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Abstract: We consider the Boltzmann equation with the soft potential and angular
cutoff. Inspired by the methods from dispersive PDEs, we establish its sharp local well-
posedness and ill-posedness in H* Sobolev space. We find the well/ill-posedness sepa-
ration at regularity s = %, strictly %-derivative higher than the scaling-invariant index

s = ‘%, the usually expected separation point.
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1. Introduction

We consider the Boltzmann equation

{ O +v-Vy) ft,x,v) =0(f, f),

(1.1)
f0,x,v) =folx, v),

where f (¢, x, v) is the distribution function for the particles at time ¢ > 0, position
x € R and velocity v € R?. The collision operator Q is conventionally split into a gain
term and a loss term

0(f.8)=0"(f.9) =0 (f. 9

where the gain term is

0" (f. g =/ f fWHgW*)B(u — v, w)dudw, (1.2)
Rd Jgd—1
and the loss term is
0 (f, g =/ / fWgw)Bu — v, w)dudw, (1.3)
Rd Sd—l

with the relation between the pre-collision and after-collision velocities that
W=u+ow - v—uwo, v=v—o0w-W-—-uo.

The Boltzmann collision kernel function B(u — v, ®) is a non-negative function de-
pending only on the relative velocity |u — v| and the deviation angle 6 through cos 8 :=

ﬁ:gl - w. Throughout the paper, we consider

B(u — v, w) = |u — v|"b(cos ) (1.4)
under the Grad’s angular cutoff assumption
0 <b(cosf) < C|cosb|.

The different ranges y < 0, y = 0, y > 0 correspond to soft potentials, Maxwellian
molecules, and hard potentials, respectively. See also [11,12,66] for a more detailed
physics background. This collision kernel (1.4) comes from an important model case of
inverse-power law potentials and there have been a large amount of literature devoted
to various problems for this model, such as its hydrodynamics limits which provide
a description between the kinetic theory and hydrodynamic equations. For a detailed
presentation and the derivation of macroscopic equations from the fundamental laws of
physics, see for example [59].

The Cauchy problem for the Boltzmann equation is one of the fundamental mathemat-
ical problems in kinetic theory, as it is of vital importance for the physical interpretation
and practical application. For instance, in the absence of uniqueness or continuous depen-
dence on the initial condition, numerical calculations and algorithms, even if they can be
done, could present puzzling results. Despite the innovative work [34,39] and many nice
developments, the well/ill-posedness of the Boltzmann equation remains largely open.
So far, there have been many developed methods and techniques for well-posedness, see
for example [2,3,6,7,35,37,41,43,44,61,64].



Well/Ill-Posedness of the Boltzmann Equation Page 3 of 51 283

In the recent series of paper [13—15], by taking dispersive techniques on the study of
the quantum many-body hierarchy dynamics, especially space-time collapsing/multi-
linear estimates techniques (see for instance [16-24,28,45,46,52,54,60]), T. Chen,
Denlinger, and Pavlovi¢ provided a new approach to prove the well-posedness of the
Boltzmann equation and suggested the possibility of a systematic study of Boltzmann
equation using dispersive tools. With the dispersive techniques, the regularity index for
well-posedness, which is usually at least the continuity threshold s > ‘%, has been re-

laxed to s > % for both Maxwellian molecules and hard potentials with cutoff in
[13]. It is of mathematical and physical interest to prove well-posedness at the optimal
regularity. From the scaling point of view, the Boltzmann equation (1.1) is invariant
under the scaling

fiult, x,v) = x““d—“V)ﬁf(x“—ﬁt, A%x, Xﬁv), (1.5)

for any o, § € R and A > 0. Then in the L? setting, it holds that

a+(d—1+y)B

_ _d,_d
NVl fill 2, = 2RSSR IV ol f 2,

This gives the scaling-critical index
r=s+y. (1.6)

From the past experience of scaling analysis, it is believed that the well/ill-posedness
threshold! in H* Sobolev space is s, = % with 7 > 0. Surprisingly, for the 3D constant
kernel case, X. Chen and Holmer in [27] prove the well/ill-posedness threshold in H*
Sobolev space is exactly at regularity s = %, and thus point out the actual optimal
regularity for the global well-posedness problem.

On the one hand, while there are many well-known progress such as [31,32,49-51,56,
57,65] regarding the study of dispersive equations, the illposedness of the Boltzmann
equation remains largely open away from [27]. One certainly would like to have the
sharp problem resolved for the Boltzmann equations. On the other hand, to initiate a
systematic study of a large project including sharp well-posedness, blow-up analysis,
regularity criteria, etc, it is of priority to find out the well/ill-posedness separation point.
In the paper, moving forward from the special case [27], we investigate the general kernel
with soft potentials, for which both the sharp well-posedness and ill-posedeness are open.
We settle this problem and provide the well/ill-posedness threshold. With the finding of
this optimal regularity index, we deal with the sharp small data global well-posedness
in another paper [30].2

We start with the connection between the analysis of (1.1) and the theory of nonlinear
dispersive PDEs. Let f (¢, x, &) be the inverse Fourier transform in the velocity variable,
that is,

fx, 8 =FL (). (1.7)

! Instead of scaling invariance of equation, the critical regularity for the Boltzmann equation is sometimes

d
believed at s = % in the sense that the critical embedding H 2 <> L fails, see for example [3,36-38].
2 The hard potential case is also interesting and the ill-posedness result remains open. Our approximation
solution gives desired bad behaviors for the hard potential. But it needs a totally different work space to
generate the exact solution. Hence, we put it for further work.
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Then the linear part of (1.1) is changed into the symmetric hyperbolic Schrodinger
equation

i0,f+Ve-Vof =0, (1.8)

which, in the nonlinear context, enables the application of Strichartz estimates that

. ~ ~ 2 2d
1™V follgare Sfollz, =+—==d, qg=2,d=>2. (1.9)
o ¥ q p
‘We introduce the Sobolev norms
| Pl = 1090 (Ve) Fll2, = 109 @) Flliz, = 17020 s (1.10)

and the Fourier restriction norms (see [8-10,53,58])
|l = 1LF @m0+ -0 @) s s (1.11)

where f(r, n, v) denotes the Fourier transform of f(t, x,&)in (t,x,&) — (t,n,v),
and is thus the Fourier transform of f (¢, x, v) itself in only (¢, x) +— (7, ), that is,

f@n v =F) = Fuxys@mn (f) -

It is customary to define their finite time restrictions via
1 s = inf [ Fllysrs : Fli—r,71 = £} - (1.12)

We recall the definition of well-posedness, see for example [47,63].

