solving regression and classification problems in a powerful non- 

parametric probabilistic framework. A GPLVM (Lawrence 2005 ) 

uses GPs for unsupervised learning tasks like DR or searching for 

7 We use the WPCA implementation available here: https://github.com/ 

jakevdp/wpca . 

hidden structure in high-dimensional data. In the current context, 

the GPLVM will act as a decoder, providing a probabilistic mapping 

from the latent space variables ξ to the data space variables s . The 

smoothness of this mapping is controlled by kernel functions whose 

hyperparameters are fit during the training process. This is analogous 

to GP regression, where given inputs X and outputs y, one chooses 

a kernel and learns hyperparameters that best describe the mapping 

from X to y. In the GPLVM, one is not given the latent variables 

ξ (i.e. X), but is rather only given s (i.e. y). The latent variables 

ξ representing each example in the training set must be learned 

along with the kernel hyperparameters. It is in this sense that the 

GPLVM acts a decoder, or equi v alently a forward mapping from 

latent space to data space. Once the latent variables that encode each 

training instance and the kernel hyperparameters are learned, one can 

e v aluate the model, s GPLVM ( ξ ), at any location in the latent space. 

This forward mapping is go v erned by GPs which are independently 

defined for each dimension of the data space, which is to say that each 

spectral pixel s λ has its own GP (and associated hyperparameters) 

which regresses ξ to produce s λ. See Eilers et al. ( 2022 ) for a recent 

application of GPLVMs for DR of quasar spectra. 

In the canonical formulation of GPLVM (Lawrence 2005 ), the 

covariance hyperparameters and point estimates for the unknown 

latent variables are determined jointly, by optimizing the likelihood 

of the data. But it is well known that the optimization required for 

GP regression scales as O( n 3 ) for a data set of size n , such that 

applying canonical GPLVM to ‘big data’ is computationally pro- 

hibitive. Hensman, Fusi & Lawrence ( 2013 ) showed how stochastic 

variational inference (SVI; Hoffman et al. 2013 ) techniques can be 

used to apply GPs to very large data sets by stochastically optimizing 

o v er mini-batches of the data set. Building upon this, Lalchand, 

Ravuri & Lawrence ( 2022 ) re-formulated the Bayesian incarnation 

of the GPLVM (Titsias & Lawrence 2010 ) in an SVI framework 

by using a structured doubly stochastic lower bound (Titsias & 

L ́azaro-Gredilla 2014 ) which enables training on very large data 

sets. 

We apply the Lalchand et al. ( 2022 ) implementation 8 of Bayesian 

GPLVM, built in the gpytorch 9 GP framework (Gardner et al. 

2018 ), to our quasar training set. The loss function optimized 

in this formalism exploits the errors on the quasar continua that 

were defined in equation ( 18 ). The training set is passed through a 

scaler transformation to ‘whiten’ the data. Namely, the wavelength- 

dependent mean, 〈 s λ〉 , and standard deviation, σs,λ, of the training set 

are computed by av eraging o v er the sample of quasars. We rescale 

the spectra s λ using the transformation y λ = ( s λ − 〈 s λ〉 ) /σmedian , and 

correspondingly rescale their errors σs,λ. Here, σmedian is a single 

number which is the median value of σs,λ. 10 

3.2.3 Variational autoencoder 

An autoencoder is an unsupervised learning method that uses an 

artificial neural network to learn a latent space representation, or 

8 https:// docs.gpytorch.ai/ en/ latest/ examples/ 045 GPLVM/ Gaussian 

Process Latent Variable Models with Stochastic Variational Inference. 

html 
9 https://gpytorch.ai 
10 A more common whitening procedure would be to adopt y λ = ( s λ − 〈 s λ〉 ) / 
σs,λ, where σs,λ is the standard deviation of each feature (wavelength). 

Ho we ver, this transformation changes the shape of the spectra that are fit by 

the GPLVM by ef fecti vely do wnweighting larger emission-line fluctuations 

and upweighting smaller continuum variations. We found that scaling by a 

single wavelength independent number, σmedian , yielded better results. 
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encoding, of a data set. The essential property of autoencoders are 

their architecture, which consists of an encoder that maps the input 

into the code, and a decoder that maps the code to a reconstruction of 

the input. The code or equi v alently the latent variables, ξ , correspond 

to the output of a specific layer of a multilayer perceptron (MLP). 

Typically, the encoder passes the inputs through a sequence of 

gradually smaller hidden layers of an MLP until hitting a bottleneck 

which has n latent neurons. The decoder then passes the code back up 

through gradually larger hidden layers to generate the reconstruction 

of the input. When the latent space has dimensionality smaller than 

the data space, autoencoders can be used for DR. A VAE (Kingma & 

Welling 2013 ) is similar in spirit to an autoencoder, but it essentially 

replaces the deterministic decoder, which generates the data from 

latent variables s ( ξ ), with a probablistic decoder p( s | ξ ), and likewise 

for the encoder p( ξ | s ). One application of the VAE is to address 

a limitation of autoencoders, which is that their resulting latent 

space could have a very complex structure, i.e. small changes in 

latent variables could produce large variations in the data, and/or 

the PDF of the latent variables for an ensemble of data could be 

highly multimodal. By virtue of their design, VAEs tend to produce 

better behaved latent space PDFs. Specifically, the β-VAE is an 

implementation which explicitly aims to disentangle the latent space 

manifold via a tunable parameter β (Higgins et al. 2017 ), which 

sets the relative weighting of two competing loss functions. The 

first loss term is a standard reconstruction loss (mean squared error; 

MSE) typically adopted in autoencoders, whereas the second is the 

K ullback–Leibler (KL) div ergence between the conditional encoder 

distribution p( ξ | s ) and an isotropic diagonal Gaussian distribution 

with unit variances. 

We implemented a β-VAE in the pytorch machine-learning 

framework. The same scaler transformation was applied to the 

training data as was used for the GPLVM, and the MSE loss was 

generalized to include our estimates for the continuum fitting ‘error’ 

(see equation 18 ). 

The design of the autoencoder architecture is as follows. The 

encoder constitutes an MLP with two hidden layers. The first layer 

is non-linear, and maps the input spectral pixels to 1024 neurons 

passing through a SELU acti v ation. Then two distinct linear layers 

convert these 1024 outputs into the mean, μ, and log variance, ln σ 2 

(both have size n latent ) of the normal distribution which forms the 

probalistic description of the latent variables underlying the VAE. 

During training or e v aluation, a sample from this normal distribution 

produces a latent space vector that is then passed through the decoder. 

Our decoder constitutes an MLP with two linear layers, one that maps 

the latent space vector to 1024 outputs, and another that maps these 

1024 outputs to the n λ data vector. 

Following standard practice, we optimized to determine the MLP 

weights via stochastic gradient descent using the Adam optimizer 

with weight decay. We adopted a 90–10 per cent split of the 14 781 

training spectra, using 90 per cent for training and 10 per cent for 

v alidation, where the v alidation set was used to e v aluate performance 

on data unseen during training and mitig ate ag ainst o v erfitting. The 

loss was computed from a mini-batch size of N batch = 128 training 

set quasars per optimizer step, or epoch. To prev ent o v erfitting, the 

validation set loss was also computed each epoch, and the best model 

was chosen to be the one that achieved the smallest value of the 

validation set loss. A learning rate of 10 −4 was used and we employed 

early stopping, which is to say that we stopped training if the 

validation loss did not impro v e after 100 epochs. Hyperparameters 

were tuned via trial and error and with a more rigorous grid scan 

strategy . Surprisingly , we found that a very small value of β = 10 −9 

produced the best results, which reduces the influence of the KL loss 

term. Nevertheless, visual inspection of the latent space indicated 

that it was not significantly multimodal. 

3.3 Comparison of DR algorithms 

In this subsection, we compare and contrast the performance of 

the DR algorithms discussed in the previous section. Since our 

ultimate goal is to fit models to quasar spectra, the quantitative 

metric that we adopt for e v aluating DR algorithm performance will 

be an estimate of the variance of the relative reconstruction error 

δ defined in equation ( 2 ). How does one determine the s DR ( η) 

representation of the spectrum s which appears there? Whereas 

for PCA and autoencoders, the inverse function ξ ( s ) is tractable 

and easy to e v aluate, the same is not true for GPLVMs, for which 

determining the encoding of a new test data point requires additional 

assumptions (Lawrence 2005 ). Since our specific application of DR 

is the construction of a parametric model to fit quasar spectra, the 

most natural definition of η is to fit the function s DR ( η) to the spectrum 

s . That is, for each spectrum in our test set, we determine the value 

ηtrue that minimizes the mean square error 

MSE = 

∑ 

λ

(

s λ − s DR ,λ( η) 
)2 

, (23) 

where the ‘true’ subscript denotes that this represents the best DR 

representation of the quasar continuum for the hypothetical case 

where we directly fit a noiseless spectrum with no IGM absorption. 

Note that the sum in equation ( 23 ) weights each spectral pixel equally 

in the MSE loss computation. Indeed, the formally correct choice for 

the relative weighting of the terms in the equation above is rather 

subtle 11 and here we adopt a uniform weighting for simplicity. 

As previously discussed, the hyperparameter go v erning the dimen- 

sionality of the latent space, n latent , sets the number of free parameters 

n DR = n latent + 1, and generally the variance of δ (equation 2 ) will 

decrease with increasing n latent because the DR model is more 

flexible. We trained each of the aforementioned DR algorithms 

on our training set data for n latent from 1 to 25 in unit steps from 

1–15 and then in steps of two from 15–25. After training, we 

fit the models to both the 778 spectra in our autofit test set (see 

Section 3.1.1 ) and the 121 hand-fit continua in our hand-fit test set 

(see Section 3.1.2 ). Fig. 2 shows examples of our fits from the PCA, 

GPLVM, and β-VAE algorithms for n latent = 5 for five randomly 

selected quasars from the autofit test set, where the lower set of panels 

shows δ. 

We define a simple summary statistic for the purposes of compar- 

ing the different DR algorithms. The covariance, � , of the relative 

reconstruction error (see equation 4 ) is defined by 

� λλ′ = 〈 ( δλ − 〈 δ〉 λ)( δλ′ − 〈 δ〉 λ′ ) 〉 , (24) 

where the angle brackets denote an av erage o v er the members of the 

test set. The variance of δ as a function of wavelength is given by the 

11 Our formalism in Section 2 suggests that one should take the covariant 

relative reconstruction errors into account when fitting for η (see equation 4 ), 

which would amount to maximizing a likelihood implied by equation ( 4 ) 

which would differ markedly from the uniform weighting in the MSE in 

equation ( 23 ). There is thus a chicken-and-egg problem in that, formally 

the likelihood one should maximize to fit for η depends on the mean, 〈 δ〉 , 
and covariance, � , of the relative reconstruction error (equation 4 ), which 

can only be determined by analysing the distribution of residuals δ of an 

ensemble of such fits. For this reason, we adopt the simple approach of fitting 

for η with uniform unit ‘errors’ as in equation ( 23 ) and define δ to be the 

relative reconstruction error resulting from those fits. 
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Figure 2. DR reconstructions of five randomly selected quasars from our the SDSS test set for n latent = 5. Upper panels show the quasar continuum s λ where 

the black curves are the autofit continuua and the blue, yellow, and green curves are the DR reconstructions for the PCA, GPLVM, and β-VAE, respectively. 

The lower panels show the relative reconstruction errors, δλ, defined in equation ( 2 ), where the horizontal dotted line indicates the zero level. 

diagonal elements of the covariance matrix � λλ. As our metric for 

comparing DR algorithms, we adopt the root-mean-square variation 

per spectral pixel with the mean computed o v er the N λ spectral pixels 

in the wavelength interval [ λmin , λmax ] 

RMS ( λmin , λmax ) ≡

( 

1 

N λ

λmax 
∑ 

λmin 

� λλ

) 1 / 2 

. (25) 

We consider a blue region [ λmin , λmax ] = [1185 Å, 1260 Å] covering 

the continuum rele v ant to the proximity zone and IGM damping 

wing, and a red region [ λmin , λmax ] = [1260 Å, 2000 Å] constituting 

the rest of the spectrum. 

Fig. 3 shows DR algorithm performance as a function of n latent 

for the autofit test set (left) and the hand-fit test set (right) for 

the blue wavelength range, and Fig. 4 is the analogous plot for 

the red wavelengths. These plots generalize the canonical explained 

variance versus number of components plots that one constructs in 

applications of PCA that are used to determine which dimensionality 

to compress down to. All of the DR algorithms show the expected 

trend of decreasing RMS ( λmin , λmax ) with increasing n latent – smaller 
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Figure 3. Comparison of DR algorithm performance for ‘blue’ pixels in the wavelength range 1185 Å < λ < 1260 Å for the six DR algorithms considered. 

The curves show the summary statistic RMS ( λmin , λmax ) (see equation 25 ), for the relative reconstruction error, δλ (see equation 2 or the lower panels of the 

examples in Fig. 2 ) as a function of latent dimension. Left panels show results when the DR algorithms were fit to the 778 autofit continua in the SDSS test 

data set, whereas the right panel shows the same for the 121 hand-fit continua. Comparison of the left and right panels indicates that the behaviour of the DR 

algorithms does not depend on the test set used. Furthermore, the fact that the level of relative reconstruction error as a function of latent dimension is very 

nearly the same for autofit and hand-fit continua, suggests that the automated algorithms do not add a significant amount of extra ‘noise’ to the continua. 

Figure 4. Comparison of DR algorithm performance for ‘red’ pixels in the rest-frame wavelength range 1260 Å < λ < 2000 Å for the six DR algorithms 

considered. Curves and panels are the same as Fig. 3 . The difference in amplitude as compared to Fig. 3 likely occurs because the ratio of pixels in emission 

lines to pixels in the continuum is smaller in the 1260 Å < λ < 2000 Å wavelength range, as compared to 1185 Å < λ < 1260 Å, where the Ly α λ1216 Å, 

N V λ1240 Å, and Si II λ1260 Å emission lines constitute a large fraction of the pixels and inflate the variation. 

reconstruction errors will al w ays result from a more flexible model. 

The most striking conclusion that one draws from Figs 3 and 4 is 

that simple linear DR, i.e. standard PCA or lnPCA, performs as 

well or better than the more sophisticated ML based non-linear DR 

techniques. Furthermore, this conclusion holds for both the autofit 

(left panels) and hand-fit (right panels) test sets, and the comparable 

values of RMS ( λmin , λmax ) achieved indicates that both continuum 

test data sets have comparable levels of noise. Finally, there appears to 

be no obvious advantage to the variations of PCA that we discussed, 

standard PCA performs just as well as lnPCA or weighted PCA. 

