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Abstract: We consider the Boltzmann equation with the soft potential and angular
cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-
posedness and ill-posedness in Hs Sobolev space. We find the well/ill-posedness sepa-
ration at regularity s = d−1

2 , strictly 1
2 -derivative higher than the scaling-invariant index

s = d−2
2 , the usually expected separation point.
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1. Introduction

We consider the Boltzmann equation
{

(∂t + v · ∇x ) f (t, x, v) =Q( f, f ),

f (0, x, v) = f0(x, v),
(1.1)

where f (t, x, v) is the distribution function for the particles at time t ≥ 0, position
x ∈ R

d and velocity v ∈ R
d . The collision operator Q is conventionally split into a gain

term and a loss term
Q( f, g) = Q+( f, g) − Q−( f, g)

where the gain term is

Q+( f, g) =
∫
Rd

∫
Sd−1

f (v∗)g(u∗)B(u − v, ω)dudω, (1.2)

and the loss term is

Q−( f, g) =
∫
Rd

∫
Sd−1

f (v)g(u)B(u − v, ω)dudω, (1.3)

with the relation between the pre-collision and after-collision velocities that

u∗ = u + ω · (v − u)ω, v∗ = v − ω · (v − u)ω.

The Boltzmann collision kernel function B(u − v, ω) is a non-negative function de-
pending only on the relative velocity |u − v| and the deviation angle θ through cos θ :=
u−v
|u−v| · ω. Throughout the paper, we consider

B(u − v, ω) = |u − v|γ b(cos θ) (1.4)

under the Grad’s angular cutoff assumption

0 ≤ b(cos θ) ≤ C | cos θ |.
The different ranges γ < 0, γ = 0, γ > 0 correspond to soft potentials, Maxwellian
molecules, and hard potentials, respectively. See also [11,12,66] for a more detailed
physics background. This collision kernel (1.4) comes from an important model case of
inverse-power law potentials and there have been a large amount of literature devoted
to various problems for this model, such as its hydrodynamics limits which provide
a description between the kinetic theory and hydrodynamic equations. For a detailed
presentation and the derivation of macroscopic equations from the fundamental laws of
physics, see for example [59].

The Cauchy problem for the Boltzmann equation is one of the fundamental mathemat-
ical problems in kinetic theory, as it is of vital importance for the physical interpretation
and practical application. For instance, in the absence of uniqueness or continuous depen-
dence on the initial condition, numerical calculations and algorithms, even if they can be
done, could present puzzling results. Despite the innovative work [34,39] and many nice
developments, the well/ill-posedness of the Boltzmann equation remains largely open.
So far, there have been many developed methods and techniques for well-posedness, see
for example [2,3,6,7,35,37,41,43,44,61,64].
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In the recent series of paper [13–15], by taking dispersive techniques on the study of
the quantum many-body hierarchy dynamics, especially space-time collapsing/multi-
linear estimates techniques (see for instance [16–24,28,45,46,52,54,60]), T. Chen,
Denlinger, and Pavlović provided a new approach to prove the well-posedness of the
Boltzmann equation and suggested the possibility of a systematic study of Boltzmann
equation using dispersive tools. With the dispersive techniques, the regularity index for
well-posedness, which is usually at least the continuity threshold s > d

2 , has been re-
laxed to s > d−1

2 for both Maxwellian molecules and hard potentials with cutoff in
[13]. It is of mathematical and physical interest to prove well-posedness at the optimal
regularity. From the scaling point of view, the Boltzmann equation (1.1) is invariant
under the scaling

fλ(t, x, v) = λα+(d−1+γ )β f

(
λα−β t, λαx, λβv

)
, (1.5)

for any α, β ∈ R and λ > 0. Then in the L2 setting, it holds that

‖|∇x |s |v|r fλ‖L2
xv

= λ
α+(d−1+γ )β

λαs−βrλ− d
2 α− d

2 β‖|∇x |s |v|r f ‖L2
xv

.

This gives the scaling-critical index

s = d − 2

2
, r = s + γ. (1.6)

From the past experience of scaling analysis, it is believed that the well/ill-posedness
threshold1 in Hs Sobolev space is sc = d−2

2 with r ≥ 0. Surprisingly, for the 3D constant
kernel case, X. Chen and Holmer in [27] prove the well/ill-posedness threshold in Hs

Sobolev space is exactly at regularity s = d−1
2 , and thus point out the actual optimal

regularity for the global well-posedness problem.
On the one hand, while there are many well-known progress such as [31,32,49–51,56,

57,65] regarding the study of dispersive equations, the illposedness of the Boltzmann
equation remains largely open away from [27]. One certainly would like to have the
sharp problem resolved for the Boltzmann equations. On the other hand, to initiate a
systematic study of a large project including sharp well-posedness, blow-up analysis,
regularity criteria, etc, it is of priority to find out the well/ill-posedness separation point.
In the paper, moving forward from the special case [27], we investigate the general kernel
with soft potentials, for which both the sharp well-posedness and ill-posedeness are open.
We settle this problem and provide the well/ill-posedness threshold. With the finding of
this optimal regularity index, we deal with the sharp small data global well-posedness
in another paper [30].2

We start with the connection between the analysis of (1.1) and the theory of nonlinear
dispersive PDEs. Let f̃ (t, x, ξ) be the inverse Fourier transform in the velocity variable,
that is,

f̃ (t, x, ξ) = F−1
v �→ξ ( f ). (1.7)

1 Instead of scaling invariance of equation, the critical regularity for the Boltzmann equation is sometimes

believed at s = d
2 in the sense that the critical embedding H

d
2 ↪→ L∞ fails, see for example [3,36–38].

2 The hard potential case is also interesting and the ill-posedness result remains open. Our approximation
solution gives desired bad behaviors for the hard potential. But it needs a totally different work space to
generate the exact solution. Hence, we put it for further work.
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Then the linear part of (1.1) is changed into the symmetric hyperbolic Schrödinger
equation

i∂t f̃ + ∇ξ · ∇x f̃ = 0, (1.8)

which, in the nonlinear context, enables the application of Strichartz estimates that

‖eit∇ξ ·∇x f̃0‖Lq
t L

p
xξ

� ‖ f̃0‖L2
xξ

,
2

q
+

2d

p
= d, q ≥ 2, d ≥ 2. (1.9)

We introduce the Sobolev norms

‖ f̃ ‖Hs
x H

r
ξ

= ‖〈∇x 〉s〈∇ξ 〉r f̃ ‖L2
xξ

= ‖〈∇x 〉s〈v〉r f ‖L2
xv

= ‖ f ‖L2,r
v Hs

x
, (1.10)

and the Fourier restriction norms (see [8–10,53,58])

‖ f̃ ‖Xs,r,b = ‖ f̂ (τ, η, v)〈τ + η · v〉b〈η〉s〈v〉r‖L2
τ,η,v

, (1.11)

where f̂ (τ, η, v) denotes the Fourier transform of f̃ (t, x, ξ) in (t, x, ξ) �→ (τ, η, v),
and is thus the Fourier transform of f (t, x, v) itself in only (t, x) �→ (τ, η), that is,

f̂ (τ, η, v) = F( f̃ ) = F(t,x) �→(τ,η) ( f ) .

It is customary to define their finite time restrictions via

‖ f̃ ‖Xs,r,b
T

= inf
{‖F‖Xs,r,b : F |[−T,T ] = f̃

}
. (1.12)

We recall the definition of well-posedness, see for example [47,63].

Definition 1.1. We say that (1.1) is well-posed in L2,r
v Hs

x if for each R > 0, there exists
a time T = T (R) > 0, and a set X , such that all of the following are satisfied.

(a) (Existence and Uniqueness) For each f0 ∈ L2,r
v Hs

x with ‖ f0‖L2,r
v Hs

x
� R, there exists

a unique solution f (t, x, v) to the integral equation of (1.1) in

C

(
[−T, T ]; L2,r

v Hs
x

) ⋂
X.

Moreover, f (t, x, v) � 0 if f0 � 0.3

(b) (Uniform Continuity of the Solution Map)4 The map f0 �→ f is uniform continuous
with the C([−T, T ]; L2,r

v Hs
x ) norm. Specifically, suppose f and g are two solutions

to (1.1) on [−T, T ], ∀ε > 0, ∃ δ(ε) independent of f or g such that

‖ f (t) − g(t)‖C([−T,T ];L2,r
v Hs

x )
< ε provided that ‖ f (0) − g(0)‖L2,r

v Hs
x

< δ(ε).

(1.13)

We take X to be the Fourier restriction norm space Xs,s+γ,b
T defined by (1.12) with

b ∈ ( 1
2 , 1).

3 If f0 ∈ L1
x,v , the solution f (t) should also have the L1

x,v integrability in terms of the mass conservation
law. However, this is not a simple problem. We deal with it in [30] by using regularity criteria which are
beyond the scope of this paper.

4 One could replace (c) with the Lipschitz continuity which is usually the case as well.
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Theorem 1.2 (Main Theorem). Let d = 2, 3.

(1) For s > d−1
2 , 1−d

2 ≤ γ ≤ 0, (1.1) is locally well-posed in L2,s+γ
v Hs

x .

(2) For 0 ≤ s0 < d−1
2 , 1−d

2 ≤ γ ≤ 0, r0 = max {0, s0 + γ }, (1.1) is ill-posed in L2,r0
v Hs0

x
in the sense that the data-to-solution map is not uniformly continuous. In particular,
for each M � 1, there exists a time sequence

{
t M0

}
M such that

tM0 < 0, t M0 ↗ 0,

and two solutions f M (t), gM (t) in

[
t M0 , 0

]
with

‖ f M
(
t M0

)
‖
L

2,r0
v H

s0
x

∼ ‖gM
(
t M0

)
‖
L

2,r0
v H

s0
x

∼ 1,

such that they are initially close at t = t M0

‖ f M
(
t M0

)
− gM

(
t M0

)
‖
L

2,r0
v H

s0
x

� 1

ln ln M
� 1,

but become fully separated at t = 0

‖ f M (0) − gM (0)‖
L

2,r0
v H

s0
x

∼ 1.

Theorem 1.2 is the main novelty, which finds the well/ill-posedness threshold, by
establishing the sharp local well-posedness, and proving the ill-posedness for the soft
potential case. There have been many nice work on the well-posedness part by the
energy method which requires higher regularity, see for example [3,41,42,62]. For both
Maxwellian molecules and hard potentials, the regularity index s > d−1

2 for well-
posedness was achieved in [13] without ill-posedness. Our well-posedness result solves
the remaining soft potential case.

We remark that, as scaling (1.6) in L2 setting gives the restriction that s + γ ≥ 0,
the range 1−d

2 ≤ γ ≤ 0 should be sharp if one seeks the optimal regularity s > d−1
2 .

In addition, the endpoint case γ = −1 with d = 3 plays an important role in the
derivation of the Boltzmann equation from quantum many-body dynamics in [26], where
the collision kernel is composed of part hard sphere and part inverse power potential:

B(u − v, ω) =
(

1{|u−v|≤1}|u − v| + 1{|u−v|≥1}|u − v|−1
)
b
(

u − v

|u − v| · ω

)
, (1.14)

which also provides yet another physical background to our problem here. Our proof for
ill-posedness also works for kernel (1.14).

Corollary 1.3. For d = 3, 0 ≤ s0 < 1, (1.1) is ill-posed in L2
vH

s0
x with the kernel (1.14)

in the sense that the data-to-solution map is not uniformly continuous.
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1.1. Outline of the paper. In Sect. 2, we prove the well-posedeness of (1.1). The bilinear
estimates for gain/loss terms are the key step to conclude the well-posedness and the
proof highly relies on the techniques from dispersive PDEs.

In Sect. 2.1, we appeal to dispersive estimates to prove the loss term bilinear estimate.
This can be directly handled because of the factorization of the kernel. In Sect. 2.2, we
deal with the gain term, which requires a more subtle analysis due to the complicated
partial convolution structure. One important observation is that the energy conservation
provides a lower bound estimate for after-collision velocities, which enables the appli-
cation of the Littlewood–Paley theory and frequency analysis techniques in multi-linear
estimates. Then with a convolution type estimate in [4], we are able to establish the gain
term bilinear estimate with the help of Strichartz estimates in the Fourier restriction norm
space. Finally, in Sect. 2.3, we complete the proof of well-posedness after our built-up
Xs,r,b spaces and its related frequency analysis in this context.

In Sect. 3, we prove the ill-posedness of (1.1). The idea is to construct an approxi-
mation solution which has the norm deflation property and then perturb it into an exact
solution. We improvise and sharpen the prototype approximation solution found in [27].
To overcome the singularities carried by the soft potentials, which were known to be the
main difficulties, we introduce a new scaling on the approximation solution, create an
elaborate Z -norm, which is used to prove a closed estimate for the gain and loss terms,
that is,

‖Q±( f1, f2)‖Z � ‖ f1‖Z‖ f2‖Z , (1.15)

and conclude the existence of small corrections. With this new treatment, the extra
restriction that s0 > 1

2 in [27] can now be removed.
In Sect. 3.1, we first construct the approximation solution fa and prove its norm

deflation. Then in Sect. 3.1.1, we give a discussion on the L1-based spaces and the hard
potentials case, for which our approximation solution also gives desired bad behaviors.5

Therefore, a similar mechanism of norm deflation in different settings is possible and
deserves further investigations.

In Sects. 3.2–3.4, we introduce the Z -norm space and perform a perturbation argu-
ment to turn the approximation solution into the exact solution. In Sect. 3.2, we first
provide the Z -norm bounds on the approximation solution. Then in Sect. 3.3, we deal
with the error terms and prove the Z -norm error estimates. Proving the error estimates,
as it includes a large quantity of error terms involving singularities at which we need
geometric techniques on the nonlinear interactions between frequencies, is the most in-
tricate part which we treat in Sects. 3.3.1, 3.3.2, 3.3.3, 3.3.4,. After dealing with the error
terms, we prove that there is an exact solution which is mostly fa in Sect. 3.4, and thus
conclude the ill-posedness result in Sect. 3.5.

After the proof of the main theorem, we put and review some tools in Appendix A
and the Strichartz estimates in Appendix B.

2. Well-Posedness

To conclude the well-posedeness of (1.1), it suffices to prove the following bilinear
estimates

‖〈∇x 〉s〈v〉s+γ Q±( f, g)‖L2
t L2

x,v
� ‖ f̃ ‖Xs,s+γ,b‖g̃‖Xs,s+γ,b . (2.1)

5 It then provides a formal answer to a question raised by Professor K. Nakanishi.
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Note that no v-variable Fourier transform of the collision kernel in (2.1) is needed if we
fully work in the Xs,s+γ,b space. Here, we will work on the (x, ξ) side and prove (2.1)
by use of the Fourier transform of the kernel.

Taking the inverse v-variable Fourier transform on both side of (1.1), we get

i∂t f̃ + ∇ξ · ∇x f̃ = iF−1
v �→ξ [Q( f, f )] . (2.2)

By the well-known Bobylev identity in a more general case, see for example [1,33], it
holds that (up to an unimportant constant)

F−1
v �→ξ

[
Q−( f, g)

]
(ξ) =‖b‖L1(Sd−1)

∫
f̃ (ξ − η)g̃(η)

|η|d+γ
dη, (2.3)

F−1
v �→ξ

[
Q+( f, g)

]
(ξ) =

∫
Rd×Sd−1

f̃ (ξ+ + η)g̃(ξ− − η)

|η|d+γ
b
(

ξ

|ξ | · ω

)
dηdω, (2.4)

where ξ+ = 1
2 (ξ + |ξ |ω) and ξ− = 1

2 (ξ − |ξ |ω). For convenience, we take the notation
that Q̃±( f̃ , g̃) = F−1

v �→ξ

[
Q±( f, g)

]
.

In Sects. 2.1, 2.2, we establish the bilinear estimates for the loss and gain terms
respectively. Then in Sect. 2.3, we complete the proof of the well-posedness of (1.1).

2.1. Bilinear estimate for loss term.

Lemma 2.1. For s > d−1
2 , it holds that

‖〈∇x 〉s〈∇ξ 〉s+γ Q̃−( f̃ , g̃)‖L2+
t L2

xξ
� ‖ f̃ ‖Xs,s+γ,b‖g̃‖Xs,s+γ,b . (2.5)

Proof. By the fractional Leibniz rule in Lemma A.1, we have∥∥Q̃−( f̃ , g̃)
∥∥
L2+
t Hs

x H
s+γ
ξ

=
∥∥∥∥〈∇x 〉s

∫ 〈∇ξ

〉s+γ
f̃ (t, x, ξ − η)

g̃(t, x, η)

|η|d+γ
dη

∥∥∥∥
L2+
t L2

xξ

�
∥∥∥∥
∫ ∥∥〈∇x 〉s

〈∇ξ

〉s+γ
f̃ (t, x, ξ − η)

∥∥
L2
x

∥∥∥ g̃(t, x, η)

|η|d+γ

∥∥∥
L∞
x

dη

∥∥∥∥
L2+
t L2

ξ

+

∥∥∥∥
∫ ∥∥ 〈∇ξ

〉s+γ
f̃ (t, x, ξ − η)

∥∥
L2d+
x

∥∥∥ 〈∇x 〉s g̃(t, x, η)

|η|d+γ

∥∥∥
L

2d
d−1 −
x

dη

∥∥∥∥
L2+
t L2

ξ

.