Definition 1.1. We say that (1.1) is well-posed in L%” H;} if for each R > 0, there exists
atime T = T(R) > 0, and a set X, such that all of the following are satisfied.

(a) (Existence and Uniqueness) For each fy € L%”H;' with [| foll ;2 ;s < R, there exists
v X
a unique solution f (¢, x, v) to the integral equation of (1.1) in

C([—T, T]; L%”Hi) () x.

Moreover, f(t, x,v) > 0if fo > 0.3

(b) (Uniform Continuity of the Solution Map)* The map fy > f is uniform continuous
withthe C([—T, T]; L%*’ H3) norm. Specifically, suppose f and g are two solutions
to(1.1)on [T, T], Ve > 0, 3 §(¢) independent of f or g such that

1F () = 8l 7127 s, < & Provided that [ £(0) = (O] 2r . < 8(6).
’ Toa3)

We take X to be the Fourier restriction norm space X ST’””’b defined by (1.12) with
be. D).

31f fo e L)lw, the solution f(¢) should also have the L}C’U integrability in terms of the mass conservation
law. However, this is not a simple problem. We deal with it in [30] by using regularity criteria which are
beyond the scope of this paper.

4 One could replace (c) with the Lipschitz continuity which is usually the case as well.
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Theorem 1.2 (Main Theorem). Let d = 2, 3.

(1) Fors > d%l, 1-d <y <0, (1.1) is locally well-posed in L%’Hy H;.

2
(2) For0 <59 < d%l, % <y <0,r0 = max {0, so + y}, (1.1)isill-posed in L>"° HX®
in the sense that the data-to-solution map is not uniformly continuous. In particular,

for each M > 1, there exists a time sequence {téw }  Such that

M<o, M o0,

and two solutions fM (1), gM(t) in |:t(1)w, O] with

M M M M
Ilf (to )”L%JOH;'O ~llg <t0 )”L%"'OHEO ~1,

such that they are initially close att = té”

1
M .m M .M
Ilf <to ) -8 <t0 )”L%-"()H;o < Win M <1,

but become fully separated att = 0
1£M(0) = g™ Ol 21 oo ~ 1.

Theorem 1.2 is the main novelty, which finds the well/ill-posedness threshold, by
establishing the sharp local well-posedness, and proving the ill-posedness for the soft
potential case. There have been many nice work on the well-posedness part by the
energy method which requires higher regularity, see for example [3,41,42,62]. For both
Maxwellian molecules and hard potentials, the regularity index s > % for well-
posedness was achieved in [13] without ill-posedness. Our well-posedness result solves
the remaining soft potential case.

We remark that, as scaling (1.6) in L? setting gives the restriction that s + y > 0,
the range % < y < 0 should be sharp if one seeks the optimal regularity s > d%l.
In addition, the endpoint case y = —1 with d = 3 plays an important role in the
derivation of the Boltzmann equation from quantum many-body dynamics in [26], where
the collision kernel is composed of part hard sphere and part inverse power potential:

_ u—v
Bu—v,0) = (l{lufv\sl}m—U|+1{\u7v|21}|u—v| 1)b<|u_v| ~w>, (1.14)

which also provides yet another physical background to our problem here. Our proof for
ill-posedness also works for kernel (1.14).

Corollary 1.3. Ford = 3,0 <59 < 1, (1.1) is ill-posed in L%H)fo with the kernel (1.14)
in the sense that the data-to-solution map is not uniformly continuous.
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1.1. Outline of the paper. In Sect.2, we prove the well-posedeness of (1.1). The bilinear
estimates for gain/loss terms are the key step to conclude the well-posedness and the
proof highly relies on the techniques from dispersive PDEs.

In Sect. 2.1, we appeal to dispersive estimates to prove the loss term bilinear estimate.
This can be directly handled because of the factorization of the kernel. In Sect. 2.2, we
deal with the gain term, which requires a more subtle analysis due to the complicated
partial convolution structure. One important observation is that the energy conservation
provides a lower bound estimate for after-collision velocities, which enables the appli-
cation of the Littlewood—Paley theory and frequency analysis techniques in multi-linear
estimates. Then with a convolution type estimate in [4], we are able to establish the gain
term bilinear estimate with the help of Strichartz estimates in the Fourier restriction norm
space. Finally, in Sect.2.3, we complete the proof of well-posedness after our built-up
X*7b spaces and its related frequency analysis in this context.

In Sect. 3, we prove the ill-posedness of (1.1). The idea is to construct an approxi-
mation solution which has the norm deflation property and then perturb it into an exact
solution. We improvise and sharpen the prototype approximation solution found in [27].
To overcome the singularities carried by the soft potentials, which were known to be the
main difficulties, we introduce a new scaling on the approximation solution, create an
elaborate Z-norm, which is used to prove a closed estimate for the gain and loss terms,
that is,

10 (f1, iz S I Ailzll fallz, (1.15)

and conclude the existence of small corrections. With this new treatment, the extra
restriction that sg > % in [27] can now be removed.

In Sect.3.1, we first construct the approximation solution f, and prove its norm
deflation. Then in Sect.3.1.1, we give a discussion on the L'-based spaces and the hard
potentials case, for which our approximation solution also gives desired bad behaviors.
Therefore, a similar mechanism of norm deflation in different settings is possible and
deserves further investigations.

In Sects. 3.2-3.4, we introduce the Z-norm space and perform a perturbation argu-
ment to turn the approximation solution into the exact solution. In Sect.3.2, we first
provide the Z-norm bounds on the approximation solution. Then in Sect. 3.3, we deal
with the error terms and prove the Z-norm error estimates. Proving the error estimates,
as it includes a large quantity of error terms involving singularities at which we need
geometric techniques on the nonlinear interactions between frequencies, is the most in-
tricate part which we treat in Sects. 3.3.1, 3.3.2, 3.3.3, 3.3.4,. After dealing with the error
terms, we prove that there is an exact solution which is mostly f; in Sect. 3.4, and thus
conclude the ill-posedness result in Sect.3.5.

After the proof of the main theorem, we put and review some tools in Appendix A
and the Strichartz estimates in Appendix B.