These results moti v ate us to adopt PCA as our DR algorithm, and to 

use the larger autofit test set continua for the construction of mock 

data in the rest of this work. 

How should we choose the value of the n latent hyperparameter? 

As is often the case with DR algorithms, the rate of decrease of 

the reconstruction error for a unit increment of n latent varies with 

n latent . All curves decrease steeply around n latent of a few, and all 

flatten out at the largest values of n latent . Such behaviour is expected 

on physical grounds – the steep decrease occurs as one approaches 

the number of parameters required to capture the salient features of 

quasar spectra, whereas the flattening occurs when this number is 

significantly exceeded. At the largest values of n latent , incremental 

decreases in reconstruction error likely result from fitting noise in 

the autofit or hand-fit continua, or ‘intrinsic noise’ in the quasar 

continuum stochastic process, marginally better with a more flexible 

model. Often in the DR literature, one sets the n latent hyperparameter 
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to the location of a ‘knee’ in such plots where the slope begins to 

flatten. Whereas for red wavelengths, Fig. 4 shows the reconstruction 

error starts to saturate around 2.5–3 per cent around n latent � 6, for 

blue wavelengths the curves in Fig. 3 exhibit a more gradual trend 

with n latent with 2.5–3 per cent errors reached around n latent � 10. It 

is possible that the red wavelengths compress harder because the 

approximately power-law continuum of quasar spectra contributes 

relatively more pixels to this wavelength range, whereas the blue 

wavelengths are dominated by strong emission lines complexes from 

Ly α 1216 Å, N V 1240 Å, and S II 1260 Å that exhibit more intrinsic 

variation in shape. Another possibility is that IGM absorption 

blueward of Ly α results in more noise in the continuum estimates, 

making it harder to describe and compress the blue wavelengths. Our 

companion paper quantifies the variation in the precision with which 

the two IGM damping wing parameters (v olume-a veraged IGM 

neutral fraction 〈 x H I 〉 and the quasar lifetime t Q ) can be reco v ered 

as a function of n latent (Kist et al. 2025 ). There, adopting the same 

autofit continuum test data set used here for the mock spectra (see 

Section 4.2 ), it is found that parameter precision does not increase 

significantly beyond n latent > 5, which moti v ates us to use n latent = 5 

as our fiducial value for the rest of this paper, corresponding to 

n DR = 6 after adding the additional normalization parameter, s norm . 

3.4 Rebinning onto coarser wavelength grids 

As discussed in Section 3.1.1 , our DR test and training set spectra 

co v er from 1170 − 2040 Å with d v = 140 km s −1 pixels resulting 

in n λ = 1190 total spectral pixels. Ho we ver, these continua are 

smooth and can be interpolated onto a finer grid to construct mock 

observations of quasars with a finer spectral sampling. Whereas a 

spectrum of a high- z quasar might have fixed spectral resolution 

(given by the instrument full width at half-maximum, FWHM in 

km s −1 ) and spectral sampling (the number of pixels per FWHM), 

for the purposes of IGM damping wing analysis, there are several 

reasons why rebinning the spectrum onto a coarser wavelength grid 

is advantageous. Note that here rebinning refers not to interpolation, 

but rather to averaging the flux values of finer grid pixels that land 

within a gi ven lo w-resolution pixel. First, at a typical resolution 

of FWHM = 100 km s −1 a uniform velocity grid would result in 

� 10 3 pixels, making the matrix computations in the likelihood 

in equation ( 17 ) costly to e v aluate during HMC sampling. A fine 

velocity grid is only required blueward of rest-frame Ly α where there 

are narrow Ly α forest absorption lines, whereas redward of the Ly α

line, the smooth damping wing signature and the broad emission 

lines imply that a coarse velocity grid will suffice. Second, as we 

discuss further in Section 5 , adopting a Gaussian form (equation 10 ) 

for the transmission PDF, P ( t | θ), in quasar proximity zones is 

an approximation which compromises the fidelity of the inference 

with the likelihood in equation ( 17 ). Ho we ver, rebinning a high- 

resolution spectrum onto a coarser wavelength grid, ameilorates the 

problems with the inference, because it follows from the central limit 

theorem that the a veraging inv olved in rebinning Gaussianizes the 

non-Gaussian Ly α forest transmission stochastic process, making 

the Gaussian approximation more valid. 

Moti v ated by these considerations, one can consider ‘hybrid’ 

wavelength grids which have a distinct velocity grid with size 

d v blue , for blue wavelengths λ < λblue −red , where it may be neces- 

sary to resolve narrow absorption features in the proximity zone, 

concatenated with a coarse uniform grid with pixel size d v red for red 

wavelengths λ > λblue −red for which the damping wing absorption 

and intrinsic quasar spectrum are smooth. Whereas such hybrid grids 

are considered in our companion paper (Kist et al. 2025 ) to assess the 

impact of spectral resolution on the resulting measurement precision, 

in this paper we simply adopt d v = d v blue = d v red = 500 km s −1 

throughout. 

3.5 Properties of the PCA decomposition 

Having arrived at PCA with n latent = 5 as our preferred DR algorithm 

we now briefly describe and quantify the properties of the decompo- 

sition. Fig. 5 shows the mean spectrum 〈 s λ〉 and the n latent = 5 PCA 

basis spectra. Recall that our approach differs from previous work 

using PCA to predict quasar continua (e.g. Suzuki et al. 2005 ; P ̂ aris 

et al. 2011 ; Eilers et al. 2017a ; Davies et al. 2018c ; Ďuro v ̌c ́ıko v ́a 

et al. 2020 , 2024 ; Bosman et al. 2021 ) in that we do not construct 

separate red- and blue-side PCA decompositions, but rather a single 

PCA decomposition of the entire spectral range (the blue–red split in 

Fig. 5 is only to better visualize the blue side). PCA basis vectors are 

sorted in terms of the amount of variance the y e xplain, and we see that 

the first component A 1 describes correlated variation in the strengths 

of various broad emission lines, with the subsequent components 

encoding more subtle correlated variations in shape. 

We now compute the mean, 〈 δ〉 , and covariance, � , of the 

relative reconstruction error (see equation 4 ) required to evaluate the 

likelihood in equation ( 17 ). In general, these must be computed from 

the test set data on the wavelength grid adopted (i.e. see the rebinning 

discussion in Section 3.4 ) for the IGM damping wing fits. Here, 

we show results for the wavelength grid used for the mock quasar 

spectra generated in this paper (see Section 4.2 ), which extends 

from 1185 − 2000 Å with a uniform pixel size of d v = 500 km s −1 , 

resulting in n λ = 313 pixels. To obtain the δ field we interpolate each 

test set spectrum s onto this wavelength grid using a cubic spline and 

fit for s DR ( η). As we discussed in the previous section, we fit for ηtrue 

by minimizing the MSE loss function in equation ( 23 ). Adopting the 

uniform weighting of the spectral pixels that we discussed there, 12 

we fit the PCA with n DR = 6 (i.e. n latent = 5 plus the normalization 

parameter s norm ) to each member of the autofit and the hand-fit test 

sets. 

Fig. 6 shows the mean 〈 δ〉 (dashed curves) and standard deviation 

σδ ≡ � 
1 / 2 
λλ (solid curves; see equation 24 ) of the relative reconstruc- 

tion error e v aluated from the autofit (red) and hand-fit (blue) test sets. 

For the autofit test set, we see that the fits are unbiased – the mean is 

consistent with zero to within ∼ 0 . 1 per cent . The factor of ∼ 2 − 4 

larger variations in the mean for the hand-fit test set results from the 

factor of ∼ 6 times fewer quasars and as a result possibly increased 

sensitivity to outliers. The results for σδ are consistent between 

the two sets and indicate typical relative reconstruction errors of 

∼ 4 − 5 per cent , which are relatively independent of wavelength, 

although larger errors occur in the vicinity of the strong emission 

lines, particularly the C IV λ1549 line. 

Finally, we can visualize the full covariant structure of δ by 

computing the correlation matrix 

Corr ( � ) λλ′ ≡
� λλ′ 

√ 
� λλ� λ′ λ′ 

, (26) 

which is shown in Fig. 7 computed from the autofit test set. 

One clearly sees that the fit residuals are highly correlated for 

12 Note we use a uniform grid with d v = 500 km s −1 in this paper so each 

pix el receiv es the same weight. Ho we v er, on a hybrid wav elength grid with 

different blue and red pixel scales, a naive uniform weighting implies the 

more numerous finer blue-side pixels would receive a higher relative weight. 

To equally treat all spectral regions, one would then need to instead upweight 

the red pixels by the factor d v red / d v blue . 
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Figure 5. PCA vectors from the PCA decomposition of 14 781 SDSS quasar spectra for n latent = 5. The upper panel labelled 〈 s〉 represents the mean spectrum, 

while the lower panels show the principal components ordered in terms of the amount of explained variance from top to bottom. Strong broad emission lines in 

the quasar spectra are indicated by the vertical dashed lines and labelled in the upper panel. 
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Figure 6. Moments of the relative reconstruction error as a function of wavelength for the PCA model with n latent = 5. The lower panels show the mean 〈 δ〉 
(dashed) and standard deviation σδ ≡ � 

1 / 2 
λλ (solid) of the relative reconstruction error e v aluated from the 778 spectra in the autofit (red) and 121 spectra in the 

hand-fit (blue) test sets, respectiv ely. F or reference, the upper panel shows the mean quasar spectrum 〈 s 〉 constructed from the autofit test set with prominent 

emission lines labelled. 

Figure 7. Correlation matrix of the relative reconstruction errors for the 

PCA model with n latent = 5 e v aluated from 778 autofit test set spectra. The 

mean quasar spectrum 〈 s 〉 constructed from the autofit test set is shown for 

reference and prominent emission lines are labelled. 

neighbouring pixels as is also apparent from the lower panels 

sho wing the relati ve reconstruction error, δ, in Fig. 2 . Ho we ver, 

whereas correlations are typically positive in continuum regions, in 

the vicinity of the stronger emission lines like Ly α and C IV , one 

sees oscillation between correlation and anticorrelation at smaller 

wavelength separations. Such behaviour is expected since in general 

there is more small-scale wavelength structure in the emission 

lines than in the smoother continuum. As for the correlations of 

residuals between different emission lines, the structure appears 

rather comple x. F or e xample, residuals around the peak of C IV 

are anticorrelated with the Al III –Si III ]–C III ] complex at ∼1900 Å, 

whereas for pairs of pixels from the C IV and Ly α-N V emission-line 

complex, one observes both correlated and anticorrelated residuals. 

Fig. 8 allows us to visualize the reliability of our approximation 

that the distribution of relative reconstruction errors is a multi v ariate 

Gaussian (see equation 3 ). The left and centre panels show the distri- 

bution of δλ for two different wavelengths rele v ant to studies of IGM 

damping wings, λ = 1217 . 90 Å (left) and λ = 1230 . 35 Å (centre) 

for the 778 spectra in our autofit test set. The right panel shows the 

distribution of the quantity 

χ = B 
−1 ( δ − 〈 δ〉 ) , (27) 

where B = V · diag ( 
√ 

λ), is the product of the matrix of eigenvectors, 

V , of the covariance matrix � , and the diagonal matrix, diag ( 
√ 

λ), 

formed from the square root of the vector of eigenvalues λ of � . For 

a stochastic variable described by a general multivariate Gaussian 

distribution (i.e. equation 3 ), the transformed variable χ will be a 

draw from N ( χ ; 0 , I ) where 0 is a vector of zeros and I is the 

identity matrix. The histogram shows the distribution of B for all 

313 spectral pixels for the 778 autofit test set spectra. Inspection of 

the distribution χ marginalized o v er the spectral pixel dimension, 

generalizes the intuitive method of using ( x − μ) /σ to assess the 

Gaussianity of a stochastic variable x, to the case of a multi v ariate 

Gaussian distribution with a non-diagonal covariance matrix. The 

panels in Fig. 8 all paint a similar picture for the distribution of 

relative reconstruction errors. Namely, the distribution generally 

follows a Gaussian shape, but has stronger tails. These strong tails 

result in larger variance estimates than implied by the values in the 

‘core’ of the distribution. 
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Figure 8. Distribution of relative reconstruction errors determined from fits to 778 autofit test set spectra. Left and centre: histograms show the distribution 

of δλ for two different wavelengths rele v ant to studies of IGM damping wings, λ = 1217 . 90 Å (left) and λ = 1230 . 35 Å (centre). Red curves show a normal 

distribution N ( δλ| μ, σ ) with mean and standard deviation set to that measured from the distribution. The histograms appear consistent with Gaussianity but with 

stronger tails. Right: the histogram shows the distribution of transformed residuals χ (see equation 27 ) for the full set of spectral pixels and quasars. The green 

curve shows a zero-centred unit variance normal distribution N ( χ | 0 , 1) for comparison. If the relative reconstruction errors δ follow a multivariate Gaussian 

distribution (equation 3 ), then the distribution of χ should follow the green curve. Similar to the left and centre panels, the histogram appears consistent with 

Gaussianity but with stronger tails. 

4  SIMULATING  DA M PIN G  W I N G  

OBSERVATIONS  

This section describes our procedure for generating mock z > 7 

quasar spectra with IGM damping wing absorption. First, we 

introduce the IGM damping wing simulations used to generate 

transmission skewers, then describe how these skewers are combined 

with our autofit continuum test set and a noise model to create realistic 

mock spectra. While we adopt a specific physical model to generate 

the reionization topology and use a hydrodynamical simulation to 

describe the IGM opacity, we note that our approach does not explore 

uncertainties in the underlying reionization model or the impact 

of galaxy formation physics on the IGM opacity. We will discuss 

these limitations further when we summarize our conclusions in 

Section 6 . 

4.1 Damping wing simulations 

We generate IGM transmission ske wers follo wing the procedure 

developed in Davies et al. ( 2018b ) to simulate spectra of quasar 

proximity zones with IGM damping wing absorption and quasar 

lifetime effects. Here, we briefly summarize the most important 

elements and refer the reader to Davies et al. ( 2018b ) for additional 

details. Owing to the complexity of the problem, this is a hydrid 

model that combines three main components: (1) a high-resolution 

density field from a large volume cosmological hydrodynamical 

simulation, (2) a reionization topology generated from a seminu- 

merical model of reionization, and (3) 1D ionizing RT to treat 

the impact of the quasar’s ionizing radiation on its surrounding 

IGM. 