Applying Sobolev inequalities that Ws, 2d
d−1 − ↪→ L∞, Ws,2 ↪→ L2d+ and Young’s

inequality,∥∥Q̃−( f̃ , g̃)
∥∥
L2+
t Hs

x H
s+γ
ξ

�
∥∥〈∇x 〉s

〈∇ξ

〉s+γ
f̃ (t, x, ξ)

∥∥
L∞
t L2

ξ L
2
x

∥∥∥ 〈∇x 〉s g̃(t, x, η)

|η|d+γ

∥∥∥
L2+
t L1

ηL
2d
d−1 −
x

+
∥∥ 〈∇ξ

〉s+γ
f̃ (t, x, ξ)

∥∥
L∞
t L2

ξ L
2d+
x

∥∥∥ 〈∇x 〉s g̃(t, x, η)

|η|d+γ

∥∥∥
L2+
t L1

ηL
2d
d−1 −
x
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�
∥∥〈∇x 〉s

〈∇ξ

〉s+γ
f̃ (t, x, ξ)

∥∥
L∞
t L2

ξ L
2
x

∥∥∥ 〈∇x 〉s g̃(t, x, η)

|η|d+γ

∥∥∥
L2+
t L1

ηL
2d
d−1 −
x

. (2.6)

We are left to deal with the last term on the right hand side of (2.6). Set

G(η) =
∥∥∥〈∇x 〉s g̃(t, x, η)

∥∥∥
L

2d
d−1 −
x

.

Then by Hardy–Littlewood–Sobolev inequality (A.4) in Lemma A.3 with λ = d + γ ,
we obtain ∫

G(η)

|η|d+γ
dη � ‖G‖α

L
2d
d−1 −‖G‖1−α

L
d−γ +

.

Therefore, we have
∥∥∥ 〈∇x 〉s g̃(t, x, η)

|η|d+γ

∥∥∥
L2+
t L1

ηL
2d
d−1 −
x

�
∥∥〈∇x 〉s g̃(t, x, η)

∥∥α

L2+
t L

2d
d−1 −
η L

2d
d−1 −
x

∥∥〈∇x 〉s g̃(t, x, η)
∥∥1−α

L2+
t L

d−γ +
η L

2d
d−1 −
x

≤ ∥∥〈∇x 〉s g̃(t, x, η)
∥∥α

L2+
t L

2d
d−1 −
x L

2d
d−1 −
η

∥∥〈∇x 〉s g̃(t, x, η)
∥∥1−α

L2+
t L

2d
d−1 −
x L

d−γ +
η

where in the last inequality we have used the Minkowski inequality. Applying Sobolev

inequality that Ws+γ, 2d
d−1 − ↪→ L

d
−γ

+ and Strichartz estimate (2.25), we arrive at
∥∥∥ 〈∇x 〉s g̃(t, x, η)

|η|d+γ

∥∥∥
L2+
t L1

ηL
2d
d−1 −
x

≤ ∥∥〈∇x 〉s g̃(t, x, η)
∥∥α

L2+
t L

2d
d−1 −
x L

2d
d−1 −
η

∥∥〈∇η〉s+γ 〈∇x 〉s g̃(t, x, η)
∥∥1−α

L2+
t L

2d
d−1 −
x L

2d
d−1 −
η

≤ ∥∥〈∇η〉s+γ 〈∇x 〉s g̃(t, x, η)
∥∥
L2+
t L

2d
d−1 −
x L

2d
d−1 −
η

≤ ‖g̃‖Xs,s+γ,b .

Hence, we complete the proof of (2.5). ��

2.2. Bilinear estimate for gain term. Before proving the bilinear estimate for the gain
term, we first give a useful lemma as follows.

Lemma 2.2. Let 1
p + 1

q = 1
2 .

∥∥∥
∫
Sd−1

∫
Rd

f̃ (ξ+ + η)g̃(ξ− − η)

|η|d+γ
b(

ξ

|ξ | · ω)dηdω

∥∥∥
L2

ξ

� ‖ f̃ ‖
L

2pd
2d−pγ

‖g̃‖
L

2qd
2d−qγ

. (2.7)

In particular, we have

‖Q̃+( f̃ , g̃)‖L2
ξ

�‖ f̃ ‖L2
ξ
‖g̃‖

L
d−γ

ξ

, (2.8)

‖Q̃+( f̃ , g̃)‖L2
ξ

�‖ f̃ ‖
L

d−γ
ξ

‖g̃‖L2
ξ
. (2.9)
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Proof. For the case of Maxwellian molecules, it holds that

∥∥∥
∫
Sd−1

f̃ (ξ+)g̃(ξ−)b(
ξ

|ξ | · ω)dω

∥∥∥
L2

ξ

� ‖ f̃ ‖L p
ξ
‖g̃‖Lq

ξ
,

1

p
+

1

q
= 1

2
, (2.10)

which is proved in [4, Theorem 1]. By Cauchy-Schwarz inequality and then (2.10), we
have

∥∥∥
∫
Sd−1

∫
Rd

f̃ (ξ+ + η)g̃(ξ− − η)

|η|d+γ
b
(

ξ

|ξ | · ω

)
dηdω

∥∥∥
L2

ξ

≤
∥∥∥

∫
Sd−1

[∫
Rd

| f̃ (ξ+ + η)|2
|η|d+γ

dη

] 1
2
[∫

Rd

|̃g(ξ− − η)|2
|η|d+γ

dη

] 1
2

b
(

ξ

|ξ | · ω

)
dω

∥∥∥
L2

ξ

�
∥∥∥

[∫
Rd

| f̃ (ξ + η)|2
|η|d+γ

dη

] 1
2 ∥∥∥

L p
ξ

∥∥∥
[∫

Rd

|̃g(ξ − η)|2
|η|d+γ

dη

] 1
2 ∥∥∥

Lq
ξ

=
∥∥∥

∫
Rd

| f̃ (ξ + η)|2
|η|d+γ

dη

∥∥∥
1
2

L
p
2
ξ

∥∥∥
∫
Rd

|̃g(ξ − η)|2
|η|d+γ

dη

∥∥∥
1
2

L
q
2
ξ

� ‖ f̃ ‖
L

2pd
2d−pγ

‖g̃‖
L

2qd
2d−qγ

, (2.11)

where in the last inequality we have used Hardy–Littlewood–Sobolev inequality (A.3).
This completes the proof of (2.7). Then by taking

(p, q) =
(

2d

d + γ
,−2d

γ

)
, (p, q) =

(
− 2d

γ
,

2d

d + γ

)
,

we immediately obtain (2.8) and (2.9). ��
To prove the bilinear estimate for the gain term, we need a detailed frequency analysis

from Littlewood–Paley theory.6 Let χ(x) be a smooth function and satisfy χ(x) = 1
for all |x | ≤ 1 and χ(x) = 0 for |x | ≥ 2. Let N be a dyadic number and set ϕN (x) =
χ( x

N ) − χ( x
2N ). Define the Littlewood–Paley projector

P̂N u(η) = ϕN (η)̂u(η). (2.12)

We denote by Px
N /Pξ

M the projector of the x-variable and ξ -variable respectively. Now,
we delve into the analysis of the bilinear estimate.

Lemma 2.3. For s > d−1
2 , we have

‖〈∇x 〉s〈∇ξ 〉s+γ Q̃+( f̃ , g̃)‖L2
t L

2
xξ

� ‖ f̃ ‖Xs,s+γ,b‖g̃‖Xs,s+γ,b . (2.13)

Proof. By duality, (2.13) is equivalent to
∫

Q̃+( f̃ , g̃)hdxdξdt � ‖ f̃ ‖Xs,s+γ,b‖g̃‖Xs,s+γ,b‖h‖L2
t H

−s−γ
ξ H−s

x
. (2.14)

6 See [23,25,29] for some examples sharing similar critical flavor but carrying completely different struc-
tures.
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We denote by I the integral in (2.14). Inserting a Littlewood–Paley decomposition gives
that

I =
∑

M,M1,M2
N ,N1,N2

IM,M1,M2,N ,N1,N2

where

IM,M1,M2,N ,N1,N2 =
∫

Q̃+
(
Px
N1

Pξ
M1

f̃ , Px
N2

Pξ
M2

g̃

)
Px
N Pξ

Mhdxdξdt.

Note that Q̃+ commutes with Px
N , so this gives the constraint that N � max (N1, N2)

due to that

Px
N

(
Px
N1

f̃ Px
N2
g̃

)
= 0, if N ≥ 10 max (N1, N2) . (2.15)

In addition, we observe that such a property (2.15) is also hinted in the ξ -variable, that
is,

Pξ
M Q̃+

(
Pξ
M1

f̃ , Pξ
M2

g̃

)
= 0, if M ≥ 10 max (M1, M2) . (2.16)

Indeed, notice that

Fξ

(
Pξ
M Q̃+

(
Pξ
M1

f̃ , Pξ
M2

g̃

))

= ϕM (v)

∫
Rd

∫
Sd−1

(ϕM1 f )(v
∗)(ϕM2g)(u

∗)B(u − v, ω)dudω. (2.17)

Then from the energy conservation which implies the inequality |v|2 ≤ |v∗|2 + |u∗|2,
we have the lower bound that

|u∗| ≥ M

4
, or |v∗| ≥ M

4
(2.18)

for all (u, ω) ∈ R
d × S

d−1 and |v| ≥ M
2 . Therefore, for M ≥ 10 max (M1, M2), the

lower bound (2.18) forces the v∗-variable or u∗-variable off their own support set, which
makes the integral on the right hand side of (2.17) vanish. Hence, this gives the constraint
that M � max (M1, M2).

Now, we divide the sum into four cases as follows
Case A. M1 ≥ M2, N1 ≥ N2.
Case B. M1 ≤ M2, N1 ≥ N2.
Case C. M1 ≥ M2, N1 ≤ N2.
Case D. M1 ≤ M2, N1 ≤ N2.
We only need to treat Cases A and B, as Cases C and D follow similarly.
Case A. M1 ≥ M2, N1 ≥ N2.
Let IA denote the integral restricted to the Case A. By Cauchy-Schwarz,

IA �
∑

M,M1≥M2
N ,N1≥N2

M1�M,N1�N

‖Q̃+
(
Px
N1

Pξ
M1

f̃ , Px
N2

Pξ
M2

g̃

)
‖L2

t L
2
xξ

‖Px
N Pξ

Mh‖L2
t L

2
xξ

.
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By using the estimate (2.8) in Lemma 2.7 and then Hölder inequality, we have

IA �
∑

M,M1≥M2
N ,N1≥N2

M1�M,N1�N

∥∥∥‖Px
N1

Pξ
M1

f̃ ‖L2
ξ
‖Px

N2
Pξ
M2

g̃‖
L

d−γ
ξ

∥∥∥
L2
t L2

x

‖Px
N Pξ

Mh‖L2
t L

2
xξ

≤
∑

M,M1≥M2
N ,N1≥N2

M1�M,N1�N

‖Px
N1

Pξ
M1

f̃ ‖L∞
t L2

x L
2
ξ
‖Px

N2
Pξ
M2

g̃‖
L2
t L∞

x L
d−γ

ξ

‖Px
N Pξ

Mh‖L2
t L

2
xξ

.

By using Minkowski inequality, Sobolev inequality that W
d−1

2 +γ, 2d
d−1 ↪→ L

d
−γ , and

Bernstein inequality that ‖Px
N2
g̃‖L∞

x
� ‖〈∇x 〉 d−1

2 Px
N2
g̃‖

L
2d
d−1
x

, we obtain

IA �
∑

M,M1≥M2
N ,N1≥N2

M1�M,N1�N

NsMs+γ

Ns
1 M

s+γ
1

‖Px
N1

Pξ
M1

〈∇x 〉s〈∇ξ 〉s+γ f̃ ‖L∞
t L2

x L
2
ξ

× ‖Px
N2

Pξ
M2

〈∇x 〉 d−1
2 〈∇ξ 〉 d−1

2 +γ g̃‖
L2
t L

2d
d−1
x L

2d
d−1
ξ

‖Px
N Pξ

M 〈∇x 〉−s〈∇ξ 〉−s−γ h‖L2
t L

2
xξ

�
∑

M,M1≥M2
N ,N1≥N2

M1�M,N1�N

NsMs+γ

Ns
1 M

s+γ
1

1

N
s− d−1

2
2

1

M
s− d−1

2
2

‖Px
N Pξ

Mh‖L2
t H

−s−γ
ξ H−s

x

× ‖Px
N1

Pξ
M1

〈∇x 〉s
〈∇ξ

〉s+γ
f̃ ‖L∞

t L2
x L

2
ξ
‖Px

N2
Pξ
M2

〈∇x 〉s
〈∇ξ

〉s+γ
g̃‖

L2
t L

2d
d−1
x L

2d
d−1
ξ

,

where in the last inequality we have used Bernstein inequality again. By Strichartz
estimate (2.25),

IA �
∑

M,M1≥M2
N ,N1≥N2

M1�M,N1�N

NsMs+γ

Ns
1 M

s+γ
1

1

N
s− d−1

2
2

1

M
s− d−1

2
2

‖Px
N Pξ

Mh‖L2
t H

−s−γ
ξ H−s

x

× ‖Px
N1

Pξ
M1

f̃ ‖Xs,s+γ,b‖Px
N2

Pξ
M2

g̃‖Xs,s+γ,b .

Note that s > d−1
2 , so we use that ‖Px

N2
Pξ
M2

g̃‖Xs,s+γ,b � ‖g̃‖Xs,s+γ,b and then carry out
the N2, M2 sums to obtain

IA �‖g̃‖Xs,s+γ,b

∑
M1≥M
N1≥N

NsMs+γ

Ns
1 M

s+γ
1

‖Px
N1

Pξ
M1

f̃ ‖Xs,s+γ,b‖Px
N Pξ

Mh‖L2
t H

−s−γ
ξ H−s

x
.

By Cauchy-Schwarz in M , M1, N and N1, we have

IA �‖g̃‖Xs,s+γ,b

⎛
⎜⎜⎝

∑
M1≥M
N1≥N

NsMs+γ

Ns
1 M

s+γ
1

‖Px
N1

Pξ
M1

f̃ ‖2
Xs,s+γ,b

⎞
⎟⎟⎠

1
2
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⎛
⎜⎜⎝

∑
M1≥M
N1≥N

NsMs+γ

Ns
1 M

s+γ
1

‖Px
N Pξ

Mh‖2
L2
t H

−s−γ
ξ H−s

x

⎞
⎟⎟⎠

1
2

�‖ f̃ ‖Xs,s+γ,b‖g̃‖Xs,s+γ,b‖h‖L2
t H

−s−γ
ξ H−s

x
, (2.19)

which completes the proof of (2.14) for Case A.
Case B. M1 ≤ M2, N1 ≥ N2.
Following the same way as Case A, we have

IB �
∑

M,M2≥M1
N ,N1≥N2

M2�M,N1�N

‖Q̃+(Px
N1

Pξ
M1

f̃ , Px
N2

Pξ
M2

g̃)‖L2
t L

2
xξ

‖Px
N Pξ

Mh‖L2
t L

2
xξ

.

By using the estimate (2.9) in Lemma 2.7 and then Hölder inequality, we have

IB �
∑

M,M2≥M1
N ,N1≥N2

M2�M,N1�N

∥∥∥‖Px
N1

Pξ
M1

f̃ ‖
L

d−γ
ξ

‖Px
N2

Pξ
M2

g̃‖L2
ξ

∥∥∥
L2
t L2

x

‖Px
N Pξ

Mh‖L2
t L

2
xξ

≤
∑

M,M2≥M1
N ,N1≥N2

M2�M,N1�N

‖Px
N1

Pξ
M1

f̃ ‖
L2
t L

2d
d−1
x L

d−γ
ξ

‖Px
N2

Pξ
M2

g̃‖L∞
t L2d

x L2
ξ
‖Px

N Pξ
Mh‖L2

t L
2
xξ

.