2. Well-Posedness

To conclude the well-posedeness of (1.1), it suffices to prove the following bilinear
estimates

109" ()™ O (S, 22, S Il xssors 1@ o 2.1)

5 It then provides a formal answer to a question raised by Professor K. Nakanishi.
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Note that no v-variable Fourier transform of the collision kernel in (2.1) is needed if we
fully work in the X s.s+y.b space. Here, we will work on the (x, &) side and prove (2.1)
by use of the Fourier transform of the kernel.

Taking the inverse v-variable Fourier transform on both side of (1.1), we get

i0,f +Ve - Vof =iF, L 1O, P 22)

By the well-known Bobylev identity in a more general case, see for example [1,33], it
holds that (up to an unimportant constant)

- mgn)

Frle [0 (£ 9] @) =Ibl 1 gar) / ! @mw dn, 2.3)

- fE+mMZE —n) (&
F-l (f, :/ b( )d d 2.4
Selorgole=| s o )dnde. @4
where £t = 3 (é + & |a)) and§~ =5 (E |&|w). For convenience, we take the notation

that 0*(f.3) = F, L. [0*(f. &)
In Sects.2.1, 2.2, we establish the bilinear estimates for the loss and gain terms
respectively. Then in Sect. 2.3, we complete the proof of the well-posedness of (1.1).

2.1. Bilinear estimate for loss term.

Lemma 2.1. For s > d%l, it holds that
1690 Ve)™ Q7 (F. Dl pze 12, S 1 Flxssora 18l s 25)

Proof. By the fractional Leibniz rule in Lemma A.1, we have

” é_(fv g) ” L2+HXHS+J/

Y y g(t,x, n)
f(t 8= d+
v
nl Ly L
P g, x,m)
H/ [ (Vi flt,x, & - ’7)”L2 PG HLoo 12412
§
g 7 )'8(t, x, m) H
1, x, ’
fl.x&- ’7)||L21+ |n|d+1/ Lt2+L§

Applying Sobolev inequalities that WS s L™, W$2 < L% and Young’s
inequality,

H é_(f’ g) HL,2+H;H§+V

; sty ¥
g ||(Vx)‘S <V§) f(t’x’g)”L,ngLE |T)|d+y L%‘*‘L%Lﬁzfd]_
sty ¥ (Va)'g(t, x,m)
+ H (Vf} f(t’x"g)”Lf"LgL)%d“r |n|d+y L?*L}?L;lei
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(Va)'g(t, x, m)

@+ 2d . (2.6)

LroiLdt

SV V™ T x Ol op12
We are left to deal with the last term on the right hand side of (2.6). Set
G = | (V7@ g

Then by Hardy-Littlewood—Sobolev inequality (A.4) in Lemma A.3 with A = d + y,
we obtain

G(n)
In|@+y

1
dn SNIGI* o ||G|| R
Ld-1~

V

Therefore, we have

H g, x,m)
|77|d+y L2+L1L%7
<
[(vorge x,m[" oo 2, e [ (VB %, n)H o P
=< [(vo'ze, x, n>|| - nzd_||<vx g(t’x’n)”w L

where in the last inequality we have used the Minkowski inequality. Applying Sobolev

2d d . . .
inequality that W***@=1~ < L=y and Strichartz estimate (2.25), we arrive at

’ (Vi)'g(t, x, m)

|n|d*y L2+L1Ld2Td1_
s+y
< [(varge x.m|* +L%,L%,H<Vn> (V)'8(, x, ”)”mdl -
S+)/
< (V)" (V2)'R (”")”mw - P
= 118 lxs.srp-
Hence, we complete the proof of (2.5). O

2.2. Bilinear estimate for gain term. Before proving the bilinear estimate for the gain
term, we first give a useful lemma as follows.

1,1 _1
Lemma 2.2. Let > + 7=

b(=— - w)dndw
In|&+ ey - |

In particular, we have

fE +m3E —n), & ~ -
|/ ST o0 1BN s . 27)
Sdl Rd LE L2d7py L2d7qy

10 (. Dlliz SIF2 IR o (28)
L
§

10 (. D)lliz SIFI 1Bz (2.9)
L
§
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Proof. For the case of Maxwellian molecules, it holds that

| /S f (E+)§(§_)b(é—| )

which is proved in [4, Theorem 1]. By Cauchy-Schwarz inequality and then (2.10), we
have
L2

H/ f(§++n)§($‘ —ﬂ)b<i .w>d77dw
sd-1 JRrd [n]@+y €] §

\FEr+mi ][/ BE —n)P ]5 (s )
&+, 185~V 1l b( 2 0)d
= /s M I Y T A B T

SUFN IR L. (2.10)
N rigllye, —+—=—, .
L} LeBelle  p " g 72

2
Lg

~ 1 - 1
- / |f(€+n)lzdn 2 / |g(s—n)|2dn2
~ L Re Ity Pl Jga  Inld*y L
|f<s+n>|2d 3 IgE —mI* |3

= ————any 2 ———dn|| ¢

R[]V L Jpa |ty Lg
SUAN 20 BN 204 @2.11)

L 2d—py L 2d—qy

where in the last inequality we have used Hardy—Littlewood—Sobolev inequality (A.3).
This completes the proof of (2.7). Then by taking

oy (242N (2 2
pvq - d+)/’ 7/ ’ P,CI - }/’d+]/ )

we immediately obtain (2.8) and (2.9). O

To prove the bilinear estimate for the gain term, we need a detailed frequency analysis
from Littlewood—Paley theory.6 Let x(x) be a smooth function and satisfy y (x) = 1
for all |x] < 1 and x(x) = 0 for |x| > 2. Let N be a dyadic number and set ¢y (x) =
x (%) — x(55)- Define the Littlewood—Paley projector

Pyu(n) = on (). (2.12)

We denote by Py,/ Pf,l the projector of the x-variable and &-variable respectively. Now,
we delve into the analysis of the bilinear estimate.

Lemma 2.3. For s > %, we have

1692)° (V)™ O* (7. @212, S 1 xsswrs 1Bl xsorer- 2.13)

Proof. By duality, (2.13) is equivalent to

/ 0" (F. @hdxdgdt < || Flxssera |81 xssoro Wl sy g (2.14)

6 See [23,25,29] for some examples sharing similar critical flavor but carrying completely different struc-
tures.
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We denote by I the integral in (2.14). Inserting a Littlewood—Paley decomposition gives
that

I= Z Ty, My Mo, NNy N>
M, M, M;
N,N|,N

where
LMy My NNy Ny = f é*(P;{,l Py, f. P}, Pf,h'g') P} PS hdxdgdt.