Density , velocity , and temperature skewers are taken from the 

z = 7 . 0 output of a Nyx hydrodynamical simulation (Almgren et al. 

2013 ; Luki ́c et al. 2015 ) in a box with side equal to 100 h 
−1 cMpc 

run with a 4096 3 baryon grid and 4096 3 dark matter particles. The 

skewers were extracted along an axis of the simulation domain and 

were chosen to originate on the 200 most massive dark matter haloes, 

M halo � 2 × 10 11 M �, identified with a custom halo finder adapted 

specifically to grid hydro codes (see Sorini et al. 2018 , for additional 

details). 

To compute a realistic topology of reionization around massive 

quasar-hosting haloes, we use a modified version of the 21CMFAST 13 

code (Mesinger, Furlanetto & Cen 2011 ), with an impro v ed treatment 

of the ionizing photon mean-free path (Davies & Furlanetto 2022 ). As 

the Nyx simulation volume is too small to characterize the distribu- 

tion of ionized/neutral regions around the rare massive haloes hosting 

quasars, we compute the ionization field in a larger volume, 400 

cMpc on a side. The seminumerical model starts with cosmological 

initial conditions using the Zel’dovic approximation (Zel’Dovich 

1970 ) generated on a 2048 3 grid, and then produces evolved density 

and ionization fields output at a lower resolution of 512 3 . We keep 

all parameters that go v ern the reionization topology fixed except 

the ionizing efficiency, ζ , which sets the total number of ionizing 

photons emitted per collapsed baryon. Increasing ζ decreases the 

fraction of the volume that is neutral and vice-versa. By tuning ζ , 

we generate ionization fields with global v olume-a veraged neutral 

fractions 〈 x H I 〉 = 0 . 05 − 0 . 95, in steps of � 〈 x H I 〉 = 0 . 05. The 21CM- 

FAST code constructs dark matter haloes from the initial conditions 

following the approach of Mesinger & Furlanetto ( 2007 ). Starting 

at the location of the 500 most massive haloes M halo = 3 × 10 11 in 

the 400 cMpc domain, we randomly sampled them to extract 1200 

randomly oriented skewers of the neutral fraction, x H I , for each value 

of the parameter 〈 x H I 〉 . We trivially add a completely ionized model, 

〈 x H I 〉 = 0 . 0, and a completely neutral model, 〈 x H I 〉 = 1 . 0, by setting 

x H I to a constant everywhere to arrive at 21 total reionization models 

spanning the range 〈 x H I 〉 = 0 . 0 − 1 . 0. 

To model the impact of the quasar radiation on the IGM, we 

perform ionizing RT using an updated version of the 1D RT code 

described in Davies et al. ( 2016 ), which computes the time-dependent 

evolution of the ionized fractions of hydrogen and helium, as well 

as the gas temperature. This time evolution is go v erned by the 

quasar’s radiative history, and we assume a so-called light bulb light 

curve parametrized by the quasar lifetime, t Q , whereby the quasar 

turned on at some point t Q in the past, and has been shining at 

constant luminosity ever since. The ionizing photon output from the 

quasar was computed using the Lusso et al. ( 2015 ) spectral energy 

13 https:// github.com/ andreimesinger/ 21cmFAST 



2638 J. F. Hennawi et al. 

MNRAS 539, 2621–2653 (2025) 

distribution normalized to agree with the photometric measurements 

of the quasar. In this paper, we use models constructed for the quasar 

ULAS J1342 + 0928 at z = 7 . 54, which has an apparent J -band AB 

magnitude of J AB = 20 . 3 (Ba ̃ nados et al. 2018 ). 

To generate IGM transmission skewers originating from quasars, 

we use the density and temperature fields from the Nyx simulations 

and the x H I skewers from the seminumerical ionization topology 

as initial conditions for the RT code. For ionized regions which 

have values of x H I = 0 in the seminumerical ionization skewers, we 

initialize to x H I ∼ 10 −3 by adopting a fixed amplitude of the UVB 

photoionization rate, � H I . The IGM temperature was initialized to 

the values from the Nyx simulation in ionized regions, whereas we 

assume a temperature of T = 2000 K inside neutral re gions. F or each 

value of the global IGM neutral fraction 〈 x H I 〉 parametrizing the 

reionization topology, we ran RT calculations using 1200 distinct 

random Nyx skewers (six per halo for 200 Nyx haloes), and 

associated them with each of the 1200 seminumerical x H I skewers. 

The RT was computed on a uniform logarithmic grid of quasar 

lifetimes spanning from log 10 ( t Q / yr ) = 3 − 8 in steps of � log 10 ( t Q / 

yr ) = 0 . 1 dex (this grid of RT computations were generated in 

Davies et al. 2019 ) and IGM transmission skewers were computed 

o v er the velocity range −10 , 000 km s −1 ≤ �v ≤ 10 , 000 km s −1 on 

a uniform velocity grid with 5000 pixels of size d v = 4 km s −1 . This 

was done by performing the optical depth velocity integral using the 

neutral hydrogen density and temperature outputs from the RT, the 

peculiar velocity field from the Nyx simulation, and weighting by 

the Voigt line profile that describes the frequency dependence of the 

Ly α absorption cross-section. Because the Nyx simulations do not 

have star or galaxy formation subgrid recipes, hydro grid elements in 

collapsed structures can evolve to have unrealistically high densities, 

which would not be present in a simulation with galaxy formation 

prescriptions. These high o v erdensities are problematic for several 

reasons. First, the RT can get stuck modelling self-shielding from 

such high-density systems, because the convergence criteria push the 

adaptive time-step to very short values. Second, when analysing IGM 

damping wings, objects with strong proximate absorbers (PDLAs or 

PLLSs), are excluded from analysis, so it is sensible to do the same 

for the simulations. To mitigate the undesired effects of unphysically 

large densities, we omit the first 35 pkpc from consideration when 

extracting the density, temperature, and velocity fields from the Nyx 

simulation, and we clip the gas o v erdensity to al w ays be below 

200, i.e. roughly the virial o v erdensity. Nev ertheless, ev en for the 

combination of model parameters where proximate DLAs are least 

expected ( x H I = 0 . 0 and log 10 ( t Q / yr ) = 8), we still found that a small 

fraction (17 of 1200) of the simulated IGM transmission spectra 

exhibited proximate DLA absorption, 14 which we chose to exclude 

from consideration for all models. Thus, the final output of our IGM 

transmission simulations is a set of 1183 transmission spectra at 

each location of a coarse 21 × 51 grid corresponding to the two 

IGM parameters, θ = ( 〈 x H I 〉 , log 10 ( t Q / yr )). Figures illustrating our 

numerical simulation procedure can be found in Davies et al. ( 2018b ). 

To e v aluate the likelihood in equation ( 17 ), we require the mean, 

〈 t ( θ ) 〉 , and covariance, C t ( θ ) of the proximity zone Ly α transmission 

as a function of model parameters θ = ( 〈 x H I 〉 , log 10 ( t Q / yr )). Fig. 9 

14 These were identified as skewers with transmission deviating by more than 

2 per cent from unity at a pixel 1000 km s −1 redward of the quasar redshift 

for the model with x H I = 0 . 0 and log 10 ( t Q / yr ) = 8. This model choice is 

conserv ati ve, since it is least likely to exhibit damping wing absorption both 

because the IGM is reionized and the longest quasar lifetime maximizes the 

likelihood of photoe v aporating proximate absorbers. 

Figure 9. Mean transmission and covariance structure of the proximity zone 

Ly α transmission field t e v aluated from the 1183 transmission spectra for 

a model 〈 x H I 〉 = 0 . 50 and log 10 ( t Q / yr ) = 6 on a velocity grid with d v = 

500 kms −1 . Top and left panels show the mean transmission 〈 t 〉 (black) 

and its 1 σ variation 
√ 

diag ( C t ) (orange), whereas the 2D image shows the 

correlation matrix with the level of correlation indicated by the colour bar. 

The wavelength of Ly α at line centre, 1215 . 67 Å, is shown by the vertical 

dotted line. The smooth coherent IGM damping wing signature results in 

highly correlated transmission fluctuations redward of Ly α; whereas, for 

λ � 1215 . 67 Å, the correlations are smaller owing to Ly α forest fluctuations 

in the proximity zone, although they are not insignificant. 

illustrates these quantities at the wavelengths rele v ant for IGM 

damping wings on our velocity grid with d v = 500 km s −1 pixels 

for a model with 〈 x H I 〉 = 0 . 50 and log 10 ( t Q / yr ) = 6. The top and left 

panels show the mean transmission 〈 t 〉 (black) and its 1 σ variation √ 
diag ( C t ) (orange). The covariant structure of the transmission 

can be visualized via the correlation matrix shown in the 2D 

image, computed from C t (see the definition in equation 26 ). The 

smooth coherent IGM damping wing signature results in highly 

correlated transmission fluctuations redward of Ly α; whereas, for 

λ � 1215 . 67 Å, the correlations are smaller owing to Ly α forest 

fluctuations, although not insignificant. 

4.2 Creating mock quasar spectra 

In this section we describe our procedure for generating realistic 

mock quasar spectra with IGM damping wings. As described in 

Section 4.1 , we focus on models of the quasar ULAS J1342 + 0928 

at z = 7 . 54 with J AB = 20 . 3. The simulated spectra co v er the rest- 

frame (observ ed-frame) wav elength range 1185 − 2000 Å (10120 −
17080 Å). As discussed in Section 3.4 , it is advantageous to rebin 

the spectra from the native sampling of the simulations onto a 

coarser wavelength grid with d v = 500 km s −1 . We assume ob- 

servations at a spectral resolution described by a Gaussian line- 

spread function (LSF) with FWHM = 100 km s −1 . To forward 

model the impact of spectral resolution and rebinning onto the coarse 

d v = 500 km s −1 grid, we convolve our ensemble of 1183 × 21 × 51 

IGM transmission skewers (1183 skewers, 21 × 51 models) defined 

on the simulation spectral grid d v sims = 4 km s −1 , with this Gaussian 

LSF and then rebin them onto the coarse wavelength grid. Mock 
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quasar spectra are generated by randomly selecting a continuum 

from our 778 autofit test set, cubic spline interpolation of the 

continuum onto the coarse wavelength grid, and then multiplying 

by a randomly selected resolution convolved and rebinned IGM 

transmission skewer. 15 

We simulate observational data collected with a ground-based 8- 

m class telescope with a hypothetical instrument with a constant 

throughput of 30 per cent. To correctly model the noise, we used the 

SKYCALC IPY 
16 PYTHON package to generate realistic models of the 

sky background and atmospheric transmission, which are used to 

construct a full spectrum simulator including telluric absorption and 

noise contributions from object photons, sky background, and detec- 

tor read noise (assumed to be four electrons per d v = 500 km s −1 

spectral pixel). We tuned a hypothetical exposure time to achieve a 

median signal-to-noise ratio of S / N = 10 per 100 km s −1 velocity 

interval, computed o v er the telluric absorption free observed frame 

(rest-frame) wavelength range 11750 − 13300 Å (1376 − 1557 Å). 

This in turns allows us compute the correct relative contributions of 

photon counting and detector read noise to the noise budget, resulting 

in a realistic noise vector σ . Multiplying this noise vector into a 

random draw from a unit variance Gaussian distribution, generates 

a realistic realization of heteroscedastic noise (due to OH sky lines 

and telluric absorption features), which is then added to the mock 

quasar spectrum. Three examples of mock quasar spectra generated 

via this procedure are shown in Fig. 10 . 

5  INFERENCE  RESULTS  

In this section, we present the results from statistical inference 

performed on the mock EoR quasar spectra that were introduced 

in Section 4.2 using the new likelihood we derived in Section 2 

(see equation 17 ). First we discuss how we use HMC to sample the 

posterior distribution, then we describe the co v erage test we perform 

to assess the reliability of our statistical inference. Our inference 

turns out to be o v erconfident and thus does not pass the co v erage 

test, but we describe a procedure that reweights the HMC samples 

to remedy this problem and thus perform reliable inference. After 

showing examples of our inference at work, we build intuition for 

why our inference fails the co v erage test. We conclude by quantifying 

how well we reco v er the underlying quasar continuum and compare 

the accuracy of our reconstructions with past work. 

5.1 Hamiltonian Monte Carlo 

HMC (Duane et al. 1987 ) is a powerful variant of the traditional 

Markov Chain Monte Carlo (MCMC) algorithm for sampling proba- 

bility distributions in high dimensions (see e.g. Betancourt 2017 , for 

a re vie w). Based on a po werful analogy with Hamiltonian dynamics, 

HMC introduces auxiliary momentum variables that interact with 

the target variables representing the samples from the distribution of 

interest. HMC numerically integrates the equations of Hamiltonian 

15 Note that the two operations, (1) multiplication of the full-resolution 

IGM transmission with the continuum, and (2) convolution of the resulting 

spectrum with the LSF and rebinning do not formally commute. The 

correct order is to multiply by the continuum first and then convolve and 

rebin, but the differences are negligible. We choose to convolve and rebin 

the IGM transmission skewers first, and then multiply by the continuum 

afterward because the e xpensiv e convolution and rebinning operations can 

then be performed only once in pre-processing, dramatically speeding up all 

downstream computations. 
16 https:// github.com/ AstarVienna/ skycalc ipy 

dynamics, and then interleaves Metropolois–Hastings steps to accept 

or reject the proposed target states ensuring that detailed balance is 

satisfied. Compared to MCMC, HMC capitalizes on the gradients 

of the log-likelihood, making it more efficient for sampling in 

high-dimensional spaces and handling correlated target variables. 

This advantage enables HMC to generate distant proposals more 

ef fecti vely, leading to reduced autocorrelation in samples, better 

performance for multimodal distributions, and faster convergence. 