By Minkowski inequality, Sobolev inequality that W
d−1

2 +γ, 2d
d−1 ↪→ L

d
−γ , W

d−1
2 ,2 ↪→

L2d and Bernstein inequality, we obtain

IB �
∑

M,M2≥M1
N ,N1≥N2

M2�M,N1�N

‖Px
N1

Pξ
M1

〈∇ξ 〉 d−1
2 +γ f̃ ‖

L2
t L

2d
d−1
x L

2d
d−1
ξ

× ‖Px
N2

Pξ
M2

〈∇x 〉 d−1
2 g̃‖L∞

t L2
x L

2
ξ
‖Px

N Pξ
Mh‖L2

t L
2
xξ

�
∑

M,M2≥M1
N ,N1≥N2

M2�M,N1�N

NsMs+γ

Ns
1 M

s+γ
2

1

N
s− d−1

2
2

1

M
s− d−1

2
1

‖Px
N Pξ

Mh‖L2
t H

−s−γ
ξ H−s

x

× ‖Px
N1

Pξ
M1

〈∇x 〉s〈∇ξ 〉s+γ f̃ ‖
L2
t L

2d
d−1
x L

2d
d−1
ξ

‖Px
N2

Pξ
M2

〈∇x 〉s
〈∇ξ

〉s+γ
g̃‖L∞

t L2
x L

2
ξ
.

By Strichartz estimate (2.25),

IB �
∑

M,M2≥M1
N ,N1≥N2

M2�M,N1�N

NsMs+γ

Ns
1 M

s+γ
2

1

N
s− d−1

2
2

1

M
s− d−1

2
1

‖Px
N Pξ

Mh‖L2
t H

−s−γ
ξ H−s

x

× ‖Px
N1

Pξ
M1

f̃ ‖Xs,s+γ,b‖Px
N2

Pξ
M2

g̃‖Xs,s+γ,b .
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Note that s > d−1
2 , so we use that

‖Px
N1

Pξ
M1

f̃ ‖Xs,s+γ,b � ‖Px
N1

f̃ ‖Xs,s+γ,b , ‖Px
N2

Pξ
M2

g̃‖Xs,s+γ,b � ‖Pξ
M2

g̃‖Xs,s+γ,b ,

and then carry out the N2, M1 sums to obtain

IB �
∑

M2≥M
N1≥N

NsMs+γ

Ns
1 M

s+γ
2

‖Px
N1

f̃ ‖Xs,s+γ,b‖Pξ
M2

g̃‖Xs,s+γ,b‖Px
N Pξ

Mh‖L2
t H

−s−γ
ξ H−s

x
.

In a similar way to (2.19), we use Cauchy-Schwarz inequality to get

IB �
∑
N1≥N

Ns

Ns
1
‖Px

N1
f̃ ‖Xs,s+γ,b

⎛
⎝ ∑

M2≥M

Ms+γ

Ms+γ
2

‖Pξ
M2

g̃‖2
Xs,s+γ,b

⎞
⎠

1
2

×
⎛
⎝ ∑

M2≥M

Ms+γ

Ms+γ
2

‖Px
N Pξ

Mh‖2
L2
t H

−s−γ
ξ H−s

x

⎞
⎠

1
2

�‖g̃‖Xs,s+γ,b

∑
N1≥N

Ns

Ns
1
‖Px

N1
f̃ ‖Xs,s+γ,b‖Px

Nh‖L2
t H

−s−γ
ξ H−s

x

�‖ f̃ ‖Xs,s+γ,b‖g̃‖Xs,s+γ,b‖h‖L2
t H

−s−γ
ξ H−s

x
.

Hence, we complete the proof of of (2.14) for Case B. ��

2.3. Well-posedness in Fourier restriction norm space. We first recall some standard
results on the Fourier restriction norms and Strichartz estimates.

Lemma 2.4. Let b ∈
(

1
2 , 1

)
, s ∈ R, r ∈ R, and θ(t) be a smooth cutoff function. Define

U (t) := eit∇x ·∇ξ , D(F) :=
∫ t

0
U (t − τ)F(τ )dτ. (2.20)

Then we have

‖ f̃ ‖C0
t Hs

x H
r
ξ

�‖ f̃ ‖Xs,r,b , (2.21)

‖θ(t)U (t) f̃0‖Xs,r,b �‖ f̃0‖Hs
x H

r
ξ
, (2.22)

‖θ(t)D(F)‖Xs,r,b �‖F‖Xs,r,b−1 , (2.23)

‖ f̃ ‖Xs,r,b−1 �‖ f̃ ‖L p
t Hs

x H
r
ξ
, p ∈ (1, 2], b ≤ 3

2
− 1

p
, (2.24)

‖ f̃ ‖Lq
t L

p
xξ

�‖ f̃ ‖X0,0,b ,
2

q
+

2d

p
= d, q ≥ 2, d ≥ 2. (2.25)

Proof. These type estimates are well-known in the dispersive literatures. The Strichartz
estimate (2.25) follows from the linear Strichartz estimate (B.5) and the transference
principle. See for example [63, Chapter 2.6]. ��
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We prove the existence, uniqueness, and the Lipschitz continuity of the solution map.
The nonnegativity of f follows from the persistence of regularity (as shown in [14,55])
by use of the bilinear estimates (2.5) and (2.13) for the soft potential case.

Proof of Well-Posedness in Theorem 1.2. Let θT (t) = θ(t/T ). By estimate (2.24), Hölder
inequality, and the bilinear estimates for Q±, we have

‖θT (t)Q̃
(
f̃ , g̃

)‖Xs,s+γ,b−1

� ‖θT (t)Q̃
(
f̃ , g̃

)‖
L

2
3−2b
t Hs

x H
s+γ
ξ

� T 1−b‖θT (t)Q̃+(
f̃ , g̃

)‖L2
t Hs

x H
s+γ
ξ

+ T 1−b‖θT (t)Q̃−(
f̃ , g̃

)‖L2+
t Hs

x H
s+γ
ξ

� T 1−b‖ f̃ ‖Xs,s+γ,b‖g̃‖Xs,s+γ,b . (2.26)

Let B = {
f̃ : ‖ f̃ ‖Xs,s+γ,b ≤ R

}
with R = 2C‖ f̃0‖Hs

x H
s+γ
ξ

and define the nonlinear
map

�( f̃ ) := θT (t)U (t) f̃0 + D( f̃ , f̃ ),

where

D( f̃ , f̃ ) := θT (t)
∫ t

0
U (t − τ)θT (τ )Q̃( f̃ (τ ), f̃ (τ ))dτ.

By estimates (2.22), (2.23), and (2.26), we obtain

‖�(
f̃
)‖Xs,s+γ,b ≤‖θT (t)U (t) f̃0‖Xs,s+γ,b + ‖D(

f̃ , f̃
)‖Xs,s+γ,b

≤C‖ f̃0‖Hs
x H

s+γ
ξ

+ C‖θT Q̃
(
f̃ , f̃

)‖Xs,s+γ,b−1

≤ R

2
+ CT1−b‖ f̃ ‖2

Xs,s+γ,b

≤R

where in the last inequality we have used that CT 1−bR ≤ 1
2 . Thus, � maps the set B

into itself. In a similar way, for f̃ and g̃ ∈ B we have

‖�(
f̃
) − �(g̃)‖Xs,s+γ,b =‖D(

f̃ , f̃
) − D

(
g̃, g̃

)‖Xs,s+γ,b

≤C‖θT Q̃
(
f̃ − g̃, f̃

)‖Xs,s+γ,b−1 + C‖θT Q̃
(
g̃, f̃ − g̃

)‖Xs,s+γ,b−1

≤CTb−1 (‖ f̃ ‖Xs,s+γ,b + ‖g̃‖Xs,s+γ,b

) ‖ f̃ − g̃‖Xs,s+γ,b

≤1

2
‖ f̃ − g̃‖Xs,s+γ,b .

Therefore, � is a contraction mapping in Xs,s+γ,b and has a unique fixed point f̃ on the

time scale |T | ∼ 〈R〉 1
b−1 .

Given two initial data f̃0 and g̃0, we set

R1 = 2 max
(
‖ f̃0‖Hs

x H
s+γ
ξ

, ‖g̃0‖Hs
x H

s+γ
ξ

)
.

Let f̃ , g̃ be the corresponding unique fixed points. Taking a difference gives that

f̃ − g̃ = θT (t)U (t)( f̃0 − g̃0) + D( f̃ − g̃, f̃ ) + D(g̃, f̃ − g̃).
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By estimates (2.22), (2.23), and (2.26), we have

‖ f̃ − g̃‖Xs,s+γ,b ≤‖θT (t)U (t)
(
f̃0 − g̃0

)‖Xs,s+γ,b + C‖θT Q̃
(
f̃ − g̃, f̃

)‖Xs,s+γ,b−1

+ C‖θT Q̃
(
g̃, f̃ − g̃

)‖Xs,s+γ,b−1

≤C‖ f̃0 − g̃0‖Hs
x H

s+γ
ξ

+ CT 1−b (‖ f̃ ‖Xs,s+γ,b + ‖g̃‖Xs,s+γ,b
) ‖ f̃ − g̃‖Xs,s+γ,b ,

which together with CT 1−bR1 ≤ 1
2 gives that

‖ f̃ − g̃‖Xs,s+γ,b ≤ 2C‖ f̃0 − g̃0‖Hs
x H

s+γ
ξ

.

The Lipschitz continuity of the data-to-solution map on the time [−T, T ] follows from
the embedding Xs,s+γ,b ↪→ C([−T, T ]; Hs

x H
s+γ
ξ ). ��

3. Ill-Posedness

The idea is to first construct an approximation solution fa(t) with the norm deflation
property that

‖ fa(0)‖
L

2,r0
v H

s0
x

� 1, ‖ fa(T∗)‖L2,r0
v H

s0
x

� 1, (3.1)

with T∗ ↗ 0, and then use stability theory to perturb the approximation solution into
an exact solution. Specifically, from the exact solution fex(t) to the Boltzmann equation
(1.1) {

∂t fex + v · ∇x fex = Q( fex, fex),

fex(t) = fa(t) + fc(t).
(3.2)

we have the equation for the correction term fc that
{

∂t fc + v · ∇x fc = ± Q±( fc, fa) ± Q±( fa, fc) ± Q±( fc, fc) − Ferr,

Ferr =∂t fa + v · ∇x fa + Q−( fa, fa) − Q+( fa, fa).
(3.3)

To prove the existence of fc, we work with a Z -norm defined by (3.36) which is tailored
to be stronger than the L2,r0

v Hs0
x norms. For the Z -norm, we are able to provide a closed

bilinear estimate for the gain and loss terms in Lemma 3.13. Additionally, to work on
the Z -norm space, we provide effective Z -norm bounds on the approximation solution
fa, which we conclude in Proposition 3.8, and then prove the Z -norm error estimates
on the error term Ferr that

∥∥∥
∫ t

τ

e−(t−t0)v·∇x Ferr(t0) dt0
∥∥∥
Z

� 1, (3.4)

which we set up in Proposition 3.9. Then by a perturbation argument in Proposition 3.14,
we prove that the correction term indeed satisfies the smallness property that

‖ fc(t)‖L∞([T∗,0];Z) � 1. (3.5)

Finally in Sect. 3.5, we conclude the ill-posedness results.
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3.1. Norm deflation of the approximation solution. In the section, we get into the anal-
ysis of the construction of the approximation solution and its norm deflation property.
Following the analysis of a prototype approximation solution in [27],7 we decompose

fa(t) = fr(t) + fb(t).

For d = 2, 3, on the unit sphere S
d−1, we call J ∼ Nd−1 points

{
e j

}J
j=1 are roughly

equally spaced8 if

min
i �= j

|ei − e j | � 1

N
, S

d−1 ⊂
⋃
j

B(e j ,
100

N
).

This just means that the distance between two points has a lower bound 1
N and the

unit sphere can be covered by the union of the 100
N -ball generated at each point. More

specifically, for the case d = 2, we can directly choose the strictly uniform distribution
on a unit circle

e j =
(

cos

(
2π j

N

)
, sin

(
2π j

N

))
, 1 ≤ j ≤ N . (3.6)

For the case d = 3, there are many choices of such a roughly uniform distribution on a
unit sphere. Here, by the symmetry, an example for the upper hemisphere could be

ei, j =
(

sin

(
π j

2N

)
cos

(
2π i

j

)
, sin

(
π j

2N

)
sin

(
2π i

j

)
, cos

(
π j

2N

))
, 1 ≤ i ≤ j ≤ N .

(3.7)

Equation (3.7) is not a direct 3D version of the 2D example (3.6), which would yield too
many points near the north pole. In (3.7), from the north pole (0, 0, 1) to the equator |z| =
0, the number of points grows from 1 to N . The total number of points is

∑
1≤i≤ j≤N ∼

N 2 and the distance between two points is at least 1
N up to a constant. Thus this example

is a valid choice for our purposes here.

On the unit sphere, set J ∼ Md−1Nd−1
2 points

{
e j

}J
j=1, where the points e j are

roughly equally spaced. Let Pe j be the orthogonal projection onto the 1D subspace
spanned by e j and P⊥

e j denote the orthogonal projection onto the orthogonal complement

space
{
e j

}⊥. Set

fb(t, x, v) = M
d−1

2 −s

Nd+γ
2

J∑
j=1

K j (x − vt)I j (v), (3.8)

where

K j (x) = χ(MP⊥
e j x)χ

(
Pe j x

N2

)
, I j (v) = χ

(
MP⊥

e j v

)
χ

(
10Pe j (v − N2e j )

N2

)
.

7 One could see [27, Figure 1] for a picture of the approximation solutions there. They look like bullets
hitting a rock in [27]. Our improvised and refined version is more like needles poking a rock through.

8 Such a definition suffices for our purpose here. There can be different definitions.
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In fact, fb(t, x, v) is a linear solution to the transport equation:

∂t fb + v · ∇x fb = 0. (3.9)

Let fr(t, x, v) be the solution to a drift-free linearized Boltzmann equation:

∂t fr(t, x, v) = − fr(t, x, v)

∫
fb(t, x, u)

|u − v|−γ
du = −Q−( fr, fb), (3.10)

with initial data fr(0) = M
d
2 −s N

d
2

1 χ(Mx)χ(N1v). Therefore, we write out

fr(t, x, v) = M
d
2 −s N

d
2

1 exp

[
−

∫ t

0

∫
fb(τ, x, u)

|u − v|−γ
du dτ

]
χ(Mx)χ(N1v). (3.11)

Recall that 0 ≤ s0 < d−1
2 , 1−d

2 ≤ γ ≤ 0, and r0 = max {0, s0 + γ }. In what follows,
the parameters are set by

M � 1, N1 ≥ N 10
2 ≥ M100, (3.12)

s = s0 +
ln ln ln M

ln M
, (3.13)

T∗ = −Ms− d−1
2 (ln ln ln M). (3.14)

Next, we give the Sobolev norm estimates on fb, fr and fa.

Lemma 3.1 (Sobolev norm bounds on fb). We have for t ≤ 0,

‖ fb(t, x, v)‖
L

2,r0
v H

s0
x

� Ms0−s N
max{s0,−γ }− d−1

2
2 ≤ 1

ln ln M
. (3.15)

Proof. Recall that

fb(t, x, v) = M
d−1

2 −s

Nd+γ
2

J∑
j=1

K j (x − vt)I j (v). (3.16)

Due to the v-support of fb, the weight on v-variable produces a factor of Nr0
2 . Then

expanding fb gives that

‖〈∇x 〉s0 fb(t, x, v)‖2
L

2,r0
v L2

x

� N 2r0
2

Md−1−2s

N 2d+2γ
2

∥∥∥
J∑

j=1

〈∇x 〉s0 K j (x − vt)I j (v)

∥∥∥2

L2
vL

2
x

.

Due to the disjointness of the v-support, we have

‖〈∇x 〉s0 fb(t, x, v)‖2
L

2,r0
v L2

x

� N 2r0
2

Md−1−2s

N 2d+2γ
2

J∑
j=1

‖〈∇x 〉s0 K j (x − vt)I j (v)‖2
L2

vL
2
x

� N 2r0
2

Md−1−2s

N 2d+2γ
2

J∑
j=1

‖〈∇x 〉s0 K j (x)‖2
L2
x
‖I j (v)‖2

L2
v

� N 2r0
2

Md−1−2s

N 2d+2γ
2

(MN2)
d−1(M2s0+1−d N2)(M

1−d N2)
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= N 2r0
2

M2s0−2s

Nd−1+2γ
2

,

where in the second-to-last inequality we used that

‖〈∇x 〉s0 K j (x)‖2
L2
x

�M2s0 M1−d N2, ‖I j (v)‖2
L2

v
∼ M1−d N2.

Notice that

r0 = max {0, s0 + γ } , Ms−s0 = ln ln M, max {s0,−γ } ≤ d − 1

2
.

Hence, we complete the proof of (3.15). ��
Before proceeding to the analysis of fr, we give a useful pointwise bound on fb.

Lemma 3.2 (Pointwise estimate on fb). Let − 1
4 ≤ t ≤ 0 and

β(t, x, v) =
∫ t

0

∫
fb(t0, x, u)

|u − v|−γ
dudt0 ≤ 0.