Note that é+ commutes with P;f,, so this gives the constraint that N < max (N, Np)
due to that

Py <ij,1 fPN2§> =0, if N> 10max (N, N2). (2.15)

In addition, we observe that such a property (2.15) is also hinted in the &-variable, that
is,

P (~2+<Pf,,1f, P;Z;,?) —0, if M > 10max (M, My). (2.16)

Indeed, notice that

Fe <P§4 §+<Pf41 7, PIfhg))
= ‘PM(U)/ / (om, W) (@M, 8) W )B(u — v, w)dudw. (2.17)
Rd Sd—l

Then from the energy conservation which implies the inequality |2 < v + [u*|?,
we have the lower bound that

w =2
4

|

> M 2.18

or [v¥| > 2 (2.18)
for all (u, w) € R4 x §4-1 and [v] > % Therefore, for M > 10 max (M1, M>), the
lower bound (2.18) forces the v*-variable or u*-variable off their own support set, which
makes the integral on the right hand side of (2.17) vanish. Hence, this gives the constraint
that M < max (M, M3).

Now, we divide the sum into four cases as follows

Case A. M| > M, N| > N».

Case B. M| < M>, N| > N».

Case C. M| > M>, N| < Nj.

Case D. M| < M, N < N».

We only need to treat Cases A and B, as Cases C and D follow similarly.

Case A. M| > M>, N; > N».

Let 14 denote the integral restricted to the Case A. By Cauchy-Schwarz,

5+ ¢ ¥ px pt o ;
LS ), 10 (P]’(,IPM]f, P,)\;ZPMzg)||L3L§$||P§PMh||LtzL§E.
M, M|>M>,
N,N1>N,

My >ZM,Ni >N
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By using the estimate (2.8) in Lemma 2.7 and then Holder inequality, we have

x p§ 7 x p§ ¥
D DR (1 WA P A
M M, =M L
N.N1=N,
My>2M,Ni >N

x pé 7 x p& ~ x pé
< D PP P22 IPR, PinRI P Pyl 2z,
MM >M> LiL¥Le

N,N1=N>
M\ ZM,Ni =N

x p&
LgL%||PNPMh||L%L,%5

d—1 2d d
By using Minkowski inequality, Sobolev inequality that W = V@1 < L=r, and
~ d-1 ~ .
Bernstein inequality that ||P;\‘,2 gl S ||(V)C)TP;\C,2 gl 2a, We obtain
L

x

N MY x pé s s+y 7
Y
14 5 E NSMHV ”PNI PM] (Vy) <V$> f”L;’OLELg
M, M >M; 1771
N,N1>N>
MyZ2M,Ni >N

d—1
x || P, Py, (Vi) 2

A=l £ - —s—
(Ve) TR N PR (V)7 (V)™ L2y
&

=X

3

NSMS+]/ 1 1 R s
5 Z NSMS+V g—d=1 o_d-l ”PNPMh”L?HE*S*VH;s
M, M\>M; 1 1 N2 2 M2 2
N,N1>N>
MiZM N1 =N
) ’ N § s SHY ~
X 1P, Py (Vi (V)™ Fll oo 22 IPR, Py (V0 (Ve) ™ B a0
xE L%Lﬁ*ll‘édfl

where in the last inequality we have used Bernstein inequality again. By Strichartz
estimate (2.25),

- NS MY 1 1 Xt
Ia s Z Ry AN Y S R =) ”PNPMh”L?HgS’VH;A’
M, Mi>M> 1771 ]\]2 2 M2 2
N,N1>N>
M{Z2M,Ni >N

§ 7 § ~
X (1P, Py, Fllxssero | PRy Py Bl ssero.

Note that s > %, so we use that || Py, Pf,,zgllxs,w,b < |18l xs.5+v.» and then carry out

the N,, M»> sums to obtain

SALS+Y

In SI8l s Y

M{>=M
Ni1>N

x p& 7 x pé
N VPR P T VB Pl o

By Cauchy-Schwarz in M, My, N and N, we have

=

- NSMS+]/ S ~
I Sl gssoro | D 57 1 P F s
Mi>M 1 1
Ni1>N
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D=

s S+]/
Z—NM IPE PRI, oy
oy MMy NEME L

1=

Ni>N

s N ooVl 2 s (2.19)

which completes the proof of (2.14) for Case A.
Case B. M| < M, N| > N.
Following the same way as Case A, we have

N+cpx pé 7 px pé x p&
IBS., E o (PNIPle’ PNZPMzg)”L?Lig”PNPMh”L,zLiE'
M, Mr>M,;
N,N1>N,
Myz2M, N1 =N

By using the estimate (2.9) in Lemma 2.7 and then Holder inequality, we have

§ 7 £ ~
PRI DR [V A R ) N
M.Mo=M, Le
N,N1=N>
My>M,N1 =N

é ~
< E ||P1)\C/1PM1f|| )
M, Mr>M, LiL
N,N1=N>
My>2M,Ni =N

PxPéh 272
PR B2,

X

x p& ~ x p&
%L;iy”PNzPMzg”L?OLEdLg”PNPMh”L,szE'

. . . . . d-1,, 2d A4 d-l
By Minkowski inequality, Sobolev inequality that W 2 *V'-1 < L=, W2 2 <
L*? and Bernstein inequality, we obtain

x pé& doliy
IS Y APYPy Ve TR a0 2
M, M>>M RN
s VI Z M
N,N1=N>
MyZM,N1 =N

d—1
X PR, Py (V) T Bl 2 | PR PR 2.2,

- NSMS+)/ 1 Px PE h
~ Z s gty S—% S—% “ N'M ”L%H{Sin;x
M, M>>M,; 172N, M,
N,Ni=N,
My>2M, N1 >N

~ Sty ~
X PR, Pagy (Ve (V) FIl a0 1P, Py (V) (Ve)™ Bl 212
=X %‘

By Strichartz estimate (2.25),

S A LSty

I < N'M 1 1 ||PXPEh|| o v

B PRNgrEy —d—1 —a NI 2T s
manzu, MM N T ¢
N,N1>N>
My>2M N1 >N

§ 7 § ~
X ”P]{]l Ple”X&S*va”P])\(IZ PMzg”Xs.s-W,h.
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Note that s > %, so we use that

& 7 7 & ~ § ~
1P%, Pay, Fllxsssrs S UPY, Fllxsserns 1Py, PE Zlxsers S IP5, Fllyossrs,

and then carry out the N, M| sums to obtain

S AfS+Y
= x :
I’ a7 P Tllssors NPyl xssors | PR PR 2y e
My>M “"1772
Ni>N

In a similar way to (2.19), we use Cauchy-Schwarz inequality to get

D=

N* o MY 2
I8 Y 2PN Pl | D2 7 1 il s
NizN L My=M 2
1

2
s+y

M £,
X E —_— X _s— .
= M;+y ”f’]\/v[)Mh”lel_[‘é s VH;A
2Z
N

<|Ig N pE 7 Pih
SN D S IPR Fllxssers 1PN 2o g
Ni>N 1

S N xssor b (181l xs.sevn |7 ”L,ZH;*VH;X-
Hence, we complete the proof of of (2.14) for Case B. O
2.3. Well-posedness in Fourier restriction norm space. We first recall some standard
results on the Fourier restriction norms and Strichartz estimates.