The main challenge of using HMC is that it requires gradients 

of the log-likelihood function with respect to the model parameters, 

which can be challenging or costly to compute. Gradients can be 

computed in several ways: by numerical approximation using finite 

differences, through symbolic manipulation of analytic expressions, 

or via automatic differentiation (AD; e.g. Baydin et al. 2018 ), 

a programmatic application of the chain rule that yields exact 

deri v ati ves at machine precision by tracing the operations in a 

computation. In our case, we rely on AD, which yields exact gradients 

for arbitrary compositions of differentiable operations and scales 

ef ficiently e ven in high-dimensional parameter spaces. Modern AD 

frameworks automate this process, making it straightforward to ob- 

tain deri v ati ves e ven for complicated likelihood functions involving 

matrix operations, linear algebra, and complex control flow. The 

introduction of AD environments in PYTHON such as JAX (Bradbury 

et al. 2018 ), makes exploiting AD to compute the required gradients 

for HMC straightforward. 

We developed PYTHON software to compute an automatically 

differentiable version of the likelihood in equation ( 17 ) in JAX . 

For the HMC, we use the No-U-Turn Sampler (NUTS; Hoffman 

& Gelman 2014 ) variant of HMC implemented in the JAX -based 

NUMPYRO (Bingham et al. 2018 ; Phan, Pradhan & Jankowiak 

2019 ) probabilistic programming package in the PYTHON module 

numpyro.infer.NUTS . The NUTS sampler was run with four 

chains of 1000 samples, each with a warmup phase of 1000 samples, 

using the ‘vectorized’ chain option. The NUTS algorithm builds a 

binary tree that is used to take forward/backwards ‘directional’ steps 

to explore the target posterior using gradients to guide it towards 

the highest probability regions. The max tree depth parameter, 

which sets the size of this binary tree, was set to 10 (i.e. up to 

a maximum of 1024 steps for each iteration). As alluded to in 

Section 3.4 , the run time is a strong function of the number of 

pixels, n pix , in the quasar spectrum, as this sets the dimensionality 

of the matrices in equation ( 17 ), and several of the required matrix 

operations scale as O( n 3 pix ). In general, there are order unity variations 

in the runtime which depend on details of the warmup phase that 

constructs the ‘mass matrix’ determining the Hamiltonian dynamics 

in HMC, which in turn will depend on the parameter-dependent 

shape of the underlying posterior distribution. The wavelength grid 

adopted in this paper has n λ = 313. Running on a single thread of an 

AMD EPYC 7763 2.45 GHz processor, 17 the typical runtimes were 

∼ 2 . 5 hours. Running on a single thread of an Intel Xeon Gold 6126 

2.6 GHz processor 18 equipped with a NVIDIA GeForce RTX 2080TI 

GPU (with 11 GB of memory), the typical runtimes were ∼ 15 min. 

5.2 Co v erage testing 

Let � be the parameter vector of interest for a Bayesian inference 

problem that will be applied to experimental data x . In the current 

context of IGM damping wings, � = { θ, η} , where θ are the 

17 These processors have 64 cores, 128 threads, and 256 MB of L3 Cache. 
18 These processors have 12 cores, 24 threads, and 19 . 25 MB of L3 Cache. 
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Figure 10. Examples of inference performed on mock spectra for three different combinations of 〈 x H I 〉 and log 10 ( t Q / yr ). Black shows the noisy mock quasar 

spectra, orange the 1 σ spectral noise level, purple the true noiseless flux, green the true underlying continuum, blue the median inferred continuum model, and 

red the median inferred damping wing model flux. Shaded regions indicate the 16th and 84th percentiles of the continuum model (blue) and model flux (red). 

For the continuum model, the median and shaded regions incorporate parameter variations, continuum reconstruction errors, and spectral noise, whereas for the 

model flux the incorporate these effects as well as IGM transmission fluctuations (see Section 5.5 for details). True model parameters are annotated in green, 

whereas median inferred parameters and 16th and 84th percentile credibility intervals (determined from marginalized posteriors) are annotated in red. The 

inferred constraints are those determined after the marginal co v erage correction weights (which slightly dilate the contours) have been applied (see Section 5.4 ). 

A corner plot illustrating the full 8D posterior for the mock with 〈 x H I 〉 = 0 . 96 and log 10 ( t Q / yr ) = 5 . 88 in the upper panel is shown in Fig. 12 (also co v erage 

corrected). 

astrophysical parameters and η are the DR parameters, and the 

data x are the quasar spectrum f and its associated noise vector 

σ . Following Bayes theorem, the posterior distribution for � , given 

experimental data x is 

P ( � | x ) = 
L ( x | � ) P ( � ) 

P ( x ) 
, (28) 

where L ( x | � ) is the likelihood of the data given the model, P ( � ) 

reflects our prior knowledge of the parameters, and P ( x ) is known as 

the evidence, which is interpreted as a normalization constant since 

it is independent of the parameters � . If the inference procedure is 

reliable, one expects that the probability α obtained by integrating 

the posterior probability density in equation ( 28 ) o v er a volume V of 

parameter space � , 

α = 

∫ 

V α

P ( � | x )d � (29) 

corresponds to a true probability. In other words, that the parameter 

space volume enclosed by the 68 per cent credibility contour contains 

the true parameters 68 per cent of the time under repetitions of 
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Figure 11. Co v erage test results determined from N = 100 mock spectra. Left: the black line shows the co v erage C( α) of the marginal posterior distributions 

P ( θ | f j , σ j ), which empirically quantifies how often the true astrophysical parameters θ true = ( 〈 x H I 〉 , log 10 ( t Q / yr )) lie within the αth credibility contour. The 

red-dashed line shows the expected y = x curve that one would obtain for a perfect inference. The grey-shaded region shows the effective 1 σ error range on 

C( α) determined from 16th and 84th percentile ranges of the binomial distribution. Given that C( α) lies everywhere below the red-dashed line, we see that our 

pipeline systematically delivers overconfident inference. Right: coverage test results after enlarging the credibility contours by reweighting the HMC samples. 

By construction, C( α) = α, indicating that on average the inference pipeline delivers reliable credibility contours. 

the experiment, and analogously for all the other credibility levels. 

Ho we ver, this need not al w ays be the case. Imperfections in an 

inference procedure can cause the posterior distribution to exclude 

the true parameters more or less often than indicated by the nominal 

credibility contours, because the posterior is shifted, or too narrow 

and hence o v erconfident, or too broad and hence underconfident, or 

combinations thereof. Such imperfections can result from bugs in 

an inference pipeline, or from an inappropriate choice of the prior, 

or by adopting an approximate likelihood that fails to accurately 

capture the statistical properties of the measurement process. In the 

current context, we know that the likelihood in equation ( 17 ) is only 

approximate, as discussed in Section 2 , which moti v ates us to explore 

its co v erage. 

The co v erage probability, C( α), of a posterior credibility level α

is the fraction of the time that the true parameters lie within the 

volume enclosed by the corresponding credibility contour under 

repetitions of the experiment (see e.g. Sellentin & Starck 2019 ). 

It provides a mathematically rigorous method to quantify whether a 

posterior distribution delivers reliable probabilities. If an inference 

procedure is robust, then the co v erage probability should equal to 

the posterior credibility for every level. This approach of comparing 

co v erage probabilities to posterior credibility levels is referred to as 

an ‘inference test’ or a ‘co v erage test’. 

We conduct a co v erage test following the algorithm described in 

more detail in Appendix A (see also Wolfson et al. 2023 ), which we 

now summarize: 

(i) Draw N = 100 astrophysical parameter vectors θ true ,j from 

uniform priors defined by 〈 x H I 〉 ∼ Uniform (0 , 1) and log 10 ( t Q / yr ) ∼
Uniform (3 , 8). These are the ‘true’ parameters that generate the mock 

data sets used to perform the co v erage test. 

(ii) Generate realizations of mock quasar spectra { f j , σ j } from 

these ‘true’ parameters following the approach described in Sec- 

tion 4.2 . 

(iii) Perform HMC inference on each data set as described in 

Section 5.1 resulting in a set of 2000 samples for the astrophysical 

parameters θ and continuum nuisance parameters η, from each of 

the N = 100 posterior distributions P ( θ , η| f j , σ j ). 

(iv) Consider a set of M credibility contour lev els α ∈ [0 , 1]. F or 

each value α and each mock, test whether the true astrophysical 

parameter values, θ true ,j , reside within the volume V α enclosed by 

αth contour. For each α, the co v erage probability C( α) is the fraction 

of the N mock data sets for which the true values lie within the volume 

V α defined by equation ( 29 ). 

As described in Appendix A , a co v erage test can be performed for 

the entire parameter vector, here � = { θ, η} using the full posterior 

P ( θ, η| f j , σ j ), as well as for the astrophysical (i.e. non-nuisance) 

parameters θ using their marginal posterior P ( θ | f j , σ j ). Obviously, 

the co v erage of the marginal posterior P ( θ | f j , σ j ) is most critical, 

since nuisance parameters will be marginalized out, which is what 

we focus on in what follows. 

For α, we consider a vector of 200 linearly spaced values in 

the range α ∈ [0 , 0 . 994] concatenated with a vector of 101 linearly 

spaced values in the range α ∈ [0 . 995 , 1 . 0], resulting in M = 301 

values of α. As will be apparent in the next section, the steep C( α) 

v ersus α curv e near α ∼ 1 (see Fig. 11 ) moti v ates adopting a more 

finely spaced grid as α approaches unity. 

5.3 Mar ginal co v erage test results 

In Fig. 11 , we show the marginal co v erage test results determined 

from the approach described in Section 5.2 and Appendix A for 

N = 100 mock quasar spectra. The black line shows the co v erage 

C( α) of the marginal posterior distributions P ( θ | f j , σ j ), which 

empirically quantifies how often the true astrophysical parameters 

θ true = ( 〈 x H I 〉 , log 10 ( t Q / yr )) lie within the αth credibility contour. 

The red-dashed line shows the expected y = x curve that one would 

obtain for a perfect inference pipeline in the limit N → ∞ . An 

o v erconfident inference pipeline will yield a curve C( α) versus 

α that lies systematically below the line y = x, whereas for an 

underconfident inference procedure the C( α) will lie abo v e y = x. 

As discussed in Appendix A (see also Sellentin & Starck 2019 ), 

since C( α) counts how often the true parameters fall inside the αth 

contour, it is the number of successes in a sequence of N independent 

experiments each asking a yes-or-no question. Hence, C( α) follows 
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the binomial distribution B( N, C( α)), which we use to assign errors. 

The gre y-shaded re gion sho ws the ef fecti ve 1 σ error range 19 on C( α) 

determined from 16th and 84th percentile ranges of B( N, C( α)). 

Given that C( α) lies everywhere below the red-dashed line, we see 

that our pipeline systematically delivers overconfident inference. For 

example, for the ef fecti ve 1 σ credibility level α = 0 . 68, i.e. the 68th 

percentile credibility contour, the co v erage is actually just C(0 . 68) = 

0 . 48, indicating that on average the contours include the true θ true = 

( 〈 x H I 〉 , log 10 ( t Q / yr )) only 48 per cent of the time. Similarly, for the 

ef fecti ve 2 σ credibility level of α = 0 . 95 the coverage is C(0 . 95) = 

0 . 79. 

5.4 Reweighting samples to pass a co v erage test 

The co v erage test for the marginal posterior P ( θ | f , σ ) distribution 

shown in left panel of Fig. 11 indicates that C( α) lies everywhere 

below the red-dashed line y = x, indicating that our pipeline system- 

atically delivers overconfident inference. How can we nevertheless 

perform statistically reliable inference in light of this o v erconfidence? 

In Appendix A , we introduce a no v el procedure whereby the HMC 

posterior samples can be assigned weights, such that the reweighted 

samples produce reliable inference which passes a co v erage test 

by construction (see also Wolfson et al. 2023 ). The mathematics 

underlying this procedure is described in detail in Appendix A , but it 

can be understood heuristically as follows. Sellentin & Starck ( 2019 ) 

advocate that one simply relabel the credibility contours to reflect the 

fact that inference is o v erconfident. In other words, since the co v erage 

plot in Fig. 11 indicates that the 68th percentile contour only contains 

the true value 48 per cent of the time, we will simply refer to this 

contour as the 48th percentile rather than the 68th. The real 68th 

percentile contour containing the true parameters 68 per cent of the 

time under the inference test actually corresponds to the value α = 

0 . 85 = C 
−1 (0 . 68) contour for our original approximate inference. 

In other words, we can systematically expand all of the credibility 

contours of the original inference by the right amount, such that 

they contain the true model the empirically correct fraction of the 

time. In general, as we show in Appendix A , this remapping of 

the credibility levels α into true co v erage probabilities C( α) can be 

achieved by solving for the set of weights for the HMC samples from 

the original posterior, which by construction guarantees that we will 

pass a co v erage test. 

The purpose of HMC (or MCMC) samples from a posterior is to 

estimate credibility intervals on parameters, perform marginalization 

integrals, and compute ‘moments’ of the posterior via Monte Carlo 

integration. If we can determine the set of weights that corrects 

the imperfect inference such that it passes a co v erage test, these 

weights can then be used in all of the downstream computations that 

one performs with the samples, guaranteeing the reliability of our 

statistical inference. 

The right panel of Fig. 11 shows the co v erage of the marginal 

posterior P ( θ | f , σ ) distribution after the HMC samples have been 

reweighted. Samples from the core of the distribution with higher 

P ( θ | x ) are downweighted, whereas samples in the outskirts of the 

distribution with lower P ( θ | x ) are upweighted, such that the net 

effect is to grow the credibility contours. The agreement of C( α) 

with the red-dashed y = x line indicates that we now achieve perfect 

co v erage, which as e xplained in Appendix A , occurs by construction 

because we solve for the set of weights that guarantees this outcome. 

19 Note ho we ver that the dif ferent v alues of α are clearly correlated since the 

same ensemble was used to calculate all of them. 

Note that although we compute the weights to guarantee that the 

reweighted HMC astrophysical parameter samples, θ j , will pass a 

co v erage test for their marginal posterior distribution, we neverthe- 

less apply these weights to the entire parameter vector � = { θ , η} . In 
other words, the contours for all parameters including the nuisance 

parameters will also be dilated. In practice, this implies that we 

pass the co v erage test perfectly for the astrophysical parameters (by 

construction, as shown in the left panel of Fig. 11 ), θ , whereas our 

inference is slightly underconfident for the full parameter vector, 

� , which includes the nuisance parameters, η (i.e. the contours 

are slightly too large). Since underconfident inference is more 

conserv ati ve, and as this applies only to the nuisance parameters, 

we have demonstrated that our full pipeline passes a coverage test 

and delivers reliable statistical inference. 