For k = 0, 1, 2, we have the pointwise upper bound

∣∣χ(N1v)∇k
xβ(t, x, v)

∣∣ � |t |Mk+ d−1
2 −s . (3.17)

For the pointwise lower bound, we have

|χ(N1v)β(t, x, v)| � |t |M d−1
2 −sχ(N1v), for |x | ≤ M−1. (3.18)

Proof. For − 1
4 ≤ t ≤ 0, given the constraints on the u-variable, we have

M
d−1

2 −s

Nd+γ
2

J∑
j=1

χ(10MP⊥
e j x)χ

(
10Pe j x

N2

)
χ(MP⊥

e j u)χ

(
10Pe j (u − N2e j )

N2

)

≤ fb(t, x, u) ≤ M
d−1

2 −s

Nd+γ
2

J∑
j=1

χ

(MP⊥
e j x

10

)
χ

(
Pe j x

10N2

)
χ(MP⊥

e j u)χ

(
10Pe j (u − N2e j )

N2

)
.

(3.19)

From the v-support and u-support, we have |v| ∼ N−1
1 , |u| ∼ N2, and hence |u − v| ∼

N2. Then by using (3.19), we get

χ(N1v)

∫
fb(t, x, u)

|u − v|−γ
du ∼N γ

2 χ(N1v)

∫
fb(t, x, u) du

∼N γ
2
M

d−1
2 −s

Nd+γ
2

M1−d N2χ(N1v)

J∑
j

χ(MP⊥
e j x)χ

(
Pe j x

N2

)

=M
1−d

2 −s

Nd−1
2

χ(N1v)

J∑
j

χ(MP⊥
e j x)χ

(
Pe j x

N2

)
. (3.20)
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Thus, for the upper bound (3.17) with k = 0, we use that |J | ∼ (MN2)
d−1 to obtain

|χ(N1v)β(t, x, v)| � |t |M
1−d

2 −s

Nd−1
2

(MN2)
d−1χ(N1v) = |t |M d−1

2 −sχ(N1v).

Notice that the upper bounds of estimates (3.19) and (3.20) remain true with the extra
factor Mk if ∇k

x is applied, for k ≥ 0. Therefore, we conclude the pointwise upper bound
(3.17) on β(t, x, v) for k = 0, 1, 2.

For the lower bound (3.18), by noting that χ(MP⊥
e j x)χ

(
Pe j x

N2

)
= 1 for |x | ≤ M−1,

we use (3.20) again to get

|χ(N1v)β(t, x, v)| =χ(N1v)

∫ 0

t

∫
fb(t0, x, u)

|u − v|−γ
du dt0

�|t |M
1−d

2 −s

Nd−1
2

(MN2)
d−1χ(N1v) = |t |M d−1

2 −sχ(N1v),

which completes the proof of (3.18). ��
Now, we are able to give the upper and lower bounds on fr.

Lemma 3.3 (Sobolev norm bounds on fr). For − 1
4 ≤ t ≤ 0, we have the upper bound

estimate

‖ fr(t)‖L2,r0
v H

s0
x

� Ms0−s exp

[
|t |M d−1

2 −s
]
〈|t |M d−1

2 −s〉, (3.21)

and the lower bound estimate

‖ fr(t)‖L2,r0
v H

s0
x

� Ms0−s exp

[
|t |M d−1

2 −s
]
. (3.22)

In particular, we have

‖ fr(0)‖
L

2,r0
v H

s0
x

� 1

ln ln M
, (3.23)

‖ fr(T∗)‖L2,r0
v H

s0
x

�1, (3.24)

with T∗ = −Ms− d−1
2 (ln ln ln M).

Proof. Recall that

fr(t, x, v) = M
d
2 −s N

d
2

1 exp [−β(t, x, v)] χ(Mx)χ(N1v). (3.25)

Due to the v-support of fr, we can discard the weight on the v-variable. For upper bound
estimate (3.21) on fr, we use the pointwise upper bound (3.17) to get

‖∇x fr(t)‖L2,r0
v L2

x

≤ M1+ d
2 −s N

d
2

1 ‖ exp

[
− β(t, x, v)

]
(∇χ)(Mx)χ(N1v)‖L2

vL
2
x
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+ M
d
2 −s N

d
2

1 ‖∇xβ(t, x, v) exp

[
− β(t, x, v)

]
χ(Mx)χ(N1v)‖L2

vL
2
x

� M1+ d
2 −s N

d
2

1 exp

[
|t |M d−1

2 −s
]
‖(∇χ)(Mx)‖L2

x
‖χ(N1v)‖L2

v

+ M
d
2 −s N

d
2

1 〈|t |M1+ d−1
2 −s〉 exp

[
|t |M d−1

2 −s
]
‖χ(Mx)‖L2

x
‖χ(N1v)‖L2

v

� M1−s exp

[
|t |M d−1

2 −s
]
〈|t |M d−1

2 −s〉. (3.26)

In the same way, we also have

‖ fr(t)‖L2,r0
v L2

x
� M−s exp

[
|t |M d−1

2 −s
]
.

By the interpolation inequality, we obtain

‖ fr(t)‖L2,r0
v H

s0
x

≤‖ fr(t)‖s0

L
2,r0
v H1

x

‖ fr(t)‖1−s0

L
2,r0
v L2

x

� Ms0−s exp

[
|t |M d−1

2 −s
]
〈|t |M d−1

2 −s〉.

For the lower bound estimate (3.22) on fr, we use the Sobolev inequality and lower
bound estimate (3.18) to obtain

‖〈∇x 〉s0 fr(t, x, v)‖
L

2,r0
v L2

x

� ‖ fr(t, x, v)‖
L

2,r0
v L

2d
d−2s0
x

� M
d
2 −s N

d
2

1 ‖ exp [−β(t, x, v)] χ(Mx)χ(N1v)‖
L2

vL
2d

d−2s0
x

� M
d
2 −s N

d
2

1 exp

[
|t |M d−1

2 −s
]
‖χ(Mx)‖

L
2d

d−2s0
x

‖χ(N1v)‖L2
v

� Ms0−s exp

[
|t |M d−1

2 −s
]
.

Hence, we have done the proof of estimate (3.22).

Inserting in |T∗| = Ms− d−1
2 (ln ln ln M) and Ms0−s = 1

ln ln M , we have

‖ fr(T∗)‖L2,r0
v H

s0
x

� Ms0−s exp

[
|T∗|M d−1

2 −s
]

� 1,

which completes the proof of (3.24). ��
Remark 3.4. The lower bound estimate (3.22) on fr(t) also holds for the kernel (d = 3)

B(u − v, ω) =
(

1{|u−v|≤1}|u − v| + 1{|u−v|≥1}|u − v|−1
)
b
(

u − v

|u − v| · ω

)
. (3.27)

Indeed, in the proof of the lower bound estimate (3.18), the term 1{|u−v|≤1}|u−v| would
vanish due to that |u − v| ∼ N2 � 1.

In the end, we conclude the norm deflation property of the approximation solution
fa.
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Proposition 3.5 (Norm deflation of fa). Let T∗ = −Ms− d−1
2 (ln ln ln M). We have

‖ fa(0)‖
L

2,r0
v H

s0
x

� 1

ln ln M
� 1, (3.28)

‖ fa(T∗)‖L2,r0
v H

s0
x

�1. (3.29)

Proof. Since fb and fr have disjoint velocity supports, we get

‖ fa(t)‖L2,r0
v H

s0
x

∼ ‖ fr(t)‖L2,r0
v H

s0
x

+ ‖ fb(t)‖L2,r0
v H

s0
x

. (3.30)

Then by estimate (3.15) on fb in Lemma 3.1 and estimates (3.23)–(3.24) on fr in Lemma
3.3, we arrive at estimates (3.28) and (3.29). ��

3.1.1. Discussion on the L1-based space and hard potentials The Eq. (1.1) is invariant
under the scaling

fλ(t, x, , v) = λα+(d−1+γ )β f (λα−β t, λαx, λβv), (3.31)

for any α, β ∈ R and λ > 0. Then

‖|∇x |s |v|r fλ‖L1
xv

= λ
α+(d−1+γ )β

λαs−βrλ−dα−dβ‖|∇x |s |v|r f ‖L1
xv

,

which gives the L1-based scaling-critical index

s1 = d − 1, r1 = 1 + γ. (3.32)

In the L1 setting, we construct the approximation solution fa,1 = fb,1 + fr,1, where

fb,1(t, x, v) =Md−1−s

Nd+2+γ
2

J∑
j=1

K j (x − vt)I j (v),

fr,1(t, x, v) =Md−s Nd
1 exp [−β(t, x, v)] χ(Mx)χ(N1v).

Repeating the proof of estimates (3.15) and (3.22), we also have

‖〈∇〉s0 fb,1‖L1,r1
v L1

x
�Ms0−s, (3.33)

‖〈∇〉s0 fr,1‖L1,r1
v L1

x
�Ms0−s exp

[
|t |N−2

2 Md−1−s
]
. (3.34)

If s0 < s1 = d − 1, a similar mechanism of norm deflation could be possible in the L1

setting.
For the hard potential case that γ > 0, the norm deflation of the approximation

solution fa(t) also holds. But, to perturb it into the exact solution, it requires a much
more different work space to prove the error bounds in Proposition 3.9 and provide a
closed estimate in Lemma 3.13. We leave the problem for future work.
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3.2. Z-norm bounds on the approximation solution. To perturb the approximation so-
lution fa(t) into an exact solution fex(t), we need to prove the existence of a small
correction term fc(t). As it satisfies a more complicated Eq. (3.3), some terms of (3.3)
cannot be effectively treated using Strichartz estimates like (2.1). Hence, we tailor a
Z -norm to provide a closed estimate for the gain and loss terms, that is,

‖Q±( f1, f2)‖Z � ‖ f1‖Z‖ f2‖Z , (3.35)

where the Z -norm is given by

‖ f (t)‖Z =M
d−3

2 ‖∇x f (t)‖L2,r0
v L2

x
+ M

d−1
2 ‖ f (t)‖

L
2,r0
v L2

x
+ N γ

2 ‖ f (t)‖L1
vL

∞
x

+ N
2d
5 +γ

2 ‖ f (t)‖
L

5
3
v L∞

x

+ M−1N γ
2 ‖∇x f (t)‖L1

vL
∞
x

+ M−1N
2d
5 +γ

2 ‖∇x f (t)‖
L

5
3
v L∞

x

. (3.36)

The closed estimate (3.35) which we will prove in Sect. 3.4 indeed plays a key role in
the perturbation argument. In the section, we give Z -norm bounds on the approximation
solution fa = fr + fb, which will be used to control the error term Ferr.

Lemma 3.6 (Z -norm bounds on fb). For the Z-norm, we have

‖ fb(t)‖L∞([T∗,0];Z) � M
d−1

2 −s . (3.37)

Proof. The M
d−3

2 ‖∇x • ‖
L

2,r0
v L2

x
and M

d−1
2 ‖ • ‖

L
2,r0
v L2

x
estimates.

This can be done in the same way as estimate (3.15) with the regularity index s0
replaced by 1 and 0. Therefore, we obtain

M
d−3

2 ‖∇x fb‖L2
vL

2
x

�M
d−1

2 −s N
max{s0,−γ }− d−1

2
2 ≤ M

d−1
2 −s, (3.38)

M
d−1

2 ‖ fb‖L2
vL

2
x

�M
d−1

2 −s N
max{s0,−γ }− d−1

2
2 ≤ M

d−1
2 −s . (3.39)

The N γ
2 ‖ • ‖L1

vL
∞
x

and N
2d
5 +γ

2 ‖ • ‖
L

5
3
v L∞

x

estimates.

N γ
2 ‖ fb‖L1

vL
∞
x

�N γ
2
M

d−1
2 −s

Nd+γ
2

∥∥∥
J∑

j=1

‖K j (x − vt)‖L∞
x
I j (v)

∥∥∥
L1

v

�M
d−1

2 −s

Nd
2

∥∥∥
J∑

j=1

I j (v)

∥∥∥
L1

v

�M
d−1

2 −s

Nd
2

Nd
2 = M

d−1
2 −s, (3.40)

where in the last inequality we have used that

J∑
j=1

I j (v) ∼ 1{
9N2
10 ≤|v|≤ 11N2

10

}(v),

∥∥∥1{
9N2
10 ≤|v|≤ 11N2

10

}(v)

∥∥∥
L1

v

� Nd
2 .
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In the same way, we also have

N
2d
5 +γ

2 ‖ fb‖
L

5
3
v L∞

x

�N
2d
5 +γ

2
M

d−1
2 −s

Nd+γ
2

∥∥∥
J∑

j=1

‖K j (x − vt)‖L∞
x
I j (v)

∥∥∥
L

5
3
v

�N
2d
5

2
M

d−1
2 −s

Nd
2

∥∥∥
J∑

j=1

I j (v)

∥∥∥
L

5
3
v

�N
2d
5

2
M

d−1
2 −s

Nd
2

N
3d
5

2 = M
d−1

2 −s .

The same bound is obtained for M−1N γ
2 ‖∇x fb‖L1

vL
∞
x

and M−1N
2d
5 +γ

2 ‖∇x fb‖
L

5
3
v L∞

x
with one x-derivative producing a factor of M . Therefore, we complete the proof of the
Z -norm estimate (3.37). ��
Lemma 3.7 (Z -norm bounds on fr). For T∗ ≤ t ≤ 0, we have

‖ fr(t)‖Z � M
d−1

2 −s exp[|t |M d−1
2 −s]〈|t |M d−1

2 −s〉. (3.41)

In particular,

‖ fr(t)‖L∞([T∗,0];Z) � M
d−1

2 −s(ln ln M)2. (3.42)

Proof. Recall

fr(t, x, v) = M
d
2 −s N

d
2

1 exp [−β(t, x, v)] χ(Mx)χ(N1v). (3.43)

The M
d−3

2 ‖∇x • ‖
L

2,r0
v L2

x
and M

d−1
2 ‖ • ‖

L
2,r0
v L2

x
estimates.

The weight on v-variable plays no role due to the v-support set, so we can discard it.
By the pointwise upper bound (3.17), we get

M
d−3

2 ‖∇x fr(t)‖L2,r0
v L2

x

≤ M
d−3

2 M1+ d
2 −s N

d
2

1 ‖ exp[−β(t, x, v)](∇χ)(Mx)χ(N1v)‖L2
vL

2
x

+ M
d−3

2 M
d
2 −s N

d
2

1 ‖∇xβ(t, x, v) exp[−β(t, x, v)]χ(Mx)χ(N1v)‖L2
vL

2
x

� M
d−1

2 M
d
2 −s N

d
2

1 exp[|t |M d−1
2 −s]‖(∇χ)(Mx)‖L2

x
‖χ(N1v)‖L2

v

+ M
d−3

2 M
d
2 −s N

d
2

1 〈|t |M1+ d−1
2 −s〉 exp[|t |M d−1

2 −s]‖χ(Mx)‖L2
x
‖χ(N1v)‖L2

v

� M
d−1

2 −s exp[|t |M d−1
2 −s]〈|t |M d−1

2 −s〉.
The M

d−1
2 ‖ fr‖L2,r0

v L2
x

estimate can be handled in the same way.

The N γ
2 ‖ • ‖L1

vL
∞
x

and M−1N γ
2 ‖∇x • ‖L1

vL
∞
x

estimates.

We only need to treat the M−1N γ
2 ‖∇x • ‖L1

vL
∞
x

norm, as the N γ
2 ‖ • ‖L1

vL
∞
x

norm can
be dealt with in a similar way. We use the pointwise upper bound (3.17) to obtain

M−1N γ
2 ‖∇x fr(t)‖L1

vL
∞
x
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≤ M−1N γ
2 M1+ d

2 −s N
d
2

1 ‖ exp[−β(t, x, v)](∇χ)(Mx)χ(N1v)‖L1
vL

∞
x

+ M−1N γ
2 M

d
2 −s N

d
2

1 ‖∇xβ(t, x, v) exp[−β(t, x, v)]χ(Mx)χ(N1v)‖L1
vL

∞
x

� M−1N γ
2 M1+ d

2 −s N
d
2

1 exp[|t |M d−1
2 −s]‖(∇χ)(Mx)‖L∞

x
‖χ(N1v)‖L1

v

+ M−1N γ
2 M

d
2 −s N

d
2

1 〈|t |M1+ d−1
2 −s〉 exp[|t |M d−1

2 −s]‖χ(Mx)‖L∞
x

‖χ(N1v)‖L1
v

� M−1N γ
2 M1+ d

2 −s N
− d

2
1 exp[|t |M d−1

2 −s]〈|t |M d−1
2 −s〉

� N
− d

2
1 N γ

2 M
d
2 −s exp[|t |M d−1

2 −s]〈|t |M d−1
2 −s〉. (3.44)

This bound is enough as it carries the smallness factor N
− d

2
1 .