Lemma 2.4. Letb € (%, 1), s € R, r € R, and 0(t) be a smooth cutoff function. Define

t
Ut) :=é"VVe, D(F):= / U(t — 1)F(t)dr. (2.20)

0

Then we have
17 comsmy S Nxsro (2.21)
16U @ follxsro SN foll s g (2.22)
0@ DF) | ysre SIF oo, (2.23)
~ ~ 3 1

7ot SUF gy P €120 b =5 =, (2.24)

~ ~ 2 2
171ges, SN Flxoos. —+=2=d. g=z2.d=2. (2.25)

Proof. These type estimates are well-known in the dispersive literatures. The Strichartz
estimate (2.25) follows from the linear Strichartz estimate (B.5) and the transference
principle. See for example [63, Chapter 2.6]. O
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We prove the existence, uniqueness, and the Lipschitz continuity of the solution map.
The nonnegativity of f follows from the persistence of regularity (as shown in [14,55])
by use of the bilinear estimates (2.5) and (2.13) for the soft potential case.

Proof of Well-Posedness in Theorem 1.2. LetOr(t) = 6(t/T).By estimate (2.24), Holder
inequality, and the bilinear estimates for Qi, we have
167 () O(F. &)l xs.ssrb-1
Slor@O(f. 21 -
L~

2b HS Hgﬂ/

ST N0r 00" (F. &) 2y pyer + T 101 Q™ (F. &) 2 gy gy
ST Fllgsssrs 1Bl gssern- (2.26)

Let B = {f : [ fllxssevs < R} with R = 2C| foll s g and define the nonlinar
map '

() == 0r (U @) fo+ D(f, 1),
where
t
D(f, ) :=6r() fo Ut — 0)0r (D) O(f (1), f(r))dr.
By estimates (2.22), (2.23), and (2.26), we obtain
1D ( Yl ssov <IOT U @) follgssors + ID(Fy F)llxssivi
<Cllfoll gy gger + CNOr O(F. F)lsro
R
=5 +CT'"™ (Vi
<R

where in the last inequality we have used that CT'~?R < % Thus, ® maps the set B
into itself. In a similar way, for f and g € B we have

1D(F) = D@ llxs.swrs =IID(F, f) D(3,2)lls.srb
<C1670(f — & Pllxssivir + ClOT O(Z, f — &)l xs.sovo-
<cr?! (||f||xs,s+y,b 18 xs.csv6) 1 = &l s

I~
=51 = &llxs.sere.

Therefore, ® is a contraction mapping in X***”-? and has a unique fixed point f on the

1
time scale |T| ~ (R)?-T. _
Given two initial data fy and gp, we set

R; = 2max <||f0||H§H§+Vv ||§0”H§H§+V) .

Let f g be the corresponding unique fixed points. Taking a difference gives that
F=3=6r0OUO(Jo—30)+D(f =3 N+ DE [ -2
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By estimates (2.22), (2.23), and (2.26), we have

I = Zllys.sers <107 OU@(fo — 80)llxssvs + ClOT O(F — &0 F)ll gsssyot
+ClO07O(F. = &)l gssiromt

=Cllfo = Zoll gy s + CT (I Fllgsswrs + 18N xsstrs) 1 = Bllgsusiraps
which together with CT'~?R; < % gives that
17 = Bllxssmo < 2C1fo = Boll gy pyor-
The Lipschitz continuity of the data-to-solution map on the time [—7, T'] follows from

the embedding X" < C(I=T. T1; H{H;"™). 0

3. IlI-Posedness

The idea is to first construct an approximation solution f;(¢) with the norm deflation
property that

IAO 200 < 1 LTl 2000 21, (3.1)

with T, ' 0, and then use stability theory to perturb the approximation solution into
an exact solution. Specifically, from the exact solution fex(¢) to the Boltzmann equation

(1.1)

{8tfex+v'vxfex = OQ(fex, fex), 32)
fex(t) = fa(t) + fc(t)~
we have the equation for the correction term f; that
O fetv-Vafe =% 0" (fe. f) £ O (far f) £ Q" (fer fo) = Ferr, 33)
Ferr =0; fa+v - Vi fa+ Q7 (far fa) — QF (fu, fa). '

To prove the existence of f., we work with a Z-norm defined by (3.36) which is tailored

to be stronger than the L%’r" H." norms. For the Z-norm, we are able to provide a closed
bilinear estimate for the gain and loss terms in Lemma 3.13. Additionally, to work on
the Z-norm space, we provide effective Z-norm bounds on the approximation solution
fa, which we conclude in Proposition 3.8, and then prove the Z-norm error estimates
on the error term Fg, that

t
H / e‘“‘fo)v'Vme(to)dtOHZ <1, (3.4)
T

which we set up in Proposition 3.9. Then by a perturbation argument in Proposition 3.14,
we prove that the correction term indeed satisfies the smallness property that

I fe@llLoeor,.01.2) K 1. (3.5)

Finally in Sect. 3.5, we conclude the ill-posedness results.
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3.1. Norm deflation of the approximation solution. In the section, we get into the anal-
ysis of the construction of the approximation solution and its norm deflation property.
Following the analysis of a prototype approximation solution in [27],” we decompose

fa@®) = fi() + fo(0).