5.5 Inference examples 

Examples of our inference applied to mock spectra (see Section 4.2 ) 

with reweighted HMC samples (see Section 5.4 ) are shown for three 

different combinations of 〈 x H I 〉 and log 10 ( t Q / yr ) in Fig. 10 . The 

black histograms show the noisy mock quasar spectra, orange the 1 σ

spectral noise levels, green the true underlying continuua, blue the 

median inferred continuum models, and red the median inferred 

damping wing model flux profiles. True model parameters are 

annotated in green, whereas median inferred parameters and 16th and 

84th percentile credibility intervals (determined from marginalized 

posteriors after the co v erage correction reweighting) are annotated 

in red. 

Our approach for visualizing the quality of the fits, and hence the 

solid lines and shaded regions in Fig. 10 , warrants further discussion. 

A realization of the model of the spectrum can be determined by 

e v aluating the model of the spectra (e.g. the DR quasar continuum, 

the proximity zone transmission profile, or the product of the two) at 

each HMC sample, which has an associated weight. As discussed in 

Section 5.4 , median model curves and model confidence intervals 

can be determined by computing weighted percentiles of these 

model curves. Ho we ver, according to the likelihood in equation ( 17 ), 

there are multiple sources of scatter that go v ern how well a model 

curve will fit the data, namely spectral noise, IGM fluctuations, 

and continuum reconstruction errors. A naive visual data-model 

comparison that does not take all these sources of stochasticity into 

account can be misleading. As a concrete example, if one compares 

the median and 1 σ interval of the PCA continnum to the quasar 

spectrum redward of the Ly α region, it will not appear to be a 

good fit relative to the spectral noise alone, since this ignores the 

continuum reconstruction error budget. Thus in the current context, 

choosing sensible ‘error bars’ for visual data-model comparison is 

rather subtle. 

To generate the median and 16th and 84th percentile model 

intervals in Fig. 10 we proceed as follows. For each parameter vector 

� = { θ , η} from the HMC posterior Markov chain, we: 

(i) Evaluate the PCA DR model s DR ( η) via equation ( 20 ). 

(ii) Draw a realization of the relative continuum reconstruction 

error δ from the Gaussian distribution in equation ( 3 ), and compute 

s = s DR ( η) ◦( 1 + δ). 

(iii) Draw a random IGM transmission skewer t for the value of θ

from the set of simulated skewers, allowing us to compute f = s ◦t . 

(iv) Draw a realization of Gaussian spectral noise ˜ σ consistent 

with the noise vector σ and compute ˜ s = s + ˜ σ and ˜ f = f + ˜ σ

which we refer to as the noisy model continuum and the noisy model 

flux. 
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The blue histogram and shaded region in Fig. 10 represent the 

weighted median and 16th and 84th weighted percentiles of the 

noisy model continuum, ˜ s , respectively, which reflects parameter 

uncertainty, continuum reconstruction errors, and spectral noise. The 

red histogram and shaded region are the weighted median and the 

same percentiles of the noisy model flux, ˜ f , reflecting parameter 

uncertainty, continuum reconstruction errors, IGM transmission fluc- 

tuations, and spectral noise. Note that IGM transmission fluctuations 

are intrinsically accounted for by drawing IGM transmission skewers 

from the model for a choice of astrophysical parameters θ , whereas 

we are explicitly adding the continuum reconstruction errors and 

spectral noise by drawing realizations from their respective Gaussian 

distributions. 

Fig. 12 shows a corner plot illustrating the full 8D posterior for 

the mock spectrum in the top panel of Fig. 10 , which has true 

model parameters 〈 x H I 〉 = 0 . 96 and log 10 ( t Q / yr ) = 5 . 88. The red 

square and the horizontal and vertical red lines indicate the true 

parameter values. Note that Fig. 12 shows the posterior distribution 

after applying the marginal co v erage correction weights described in 

Section 5.4 . Fig. 13 compares the nuisance parameter marginalized 

posterior distributions for the two astrophysical parameters, 〈 x H I 〉 and 

log 10 ( t Q / yr ) for the same mock spectrum in the top panel of Fig. 10 

(i.e. the upper left panel of the full posterior in Fig. 12 ), before 

(original HMC; green) and after (reweighted; black) applying the 

co v erage correction weights to the samples from the HMC chain (see 

Section 5.4 ). It is evident that this reweighting broadens the posterior, 

correcting for the o v erconfidence of the original marginal posterior 

distribution (see Fig. 11 ), as discussed in Section 5.4 . Qualitatively, 

the shape of the posterior in the 〈 x H I 〉 − log 10 ( t Q / yr ) plane resembles 

the shape of the posteriors reco v ered in the analysis of real z > 7 

quasar spectra by Davies et al. ( 2018b ). Specifically, the well-known 

de generac y (see e.g. Bolton et al. 2011 ; Davies et al. 2018b ) between 

IGM neutral fraction and quasar lifetime in determining the shape of 

the proximity zone and IGM damping wing profile is apparent. 

5.6 Understanding the poor co v erage 

The o v erconfidence of our inference arises from the approximate 

form of the analytic likelihood adopted in equation ( 17 ). Specifically, 

the problematic approximation was the assumption of a Gaussian 

form for the Ly α forest transmission PDF, P ( t | θ ), in equation ( 10 ). 

We have explicitly demonstrated this by generating mocks where the 

simulated t transmission skewers are replaced with samples from 

the multi v ariate normal distribution in equation ( 10 ). We carried 

out a co v erage test on N = 100 such Gaussianized mocks for the 

same set of mock quasar continua, and find that C( α) = α within the 

binomially distributed counting errors, indicating that the assumption 

of a Gaussian form for P ( t | θ ) is responsible for the failure of the 

co v erage test. 

To better visualize how this non-Gaussianity manifests, one could 

compare the actual distribution of t from the simulated proximity 

zone skewers to the Gaussian adopted in equation ( 10 ). However, this 

would not be the entire story since the observable is not the noiseless 

transmission t , but rather the flux f . Notwithstanding the non- 

Gaussianity of P ( t | θ ), the resulting distribution of f could still be 

close to the Gaussian adopted in equation ( 17 ), because convolution 

with the Gaussian spectral noise (the � term in equation 17 ) 

and the very nearly Gaussian (see right panel of Fig. 8 ) relative 

reconstruction errors (the 〈 T 〉 C s 〈 T 〉 term in equation 17 ) could 

nevertheless Gaussianize the distribution of f . 

Ho we ver, it is easier to visualize the distribution of a continuum 

normalized quantity than the flux f , and this would allow us to 

aggregate mocks with different intrinsic continua s on a single plot. 

Moti v ated by this, we consider the quantity ̂  t ≡ f ◦〈 s ( ηtrue ) 〉 −1 , which 

we will refer to as the pseudo transmission. It is akin to the real 

transmission t , but the flux is divided by 〈 s ( ηtrue ) 〉 instead of the true 

continuum. Here, ηtrue is the latent variable obtained by fitting the DR 

model to the mock continuum with no noise or IGM absorption as 

discussed in Section 3.3 . Recalling that 〈 s ( η) 〉 = s DR ( η) ◦( 1 + 〈 δ〉 ), 
we see that ˆ t is the flux normalized by the product of our best- 

fitting DR estimate to the continuum, s DR ( ηtrue ), and the average bias 

( 1 + 〈 δ〉 ) of these estimates. Thus, the distribution of ˆ t will include 

scatter arising from both spectral noise and the imperfection of the 

DR continuum model. We can recast the likelihood in equation ( 17 ) 

as a PDF for ˆ t , which gives 

P 
(

ˆ t | σ , θ , η) 
)

= N 

(

ˆ t ; 〈 t 〉 , 〈 S 〉 −1 � 〈 S 〉 −1 + C t + 
〈 T 〉 

1 + 〈 δ〉 
� 

〈 T 〉 
1 + 〈 δ〉 

)

, (30) 

where we recall that 〈 S 〉 ≡ diag ( 〈 s ( ηtrue ) 〉 ) and hence 〈 S 〉 −1 ≡
diag ( 〈 1 / s ( ηtrue ) 〉 ), and where we define 〈 T 〉 

1 +〈 δ〉 ≡ diag 
(

〈 t 〉 
1 +〈 δ〉 

)

, where 

as before the division of one vector by another is performed element- 

wise. 

To further simplify the expression in equation ( 30 ), we assume the 

spectral noise vector can be written as σ = 〈 s ( ηtrue ) 〉 / snr , where snr 

is a vector of spectral signal-to-noise ratio values and again division 

of two vectors is performed element wise. By choosing the noise 

to be proportional to the continuum level 〈 s ( ηtrue ) 〉 , the dependence 

on 〈 S 〉 cancels out of the 〈 S 〉 −1 � 〈 S 〉 −1 term of the covariance in 

equation ( 30 ), yielding an expression that is independent of s and η

P 
(

ˆ t | σ , θ
)

= N 

(

ˆ t ; 〈 t 〉 , SNR 
−2 + C t + 

〈 T 〉 
1 + 〈 δ〉 

� 
〈 T 〉 

1 + 〈 δ〉 

)

, (31) 

where SNR 
−2 ≡ diag ( 1 / snr 2 ). This expression allows us to express 

the distribution of ˆ t generated from many different mock spectra 

(with different s ) via a single PDF, which can be easily visualized. 

The form of the PDF in equation ( 31 ) is intuitive – as expected ˆ t 

is distributed about the mean IGM transmission 〈 t 〉 , and the total 

covariance is a sum of three matrices, the first SNR 
−2 quantifying 

spectral noise, the second C t quantifying fluctuations of the IGM 

transmission field t , and the third quantifying continuum reconstruc- 

tion errors. 

To generate realizations of ˆ t to compare to the Gaussian distri- 

bution in equation ( 31 ), we start by generating mock IGM damping 

wing spectra f using the procedure described in Section 4.2 for 

a model with 〈 x H I 〉 = 0 . 50 and log 10 ( t Q / yr ) = 6. The continuum 

S/N of these mocks is s / σ (where σ is the noise from our simulator 

described in Section 4.2 ). We then set snr to be the median value (i.e. 

median taken o v er the quasar dimension), thus adopting a single but 

representati ve v alue of the spectral S/N as a function of wavelength. 

We then regenerated the mocks with the noise σ = 〈 s ( ηtrue ) 〉 / snr , 

with snr set to this median v alue, and di vided the fluxes f by 

〈 s ( ηtrue ) 〉 , yielding realizations of ˆ t . Whereas throughout this work 

we restricted to the 778 test set autofit continua for constructing mock 

IGM damping wing spectra, here for the sole purpose of visualization, 

we instead use the larger training set of 14 781 autofit continua to 

increase the number of samples. 20 

20 As we only have 1183 IGM transmission skewers for each parameter value 

θ , we randomly assigned the autofit continua to an IGM transmission skewer 

with replacement. 
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Figure 12. Corner plot illustrating the full 8D posterior distribution resulting from our statistical inference procedure applied to the mock quasar spectrum in 

the top panel of Fig. 10 with x H I = 0 . 96 and log 10 ( t Q / yr ) = 5 . 88. The red square and the horizontal and vertical red lines indicate the true parameter values. 

The posterior distribution shown here is the result after the marginal co v erage correction weights described in Section 5.4 have been applied, which slightly 

dilates the contours relative to the original HMC inference. 

To determine how well the PDF in equation ( 31 ) approximates 

the true distribution of ˆ t , we plot slices of this distribution in the 2D 

ˆ t λ − ˆ t λ′ plane, where λ and λ′ are the wavelengths of two different 

spectral pixels. Examples for two distinct pairs of transmission values 

are shown in Fig. 14 . The left panel of Fig. 14 indicates that at rest- 

frame wavelengths where the mean proximity zone transmission 

is high, 〈 t λ〉 ∼ 0 . 5 − 0 . 9, the Gaussian approximation is decent, 

as indicated by: (1) the similarity of the 2D probability density 

contours for the ̂  t λ − ˆ t λ′ samples (solid lines) and the contours of the 

approximate analytical Gaussian PDF (dotted lines; equation 31 ), 

(2) the same comparison for the 1D marginal distribution (i.e. grey 

marginal histograms compared to black dotted lines for the Gaussian 

PDF), and (3) the fact that the percentage of samples (indicated 

in the legend) within the 68 per cent (71.2 per cent; dotted blue) 

and 95 per cent (95.4 per cent; dotted green) analytical Gaussian 

probability density contours are very close to the expected values for 

each contour. 

Ho we ver, the right panel of Fig. 14 indicates that for bluer 

wavelengths where the mean proximity zone transmission is lower, 

〈 t λ〉 ∼ 0 . 1 − 0 . 2, the Gaussian 2D contours and 1D marginal PDFs 
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Figure 13. Comparison of the 2D marginal posterior distribution in the 

astrophysical parameters, 〈 x H I 〉 and log 10 ( t Q / yr ) (i.e. the upper left panel 

of the full posterior in Fig. 12 ), before (original HMC; green) and after 

(reweighted; black) applying the co v erage correction weights to the samples 

from the HMC chain (see Section 5.4 ). The red square and the horizontal and 

vertical red lines indicate the true parameter values. Vertical dotted lines in 

the marginal posterior panels indicate the 16–50–84 percentile ranges. It is 

evident that reweighting the samples broadens the posterior, correcting for the 

o v erconfidence (see Fig. 11 ) of the original marginal posterior distribution as 

discussed in Section 5.4 . 

poorly approximate the distribution of the ̂  t λ − ˆ t λ′ samples. Whereas 

the Gaussian PDF is symmetric about the mean 〈 t λ〉 , the samples 

are significantly skewed to positive transmission values. This dis- 

agreement is easily understood – whereas a Gaussian centred at 

a low 〈 t λ〉 ∼ 0 . 1 − 0 . 2 must be symmetric by construction and thus 

predicts a significant probability for ne gativ e values, the transmission 

is an inherently positive quantity. Besides the positivity constraint, 

additional skewness of the t λ field PDF results from the reionization 

topology and density fluctuations in the IGM. At intermediate and 

lo w v alues of the average IGM neutral fraction, 〈 x H I 〉 � 0 . 5, the 

distribution of distances from quasar host haloes to the first patch 

of neutral gas exhibits a strong tail to large distances (see fig. 2 of 

Davies et al. 2018c ). The corresponding reionized regions near the 

quasar will be further photoionized by the quasar’s radiation resulting 

in transmissive proximity zone regions. Thus tails in the distance to 

the nearest neutral patch, combined with the strong tails in the in 

Ly α forest transmission PDF at the rele v ant optical depths (see e.g. 