The N
2d
5 +γ

2 ‖ • ‖
L

5
3
v L∞

x

and M−1N
2d
5 +γ

2 ‖∇x • ‖
L

5
3
v L∞

x

estimates.

These two norms can be controlled in the same manner as (3.44) with the L1
v norm

replaced by the L
5
3
v norm. As a result, we also have

N
2d
5 +γ

2 ‖ fr(t)‖
L

5
3
v L∞

x

�N
− d

10
1 N

2d
5 +γ

2 M
d
2 −s exp[|t |M d−1

2 −s]〈|t |M d−1
2 −s〉,

(3.45)

M−1N
2d
5 +γ

2 ‖∇x fr(t)‖
L

5
3
v L∞

x

�N
− d

10
1 N

2d
5 +γ

2 M
d
2 −s exp[|t |M d−1

2 −s]〈|t |M d−1
2 −s〉.

(3.46)

By the condition (3.12) that N1 ≥ N 10
2 ≥ M100, it is sufficient to obtain the desired

bound. Thus, we complete the proof of (3.41).

Inserting in |T∗| = Ms− d−1
2 (ln ln ln M) and Ms−s0 = ln ln M , we obtain

‖ fr(t)‖L∞([T∗,0];Z) � M
d−1

2 −s(ln ln M)2,

which completes the proof of (3.42). ��
To the end, we conclude the Z -norm bounds on fa = fr + fb.

Proposition 3.8 (Z -norm bounds on fa). For the Z-norm,

‖ fa(t)‖L∞([T∗,0];Z) � M
d−1

2 −s(ln ln M)2. (3.47)

Proof. By the triangle inequality, we have

‖ fa(t)‖Z � ‖ fr(t)‖Z + ‖ fb(t)‖Z .

Then combining estimate (3.37) on fb and estimate (3.41) on fr, we complete the proof
of estimate (3.47). ��
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3.3. Z-norm bounds on the error terms. In the section, we give the Z -norm bounds on
the error term Ferr. Recall the error term

Ferr = ∂t fa + v · ∇x fa + Q−( fa, fa) − Q+( fa, fa)

= v · ∇x fr − Q+( fr, fb) ∓ Q±( fb, fr) ∓ Q±( fr, fr) ∓ Q±( fb, fb),

and thus the estimate on Ferr highly relies on the Z -norm bounds of fr and fb. Recall
the estimate (3.38) in Lemma 3.6 that

M
d−3

2 ‖∇x fb‖L2,r0
v L2

x
� M

d−1
2 −s N

max{s0,−γ }− d−1
2

2 ,

M
d−1

2 ‖ fb‖L2,r0
v L2

x
� M

d−1
2 −s N

max{s0,−γ }− d−1
2

2 .

For the case γ ∈ ( 1−d
2 , 0], the extra smallness comes from the factor N

max{s0,−γ }− d−1
2

2 as
we have required that s0 < d−1

2 and N2 � M . Thus, it is enough to deal with the hardest

endpoint case that γ = 1−d
2 , in which the M

d−3
2 ‖∇x • ‖

L
2,r0
v L2

x
and M

d−1
2 ‖ • ‖

L
2,r0
v L2

x

norms of fb are the order of M
d−1

2 −s and hence would not give any smallness for
s < d−1

2 . Additionally, we only need to prove the d = 3 case as the d = 2 case follows
from a similar way.

In the section, we set d = 3, γ = −1 and hence r0 = 0, for which the Z -norm is

‖ f (t)‖Z =‖∇x f (t)‖L2
vL

2
x

+ M‖ f (t)‖L2
vL

2
x

+ N−1
2 ‖ f (t)‖L1

vL
∞
x

+ N
1
5

2 ‖ f (t)‖
L

5
3
v L∞

x

+ M−1N−1
2 ‖∇x f (t)‖L1

vL
∞
x

+ M−1N
1
5

2 ‖∇x f (t)‖
L

5
3
v L∞

x

.

(3.48)

The following is the main result about the Z -norm bounds on the error term Ferr.

Proposition 3.9 (Z -norm bounds on Ferr). For T∗ ≤ τ ≤ t ≤ 0,

∥∥∥
∫ t

τ

e−(t−t0)v·∇x Ferr(t0) dt0
∥∥∥
Z

� M−1. (3.49)

We deal with all of the terms in the following separate sections. In Sect. 3.3.1, we
give estimates on the term v · ∇x fr. In Sect. 3.3.2, we handle the bilinear terms which
contain fr. Finally, we deal with Q±( fb, fb) in Sects. 3.3.3, 3.3.4, which are the most
intricate parts.

The estimates are mainly achieved by moving the t0 integration to the outside as
follows: ∥∥∥

∫ t

τ

e−(t−t0)v·∇x Ferr(t0) dt0
∥∥∥
Z

� |T∗|‖Ferr‖L∞
t Z .

The only exception is the treatment of the bound on L1
vL

∞
x of Q±( fb, fb), where a

substantial gain is captured by carrying out the t0 integration first.
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3.3.1. Analysis of v · ∇x fr

Lemma 3.10. For T∗ ≤ τ ≤ t ≤ 0,
∥∥∥

∫ t

τ

e−(t−t0)v·∇x (v · ∇x fr)(t0) dt0
∥∥∥
Z

� M−1. (3.50)

Proof. As we have required that N1 � M in (3.12), the desired decay bound is achieved
provided the upper bound carries the smallness factor N−δ

1 for some δ > 0.
The ‖∇x • ‖L2

vL
2
x

and M‖ • ‖L2
vL

2
x

estimates.
It suffices to deal with the ‖∇x •‖L2

vL
2
x

norm, as the estimate for the M‖•‖L2
vL

2
x

norm

follows the same way. Noting that fr is supported on
{
|v| � N−1

1

}
, we have

‖∇x (v · ∇x fr)‖L2
vL

2
x

�N−1
1 ‖�x fr‖L2

vL
2
x

� N−1
1 M2−s exp

[
|t |M1−s

]
〈|t |M1−s〉2,

(3.51)

where the last inequality follows from the proof of (3.26) with one x-derivative producing
a factor of M . We then insert in |T∗| = Ms−1(ln ln ln M) to get

∥∥∥∇x

∫ t

τ

e−(t−t0)v·∇x (v · ∇x f )(t0) dt0
∥∥∥
L2

vL
2
x

� |T∗| sup
t0∈[T∗,0]

‖∇x (v · ∇x fr)‖L2
vL

2
x

� Ms−1(ln ln ln M)N−1
1 M2−s(ln ln M)3

� N−1
1 M(ln ln M)4.

The N−1
2 ‖ • ‖L1

vL
∞
x

and M−1N−1
2 ‖∇x • ‖L1

vL
∞
x

estimates.

We only need to treat the M−1N−1
2 ‖∇x • ‖L1

vL
∞
x

norm, as the N−1
2 ‖ • ‖L1

vL
∞
x

norm
can be dealt with in a similar way. Recalling that (d = 3)

fr(t, x, v) = M
3
2 −s N

3
2

1 exp [−β(t, x, v)] χ(Mx)χ(N1v), (3.52)

we use the pointwise upper bound (3.17) to get

‖∇x (v · ∇x fr)‖L1
vL

∞
x

� N−1
1 M2+ 3

2 −s N
3
2

1 ‖ exp[−β(t, x, v)](∇2χ)(Mx)χ(N1v)‖L1
vL

∞
x

+ N−1
1 M1+ 3

2 −s N
3
2

1 ‖∇xβ(t, x, v) exp[−β(t, x, v)](∇χ)(Mx)χ(N1v)‖L1
vL

∞
x

+ N−1
1 M

3
2 −s N

3
2

1 ‖∇2
xβ(t, x, v) exp[−β(t, x, v)]χ(Mx)χ(N1v)‖L1

vL
∞
x

+ N−1
1 M

3
2 −s N

3
2

1 ‖|∇xβ(t, x, v)|2 exp[−β(t, x, v)]χ(Mx)χ(N1v)‖L1
vL

∞
x

� N−1
1 N

− 3
2

1 M2−sM
3
2 exp[M1−s |t |]〈M1−s |t |〉2.

When multiplied by |T∗| = Ms−1(ln ln ln M), this gives

M−1N−1
2

∥∥∥∇x

∫ t

τ

e−(t−t0)v·∇x (v · ∇x f )(t0) dt0
∥∥∥
L1

vL
∞
x
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� |T∗|N− 5
2

1 N−1
2 M1−sM

3
2 exp[M1−s |T∗|]〈M1−s |T∗|〉2

� N
− 5

2
1 N−1

2 M
3
2 (ln ln M)4. (3.53)

The N
1
5

2 ‖ • ‖
L

5
3
v L∞

x

and M−1N
1
5

2 ‖∇x • ‖
L

5
3
v L∞

x

estimates.

These two norms can be estimated in the same manner as (3.53) with the L1
v norm

replaced by the L
5
3
v norm. Therefore, we also have

M−1N
1
5

2

∥∥∥∇x

∫ t

τ

e−(t−t0)v·∇x (v · ∇x f )(t0) dt0
∥∥∥
L

5
3
v L∞

x

� |T∗|N−1
1 N

− 3
10

1 N
1
5

2 M1−sM
3
2 exp[M1−s |T∗|]〈M1−s |T∗|〉2

� N−1
1 N

− 3
10

1 N
1
5

2 M
3
2 (ln ln M)4

� N
− 11

10
1 M

3
2 (ln ln M)4, (3.54)

where in the last inequality we have used that N1 ≥ N2. ��

3.3.2. Analysis of Q+( fr, fb), Q±( fb, fr), and Q±( fr, fr) Before getting into the anal-
ysis of the terms, we recall some estimates on fb and fr, which are established in Lemma
3.6 and Lemma 3.7. That is,

‖ fb‖L∞([T∗,0];Z) �M1−s, (3.55)

‖ fr‖L∞([T∗,0];Z) �M1−s(ln ln M)2, (3.56)

‖ fr‖
1
6
L1

vL
∞
x

‖ fr‖
5
6

L
5
3
v L∞

x

�N
− 1

2
1 M

3
2 −s(ln ln M)2, (3.57)

M−1‖∇x fr‖
1
6
L1

vL
∞
x

‖∇x fr‖
5
6

L
5
3
v L∞

x

�N
− 1

2
1 M

3
2 −s(ln ln M)2, (3.58)

where the last two inequalities (3.57)–(3.58) follow from estimates (3.44), (3.46). In
addition, during the proof of the bilinear estimate on Q± in Lemma 3.13 we postpone
to Sect. 3.4, we actually have that

‖Q−( fb, fr)‖Z � ‖ fb‖Z
(

‖ fr‖
1
6
L1

vL
∞
x

‖ fr‖
5
6

L
5
3
v L∞

x

+ M−1‖∇x fr‖
1
6
L1

vL
∞
x

‖∇x fr‖
5
6

L
5
3
v L∞

x

)
,

‖Q+( fb, fr)‖Z � ‖ fb‖Z
(

‖ fr‖
1
6
L1

vL
∞
x

‖ fr‖
5
6

L
5
3
v L∞

x

+ M−1‖∇x fr‖
1
6
L1

vL
∞
x

‖∇x fr‖
5
6

L
5
3
v L∞

x

)
,

‖Q+( fr, fb)‖Z � ‖ fb‖Z
(

‖ fr‖
1
6
L1

vL
∞
x

‖ fr‖
5
6

L
5
3
v L∞

x

+ M−1‖∇x fr‖
1
6
L1

vL
∞
x

‖∇x fr‖
5
6

L
5
3
v L∞

x

)
,

‖Q±( fr, fr)‖Z � ‖ fr‖Z
(

‖ fr‖
1
6
L1

vL
∞
x

‖ fr‖
5
6

L
5
3
v L∞

x

+ M−1‖∇x fr‖
1
6
L1

vL
∞
x

‖∇x fr‖
5
6

L
5
3
v L∞

x

)
.
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Note that such an estimate is not possible for Q−( fr, fb), which is not contained in the
error terms. Therefore, for

(sgn, 1, 2) ∈ {(+, r, b), (±, b, r), (±, r, r)} ,

by estimates (3.55)–(3.57), we have

∥∥∥
∫ t

τ

e−(t−t0)v·∇x Qsgn( f1, f2)(t0) dt0
∥∥∥
Z

� |T∗| (‖ fr‖Z + ‖ fb‖Z )

(
‖ fr‖

1
6
L1

vL
∞
x

‖ fr‖
5
6

L
5
3
v L∞

x

+ M−1‖∇x fr‖
1
6
L1

vL
∞
x

‖∇x fr‖
5
6

L
5
3
v L∞

x

)

� |T∗|M1−s(ln ln M)2N
− 1

2
1 M

3
2 −s(ln ln M)2

� N
− 1

2
1 M

3
2 −s(ln ln M)5,

where in the last inequality we have inserted in |T∗| = Ms−1(ln ln ln M). This bound

suffices for our goal as it carries the smallness factor N
− 1

2
1 .

3.3.3. Analysis of Q−( fb, fb)

Lemma 3.11. For T∗ ≤ τ ≤ t ≤ 0,

∥∥∥
∫ t

τ

e−(t−t0)v·∇x Q−( fb, fb)(t0) dt0
∥∥∥
Z

� M−1. (3.59)

Proof. As we have required that N2 � M in (3.12), the desired smallness comes from
the factor N−δ

2 for some δ > 0. As the x-derivative, which is put on fb, produces a factor

of M , it is sufficient to estimate the L2
vL

2
x , L1

vL
∞
x and L

5
3
v L∞

x norms.
The M‖ • ‖L2

vL
2
x

estimate.
Note that

M
∥∥∥

∫ t

τ

e−(t−t0)v·∇x Q−( fb, fb)(t0) dt0
∥∥∥
L2

vL
2
x

� |T∗|M‖Q−( fb, fb)‖L∞
t (T∗,0;L2

vL
2
x )

.

(3.60)
We only need to control M‖Q−( fb, fb)‖L∞

t L2
vL

2
x
. Recall the upper bound (3.19) that

fb(t, x, u) �M1−s

N 2
2

J∑
j=1

K̃ j (x)I j (u), (3.61)

where

K̃ j (x) = χ

(MP⊥
e j x

10

)
χ

(
Pe j x

10N2

)
, I j (u) = χ(MP⊥

e j u)χ

(
10Pe j (u − N2e j )

N2

)
.
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Then we have

Q−( fb, fb)(t, x, v)

�
(
M1−s

N2
2

)2
⎛
⎜⎝ ∑

| j−k|�1

K̃ j (x)K̃k(x)Q
−(I j , Ik)(v) +

∑
| j−k|�1

K̃ j (x)K̃k(x)Q
−(I j , Ik)(v)

⎞
⎟⎠ .

(3.62)

Case I : | j − k| � 1.
For the case that | j − k| � 1, the summands in the double sum

∑J
k

∑J
j are reduced

to (MN2)
2. By Hölder and Hardy–Sobolev–Littlewood inequality (A.5), we obtain

(
M1−s

N 2
2

)2 ∥∥∥ ∑
| j−k|�1

K̃ j (x)K̃k(x)Q
−(I j , Ik)(v)

∥∥∥
L2
x L

2
v

�
(
M1−s

N 2
2

)2 ∥∥∥ ∑
j

K̃ j (x)I j (v)

∥∥∥
L2
x L

2
v

‖K̃k(x)‖L∞
x

∥∥∥
∫

Ik(u)

|u − v|du
∥∥∥
L∞

v

�
(
M1−s

N 2
2

)2 ∥∥∥ ∑
j

K̃ j (x)I j (v)

∥∥∥
L2
x L

2
v

‖Ik‖
1
3
L1

v
‖Ik‖

2
3
L2

v

�
(
M1−s

N 2
2

)2

(M−1N 2
2 )(M−2N2)

2
3

= M− 1
3 −2s N

− 4
3

2 (3.63)

where in the second-to-last inequality we have used the disjointness of the v-support to
get

∥∥∥ ∑
j

K̃ j (x)I j (v)

∥∥∥2

L2
x L

2
v

�
∑
j

‖K̃ j (x)‖2
L2
x
‖I j (v)‖2

L2
v

� (MN2)
2(M−2N2)

2 = M−2N 4
2 .

(3.64)

Case I I : | j − k| � 1.
For the case that | j − k| � 1, this implies that sin α j,k � (MN2)

−1, where α j,k
denotes the angle between e j and ek . Then we have

Q−(I j , Ik)(v) =I j (v)

∫
Ik(u)

|u − v|du

=I j (v)

∫
1

|u − v|χ(MP⊥
ek u)χ

(
10Pek (u − N2ek)

N2

)
du

�I j (v)

∫
1

|Pek (u − v)| + |P⊥
ek (u − v)|χ(MP⊥

ek u)χ

(
10Pek (u − N2ek)

N2

)
du.