Ford = 2, 3, on the unit sphere S~!, we call / ~ N9~ points {ej}]J. are roughly

=1
equally spaced? if

1
N 9

100
§d-1 Ble;, —).

min |e; —e;j| 2
i o

This just means that the distance between two points has a lower bound % and the

unit sphere can be covered by the union of the %O-ball generated at each point. More

specifically, for the case d = 2, we can directly choose the strictly uniform distribution

on a unit circle
27j . (27j
- ), =), 1<j<N. 3.6
e (cos(N)sm(N)) J (3.6)

For the case d = 3, there are many choices of such a roughly uniform distribution on a
unit sphere. Here, by the symmetry, an example for the upper hemisphere could be

. i ; i .
e j= (sin (%) cos <£), sin <%) sin (ﬂ), cos (;—]{1)) , 1<i<j<N.
J J
3.7

Equation (3.7) is not a direct 3D version of the 2D example (3.6), which would yield too
many points near the north pole. In (3.7), from the north pole (0, 0, 1) to the equator |z| =
0, the number of points grows from 1 to N. The total number of points is leif <N ™

N? and the distance between two points is at least % up to a constant. Thus this example
is a valid choice for our purposes here.

On the unit sphere, set J ~ Md_le_1 points {gj}JJ':p where the points e; are
roughly equally spaced. Let P,; be the orthogonal projection onto the 1D subspace
spanned by e; and Pj/f denote the orthogonal projection onto the orthogonal complement

space {e; 1. Set

=l_g J

M7z

Folt, 2, 0) = == 3 K j(x = v (), (3.8)
Ny S
where
Pe; x 10P, (v — Nae;
Kty = X<MP%X>X( N ) Ij(v) = X(MPﬁjv>X<M>.
2 N,

7 One could see [27, Figure 1] for a picture of the approximation solutions there. They look like bullets
hitting a rock in [27]. Our improvised and refined version is more like needles poking a rock through.

8 Such a definition suffices for our purpose here. There can be different definitions.
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In fact, f, (¢, x, v) is a linear solution to the transport equation:

O fo+v-Vyify=0. 3.9)
Let f; (¢, x, v) be the solution to a drift-free linearized Boltzmann equation:
b(t, x, u) _
o fr(t, x,v) = —fi (¢, x, v)/ S o du = -0 (fr, fv), (3.10)
d
with initial data f;(0) = Mf’ N2 X (Mx)x (Nyv). Therefore, we write out
d_g 4 Jo(z, x, u)
fi(t,x,v) = M2 N exp | | , dudr x(Mx)x(Nyv). (3.11)
u—v

Recall that 0 < s¢ < %, % <y <0, and ro = max {0, so + y}. In what follows,
the parameters are set by

M>1, N;=N°>Mm (3.12)

s = o4 nin M (3.13)
InM

T, = —M*~“T (Inlnln M). (3.14)

Next, we give the Sobolev norm estimates on f, f; and f,.

Lemma 3.1 (Sobolev norm bounds on fy,). We have fort < 0,

max{sg,— }——1 - 1

S N
1ot x )20 oo S MPOTN, S T (3.15)
Proof. Recall that
d—1_o J
M7z
folt, x,v) = WZKj(x — 1)1 (v). (3.16)

2 j=1

Due to the v-support of f,, the weight on v-variable produces a factor of Nzro. Then
expanding f, gives that

d—1-2s  J
50 2 2ro )50 _
" folt, 5 02, S N3 e Z Kj(x —vnl; (v)\ .
Due to the disjointness of the v-support, we have
. MA—1-2s 5
N 0 S . _ .
O fot,x, v))? 1202 SV N L Zn YUK = o0 )I72,
o MA—1-2s ) 5
SN g Z (V) K72 1117
N,
d—1-2
< N2V()M ’ (MN )d*l(M2S()+17dN )(ledN )
~ T2 T dvy 2 2 2

2
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M2s072s

d—1+2y°

2r
== N2 0
N2

where in the second-to-last inequality we used that
(VO K Il SMPM'™ Ny 1L )17, ~ MTIN.

Notice that

d—1
ro=max {0,s0+y}, M’ =InInM, max/{so, —y} < 5

Hence, we complete the proof of (3.15). O
Before proceeding to the analysis of f;, we give a useful pointwise bound on f.

Lemma 3.2 (Pointwise estimate on fy). Let —% <t <0and

t
t 9 9
ﬁ(r,x,v):/ Jollo, 1) 0 o,
0

lu —v[Y
Fork =0, 1, 2, we have the pointwise upper bound
X (NI VAB(E, x, )| S 11 M4 T 5, (3.17)
For the pointwise lower bound, we have
X (NIB( X, v)| 2 1M T~ x(N1v), for x| < M~ (3.18)

Proof. For —71; <t <0, given the constraints on the u-variable, we have

d—1

d-1_. J
M7 S N IOPeJ.x i IOPej (u — Naej)
N § :X(loMPeJ-x)X <T2>X(MPeju)x <—)

2 j=1 N2
d—1_. J L
MT s MP; x P, x 10P,.(u — Nae;)
< folt, x 1) < WZX< N )X<10-]’V2)x(Miju)X<_ - >
2 j=1
(3.19)

From the v-support and u-support, we have |v| ~ Nl_l, |u| ~ Np, and hence |u — v| ~
N>. Then by using (3.19), we get

X(va)/%du ~N{X(N1v)/fb(t,x,u)du

d—1_ J
M7 S _ P..x
~NJ 7 M szx(va)Zx(MPi_,x)x<T]2)
2 J

1d_

J
M2 P, x
=T x(va)Zx(MPj_,x)x(T’z). (3.20)
J

2
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Thus, for the upper bound (3.17) with k = 0, we use that |J| ~ (M N»)?~! to obtain

1—d_¢

M
Ix(N1v)B(t, x, v)| S ltl—5—
N2

d—1
(MN2) 1y (Nyv) = [t|M T =5 x (Nyv).

Notice that the upper bounds of estimates (3.19) and (3.20) remain true with the extra
factor M if V,’f is applied, for k > 0. Therefore, we conclude the pointwise upper bound
B.17)on B(t,x,v) fork =0,1, 2.

For the lower bound (3.18), by noting that X(MPLx)X( > =1for|x| < M1,
we use (3.20) again to get

X (V)BT x, v)| —x(Nw)f Jolto. X 0) i

lu —v|™7

>t (MNz)d L (Nyw) = 1M T = (Ny),

which completes the proof of (3.18). O

Now, we are able to give the upper and lower bounds on f;.