Davies et al. 2018a ), manifest as a tail towards high transmission, 

t λ, for bluer proximity zone wavelengths where the average profile 

has 〈 t λ〉 ∼ 0 . 1 − 0 . 2. These heavy positive tails bias the Gaussian 

transmission cov ariance, C t high, relati ve to the width of the core 

of the distribution of samples (see marginal histograms in the right 

panel of Fig. 14 ). As a result the percentage of samples within the 

68 per cent Gaussian contour (79.8 per cent; dotted blue) deviates 

significantly from the Gaussian expectation. 

We conclude that despite the Gaussianizing effects of Gaussian 

spectral noise and approximately Gaussian continuum reconstruc- 

tion errors, our approximate Gaussian form for the likelihood in 

equation ( 17 ) is nevertheless a poor approximation at low average 

transmission values 〈 t λ〉 ∼ 0 . 1 − 0 . 2 because of the strong underly- 

ing non-Gaussianity of the IGM transmission PDF P ( t | θ ). 

5.7 Continuum reconstruction reco v ery and comparison to 

previous work 

The main advantage of the statistical inference method at the heart 

of this paper is that it constructs a generative model for the entire 

quasar spectrum, including absorbed pixels in the proximity zone, 

to perform parameter inference. This contrasts with the red–blue 

prediction approach that has been adopted in most past work (e.g. 

Davies et al. 2018b ; Ďuro v ̌c ́ıko v ́a et al. 2020 ; F athi v avsari 2020 ; 

Reiman 2020 ; Chen et al. 2022 ; Greig et al. 2024b ) modelling 

IGM damping wings, whereby only pixels redward of some cut-off 

(typically λ > 1280 Å) are used to predict the blue-side ( λ < 1280 Å) 

continuum and its error, which are then used to perform inference. 

Our approach is generically expected to perform better, given that 

it uses all of the information available, and specifically the spectral 

pixels λ < 1280 Å where much of the information about the intrinsic 

quasar continuum shape around Ly α, and all of the information 

about the IGM damping wing are manifest. Ho we ver, quantifying 

the impro v ement in precision on the astrophysical parameters 〈 x H I 〉 

and log 10 ( t Q / yr ) and directly comparing to previous w ork w ould 

be challenging, given the heterogeneity of the different modelling 

approaches that have been employed to date. Furthermore, such a 

comparison might not be fair given that the current study is the 

only one to investigate (and explicitly correct for) the co v erage of 

the inference: if the inference pipelines used in past work were 

o v erconfident, a comparison to our results would not be a fair 

one. 

In our companion paper (Kist et al. 2025 ), we quantify the 

precision on the astrophysical parameters yielded by our inference 

procedure in detail by analysing an ensemble of 1000 mock spectra 

spanning the full astrophysical parameter range (0 . 0 ≤ 〈 x H I 〉 ≤ 1 . 0 ; 

3 ≤ log 10 ( t Q / yr ) ≤ 8). We find that (see table 1 and fig. 9 of Kist 

et al. 2025 ) even for the hypothetical case of perfect knowledge 

of the quasar continuum, the median ∼ 1 σ precision on 〈 x H I 〉 is 

∼ 15 per cent and the median precision on log 10 ( t Q / yr ) is ∼ 0 . 55 

de x. F or inference on full mocks generated according to the procedure 

in Section 4.2 , where we model and marginalize o v er the unknown 

quasar continuum, the typical measurement error increases to ∼

28 per cent on 〈 x H I 〉 and ∼ 0 . 80 dex for log 10 ( t Q / yr ). This analysis 

suggests that continuum reconstruction errors contribute roughly an 

equal amount to the error budget as the other sources of stochasticity 

in the problem, namely the distribution of distances to the nearest 

patch of neutral hydrogen (see fig. 2 of Davies et al. 2018c ) and 

fluctuations in the location of the quasar ionization front due to the 

distribution of sinks along the sightline. Thus significant gains in 

astrophysical parameter precision should result from an algorithm 

that better reconstructs the quasar continuum. 

Moti v ated by this, we perform a careful comparison of the pre- 

cision of our continuum reconstructions to the PCA-based red–blue 

continuum prediction method introduced in Davies et al. ( 2018b ). 

While this is only one of the many algorithms that have been used for 

quasar continuum reconstruction to date, Greig et al. ( 2024b ) recently 

conducted a detailed comparison of all 10 of the quasar continuum 

prediction pipelines in existence, and found that while they all yield 

roughly comparable precision, the Davies et al. ( 2018b ) pipeline 

consistently performed among the best for the various samples and 

metrics considered. Hence comparing the performance of our contin- 

uum reconstruction approach to the Davies et al. ( 2018b ) algorithm 
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Figure 14. Left: 2D slice of the multi v ariate distribution of the pseudo-transmission field ˆ t λ for two rest-frame wavelengths λ = 1214 . 0 Å ( x-axis) and 

λ = 1218 . 1 Å ( y-axis) in the quasar proximity zone, corresponding to mean transmission values of 〈 t 1214 . 0 〉 = 0 . 56 and 〈 t 1218 . 1 〉 = 0 . 85, which is indicated by 

the red cross. The model considered has 〈 x H I 〉 = 0 . 50 and log 10 ( t Q / yr ) = 6. Shading indicates the probability density with a logarithmic stretch. Solid lines 

show the 68 per cent (blue) and 95 per cent (green) probability density contours determined from the distribution of ˆ t samples, whereas the dotted lines show 

the corresponding probability density contours for the Gaussian distribution in equation ( 31 ). The legend indicates the percentage of the samples that are within 

the Gaussian probability density contours. Histograms show the 1D marginal distributions where black dotted lines show the Gaussian prediction based on 

equation ( 31 ). Right: same as left except for a different set of rest-frame wavelengths λ = 1208 . 0 Å ( x-axis) and λ = 1210 . 0 Å ( y -axis), corresponding to lower 

values of the mean transmission 〈 t 1208 . 0 〉 = 0 . 08 and 〈 t 1210 . 0 〉 = 0 . 19. 

should, broadly speaking, constitute a sufficient comparison to the 

diverse set of existing continuum prediction algorithms in existence. 

To perform this comparison, we considered the N = 100 mock 

quasar spectra on the d v = 500 km s −1 wavelength grid that we 

conducted inference on (see Fig. 10 for examples) to arrive at the 

co v erage test results described in Section 5.3 and shown in Fig. 11 . 

We define the inferred quasar continuum for a given mock spectrum 

to be the weighted median (using the marginal co v erage weights) 

of the PCA DR models, s DR ( ηi ), e v aluated at each of the HMC 

samples ηi for each mock spectrum, which we denote by s DR , med . 

Ho we ver, the DR model itself is not perfect and will result in some 

relati ve reconstruction error, δ, e ven if the PCA is fit to a spectrum 

with no noise or IGM absorption (see Section 3.3 and Fig. 6 ). Thus, 

a proper analysis requires comparing the moments of the relative 

reconstruction error of the inferred continua 

δinf = 
s − s DR , med 

s 
, (32) 

to the moments of the relative reconstruction error 

δ = 
s − s DR ( ηtrue ) 

s 
, (33) 

obtained by fitting the PCA to the same mock quasar spectra, but 

without noise or IGM absorption. As described in Section 3.3 , we 

determine the best-fitting PCA DR parameters, ηtrue , by minimizing 

the MSE loss given in equation ( 23 ), and Fig. 6 shows the moments of 

the relative reconstruction error, 〈 δ〉 and σδ ≡ � 
1 / 2 
λλ (see equation 24 ), 

computed from the spectra in our continuum test sets. In the current 

context, we will compare the moments of δinf directly to the moments 

of δ, both computed from the same 100 mock spectra for which we 

performed statistical inference. Since the DR model al w ays results 

in reconstruction errors (even in the absence of noise and IGM 

absorption), the best continuum reconstruction (in the presence of 

noise and IGM absorption) would be one for which δinf is very close 

to δ. 

To compare the accuracy of our continuum reconstructions to 

those from the Davies et al. ( 2018b ) method, we applied their red–

blue prediction algorithm to the same set of 100 mock spectra. 

Specifically, we followed the Davies et al. ( 2018b ) approach and 

fit their red-side PCA vectors to the red spectral pixels ( λ < 1280 Å) 

of our mocks yielding 10 PCA coefficients for each mock, and then 

we used their transformation matrix to transform each set of 10 red- 

side PCA coefficients into six blue-side PCA coefficients, which 

finally yields a predicted blue-side continuum ( λ < 1280 Å) for each 

mock. 

The efficacy of the quasar continuum reconstruction algorithms 

is illustrated in Fig. 15 . In the lower panel, the dashed lines show 

the mean 〈 δ〉 of the relative reconstruction errors, whereas the solid 

lines show the standard deviation σδ ≡ � 
1 / 2 
λλ (see equation 24 ). Black 

shows these moments evaluated using the inferred quasar continuum 

that results from our joint statistical inference of the PCA coefficients 

and the astrophysical parameters. Green shows the moments arising 

from the intrinsic imperfections of the DR, i.e. for the case where we 

fit our PCA basis (see Fig. 5 ) to the same set of spectra o v er the entire 

spectral range with no noise or IGM absorption. For λ � 1220 Å, 

the inferred quasar continua (black) achieve the intrinsic limiting 

precision of the DR itself (green, i.e. PCA fits without noise or 

IGM absorption), whereas at bluer wav elengths, de generac y with 

and censorship by IGM absorption is seen to increase the errors 
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Figure 15. Efficacy of quasar continuum reconstruction algorithms as quantified by the moments of the relative reconstruction error δ. The lower panels show 

the mean 〈 δ〉 (dashed) and standard deviation σδ ≡ � 
1 / 2 
λλ (solid) of the relative reconstruction error e v aluated from N = 100 mock spectra on which we performed 

statistical inference (see Fig. 10 and Section 5.3 ). Black shows these moments e v aluated using the inferred quasar continuum (see equation 32 ) that results 

from our joint statistical inference of the PCA coefficients and the astrophysical parameters. Green shows the moments arising from the intrinsic imperfections 

of the DR alone, i.e. for the case where we fit the PCA basis to the same set of spectra o v er the entire spectral range with no noise or IGM absorption (see 

equation 33 ). For λ > 1220 Å, the inferred quasar continua (black) achieve the intrinsic limiting precision of the DR itself (green, i.e. PCA fits without noise 

or IGM absorption), whereas at bluer wavelengths degeneracy with and censorship by IGM absorption is seen to increase the errors as quantified by σδ . For 

comparison, we show the moments of the relative reconstruction error of the red-side continuum fit (red, right) and the blue-side prediction (blue, left) obtained 

by applying the Davies et al. ( 2018b ) red–blue prediction algorithm to the same set of N = 100 mock spectra. Over the wavelength range 1216 Å < λ < 1240 Å

most critical for measuring IGM damping wings, our inference significantly outperforms the Davies et al. ( 2018b ) algorithm, yielding σδ a factor of 1.7–2.5 

lower, with an average reduction of σδ over this range of a factor of 2.1. For reference, the upper panel shows the mean quasar spectrum 〈 s 〉 constructed from 

our test set with prominent emission lines labelled. 

as quantified by σδ . For comparison, we show the moments of 

the relative reconstruction error of the red-side continuum fit (red, 

right) and the blue-side prediction (blue, left) obtained by applying 

the Davies et al. ( 2018b ) red–blue prediction algorithm to the 

same set of N = 100 mock spectra. Over the wavelength range 

1216 Å < λ < 1240 Å most critical for measuring IGM damping 

wings, our inference significantly outperforms the Davies et al. 

( 2018b ) algorithm, yielding σδ a factor of 1.7–2.5 lower, with an 

average reduction of a factor of 2.1 taken o v er this wav elength range. 

To appreciate the significance of this reduction, consider that 

for a model with 〈 x H I 〉 = 1 . 0 and log 10 ( t Q / yr ) = 6, the mean IGM 

transmission varies from 〈 t 〉 = 0 . 49 − 0 . 91 o v er this same range 

1216 Å < λ < 1240 Å. Heuristically, the signal-to-noise ratio of 

IGM damping wing absorption for a single spectral pixel is S / N ∼

(1 − 〈 t 〉 ) /σδ . Averaging this quantity over the range 1216 Å < λ < 

1240 Å, we find that our inference yields an average statistical signif- 

icance of 2.9 to be compared to 1.4 for the Davies et al. ( 2018b ) red–

blue prediction algorithm. This heuristic S / N likely underestimates 

the actual impro v ement, since one optimally combines all the spectral 

pixels near Ly α when performing a fit, although correlations of the 

transmission field 〈 t 〉 and the covariance of the relative reconstruction 

error δ make it difficult to quantify the impro v ement more rigorously. 

But it is abundantly clear that our approach of jointly fitting for 

the astrophysical parameters go v erning the IGM absorption and the 

latent variables that describe the continuum yields far more accurate 

continuum reconstructions than red–blue prediction. 

6  SUMMARY  A N D  C O N C L U S I O N S  

In this paper, we introduced a new approach for analysing the IGM 

damping wings that are imprinted on the proximity zones of EoR 

quasars. Whereas past work has typically forgone the additional 

constraining power afforded by the blue-side continuum (1216 Å � 

λ � 1280 Å) and opted not to model the large correlated IGM 

transmission fluctuations in the proximity zone ( λ � 1216 Å), we 

derived a single Bayesian likelihood for the entire spectrum allowing 

us to fit all of the spectral pixels and thus jointly model the fluctuating 

transmission in the proximity zone, the smooth IGM damping wing 

signature, and the underlying quasar continuum simultaneously. The 

latter constitutes a nuisance stochastic process from the standpoint 

of constraining the average IGM neutral fraction, 〈 x H I 〉 , and quasar 

lifetime, t Q , that go v ern the IGM transmission. A key aspect of our 

approach is the use of DR to describe the quasar continuum with a 

small number of latent variables and then designate the imperfections 

of this model, which we refer to as relative reconstruction errors, 

as a source of irreducible correlated noise. Using a large sample of 

15 559 SDSS/BOSS quasars at z � 2 . 15 we trained and quantified the 

performance of six distinct DR methods, including machine-learning 

techniques like GPLVMs and VAEs, and find that a six parameter 

PCA model (five PCA coefficients ξ plus a normalization s norm ) 

performs best (see also Kist et al. 2025 ), with complex machine- 

learning methods providing no advantage. Fitting this PCA model to 

a subset of 778 spectra which were unseen by the training process 
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provides an empirical calibration of the relative reconstruction errors, 

which are an important ingredient of the likelihood we derived. 