Due to the v-support and u-support, we write

v = ae j + ce⊥
j , u = bek + de⊥

k
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where a ∼ b ∼ N2 and c ∼ d ∼ M−1. Therefore, this gives

|P⊥
ek (u − v)| =|P⊥

ek (bek + de⊥
k − ae j − ce⊥

j )|
�a|P⊥

ek e j | − d − c

�N2 sin α j,k − M−1 � M−1 (3.65)

where in the last inequality we have used that sin α j,k � (MN2)
−1. By the estimate

(3.65), we then set ξ = 〈u, ek〉 to get

I j (v)

∫
Ik(u)

|u − v|du �I j (v)

∫
1

|Pek (u − v)| + M−1 χ(MN⊥
ek u)χ

(
10Pek (u − N2ek)

N2

)
du

�I j (v)

∫
1

|ξ − 〈ek, v〉| + M−1 χ(Mξ⊥)χ

(
10(ξ − N2)

N2

)
dξdξ⊥

�I j (v)M−2
∫

1

|ξ | + M−1 χ

(
10(ξ + 〈ek, v〉 − N2)

N2

)
dξ

=I j (v)M−2N2

∫ 1

−1

M

MN2|ξ | + 1
χ

(
10(N2ξ + 〈ek, v〉 − N2)

N2

)
dξ

�I j (v)M−2N2

∫ 1

−1

M

MN2|ξ | + 1
dξ

�I j (v)
ln(MN2)

M2 . (3.66)

Consequently, we arrive at(
M1−s

N 2
2

)2 ∑
| j−k|�1

K̃ j (x)K̃k(x)Q
−(I j , Ik)

=
(
M1−s

N 2
2

)2 ∑
| j−k|�1

K̃ j (x)K̃k(x)I j (v)

∫
Ik(u)

|u − v|du

�
(
M1−s

N 2
2

)2 ∑
j,k

K̃ j (x)K̃k(x)I j (v)
ln(MN2)

M2

≤
(
M1−s

N 2
2

)2
ln(MN2)

M2

(
N2

|x | + M−1

)2

χ(
x

N2
)
∑
j

K̃ j (x)I j (v) (3.67)

where in the last inequality we have used that

∑
k

K̃k(x) =
J∑
k

χ

(
MP⊥

ek x

10

)
χ

(
Pek x

N2

)
�

(
N2

|x | + M−1

)2

χ

(
x

N2

)
. (3.68)

To see (3.68), we might as well take x = (0, 0, |x |) with M−1 ≤ |x | ≤ N2. Let θ j be
the angle between e j and (0, 0, 1). Then, we have

J∑
j

χ

(MP⊥
e j x

10

)
χ

(
Pe j x

N2

)
=

J∑
j

χ

(
M |x | sin θ j

10

)
=

∑
j :sin θ j� 1

|x |M

1 ∼ (MN2)2

(|x |M)2 = N2
2

|x |2 .
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Applying the L2
vL

2
x norm, we have

(
M1−s

N 2
2

)2 ∥∥∥ ∑
| j−k|�1

K̃ j (x)K̃k(x)Q
−(I j , Ik)

∥∥∥
L2

vL
2
x

�
(
M1−s

N 2
2

)2
ln(MN2)

M2

∥∥∥ ∑
j

K̃ j (x)I j (v)

∥∥∥
L2

vL
∞
x

∥∥∥
(

N2

|x | + M−1

)2

χ(
x

N2
)

∥∥∥
L2
x

�
(
M1−s

N 2
2

)2
ln(MN2)

M2 N
3
2

2 (M
1
2 N 2

2 )

= M
1
2 −2s N

− 1
2

2 ln(MN2) (3.69)

where we have used that
∥∥∥ ∑

j

K̃ j (x)I j (v)

∥∥∥
L2

vL
∞
x

�
∥∥∥ ∑

j

I j (v)

∥∥∥
L2

v

∼ N
3
2

2 ,

and

∥∥∥
(

N2

|x | + M−1

)2

χ

(
x

N2

)∥∥∥
L2
x

= M
1
2 N 2

2

∥∥∥
(

1

|x | + 1

)2

χ

(
x

MN2

)∥∥∥
L2
x

� M
1
2 N 2

2 .

(3.70)

Combining estimates (3.63) and (3.69) in the two cases, we finally reach

M‖Q−( fb, fb)‖L2
vL

2
x

� M
3
2 −2s N

− 1
2

2 ln(MN2).

Together with (3.60), we insert in |T∗| = Ms−1(ln ln ln M) to obtain

M
∥∥∥

∫ t

τ

e−(t−t0)v·∇x Q−( fb, fb)(t0) dt0
∥∥∥
L2

vL
2
x

� N
− 1

2
2 M

1
2 −s ln(MN2)(ln ln ln M),

which suffices for our goal.
The N−1

2 ‖ • ‖L1
vL

∞
x
estimate.

For convenience, we use the notation

D− =
∫ t

τ

e−(t−t0)v·∇x Q−( fb, fb)(t0)dt0.

From the analysis on Q−( fb, fb) in estimates (3.63) and (3.69), we actually get a
pointwise estimate on Q−( fb, fb) that

Q−( fb, fb)

�
(
M1−s

N 2
2

)2 ∑
j

K̃ j (x)I j (v)

[
ln(MN2)

M2

(
N2

|x | + M−1

)2

χ

(
x

N2

)
+ (M−2N2)

2
3

]
.
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Expanding D− gives that

D− =
∫ t

τ
Q−( fb, fb)(t0, x − v(t − t0), v)dt0

�
∫ t

τ

(
M1−s

N2
2

)2 ∑
j

K̃ j (x − v(t − t0))I j (v)

×
[

ln(MN2)

M2

(
N2

|x − v(t − t0)| + M−1

)2
χ

(
x − v(t − t0)

N2

)
+ (M−2N2)

2
3

]
dt0

� M−2s

N4
2

I (v)

[
ln(MN2)

∫ 0

T∗

(
N2

|x − v(t − t0)| + M−1

)2
χ

(
x − v(t − t0)

N2

)
dt0 + (MN2)

2
3

]
,

where in the last inequality we have used that

∑
j

K̃ j (x − v(t − t0))I j (v) ≤
∑
j

I j (v) =: I (v) ∼ 1{
9N2
10 ≤|v|≤ 11N2

10

}(v).

We then deal with the time integral. By change of variable, we have

I (v)

∫ 0

T∗

(
N2

|x − v(t − t0)| + M−1

)2

χ

(
x − v(t − t0)

N2

)
dt0

≤ I (v)

∫ |T∗|

T∗

(
MN2

|Mx − Mvσ | + 1

)2

χ

(
x − vσ

N2

)
dσ

≤ (MN2)
2 I (v)

M |v|
∫ M|T∗||v|

−M|T∗||v|

(
1∣∣σ − M |x |∣∣ + 1

)2

dσ

� MN2 I (v),

where in the last inequality we have used that |v| ∼ N2 and
∫ dτ

〈τ 〉2 � 1. Hence, after
carrying out the 1D dt0 integral, we arrive at

N−1
2 ‖D−‖L1

vL
∞
x

�N−1
2

M−2s

N 4
2

‖I (v)‖L1
v

[
ln(MN2)MN2 + (MN2)

2
3

]

�N−1
2

M−2s

N 4
2

N 3
2 ln(MN2)MN2

=N−1
2 M1−2s ln(MN2). (3.71)

The N
1
5

2 ‖ • ‖
L

5
3
v L∞

x

estimate.

By the interpolation inequality, we have

N
1
5

2 ‖D−‖
L

5
3
v L∞

x

≤
(
N−1

2 ‖D−‖L1
vL

∞
x

) 1
5
(
N

1
2

2 ‖D−‖L2
vL

∞
x

) 4
5

. (3.72)
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For the L2
vL

∞
x norm on D−, by Hölder inequality, we have

N
1
2

2 ‖D−‖L2
vL

∞
x

�N
1
2

2 |T∗|‖Q−( fb, fb)‖L2
vL

∞
x

�N
1
2

2 |T∗|
∥∥∥

∫
fb(x, u)

|u − v| du
∥∥∥
L∞

v L∞
x

‖ fb‖L2
vL

∞
x

.

We then use the L∞ estimate (A.5) in Lemma A.3 and interpolation inequality to get

∥∥∥
∫

fb(x, u)

|u − v| du
∥∥∥
L∞

v L∞
x

� ‖ fb‖
1
6
L1

vL
∞
x

‖ fb‖
5
6

L
5
3
v L∞

x

� N−1
2 ‖ fb‖L1

vL
∞
x

+ N
1
5

2 ‖ fb‖
L

5
3
v L∞

x

≤ ‖ fb‖Z .

By the Z -norm bound on fb in Lemma 3.6, we have that

‖ fb‖Z � M1−s, N
1
2

2 ‖ fb‖L2
vL

∞
x

� M1−s .

Thus, inserting in |T∗| = Ms−1(ln ln ln M), we obtain

N
1
2

2 ‖D−‖L2
vL

∞
x

�M1−s(ln ln ln M). (3.73)

Combining estimates (3.71), (3.72) and (3.73), we reach

N
1
5

2 ‖D−‖
L

5
3
v L∞

x

� N
− 1

5
2 M1− 6

5 s ln(MN2)(ln ln ln M). (3.74)

This bound is enough as it carries the smallness parameter N
− 1

5
2 . ��

3.3.4. Analysis of Q+( fb, fb)

Lemma 3.12. For T∗ ≤ τ ≤ t ≤ 0,

∥∥∥
∫ t

τ

e−(t−t0)v·∇x Q+( fb, fb)(t0) dt0
∥∥∥
Z

� M−1. (3.75)

Proof. In a similar way to estimate Q−( fb, fb), we obtain the desired estimate provided
the upper bound carries the smallness factor N−δ

2 for some δ > 0. For convenience, we
use the notation

D+ =
∫ t

τ

e−(t−t0)v·∇x Q+( fb, fb)(t0)dt0.

The x-derivative produces the factor of M , so we only need to estimate the L2
vL

2
x , L1

vL
∞
x

and L
5
3
v L∞

x norms.
The M‖ • ‖L2

vL
2
x
estimate.

We use again the upper bound (3.19) that

fb(t, x, u) �M1−s

N 2
2

J∑
j=1

K̃ j (x)I j (u), (3.76)
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where

K̃ j (x) = χ

(MP⊥
e j x

10

)
χ

(
Pe j x

10N2

)
, I j (u) = χ(MP⊥

e j u)χ

(
10Pe j (u − N2e j )

N2

)
.

Then we expand Q+( fb, fb) to get

‖Q+( fb, fb)‖2
L2

vL
2
x

� M4−4s

N 8
2

∑
j1, j2, j3, j4

∫
K̃ j1(x)K̃ j2(x)K̃ j3(x)K̃ j4(x)Q

+(I j1 , I j2)(v)Q+(I j3, I j4)(v)dxdv.

By using that K̃ j2(x) � 1 and K̃ j4(x) � 1, we obtain

∑
j1, j2, j3, j4

∫
K̃ j1(x)K̃ j2(x)K̃ j3(x)K̃ j4(x)Q

+(I j1 , I j2)(v)Q+(I j3 , I j4)(v)dxdv

�
∑

j1, j2, j3, j4

∫
K̃ j1(x)K̃ j3(x)dx

∫
Q+(I j1 , I j2)(v)Q+(I j3 , I j4)(v)dv

=
∑
j1, j3

∫
K̃ j1(x)K̃ j3(x)dx

∫
Q+(I j1 , I )(v)Q+(I j3 , I )(v)dv

where

I (v) =
J∑
j

I j (v) ∼ 1{
9N2
10 ≤|v|≤ 11N2

10

}(v).

By Hölder inequality and bilinear estimate (A.6) for Q+ in Lemma A.4,

‖Q+( fb, fb)‖2
L2

vL
2
x

�M4−4s

N 8
2

∑
j1, j3

∫
K̃ j1(x)K̃ j3(x)dx‖Q+(I j1 , I )‖L2

v
‖Q+(I j3 , I )‖L2

v

�M4−4s

N 8
2

‖I‖2
L3

v

∑
j1, j3

∫
K̃ j1(x)K̃ j3(x)dx‖I j1‖

L
6
5
v

‖I j3‖L 6
5
.

Using ‖I j‖
L

6
5
v

� (M−2N2)
5
6 , ‖I‖L3

v
� N2, estimates (3.68) and (3.70) for the sum, we

obtain

‖Q+( fb, fb)‖2
L2

vL
2
x

�M4−4s

N 8
2

(M−2N2)
5
3 N 2

2

∥∥∥ ∑
j

K̃ j

∥∥∥2

L2
x

�M4−4s

N 8
2

(M−2N2)
5
3 N 2

2

∥∥∥
(

N2

|x | + M−1

)2

χ

(
x

N2

)∥∥∥2

L2
x

�M4−4s

N 8
2

(M−2N2)
5
3 N 2

2 (MN 4
2 )

=M
5
3 −4s N

− 1
3

2 .
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Thus, we arrive at

M‖Q+( fb, fb)‖L2
vL

2
x

� N
− 1

6
2 M

11
6 −2s . (3.77)

Upon multiplying by the time factor |T∗| = Ms−1(ln ln ln M), this yields a desired
bound

M‖D+‖L2
vL

2
x

�N
− 1

6
2 M

5
6 −s(ln ln ln M). (3.78)

The N−1
2 ‖ • ‖L1

vL
∞
x
estimate.

Recall that

fb(t) =M1−s

N 2
2

J∑
j=1

K j (x − vt)I j (v),

where K j (x) = χ(MP⊥
e j x)χ

(
Pe j x

N2

)
, I j (v) = χ(MP⊥

e j v)χ

(
10Pe j (v−N2e j )

N2

)
. The gain

term is

Q+( f, g) =
∫
S2

∫
R3

B(u − v, ω) f (v∗)g(u∗) du dω,

with the relationship that

v∗ =P‖
ωu + P⊥

ω v, u∗ = P‖
ωv + P⊥

ω u,

v =P⊥
ω v∗ + P‖

ωu
∗, u = P‖

ωv∗ + P⊥
ω u∗.

Then, expanding D+ gives

D+ =M2−2s

N 4
2

J∑
k

J∑
j

∫ t

τ

e−(t−t0)v·∇x Q+(Kk(x − tv)Ik(v), K j (x − tv)I j (v))(t0)dt0

=M2−2s

N 4
2

J∑
k

J∑
j

∫
S2

∫
R3

B(u − v, ω)S j,k(t, x, ω, u∗, v∗)dudω,

where

S j,k(t, x, ω, u∗, v∗)

=
∫ t

τ

Kk(x − v(t − t0) − v∗t0)Ik(v∗)K j (x − v(t − t0) − u∗t0)I j (u∗)dt0. (3.79)

We estimate by∥∥D+
∥∥
L1

vL
∞
x

� M2−2s

N 4
2

∥∥∥∥∥∥
J∑
k

J∑
j

∫
S2

∫
R3

B(u − v, ω)S j,k(t, x, ω, u∗, v∗)dudω

∥∥∥∥∥∥
L1

vL
∞
x

� M2−2s

N 4
2

J∑
k

J∑
j

∫
S2

∫
R3×R3

B(u − v, ω)
∥∥S j,k(t, x, ω, u∗, v∗)

∥∥
L∞
x
dudvdω
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= M2−2s

N 4
2

J∑
k

J∑
j

∫
S2

∫
R3×R3

B(u − v, ω)
∥∥S j,k(t, x, ω, u∗, v∗)

∥∥
L∞
x
du∗dv∗dω

� M2−2s

N 4
2

J∑
k

J∑
j

∫
du∗

∫
dv∗

∫
S2
dω

1

|u∗ − v∗|
∥∥S j,k(t, x, ω, u∗, v∗)

∥∥
L∞
x

(3.80)

where in the second-to-last equality we used the change of variable, and in the last
inequality we used that B(u − v, ω) = |u − v|−1b(cos θ) � |u − v|−1 and |u − v| =
|u∗ − v∗|. We note that

v − u∗ = P⊥
ω (v∗ − u∗), v − v∗ = −P‖

ω(v∗ − u∗),

and hence get

x − v(t − t0) − v∗t0 = x − vt − P‖
ω(v∗ − u∗)t0,

x − v(t − t0) − u∗t0 = x − vt + P⊥
ω (v∗ − u∗)t0.