Lemma 3.3 (Sobolev norm bounds on f;). For —% <t <0, we have the upper bound

estimate

d—1_ ¢ d—1_
||fr(t)||Lg.roHso S MO exp [lflM 2 “](IIIM 77, (3.21)
and the lower bound estimate
AN 200 2 MO Aexp[mM ? ] (3.22)
In particular, we have
1
IO 2.0 50 Sms (3.23)
AT 20 0 21, (3.24)

with T, = —M°~“7" (Inln In M).
Proof. Recall that
d
Sit, x,v) = M%_Sle exp [—B(t, x, v)] x (Mx)x (N1v). (3.25)

Due to the v-support of f;, we can discard the weight on the v-variable. For upper bound
estimate (3.21) on f;, we use the pointwise upper bound (3.17) to get

IV fr () ||L%~"0L)2C

d
< M"ETN] | exp [ ~ Bt x, v)}(Vx)(MX)X(va)IILng
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d_ d
+ MIT N VB2, x, v) exp [ — Bt x, v)]x(Mx)x(va)nLng
1+4—s 4 1
SMTITING exp | [tIM 2 (VO 2 lx (N1v) [l 2
d_s % 1+451 g =1
+M2NF (M7 ) exp | |t|M 2 lx (M)l 211 x (N1v)ll 2
I—s =1 _ L
SM Pexp||t|IM 2 (lt|M 2 7). (3.26)
In the same way, we also have
d-1_
0 30y M exp it |
By the interpolation inequality, we obtain

a1 a1
e @270 45 =IO L0y IIfr(t)II]zfg 2 S MY exp [IIIM 2 A}(IIIM 270,

For the lower bound estimate (3.22) on f;, we use the Sobolev inequality and lower
bound estimate (3.18) to obtain

I (Vx>sofr(ta X, v)”L%’rO L2

2 e x, )l 2
~ LR L%.rOLf—ZrO

d
2

d
2 M2 N lexp [=B(t, x, v)] x (Mx) x (N1v) ]| 2

> M3 SNz exp [|t|M_S:|

> M5 exp [|t|M2S]

Hence, we have done the proof of estimate (3.22).

Inserting in |7y | = M‘Y_%(ln Inln M) and M*0~5 = m, we have

| (Tl 20 0 2 M7 exp [mwﬂ} 21,

which completes the proof of (3.24). O
Remark 3.4. The lower bound estimate (3.22) on f;(¢) also holds for the kernel (d = 3)
u—v
lu — vl

Indeed, in the proof of the lower bound estimate (3.18), the term 1, _y|<1}|u — v| would
vanish due to that |u — v| ~ Ny > 1.

B — v, w) = (1{|,,_,,‘51}|u — 0]+ ooy 1 — url) b( -w). (3.27)

In the end, we conclude the norm deflation property of the approximation solution

fa.
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.l . _d-1
Proposition 3.5 (Norm deflation of f,). Let T, = —M*~ 2 (Inlnln M). We have

1
Hfa(o)”Li’roH;O gm <1, (3.28)

| fa (Tl 20 oo 21. (3.29)
Proof. Since f;, and f; have disjoint velocity supports, we get
12O 200 50 ~ IAON 200 0 + 1O 270 50 (3.30)

Then by estimate (3.15) on fi in Lemma 3.1 and estimates (3.23)—(3.24) on f; in Lemma
3.3, we arrive at estimates (3.28) and (3.29). |

3.1.1. Discussion on the L'-based space and hard potentials The Eq. (1.1) is invariant
under the scaling

ot x,, v) = A9T@=IB pa=By hay KBy), (3.31)

for any o, 8 € R and A > 0. Then

a+(d—1+y)p

Vel ol filly, = 2 WPV ol fllp s

which gives the L'-based scaling-critical index
s1=d—1, rn=1+y. (3.32)
In the L! setting, we construct the approximation solution fa1 = fo.1 + fr.1, where

Md—l—s J
Joa(t, x,v) =—5> D Kj(x =),
N, j=1

fea @@, x,v) =M N exp[=B(t, x, v)] X (Mx) X (N v).
Repeating the proof of estimates (3.15) and (3.22), we also have
VY foutll o SMPT2 (3.33)

VY foall 1y, 2MO exp [|t|N;2M‘“S}. (3.34)

If so < s1 =d — 1, a similar mechanism of norm deflation could be possible in the L!
setting.

For the hard potential case that y > 0, the norm deflation of the approximation
solution f;(¢) also holds. But, to perturb it into the exact solution, it requires a much
more different work space to prove the error bounds in Proposition 3.9 and provide a
closed estimate in Lemma 3.13. We leave the problem for future work.
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3.2. Z-norm bounds on the approximation solution. To perturb the approximation so-
lution f,(¢) into an exact solution fex(#), we need to prove the existence of a small
correction term f;(¢). As it satisfies a more complicated Eq. (3.3), some terms of (3.3)
cannot be effectively treated using Strichartz estimates like (2.1). Hence, we tailor a
Z-norm to provide a closed estimate for the gain and loss terms, that is,

10*(f1. Pz S I fillzl 2z, (3.35)

where the Z-norm is given by
1fOllz =M T Ve f O] 127072 FMTF0)] 12072 + N If @)l ree

A, —
Ny’ an(ang AMTINTIVf Ol

Sl Ry 7
+M™N, ||fo(f)||L§ n (3.36)

The closed estimate (3.35) which we will prove in Sect.3.4 indeed plays a key role in
the perturbation argument. In the section, we give Z-norm bounds on the approximation
solution f3 = f; + fp, which will be used to control the error term Feyy.

Lemma 3.6 (Z-norm bounds on f;). For the Z-norm, we have
I follLeoqr.012) S MT (3.37)

Proof. TheM 7 IVy o] 12012 andM 7 | o]l 127012 estimates.

This can be done in the same way as estimate (3 15) with the regularity index sq
replaced by 1 and 0. Therefore, we obtain

max{so, —y}——l d—1_¢

MT Vi foll 212 <M*‘YN <Mz %, (3.38)
M

S - maxiyso, S § a—1__
MT W follze SMT Ny <y (3.39)
24y .
The NJ || o 100 and Ny* )l e ”L%Lw estimates.