Following our approach, all sources of error – the stochasticity 

induced by the reionizing IGMs ionization topology, the unknown 

quasar lifetime t Q and location of the corresponding ionization 

front, continuum reconstruction errors, and spectral noise – are 

accounted for by a generative probabilistic model, which enables 

us to marginalize out nuisance parameters in a principled manner. 

The only drawback of the Gaussian likelihood that we derive 

in this paper is that it is approximate, because the true likelihood 

is analytically intractable. We used HMC to conduct statistical 

inference on an ensemble of 100 realistic mock EoR quasar spectra 

to determine the co v erage of our inference with this approximate 

likelihood, which quantifies the validity of the credibility contours 

that we obtain for 〈 x H I 〉 and log 10 ( t Q / yr ) from this new method. 

We find that our inference is o v erconfident, which is to say that 

the 68 per cent credibility contour contains the true astrophysical 

parameters ( 〈 x H I 〉 and log 10 ( t Q / yr )) just 48 per cent of the time, and 

the 95 per cent credibility contour contains the true parameters just 

79 per cent of the time (see Fig. 11 ). We show convincingly that 

this o v erconfidence results from the non-Gaussianity of the IGM 

transmission field, t , at proximity zone pixels λ where the mean 

transmission takes on low values, 〈 t λ〉 ∼ 0 . 1 − 0 . 2, owing both to the 

fact that, physically, the transmission must be positive, and because 

of an intrinsic strong tail towards higher transmission values (see 

Fig. 14 ). Although the HMC posterior samples from our approximate 

likelihood yield biased inference, we introduced a procedure whereby 

the HMC samples can be assigned weights, such that the reweighted 

samples produce reliable inference which passes a co v erage test by 

construction. This reweighting procedure, which amounts to a small 

dilation of the credibility contours of the original inference, finally 

yields a state-of-the-art Bayesian inference pipeline that uses all of 

the spectral pixels to reliably measure the cosmic reionization history 

and quasar lifetime from quasar spectra. 

The accuracy of the quasar continuum reconstructions afforded by 

this new method are unprecedented. For λ > 1220 Å, we find that our 

inferred quasar continua achieve the intrinsic limiting precision of the 

DR model itself, in other words, they are as good as fits to ‘perfect’ 

spectra without noise or IGM absorption. At bluer wavelengths, 

as e xpected, de generac y with and censorship by IGM absorption 

degrades our ability to reconstruct the underlying quasar continuum. 

But we nevertheless achieve far more accurate reconstructions than 

the red–blue prediction algorithms that have been adopted in previous 

IGM damping wing measurements. Over the wavelength range 

1216 Å < λ < 1240 Å most critical for such measurements, our 

continuum reconstructions have a factor of 1.7–2.5 smaller error 

than red–blue prediction, which increases the statistical significance 

of a putative IGM damping wing per spectral pixel to ∼ 2 . 9 compared 

to ∼ 1 . 4 for red–blue prediction. 

In our companion paper (Kist et al. 2025 ), we quantify the preci- 

sion with which IGM damping wings analysed with this new infer- 

ence approach can measure the astrophysical parameters, 〈 x H I 〉 and 

log 10 ( t Q / yr ), and the dependence of this precision on the location in 

parameter space, the dimensionality of the DR latent variable model, 

as well as on the spectral resolution, S/N, and spectral co v erage of the 

quasar spectra that are analysed. After performing a battery of tests 

on 1000 mocks, Kist et al. ( 2025 ) find that the precision is highest 

when running this new pipeline with a six-parameter DR model (five 

PCA coefficients ξ plus a normalization s norm ) on S / N ∼ 10 spectra, 

rebinned to a ∼ 500 km s −1 velocity pixel scale, and extending at 

least out to the C IV λ1549 Å emission line. With this configuration, 

Kist et al. ( 2025 ) find that a single EoR quasar spectrum constrains 

the IGM neutral fraction, 〈 x H I 〉 , to 28 . 0 + 8 . 2 
−8 . 8 per cent and the quasar 

lifetime, log 10 ( t Q / yr ), to 0 . 80 + 0 . 22 
−0 . 55 dex , where the error bars indicate 

the 16 and 84 percentile ranges, and where the constraints impro v e 

on both parameters for spectra with a stronger IGM damping wing 

signature. 

Higher precision constraints on 〈 x H I ( z) 〉 can of course be achieved 

by averaging over statistical samples of EoR quasars samples. An 

ambitious program to obtain sensitive JWST spectra of the sample of 

hundreds of EoR quasars that will be delivered by the ESA/ Euclid 

satellite would revolutionize the study of IGM damping wings 

towards quasars and constrain the cosmic reionization history to 

unprecedented precision. Averaging over ∼ 30 quasars in a redshift 

bin would deliver a precision of ∼ 5 per cent on 〈 x H I 〉 at that 

redshift, which, when performed as a function of redshift across 

the EoR would measure 〈 x H I ( z) 〉 far more precisely than the CMB. 

Furthermore, such an analysis would also yield, as a byproduct, 

the distribution of quasar lifetimes (see e.g. Khrykin et al. 2021 ) 

pro viding no v el constraints on the buildup of supermassiv e black 

holes (SMBHs) in the young Universe. 

Given that the formal precision achie v able on 〈 x H I ( z) 〉 is so high, 

a natural question arises: will modelling uncertainties due to poorly 

understood galaxy formation physics eventually limit the precision 

with which we can constrain reionization? How sensitive are our IGM 

transmission models (see Section 4 ) to galaxy formation, which regu- 

lates both the ionizing photon sources (via Lyman continuum escape) 

and sinks (via Lyman limit systems) that determine the reionization 

topology and the size of the ionized bubble powered by the quasar 

itself? While galaxy formation physics ultimately determines the 

reionization topology, we emphasize that precision constraints on 

〈 x H I ( z) 〉 do not require that this topology can be predicted from first 

principles. Specifically, we adopted a parametrized seminumerical 

21CMFAST model (Mesinger et al. 2011 ; Davies & Furlanetto 2022 ) 

in which the source and sink prescriptions are go v erned by a handful 

of tunable subgrid parameters. Although we fix these parameters 

in the present study, yielding a fiducial reionization topology as a 

function of a single parameter, 〈 x H I ( z) 〉 , an important direction for 

future work would be to vary and marginalize o v er the full suite of 

subgrid source/sink parameters to assess their impact on the inferred 

〈 x H I ( z) 〉 constraints. Furthermore, as discussed below, it is likely that 

IGM damping wing measurements have the potential to constrain the 

reionization topology (or the subgrid parameters that go v ern it) as 

well (Kist et al., in preparation). 

Along similar lines, while our 1D RT of the quasar’s radiation 

currently neglects dense absorbers in the quasar environment (Lyman 

limit systems and DLAs), which are not captured by the Nyx hy- 

drodynamical simulations, such absorbers can be directly identified 

in high- S / N quasar spectra via associated metal-line absorption 

systems (e.g. Davies et al. 2023 ) and excluded from analysis – anal- 

ogous to how ‘gold samples’ are selected in supernova cosmology. 

Moreo v er, if optically thick absorbers introduce additional opacity in 

quasar proximity zones, this can be empirically tested using existing 

high-resolution spectra of z ∼ 5 − 6 quasars (for which the global 

IGM is expected to be highly ionized), for example by comparing 

the flux PDF of their proximity zones to our models. Any residual 

disagreement could be addressed by introducing a simple subgrid 

opacity parameter to go v ern Lyman limit systems in the 1D RT 

modelling (e.g. Khrykin et al. 2016 ; Davies et al. 2016 ). Thus to 

summarize, while the impact of uncertain galaxy formation physics 

on the reionization topology and the presence of dense absorbers 

in the quasar environment are important considerations that may 

require adding additional nuisance parameters, they do not constitute 

a fundamental limitation of our approach. Precision constraints on 
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reionization do not rest upon a full ab initio solution to galaxy 

formation. Rather, the impact of galaxy formation physics can be 

treated via a small set of empirically calibratable and marginalizable 

modelling uncertainties. This situation is closely analogous to preci- 

sion weak lensing analyses, where the impact of baryonic physics on 

the matter power spectrum is accounted for using parametric transfer 

functions derived from hydrodynamical simulations, which are then 

marginalized o v er to reco v er unbiased cosmological constraints 

(e.g. Heymans et al. 2021 ; Abbott et al. 2022 ; Schaller et al. 

2024 ). We therefore argue that IGM damping wings towards quasars 

provide a viable and powerful method for precision constraints on 

reionization and SMBH growth, but modelling and marginalizing 

o v er uncertainties due to galaxy formation constitutes an important 

direction for future work. 

In addition to addressing these modelling uncertainties, there are 

several other promising avenues for improving upon the results 

presented here. First and foremost, our paper argued that an optimal 

analysis algorithm must construct a fully generative probabilistic 

model for the entire spectrum, ho we ver our likelihood is not optimal 

because it is only an approximation to the true intractable likelihood. 

As a result, we had to dilate our credibility contours which degraded 

the precision of our parameter constraints. Hence, an obvious priority 

for the future is to attack this problem in the simulation-based 

inference framework (see e.g. Cranmer, Brehmer & Louppe 2020 , 

for a re vie w) and use machine learning to obtain an expression for the 

intractable likelihood that we here approximated as a Gaussian (e.g. 

Chen, Speagle & Rogers 2023 ). This would surely result in higher 

precision parameter constraints, both because co v erage correction 

would not be needed and because only the true likelihood can 

achieve the true optimal precision. Finally, our companion paper 

(Kist et al. 2025 ) finds that roughly half of the error budget on 〈 x H I 〉 

originates from variations of IGM damping wing strength arising 

from the stochastic distribution of the line-of-sight neutral column 

density resulting from the topology of reionization itself (Davies 

et al. 2018c ). Several studies have recently noted that IGM damping 

wing transmission profiles are actually well described by a single 

parameter (Chen et al. 2024 ) which is ef fecti vely this line-of-sight 

neutral column density N H I (Keating et al. 2024b ; Kist et al., in 

preparation). It follows that models of IGM damping wings can be 

parametrized in two distinct ways – either one elects to measure 

the v olume-a veraged neutral fraction 〈 x H I 〉 , which in turn go v erns 

the stochastic distribution of the line-of-sight N H I (via an assumed 

reionization topology), or one can measure an N H I for each quasar 

individually, and use ensembles of quasars to map out the distribution 

of N H I empirically as a function of redshift. Whereas this paper 

adopted the former formulation, an upcoming study explores the 

latter using the inference machinery that we developed here (Kist 

et al., in preparation). The great advantage of this latter approach is 

that it opens up the exciting possibility of using ensembles of quasars 

to actually determine the distribution of a ∼ 100 cMpc 1D moment 

through the Universe’s n H I field, which would not only measure the 

Universe’s reionization history, 〈 x H I ( z) 〉 , but also possibly constrain 

its topology. These are the primary objectives of cosmological studies 

of reionization in general and 21-cm experiments in particular, and 

the methodology that we have presented here paves the way for 

achieving them with EoR quasar spectra. 

DATA  AVAILABILITY  

The derived data generated in this research will be shared on 

reasonable requests to the corresponding author. 

AC K N OW L E D G E M E N T S  

JFH acknowledges helpful discussions with Daniel F oreman-Macke y 

about Hamiltonian Monte Carlo, Elena Sellentin about co v erage 

tests, and Anna-Christina Eilers about GPLVMs. The authors also 

wish to thank Elia Pizzati, Silvia Onorato, and Linda Jin for 

comments on an early version of the manuscript, and the ENIGMA 

group at UC Santa Barbara and Leiden University for valuable 

feedback. Finally, the authors are grateful to the anonymous ref- 

eree for their valuable comments and recommendations, and for 

identifying a mathematical mistake in the original version, all of 

which impro v ed the clarity and presentation of the manuscript. This 

work made use of NUMPY (Harris et al. 2020 ), SCIPY (Virtanen et al. 

2020 ), JAX (Bradbury et al. 2018 ), NUMPYRO (Phan et al. 2019 ; 

Bingham et al. 2019 ), SKLEARN (Pedregosa et al. 2011 ), ASTROPY 

(Astropy Collaboration 2013 , 2018 , 2022 ), SKYCALC IPY (Leschinski 

2021 ), H5PY (Collette 2013 ), MATPLOTLIB (Hunter 2007 ), CORNER.PY 

(F oreman-Macke y 2016 ), IPYTHON (P ́erez & Granger 2007 ), and 

PYPEIT (Prochaska et al. 2020 ). Computations were performed using 

the compute resources from the Academic Leiden Interdisciplinary 

Cluster Environment (ALICE) provided by Leiden University. TK 

and JFH acknowledge support from the European Research Council 

(ERC) under the European Union’s Horizon 2020 research and 

innovation program (grant agreement no. 885301), and JFH from 

the National Science Foundation under grant no. 2307180. 

REFER ENCES  

Abbott T. M. C. et al., 2022, Phys. Rev. D , 105, 023520 

Almgren A. S. , Bell J. B., Lijewski M. J., Luki ́c Z., Van Andel E., 2013, ApJ , 

765, 39 

Astropy Collaboration , 2013, A&A , 558, A33 

Astropy Collaboration , 2018, AJ , 156, 123 

Astropy Collaboration , 2022, ApJ , 935, 167 

Ba ̃ nados E. et al., 2018, Nature , 553, 473 

Baydin A. G. , Pearlmutter B. A., Radul A. A., Siskind J. M., 2018, J. Mach. 

Learn. Res., 18, 1 

Becker G. D. , Hewett P. C., Worseck G., Prochaska J. X., 2013, MNRAS , 

430, 2067 

Becker G. D. et al., 2019, ApJ , 883, 163 

Becker G. D. , D’Aloisio A., Christenson H. M., Zhu Y., Worseck G., Bolton 

J. S., 2021, MNRAS , 508, 1853 

Becker G. D. , Bolton J. S., Zhu Y., Hashemi S., 2024, MNRAS , 533, 1525 

Betancourt M. , 2017, preprint ( arXiv:1701.02434 ) 

Bingham E. et al., 2018, preprint ( arXiv:1810.09538 ) 

Bingham E. et al., 2019, J. Mach. Learn. Res., 20, 28:1 

Bolton J. S. , Haehnelt M. G., 2007a, MNRAS , 374, 493 

Bolton J. S. , Haehnelt M. G., 2007b, MNRAS , 381, L35 

Bolton J. S. , Haehnelt M. G., 2013, MNRAS , 429, 1695 

Bolton J. S. , Haehnelt M. G., Warren S. J., Hewett P. C., Mortlock D. J., 

V enemans B. P ., McMahon R. G., Simpson C., 2011, MNRAS , 416, L70 

Boroson T. A. , Green R. F., 1992, ApJS , 80, 109 

Bosman S. E. I. , Kakiichi K., Meyer R. A., Gronke M., Laporte N., Ellis R. 