For fixed u∗ and v∗, we get

S j,k(t, x, ω, u∗, v∗)

�
∫ 0

T∗
χ

(
MP⊥

ek (x − vt − P‖
ω(v∗ − u∗)t0)

)
χ

(
Pek (x − vt − P‖

ω(v∗ − u∗)t0)
N2

)
Ik(v

∗)

χ
(

MP⊥
e j (x − vt + P⊥

ω (v∗ − u∗)t0)
)

χ

(
Pe j (x − vt + P⊥

ω (v∗ − u∗)t0)
N2

)
I j (u

∗)dt0

≤ Ik(v
∗)I j (u∗)Ek(t, x, v, ω, u∗, v∗), (3.81)

where

Ek(t, x, v, ω, u∗, v∗) =:
∫ 0

T∗
χ

(
MP⊥

ek (x − vt − P‖
ω(v∗ − u∗)t0)

)
dt0.

We split into two cases in terms of the angle α j,k between e j and ek .
Case I : α j,k �= 0. (In this case, we have that sin α j,k � 1

MN2
.)

Now, we get into the analysis of Ek(t, x, v, ω, u∗, v∗). First of all, it gives a trial
upper bound that

Ek(t, x, v, ω, u∗, v∗) ≤ |T∗| ≤ 1. (3.82)

By the radial symmetry and monotonicity of the cutoff function χ , we obtain∫
R

χ(
−→n t0 + −→m )dt0 ≤ 1

|−→n |
∫
R

χ(t0)dt0. (3.83)

To see (3.83), without loss of generality, we take −→n = (0, 0, 1) and −→m = (m1,m2,m3)

to get
∫
R

χ(
−→n t0 + −→m )dt0 =

∫
R

χ

(√
m2

1 + m2
2 + (t0 + m3)2

)
dt0
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≤
∫
R

χ (|t0 + m3|) dt0 =
∫
R

χ (t0) dt0.

Thus, by (3.83) we arrive at

Ek(t, x, v, ω, u∗, v∗) =
∫ 0

T∗
χ

(
MP⊥

ek (x − vt − P‖
ω(v∗ − u∗)t0)

)
dt0

�
∫

χ(t0)dt0

M |P⊥
ek P

‖
ω(v∗ − u∗)|

� 1

M sin φk

1

|P‖
ω(v∗ − u∗)|

, (3.84)

where φk is the angle between ω and ek . Due to the v∗-support and u∗-support, we have

|v∗ − u∗|2 ∼ |aek − be j |2 =(a − b)2 + 2ab(1 − cos α j,k)

≥N 2
2 (1 − cos α j,k) � N 2

2 (sin α j,k)
2. (3.85)

Let θ be the angle between ω and v∗ − u∗. Then we obtain

|P‖
ω(v∗ − u∗)| = |v∗ − u∗| cos θ � N2 sin α j,k cos θ. (3.86)

Therefore, we get a useful upper bound that

Ik(v
∗)I j (u∗)Ek(t, x, v, ω, u∗, v∗) � Ik(v∗)I j (u∗)

MN2 sin φk cos θ sin α j,k
. (3.87)

Now, we are able to establish the effective bound on Ek(t, x, v, ω, u∗, v∗). Set

A =
{
ω ∈ S

2 : φk ≤ 1

MN2

} ⋃ {
π

2
− θ ≤ 1

MN2

}
,

and denote by Ac the complementary set of A. With the trivial bound that Ek ≤ 1 on
the set A, we have∫

S2
‖Ek(t, x, v, ω, u∗, v∗)‖L∞

x
dω ≤

∫
A

1dω +
∫
Ac

‖Ek(t, x, v, ω, u∗, v∗)‖L∞
x
dω

� 1

(MN2)2 +
∫
Ac

‖Ek(t, x, v, ω, u∗, v∗)‖L∞
x
dω.

(3.88)

For the second term on the right hand side of (3.88), by the upper bound (3.87), we get

Ik(v
∗)I j (u∗)

∫
Ac

‖Ek(t, x, v, ω, u∗, v∗)‖L∞
x
dω

≤ Ik(v∗)I j (u∗)
MN2 sin α j,k

∫
Ac

1

sin φk cos θ
dω

� Ik(v∗)I j (u∗)
MN2 sin α j,k

[∫
Ac

1

(sin φk)2 dω +
∫
Ac

1

(cos θ)2 dω

]
. (3.89)
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For the last two terms on the right hand side of (3.89), by the rotational symmetry, we
might as well to consider

∫
S2

⋂{
|φ|≥ 1

MN2

} 1

(sin φ)2 dω,

where φ is the angle between the z-vector (0, 0, 1) and ω. Using the surface integral
formula,

∫
S2

⋂{
|φ|≥ 1

MN2

} 1

(sin φ)2 dω �
∫

|φ|≥ 1
MN2

| sin φ|
(sin φ)2 dφ �

∫ π
2

|φ|≥ 1
MN2

1

|φ|dφ � ln(MN2).

Together with (3.89), this bound yields

Ik(v
∗)I j (u∗)

∫
Ac

‖Ek(t, x, v, ω, u∗, v∗)‖L∞
x
dω ≤ Ik(v∗)I j (u∗) ln(MN2)

MN2 sin α j,k
. (3.90)

Therefore, combining estimates (3.81), (3.88) and (3.90), we arrive at

∫
S2

‖S j,k(t, x, ω, u∗, v∗)‖L∞
x
dω � ln(MN2)

MN2 sin α j,k
Ik(v

∗)I j (u∗). (3.91)

Then, going back to the estimate (3.80) on D+, we have

‖D+‖L1
vL

∞
x

� M2−2s

N 4
2

∑
k �= j

∫
du∗

∫
dv∗

∫
S2
dω

1

|u∗ − v∗|‖S j,k(t, x, ω, u∗, v∗)‖L∞
x

� M2−2s

N 4
2

∑
k �= j

ln(MN2)

MN2 sin α j,k

∫
du∗

∫
dv∗ 1

|u∗ − v∗| Ik(v
∗)I j (u∗). (3.92)

In this case, since we have that sin α j,k � 1
MN2

, we can use estimate (3.66), which is
established in the analysis of Q−( fb, fb), to get

∫
du∗

∫
dv∗ 1

|u∗ − v∗| Ik(v
∗)I j (u∗) � ln(MN2)

M2

∫
I j (v

∗)dv∗ = ln(MN2)

M2 M−2N2.

(3.93)

Consequently, combining estimates (3.92) and (3.93), we arrive at

N−1
2 ‖D+‖L1

vL
∞
x

�N−1
2

M2−2s

N 4
2

J∑
k �= j

ln(MN2)

MN2 sin α j,k

ln(MN2)

M4 N2

�N−1
2

M2−2s

N 4
2

ln(MN2)

MN2
(MN2)

4 ln(MN2)

M4 N2

=N−1
2 M1−2s [ln(MN2)]

2 , (3.94)



Well/Ill-Posedness of the Boltzmann Equation Page 39 of 51   283 

where in the second-to-last inequality we have used that

J∑
k �= j

1

sin α j,k
=

J∑
j

MN2∑
i=1

∑
sin α j,k∼ i

MN2

1

sin α j,k

�
J∑
j

MN2∑
i=1

MN2 sin α j,k
1

sin α j,k
� (MN2)

4.

This completes the estimate of the L1
vL

∞
x norm for D+.

Case I I : α j,k ∼ 0. (That is, | j − k| � 1.)
In this case, the summands in the double sum

∑J
k

∑J
j are reduced to (MN2)

2, so we
only need to use the trivial bound that∫

S2
‖S j,k(t, x, ω, u∗, v∗)‖L∞

x
dω � Ik(v

∗)I j (u∗).

Then, with the estimate (3.80) on D+, we use Hardy–Sobolev–Littlewood inequality
(A.2) to get

‖D+‖L1
vL

∞
x

� M2−2s

N 4
2

J∑
k

J∑
j

∫
du∗

∫
dv∗

∫
S2
dω

1

|u∗ − v∗|
∥∥S j,k(t, x, ω, u∗, v∗)

∥∥
L∞
x

� M2−2s

N 4
2

J∑
| j−k|�1

∫
du∗

∫
dv∗ 1

|u∗ − v∗| Ik(v
∗)I j (u∗)

� M2−2s

N 4
2

J∑
| j−k|�1

‖I j‖
L

6
5
‖Ik‖

L
6
5

� M2−2s

N 4
2

(MN2)
2(M−2N2)

5
3

� M
2
3 −2s N

− 1
3

2 . (3.95)

Combining estimates (3.94) and (3.95) in the two cases, we finally reach

N−1
2 ‖D+‖L1

vL
∞
x

� M1−2s N−1
2 [ln(MN2)]

2 . (3.96)

The N
1
5

2 ‖ • ‖
L

5
3
v L∞

x

estimate.

By the interpolation inequality, we have

N
1
5

2 ‖D+‖
L

5
3
v L∞

x

≤
(
N−1

2 ‖D+‖L1
vL

∞
x

) 1
5
(
N

1
2

2 ‖D+‖L2
vL

∞
x

) 4
5

. (3.97)

For the L2
vL

∞
x norm, by the bilinear estimate (A.6) for Q+ in Lemma A.4, we have

N
1
2

2 ‖D+‖L2
vL

∞
x

�N
1
2

2 |T∗|‖Q+( fb, fb)‖L2
vL

∞
x
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�N
1
2

2 |T∗|‖ fb‖
L

3
2
v L∞

x

‖ fb‖L2
vL

∞
x

�|T ∗|M1−sM1−s

�M1−s(ln ln ln M), (3.98)

where we have used the bounds on fb established in Lemma 3.6 that

‖ fb‖
L

3
2
v L∞

x

≤N−1
2 ‖ fb‖L1

vL
∞
x

+ N
1
5

2 ‖ fb‖
L

5
3
v L∞

x

≤ ‖ fb‖Z � M1−s,

N
1
2

2 ‖ fb‖L2
vL

∞
x

�M1−s .

Thus, combining estimates (3.96), (3.97) and (3.98), we reach

N
1
5

2 ‖D+‖
L

5
3
v L∞

x

� N
− 1

5
2 M1− 6

5 s(ln ln ln M) ln(MN2), (3.99)

which is sufficient for our goal. ��

3.4. Z-norm bounds on the correction term. Recall the equation (3.3) for the correction
term fc that

{
∂t fc + v · ∇x fc = G,

G = ±Q±( fc, fa) ± Q±( fa, fc) ± Q±( fc, fc) − Ferr.
(3.100)

For T∗ = −Ms− d−1
2 (ln ln ln M) ≤ t ≤ 0, we are looking for the correction term fc(t)

with

‖ fc(t)‖L2,r0
v H

s0
x

� M−1/2. (3.101)

To achieve it, we apply a perturbation argument and work on the stronger Z -norm (3.36).
By interpolation inequality, for d = 2, 3, we indeed have

‖ f ‖
L

2,r0
v H

s0
x

≤ ‖ f ‖
L

2,r0
v H

d−1
2

x

≤‖ f ‖
3−d

2

L
2,r0
v L2

x

‖〈∇x 〉 f ‖
d−1

2

L
2,r0
v L2

x

≤M
d−1

2 ‖ f ‖
L

2,r0
v L2

x
+ M

d−3
2 ‖〈∇x 〉 f ‖L2,r0

v L2
x

≤ ‖ f ‖Z .

Certainly, there are multiple choices of Z -norms. As we are fully in the perturbation
regime, we expect the correction term fc to be much smoother and hence we choose the
L2,r0

v H1
x norm. On the other hand, to beat the difficulties caused by singularities of soft

potentials, the L1
vL

∞
x and L

5
3
v L∞

x norms9 are needed as shown in the following estimate
(3.102).

In the section, we first prove a closed estimate for the loss and gain terms in Lemma
3.13 and then use it to conclude the existence of small correction term fc(t) in Proposition
3.14.

9 The index 5
3 is just one of the multiple choices. We choose it, as it would not yield much more difficulties

in the estimates on the approximation solution and error terms.
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Lemma 3.13. (Bilinear Z -norm estimates for loss/gain operator Q±) For f1, f2, we
have

‖Q±( f1, f2)‖Z � ‖ f1‖Z‖ f2‖Z .

Proof. We only need to prove that

‖Q±( f1, f2)‖Z � ‖ f1‖Z
(

‖ f2‖1+ 5γ
2d

L1
vL

∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

+ M−1‖∇x f2‖1+ 5γ
2d

L1
vL

∞
x

‖∇x f2‖
−5γ
2d

L
5
3
v L∞

x

)
.

(3.102)

since we have that

‖ f ‖1+ 5γ
2d

L1
vL

∞
x

‖ f ‖
−5γ
2d

L
5
3
v L∞

x

≤N−1
2 ‖ f ‖L1

vL
∞
x

+ N
2d
5 +γ

2 ‖ f ‖
L

5
3
v L∞

x

≤ ‖ f ‖Z ,

M−1‖∇x f ‖1+ 5γ
2d

L1
vL

∞
x

‖∇x f ‖
−5γ
2d

L
5
3
v L∞

x

≤M−1N−1
2 ‖∇x f ‖L1

vL
∞
x

+ M−1N
2d
5 +γ

2 ‖∇x f ‖
L

5
3
v L∞

x

≤ ‖ f ‖Z .

The M
d−3

2 ‖∇x • ‖
L

2,r0
v L2

x
and M

d−1
2 ‖ • ‖

L
2,r0
v L2

x
estimates for Q±( f1, f2).

It suffices to deal with M
d−3

2 ‖∇x • ‖
L

2,r0
v L2

x
norm as the M

d−1
2 ‖ • ‖

L
2,r0
v L2

x
norm can

be estimated in a similar way. For the estimate on Q−, we use Leibniz rule and Hölder
inequality to get

M
d−3

2 ‖∇x Q
−( f1, f2)‖L2,r0

v L2
x

≤ M
d−3

2 ‖Q−(∇x f1, f2)‖L2,r0
v L2

x
+ M

d−3
2 ‖Q−( f1,∇x f2)‖L2,r0

v L2
x

� M
d−3

2

∥∥∥(∇x f1)(x, v)

∫
f2(x, u)

|u − v|−γ
du

∥∥∥
L

2,r0
v L2

x

+ M
d−3

2

∥∥∥ f1(x, v)

∫ ∇x f2(x, u)

|u − v|−γ
du

∥∥∥
L

2,r0
v L2

x

� M
d−3

2 ‖∇x f1‖L2,r0
v L2

x

∥∥∥
∫

f2(x, u)

|u − v|−γ
du

∥∥∥
L∞

v,x

+ M
d−3

2 ‖ f1‖L2,r0
v L2

x

∥∥∥
∫ ∇x f2(x, u)

|u − v|−γ
du

∥∥∥
L∞

v,x

.

Then by L∞ estimate (A.4) in Lemma A.3, we obtain

M
d−3

2 ‖∇x Q
−( f1, f2)‖L2,r0

v L2
x

� M
d−3

2 ‖∇x f1‖L2,r0
v L2

x
‖ f2‖1+ 5γ

2d
L1

vL
∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

+ M
d−1

2 ‖ f1‖L2,r0
v L2

x
M−1‖∇x f2‖1+ 5γ

2d
L1

vL
∞
x

‖∇x f2‖
−5γ
2d

L
5
3
v L∞

x

� ‖ f1‖Z‖ f2‖Z .
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For the estimate on Q+, from the conservation of energy that |v|2+|u|2 = |v∗|2+|u∗|2,
we use Leibniz rule to get

|〈v〉r0∇x Q
+( f1, f2)| �Q+(〈v〉r0 |∇x f1|, | f2|) + Q+(〈v〉r0 | f1|, |∇x f2|)

+ Q+(|∇x f1|, 〈v〉r0 | f2|) + Q+(| f1|, 〈v〉r0 |∇x f2|).
Then by bilinear estimate (A.6) on Q+, we have

M
d−3

2 ‖∇x Q
+( f1, f2)‖L2,r0

v L2
x

� M
d−3

2 ‖〈v〉r0∇x f1‖L2
vL

2
x
‖ f2‖

L
d

d+γ
v L∞

x

+ M
d−1

2 ‖〈v〉r0 f1‖L2
vL

2
x
M−1‖∇x f2‖

L
d

d+γ
v L∞

x

+ M−1‖∇x f1‖
L

d
d+γ
v L∞

x

M
d−1

2 ‖〈v〉r0 f2‖L2
vL

2
x

+ ‖ f1‖
L

d
d+γ
v L∞

x

M
d−3

2 ‖〈v〉r0∇x f2‖L2
vL

2
x
.

By the interpolation inequality that

‖ f ‖
L

d
d+γ
v L∞

x

≤ ‖ f ‖1+ 5γ
2d

L1
vL

∞
x

‖ f ‖
−5γ
2d

L
5
3
v L∞

x

,

we arrive at

M
d−3

2 ‖∇x Q
+( f1, f2)‖L2,r0

v L2
x

� ‖ f1‖Z‖ f2‖Z .

The N γ
2 ‖ • ‖L1

vL
∞
x
and N

2d
5 +γ

2 ‖ • ‖
L

5
3
v L∞

x

estimates for Q±( f1, f2).