S., 2020, ApJ , 896, 49 
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APPENDIX  A :  C OV E R AG E  TESTS  

In this appendix, we provide details on the co v erage test presented 

in Section 5.2 , the reweighting scheme described in Section 5.4 , and 

the application of both to marginal posterior distributions. 

A1 An algorithm for performing a co v erage test 

Below we provide a description of an algorithm for carrying out a 

co v erage test. 

(i) Draw N parameter vectors � true ,j from the prior distribution 

P ( � ). These are the ‘true’ parameters that generate the mock data 

sets used to perform the co v erage test. 

(ii) Using a forward simulator, generate a set of N mock data sets, 

x j , for each of the parameter vectors � true ,j . 

(iii) Inference is carried out on each data set resulting in a set of 

N posterior distributions P ( � | x j ). 

(iv) Consider a set of M credibility contour levels α ∈ [0 , 1]. 

For each value α and each mock data set ( � true ,j , x j ), one tests 

whether the true parameter value � true ,j resides within the volume 

V α enclosed by the αth contour, defined by ∫ 
V α

P ( θ | x j )d θ = α. (A1) 

For each α, the coverage probability C( α) is the fraction of the N 

mock data sets for which the true value θ true ,j lies within the volume 

V α . 

The result of the co v erage test is the relation C( α) versus α. 

A perfect inference procedure would yield C( α) = α in the limit 

N → ∞ . An o v erconfident inference pipeline will yield a curv e C( α) 

versus α that lies systematically below the line y = x, whereas for an 

underconfident inference procedure the C( α) will lie abo v e y = x. 

This algorithm yields an unbiased estimate C( α) of the underlying 

co v erage probability from a finite set of mock data sets N . Since C( α) 

counts how often the true parameters fall inside the αth contour, 

it is the number of successes in a sequence of N independent 

experiments each asking a yes-or-no question – success occurring 

with a probability p = C( α) and failure occuring with probability 

q = 1 − C( α). Thus, by definition our estimate C( α) must follow 

the binomial distribution B( N, C( α)), which can be used to assign 

error bars to C( α) resulting from the finite number of mock data 

sets N . 

Underlying this co v erage test algorithm is a procedure for testing 

whether a true parameter vector resides within the volume V α

enclosed by a contour corresponding to credibility level α. A 

contour of the posterior P ( � | x j ) containing a fraction α of the 

total probability slices the posterior along an isodensity level P α , 

such that the volume V α in equation ( A1 ) is defined by 

V α = { � | P ( � | x j ) ≥ P α} . (A2) 

A parameter value � 
′ will lie within the volume enclosed by the αth 

contour provided that P ( � 
′ | x j ) ≥ P α , so the procedure boils down 

to estimating the set of isodensity levels P α corresponding to the set 

of credibility levels α. 

In practice, one typically has a number of samples, n , from the 

posterior from a run of an MCMC or HMC sampling algorithm. If 

we rewrite equation ( A1 ) as an integral over the entire parameter 

space � : ∫ 
H [ P ( � | x j ) − P α] P ( � | x j )d � = α, (A3) 

where the Heaviside function, H ( x), enforces the condition on the 

volume from equation ( A2 ), then it can be e v aluated via Monte Carlo 

integration according to 

∫ 
H [ P ( � | x j ) − P α] P ( � | x j )d � = 

1 

n 

n ∑ 

i 

H [ P ( � i | x j ) − P α] , 

(A4) 

where the sum is o v er the n MCMC or HMC posterior samples. 

Hence, we can determine the isodensity level, P α , corresponding to 

each credibility level, α, by solving the equation: 

1 

n 

n ∑ 

i 

H [ P ( � i | x j ) − P α] 

= 
Number of samples with P ( � | x j ) ≥ P α

n 
= α

= CDF ( ≥ P α) = α. (A5) 

The second equality in equation (A5) indicates that credibility 

contour definition amounts to computing the cumulative probability 

distribution, CDF ( ≥ P α), of the posterior distribution at the MCMC 

or HMC samples, � i . One can then invert the CDF 

P α = CDF 
−1 ( α) , (A6) 

to determine the corresponding isodensity levels. This procedure can 

be employed to test each of the N posteriors in the inference test for all 

credibility levels. If the true model parameters, � true ,j , lie inside the 

volume of credibility contour α then the condition P ( � true , j | x j ) ≥ P α

will be satisfied. MCMC/HMC samplers typically can return the 

value of P ( � i | x ) at every sample in the chain, allowing one to 
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easily estimate CDF ( ≥ P α). Then, one only needs to e v aluate the 

P ( � true , j | x j ), which is straightforward since the function P ( � | x j ) 

is a pre-requisite for performing inference. 

A2 Reweighting posterior samples to pass a co v erage test 

Consider a scenario where our current inference pipeline fails a 

co v erage test because of some imperfection in our probabilistic 

model of the measurement process which it is not straightforward 

to correct. For concreteness, imagine we adopted an approximate 

form for the posterior distribution because the true form is not 

analytically tractable, and that our co v erage test indicates these 

approximate posteriors are o v erconfident, which is to say that C( α) 

versus α lies systematically below the line y = x. How can we 

nevertheless perform statistically reliable inference? Sellentin & 

Starck ( 2019 ) advocate that one simply relabel the contours to reflect 

this unfortunate reality. F or e xample, if the 68th percentile credibility 

contour, α = 0 . 68, actually only contains the true model 48 per cent 

of the time, i.e. C( α) = 0 . 48 < α, then label this contour as the 

48th percentile rather than the 68th. The real 68th percentile contour 

containing the true parameters 68 per cent of the time under the infer- 

ence test might say correspond to the value α = 0 . 85 = C 
−1 (0 . 68) 

contour for the original approximate inference, which in turn maps 

to a lower isodensity level of the approximate posterior P ( θ | x ), 

i.e. P 0 . 85 < P 0 . 68 . In other words, by choosing a lower isodensity 

threshold P α we expand the contours to contain the true model the 

empirically correct fraction of the time. 

In general, this remapping of the credibility levels α into true 

co v erage probabilities C( α) can be achieved by assigning a set of 

weights to the samples from the approximate posterior. The purpose 

of MCMC or HMC samples from a posterior is to estimate credibility 

intervals on parameters, perform marginalization integrals, and 

compute ‘moments’ of the posterior via Monte Carlo integration. 

If we can determine the set of weights that corrects the imperfect 

inference such that it passes an inference test, these weights can then 

be used in all of the downstream computations that one performs 

with the samples. To achieve this we generalize equation (A5) to the 

case of defining contour levels from reweighted samples 

n ∑ 

i 

w i H [ P ( � i | x j ) − P 
′ 
α] = wCDF ( ≥ P 

′ 
α) = α, (A7) 

where we have simply absorbed the constant 1 /n normalization factor 

into the definition of the weights. Here, wCDF ( ≥ P 
′ 
α) is the weighted 

cumulative distribution function of the original posterior evaluated 

at the samples, � i . Similar to before, the isodensity levels of the 

reweighted posterior can be determined according 

P 
′ 
α = wCDF 

−1 ( α) . (A8) 

In order for the weighting to correct the inference for e.g. credibility 

level α = 0 . 68, we need the solution to equation ( A8 ) to yield P 
′ 
0 . 68 = 

P 0 . 85 where 0 . 85 = C 
−1 (0 . 68) and P 0 . 85 = CDF 

−1 (0 . 85) is the so- 

lution for the isodensity threshold under the original approximate 

inference from equation (A5). Furthermore, this remapping must 

hold for all of the isodensity levels P 
′ 
α = P C −1 ( α) = CDF 

−1 ( C 
−1 ( α)). 

To build intuition, first consider the situation where C( α) = α, 

i.e. where we pass the inference test perfectly. In this limiting 

case, it is clear that the weighting should be uniform and hence 

w i = 1 /n . Without loss of generality we can sort the samples in 

the sum in equation ( A7 ) in order of increasing P ( � i | x j ), adopting 

the convention that P ( � 1 | x j )) ≤ P ( � 2 | x j )) ≤ · · · ≤ P ( � n | x j ) and 

the corresponding weights are similarly ordered such that w 1 is the 

weight assigned to the sample with smallest value P ( � 1 | x j ), etc. 

Since we need to solve for n weights, w i , we need the same number 

of values of α as constraints. If we choose n linearly decreasing 

values of α spanning the range α = [1 , 1 /n ], then equation ( A7 ) 

implies the following set of linear equations: 

w 1 + w 2 + . . . + w n −1 + w n = 1 

w 2 + · · · + w n −1 + w n = 1 − 1 /n 

. . . 
. . . 

. . . 
. . . 

w n −1 + w n = 2 /n 

w n = 1 /n, 

(A9) 

or equi v alently in matrix form 

Uw = α, (A10) 

where U is an upper triangular matrix with all non-zero elements 

equal to unity, w is a vector of weights to be assigned to the samples, 

and α is the vector of uniformly spaced credibility levels. Since 

the α constraints that we chose can also be interpreted as the 

cumulative distribution of the posterior e v aluated at the samples, 

i.e. αi = CDF ( ≥ P i ), equation ( A9 ) is equi v alent to 

wCDF ( ≥ P i ) = CDF ( ≥ P i ) . (A11) 

It is thus no surprise that the solution to this linear system is obviously 

w i = 1 /n yielding the uniform weighting we expect. 

To generalize to the case C( α) �= α, we solve for the weights that 

satisfy 

Uw = C ( α) , (A12) 

where C ( α) is now a vector of coverage values evaluated at the 

vector of uniformly spaced credibility levels α. To see why this 

works consider for example the kth equation in the linear system 

in equation ( A12 ) where k is chosen to be the sum o v er the 85th 

percentile highest rank weights and P ( � i | x j ) values (recall the 

weights are sorted in order of increasing P ( � i | x j )) 

w k + w k+ 1 + · · · + w n = C(0 . 85) = 0 . 68 . (A13) 

or equi v alently 

wCDF ( ≥ P 
′ 
0 . 68 ) = 0 . 68 . (A14) 

Because we chose α to be linearly decreasing, the kth ranked sample 

will correspond to the 85th percentile of the CDF of the original 

approximate posterior values evaluated at the MCMC/HMC samples, 

and hence it is guaranteed that P 
′ 
0 . 68 = P 0 . 85 = CDF 

−1 (0 . 85). In 

other words, the 68th percentile contour of the new reweighted 

posterior distribution will correspond to the 85th percentile contour 

of the original approximate posterior, as desired. The rest of the 

equations in the linear system similarly enforce the constraints that 

P 
′ 
α = P C −1 ( α) = CDF 

−1 ( C 
−1 ( α)) for the other credibility levels α. 

Since the determinant of an upper triangular matrix is simply the 

product of the diagonal elements, det U = 1, and the linear system 

in equation ( A12 ) will al w ays yield a unique solution for the vector 

of weights w which imposes these constraints. 

A3 Co v erage tests for mar ginal distributions 

Performing inference requires that one can e v aluate P ( � | x j ) at any 

location within the parameter space. Furthermore, MCMC and HMC 

samplers typically return the value of P ( � | x j ) at every sample in 

the chain, allowing one to easily determine the set of isodensity 

levels for each posterior and test P ( � true ,j | x j ) ≥ P α . But what about 
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performing inference tests on marginal distributions? To make the 

discussion more concrete let us imagine that our parameter vector � 

can be split into a set of θ physical parameters of interest and a set of 

η nuisance parameters. It is easy to see that one can pass a co v erage 

test for the full posterior P ( � | x j ) but nevertheless fail a coverage 

test for the marginal posterior P ( θ | x j ). 
21 Ho we ver, the marginal 

physical parameter posterior, P ( θ | x j ), is what we actually care about, 

whereas we would be more willing to tolerate o v erconfident (or 

underconfident) total posteriors and marginal nuisance parameter 

posteriors. 

The same co v erage test algorithm described in Appendix A1 

applies to the marginal case. Specifically, all of the steps of the 

procedure are the same with the exception of step (iv), where one 

must now test whether the true physical parameter values θ true ,j lie 

within contours of the marginal posterior P ( θ | x j ) for each data set. 

There is ho we ver an important technical difference. The procedure 

outlined in equation (A5) for determining isodensity levels and 

testing whether the true physical parameters lie within volumes 

enclosed by the credibility contours specified by α presumes that 

one can e v aluate P ( θ | x j ) at every sample in the MCMC/HMC 

chain as well as at the true parameter location. Ho we ver, in practice 

e v aluating P ( θ | x j ) would require performing a typically intractable 

marginalization integral over the nuisance parameters. Instead, this 

intractable marginalization can be performed via Monte Carlo inte- 

gration. By applying a density estimation algorithm (i.e. histogram, 

kernel density estimation, or Gaussian mixture model) to the MCMC 

or HMC samples marginalized o v er the nuisance parameters, an 

expression for P ( θ | x j ) can then be determined allowing one to test 

whether the true physical parameter values lie within the contours 

of the marginal posteriors. While this Monte Carlo integration plus 

density estimation procedure may sound complex, it is exactly the 

procedure adopted when making a corner plot of MCMC/HMC 

samples. 

21 Consider a thought experiment where there is a single physical parameter 

and a million nuisance parameters. Imagine a trivial true posterior inde- 

pendently described by N ( θi | 0 , 1) for each element of � . In conducting 

inference, suppose we use the correct unit variance for each of the million 

elements of η, but erroneously adopt σθ = 1 / 2 for the Gaussian describing 

θ . It is obvious that the incorrect form for the θ component will be diluted by 

contributions from the million nuisance parameters, and thus have a negligible 

impact on the total posterior. Within reasonable numerical precision the 

incorrect form of P ( � | x j ) with σθ = 1 / 2 will pass a co v erage test. But 

since the marginalization integral over the million nuisance parameters here 

tri vially e v aluates to unity, the marginal posterior is P ( θ | x j ) = N ( θ | 0 , 1 / 2), 

and it is manifestly clear that it will fail the marginal co v erage test. 
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