For the estimate on Q−, we use Hölder inequality and the L∞ estimate (A.4) to get

N γ
2 ‖Q−( f1, f2)‖L1

vL
∞
x

�N γ
2 ‖ f1‖L1

vL
∞
x

∥∥∥
∫

f2(x, u)

|u − v|−γ
du

∥∥∥
L∞

v L∞
x

�N γ
2 ‖ f1‖L1

vL
∞
x

‖ f2‖1+ 5γ
2d

L1
vL

∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

�‖ f1‖Z‖ f2‖Z . (3.103)

In the same way, we also have

N
2d
5 +γ

2 ‖Q−( f1, f2)‖
L

5
3
v L∞

x

�N
2d
5 +γ

2 ‖ f1‖
L

5
3
v L∞

x

‖ f2‖1+ 5γ
2d

L1
vL

∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

�‖ f1‖Z‖ f2‖Z .

For the estimate on Q+, by the bilinear estimate (A.6) for Q+ in Lemma A.4, we have

N γ
2 ‖Q+( f1, f2)‖L1

vL
∞
x

� N γ
2 ‖ f1‖L1

vL
∞
x

‖ f2‖1+ 5γ
2d

L1
vL

∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

� ‖ f1‖Z‖ f2‖Z .

(3.104)

Similarly, by the bilinear estimate (A.6) in Lemma A.4, we obtain

N
2d
5 +γ

2 ‖Q+( f1, f2)‖
L

5
3
v L∞

x

� N
2d
5 +γ

2 ‖ f1‖
L

5
3
v L∞

x

‖ f2‖1+ 5γ
2d

L1
vL

∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

� ‖ f1‖Z‖ f2‖Z .
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The M−1N γ
2 ‖∇x • ‖L1

vL
∞
x
and M−1N

2d
5 +γ

2 ‖∇x • ‖
L

5
3
v L∞

x

estimates for Q±( f1, f2).

For the estimate on Q−, in a similar way to (3.103), we use the Leibniz rule to get

M−1N γ
2 ‖∇x Q

−( f1, f2)‖L1
vL

∞
x

≤ M−1N γ
2

(
‖Q−(∇x f1, f2)‖L1

vL
∞
x

+ ‖Q−( f1,∇x f2)‖L1
vL

∞
x

)

� M−1N γ
2 ‖∇x f1‖L1

vL
∞
x

‖ f2‖1+ 5γ
2d

L1
vL

∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

+ N γ
2 ‖ f1‖L1

vL
∞
x
M−1‖∇x f2‖1+ 5γ

2d
L1

vL
∞
x

‖∇x f2‖
−5γ
2d

L
5
3
v L∞

x

� ‖ f1‖Z‖ f2‖Z .

The same also holds for the M−1N
2d
5 +γ

2 ‖∇x Q−( f1, f2)‖
L

5
3
v L∞

x

norm.

For the estimate on Q+, in a similar way to (3.104), we also have

M−1N γ
2 ‖∇x Q

+( f1, f2)‖L1
vL

∞
x

≤ M−1N γ
2

(
‖Q+(∇x f1, f2)‖L1

vL
∞
x

+ ‖Q+( f1,∇x f2)‖L1
vL

∞
x

)

� M−1N γ
2 ‖∇x f1‖L1

vL
∞
x

‖ f2‖1+ 5γ
2d

L1
vL

∞
x

‖ f2‖
−5γ
2d

L
5
3
v L∞

x

+ N γ
2 ‖ f1‖L1

vL
∞
x
M−1‖∇x f2‖1+ 5γ

2d
L1

vL
∞
x

‖∇x f2‖
−5γ
2d

L
5
3
v L∞

x

� ‖ f1‖Z‖ f2‖Z .

The estimate for the M−1N
2d
5 +γ

2 ‖∇x Q+( f1, f2)‖
L

5
3
v L∞

x

norm follows the same way by

using bilinear estimate (A.6) in Lemma A.4. ��
Now, we take a perturbation argument to generate the correction term fc(t) using the

Z -norm bounds on fa in Proposition 3.8 and the Z -norm bounds on Ferr in Proposition
3.9.

Proposition 3.14. Suppose that fc solves (3.100) with fc(0) = 0. Then for all t such
that

T∗ = −Ms− d−1
2 (ln ln ln M) ≤ t ≤ 0,

we have the bound
‖ fc(t)‖Z � M−1/2. (3.105)

Proof. Let the time interval T∗ ≤ t ≤ 0 be partitioned as

T∗ = Tn < Tn−1 < Tn−2 < · · · < T2 < T1 < T0 = 0

where

Tj = − jMs− d−1
2√

ln M
, n = √

ln M(ln ln ln M).
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Thus, the length of each time interval I j = [Tj+1, Tj ] is

|I j | = Ms− d−1
2√

ln M
.

For t ∈ I j = [Tj+1, Tj ], we rewrite the Eq. (3.100) in Duhamel form

fc(Tj + t) = e−(t−Tj )v·∇x fc(Tj ) +
∫ t

Tj

e−(t−t0)v·∇x G(t0)dt0

with fc(T0) = 0. Applying the Z -norm,

‖ fc‖L∞
I j
Z ≤‖ fc(Tj )‖Z +

∥∥∥
∫ t

Tj

e−(t−t0)v·∇x G(t0)dt0
∥∥∥
L∞
I j
Z

≤‖ fc(Tj )‖Z + |I j |‖Q±( fc, fa)‖L∞
I j
Z

+ |I j |‖Q±( fa, fc)‖L∞
I j
Z + |I j |‖Q±( fc, fc )‖L∞

I j
Z

+
∥∥∥

∫ t

Tj

e−(t−t0)v·∇x Ferr(t0)dt0
∥∥∥
L∞
I j
Z
.

For these terms on the second line, we apply the bilinear estimate in Lemma 3.13, and
then the estimate (3.47) on ‖ fa‖L∞

I j
Z from Lemma 3.8. For the Ferr term on the last line,

we use the estimate (3.49) in Proposition 3.9. Then we have

‖ fc‖L∞
I j
Z ≤ ‖ fc(Tj )‖Z +

C(ln ln M)2

√
ln M

‖ fc‖L∞
I j
Z +

CMs− d−1
2√

ln M
‖ fc‖2

L∞
I j
Z + CM−1,

where C is some absolute constant. Absorbing the ‖ fc‖L∞
I j
Z term on the right gives

‖ fc‖L∞
I j
Z ≤ 2‖ fc(Tj )‖Z + 2CM−1.

Applying this successively for j = 0, 1, . . ., we obtain

‖ fc‖L∞
I j
Z ≤ (2 j+1 − 1)2CM−1.

With j = n = √
ln M(ln ln ln M), we arrive at

‖ fc(T∗)‖Z ≤ Ce
√

ln M ln ln M

M
= Ce

√
ln M ln ln M

eln M
≤ M−1/2 � 1.

��
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3.5. Proof of illposedness. We get into the proof the ill-posedness.

Proof of Ill-posedness in Theorem 1.2. Let

fex(t) = fr(t) + fb(t) + fc(t),

with fc(t) given in Proposition 3.14. By the upper and lower bounds in Lemma 3.3 that

‖ fr(0)‖
L

2,r0
v H

s0
x

� 1

ln ln M
, ‖ fr(T∗)‖L2,r0

v H
s0
x

� 1,

we can take t0 ∈ [T∗, 0] such that ‖ fr(t0)‖L2,r0
v H

s0
x

= 1. Note that

‖ fr‖Z � M
d−1

2 −s(ln ln M)2, ‖v · ∇x fr‖Z � M−1, ‖Q±( fr, fr)‖Z � M−1,

which are established in Lemma 3.7 and Sect. 3.3. Therefore, by the same perturbation
argument in Lemma 3.14, we generate an exact solution gex(t) to Boltzmann equation

gex(t) = fr(t0) + gc(t),

with gc(0) = 0. This gives that

{ ‖gex(0)‖
L

2,r0
v H

s0
x

= ‖ fr(t0)‖L2,r0
v H

s0
x

= 1,

‖gc(t)‖L∞([T∗,0];Z) � M− 1
2 .

Now, we have two solutions with the decompositions
{

fex(t) = fr(t) + fb(t) + fc(t),

gex(t) = fr(t0) + gc(t),

which gives

fex(t) − gex(t) = ( fr(t) − fr(t0)) + fb(t) + fc(t) − gc(t).

For t ∈ [T∗, 0], by Lemma 3.1 and Proposition 3.14, we have

‖ fb(t)‖L2,r0
v H

s0
x

� Ms0−s = 1

ln ln M
,

‖ fc(t)‖L2,r0
v H

s0
x

≤ ‖ fc(t)‖Z � M− 1
2 ,

‖gc(t)‖L2,r0
v H

s0
x

≤ ‖gc(t)‖Z � M− 1
2 .

Thus, we obtain

‖ fex(t0) − gex(t0)‖L2,r0
v H

s0
x

� 1

ln ln M
,

and

‖ fex(0) − gex(0)‖
L

2,r0
v H

s0
x

∼ ‖ fr(0) − fr(t0)‖L2,r0
v H

s0
x

∼ ‖ fr(t0)‖L2,r0
v H

s0
x

= 1,

where we have used that ‖ fr(0)‖
L

2,r0
v H

s0
x

� 1
ln ln M . Hence, we complete the proof. ��
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Remark 3.15. We actually have found an exact solution fex(t) which satisfies the norm
deflation property. This is the key to conclude the failure of uniform continuity of the
data-to-solution map.

In the end, we prove Corollary 1.3.

Proof of Corollary 1.3. Recall the kernel

B(u − v, ω) =
(

1{|u−v|≤1}|u − v| + 1{|u−v|≥1}|u − v|−1
)
b
(

u − v

|u − v| · ω

)
, (3.106)

and notice the pointwise upper bound estimate

(
1{|u−v|≤1}|u − v| + 1{|u−v|≥1}|u − v|−1

)
b
(

u − v

|u − v| · ω

)
≤ 1

|u − v|b
(

u − v

|u − v| · ω

)
.

(3.107)

Therefore, for the kernel B(u − v, ω) in (3.106), all the same upper bound estimates on
fb, fr, fa, Ferr, and fc follow from the pointwise upper bound estimate (3.107). The only
one lower bound on fr we need is given in Remark 3.4. Then by repeating the proof of
ill-posedness for the endpoint case (d, γ, r0) = (3,−1, 0) in Theorem 1.2, we complete
the proof of Corollary 1.3. ��
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Appendix A. Sobolev-Type and Time-Independent Bilinear Estimates

Lemma A.1 (Fractional Leibniz rule, [40]). Suppose 1 < r < ∞, s ≥ 0 and 1
r = 1

pi
+ 1
qi

with i = 1, 2, 1 < q1 ≤ ∞, 1 < p2 ≤ ∞. Then

‖〈∇x 〉s( f g)‖Lr ≤ C‖〈∇x 〉s f ‖L p1 ‖g‖Lq1 + ‖ f ‖L p2 ‖〈∇x 〉sg‖Lq2 (A.1)

where the constant C depends on all of the parameters.

Next, we present the standard Hardy-Littlewood-Sobolev inequality, which is widely
used in our various estimates for the soft potential case.
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Lemma A.2. Let p > 1, r > 1 and −d < γ ≤ 0 with

1

p
+

1

r
= 2 +

γ

d
.

Let f ∈ L p(Rd) and h ∈ Lr (Rd), then there exists a constant C(d, γ, p), independent
of f and h, such that

∫
Rd

∫
Rd

f (x)|x − y|γ h(y)dxdy ≤ C(d, γ, p, r)‖ f ‖p‖h‖r . (A.2)

In particular, for p > 1, q > 1 with

1 +
1

q
+

γ

d
= 1

p
,

we also have

‖ f ∗ | · |γ ‖Lq ≤ C(d, γ, p, q)‖ f ‖L p . (A.3)

Lemma A.3 (Endpoint case). Let d ≥ 2, −d < γ ≤ 0, and 1 ≤ p < d
d+γ

< q ≤ ∞.

Then for f ∈ L p
(
R
d
) ∩ Lq

(
R
d
)
, it holds that

∫
|x |γ | f (x)|dx � ‖ f ‖

q−1
q + γ

d
1
p − 1

q
L p ‖ f ‖

− γ
d − p−1

p
1
p − 1

q
Lq . (A.4)

In particular, when γ = −1, p = 1, and q > d
d−1 , we have

∥∥∥
∫

f (y)

|x − y|dy
∥∥∥
L∞
x

� ‖ f ‖
1− 1

d
(

1− 1
q

)

L1 ‖ f ‖
1

d
(

1− 1
q

)
Lq . (A.5)

Proof. The endpoint case is also known. For completeness, we include a proof. We split
the integral into two parts and use Hölder inequality to get

∫
Rd

|x |γ | f (x)|dx ≤
∫

|x |≤η

|x |γ | f (x)|dx +
∫

|x |>η

|x |γ | f (x)|dx

�‖ f ‖Lqη
d
q′ +γ

+ ‖ f ‖L pη
d
p′ +γ

,

where p′ = p
p−1 and q ′ = q

q−1 . Optimizing the choice of η gives the desired estimate
that

∫
Rd

|x |γ | f (x)|dx �‖ f ‖
q−1
q + γ

d
1
p − 1

q
L p ‖ f ‖

− γ
d − p−1

p
1
p − 1

q
Lq .

��
The following parts focus on time-independent bilinear estimates for gain/loss terms.
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Lemma A.4 ([5, Theorem 2, Corollary 9]). Let 1 < p, q, r < ∞ and−d < γ ≤ 0 with

1

p
+

1

q
= 1 +

γ

d
+

1

r
.

Assume the collision kernel

B (u − v, ω) = |u − v|γ b
(

u − v

|u − v| · ω

)
,

with b( u−v
|u−v| · ω) satisfying Grad’s angular cutoff assumption. Then, it holds that

∥∥Q+( f, g)
∥∥
Lr(Rd)

≤ C‖ f ‖L p(Rd)‖g‖Lq(Rd), (A.6)∥∥Q−( f, g)
∥∥
Lr(Rd)

≤ C‖ f ‖L p(Rd)‖g‖Lq(Rd), p > r. (A.7)

Lemma A.5 (L1 endpoint estimate for Q+). For γ = −1, we have

‖Q+( f, g)‖L1 ≤‖ f ‖L1‖g‖
1− 1

d
(

1− 1
p

)

L1 ‖g‖
1

d
(

1− 1
p

)
L p , (A.8)

‖Q+( f, g)‖L1 ≤‖ f ‖
1− 1

d
(

1− 1
p

)

L1 ‖ f ‖
1

d
(

1− 1
p

)
L p ‖g‖L1 . (A.9)

Proof. By the change of variable, we have

‖Q+( f, g)‖L1 �
∫
Sd−1

∫
R2d

| f (u∗)g(v∗)|
|u∗ − v∗| dudvdω

=
∫
Sd−1

∫
R2d

| f (u∗)g(v∗)|
|u∗ − v∗| du∗dv∗dω

�‖ f ‖L1

∥∥∥
∫ |g(v∗)|

|u∗ − v∗|dv∗
∥∥∥
L∞ .

Using the L∞ estimate (A.5), we get

‖Q+( f, g)‖L1 � ‖ f ‖L1‖g‖
1− 1

d
(

1− 1
p

)

L1 ‖g‖
1

d
(

1− 1
p

)
L p .

In the same way, we also obtain estimate (A.9). ��

Appendix B. Strichartz Estimates

Recall the abstract Strichartz estimates.

Theorem B.1 ([48, Theorem 1.2]). Suppose that for each time t we have an operator
U (t) such that

‖U (t) f ‖L2
x

�‖ f ‖L2
x
,

‖U (t)(U (s)∗) f ‖L∞
x

�|t − s|−σ ‖ f ‖L1
x
.

Then it holds that

‖U (t) f ‖Lq
t L

p
x

� ‖ f ‖L2
x
, (B.1)
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for all sharp σ -admissible exponent pair that

2

q
+

2σ

p
= σ, q ≥ 2, σ > 1. (B.2)

The symmetric hyperbolic Schrödinger equation is
{
i∂tφ + ∇ξ · ∇xφ =0,

φ(0) =φ0.
(B.3)

Note that the linear propagator U (t) = eit∇ξ ·∇x satisfies the energy and dispersive
estimates

‖eit∇ξ ·∇xφ0‖L2
xξ

� ‖φ0‖L2
xξ

,

‖eit∇ξ ·∇xφ0‖L∞
xξ

� t−d‖φ0‖L1
xξ

.
(B.4)

Then by Theorem B.1, this gives a Strichartz estimate that

‖eit∇ξ ·∇xφ0‖Lq
t L

p
xξ

� ‖φ0‖L2
xξ

,
2

q
+

2d

p
= d, q ≥ 2, d ≥ 2. (B.5)
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