M7
y y
Ny follLyrge SNy ——
N,

J =l ;)] |

S———N5y=M7"7", (3.40)

where in the last inequality we have used that

I

J
;I/(”)Nl[%s\vg%](v)’ H1{9N25| <l (”)H
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In the same way, we also have

+y +yM
I foll 5o <N,® —
Ly LY N,
1 J
2d 7 S
<N,’ ZI(U)H 5
~V) Y] J
2 =1
u MTS w d-1
5 5 _ =
SN =Ny =M
2

The same bound is obtained for M~ 1N2 IVy fb”LlLoo and M~ 1N2 +V||V fb||

with one x-derivative producing a factor of M. Therefore, we complete the proof of the
Z-norm estimate (3.37). |

Lemma 3.7 (Z-norm bounds on f;). For T, <t <0, we have

1Az S MT = explle|M T =111 M T ). (341)
In particular,
d-1_
I fe @ lzeqra.onz) S M2 *(Inln M)2, (3.42)
Proof. Recall
d
fr(t,x,v) = M%ﬂNf exp [—B(t, x, v)] x (Mx) x (N1v). (3.43)

d=3 d—1 .
The M 2 ||V, @ ||L§"'0L2 and M 2 | e ||L%,r0L% estimates.

The weight on v-variable plays no role due to the v-support set, so we can discard it.
By the pointwise upper bound (3.17), we get

d=3
M2 ||for(t)”L%»’0L2
d=3 144 _g¢ %
< M2 MYEUNE expl—B(t, x, (V0 (Mx) X (N1l 212
— d o 4
+ M7 MITNE VLB x, ) expl—B(t, x, DI (M) X (N 2.2
<MT MTSNI expllt|M T ] V)M 2l x (Nl 2
T M N ) expll T X 0 2 N
< MT S explle| M T (e M T ).

d—1 . .
The M 2| f;l 1270, €stimate can be handled in the same way.

The NJ || 2100 and M=INY |V, o ll1 100 estimates.

We only need to treat the M~ 1NV [Vy e ||L1Loo norm, as the Ny [l ®IlL1 700 norm can
be dealt with in a similar way. We use the p01ntw1se upper bound (3 17) to obtain

M=INY IV frOll oo
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_ d_ . 4
< M7'NY M ITNE | expl—B(t, x, )1V ) (Mx) x (N1) | 11 oo
_ d_g 4
+M~'NY M2 NIV B, x, v) expl—B(E, x, v)1x (Mx) x (N1V) |11 0
d_g 4 d=1_
SMTINIMITNE expllt| M2 (V) (M) | sl x (N1v) 1
—1 A7y d_g % 1+4:1 d-1_
+ MTINIMOATEN (e M ) expllt|M T T (M) [zl (N1v)
) _d 1 1
< MOINYMUEN] T expll| M T 010 M T )

< _% Yagd—s =1 a1 _g
SNy SNy M2 expl|t|[M 2 T ([t|M 2 70). (3.44)

SES

This bound is enough as it carries the smallness factor N ; .

E+)/ 1 E+)/ .
The N,’ “|le| s and M~'N,’ "|V,e| 5 estimates.
L3 L LyLy®

These two norms can be controlled in the same manner as (3.44) with the L}) norm

5
replaced by the L; norm. As a result, we also have

& —fo % d d—1 d—1
N25 +y||fr(t)|| 5 ,SN] 1°N25 +VM7—s expllt|M T ~S1(jr|M T 5,
L3 L
(3.45)
C _d - )
MENT IV AON 5 SN N ME T explie M LM T ),
L3>

v =x

(3.46)

By the condition (3.12) that N| > N210 > M0 it is sufficient to obtain the desired
bound. Thus, we complete the proof of (3.41).

Inserting in |7y | = M“%(ln Inln M) and M*~% = Inln M, we obtain

IO llqronz) S M'T > (nln M),
which completes the proof of (3.42). O
To the end, we conclude the Z-norm bounds on f; = f; + fp.
Proposition 3.8 (Z-norm bounds on f,). For the Z-norm,
| falLr012) < M7~ (nln )2, (3.47)
Proof. By the triangle inequality, we have
I faOllz S NAONz + 1 oz

Then combining estimate (3.37) on f; and estimate (3.41) on f;, we complete the proof
of estimate (3.47). |
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3.3. Z-norm bounds on the error terms. In the section, we give the Z-norm bounds on
the error term Fg,;. Recall the error term

Fer =0 fa+v-Vifa+ O (fa, fa) — Q+(faa fa)
=v-Vy fr — Q" (fo fi) F OF(for 1) F OF(frs f) F OF(fo, fo),

and thus the estimate on Fer highly relies on the Z-norm bounds of f; and f. Recall
the estimate (3.38) in Lemma 3.6 that

d=1_g max{so,—y}—41

Ve fol 2»0L2NM 77N, °

d—1_ max{sg, —y}——

M 1 foll 2oy S MT N, :
For the case y € (154, 0], the extra smallness comes from the factor N, oo, —v1=43% g
we have required that so < 451 and N» > M. Thus, it is enough to deal with the hardest

d . d=3 d-1

endpoint case that y = T in which the M 2 ||V, o ||L3,,<0L% and M 2 || e ”Lﬁ"%ﬁ

d—1 .
norms of fo are the order of M 2 ~° and hence would not give any smallness for

s < T Additionally, we only need to prove the d = 3 case as the d = 2 case follows
from a similar way.
In the section, we set d = 3, y = —1 and hence ro = 0, for which the Z-norm is

IFOllz =0V FOllziz +MIFO 202 + Ny 1F Ol e

1 1
+NSNFOI s +M TNV fOll oo + MTINS IV F O s
L3 L v Lj LY

(3.48)

The following is the main result about the Z-norm bounds on the error term Fe.

Proposition 3.9 (Z-norm bounds on F,,,). For T, <1 <t <0,
t
H / e E=0VVx 03 dig HZ <M (3.49)
T

We deal with all of the terms in the following separate sections. In Sect. 3.3.1, we
give estimates on the term v - V, f;.. In Sect. 3.3.2, we handle the bilinear terms which
contain f;. Finally, we deal with Qi(fb, fb) in Sects. 3.3.3, 3.3.4, which are the most
intricate parts.

The estimates are mainly achieved by moving the 7y integration to the outside as
follows:

The only exception is the treatment of the bound on L})Lg" of 0% (fb, fi), where a
substantial gain is captured by carrying out the 7y integration first.

t
—(1—10)v-V,
[ e Ftt o], S 1T Ferlez

T
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3.3.1. Analysis of v - Vi f;

Lemma 3.10. For T, <1t <t <0,

H /r L0 (v, £ (10) do HZ <M. (3.50)

Proof. As we have required that N1 > M in (3.12), the desired decay bound is achieved

provided the upper bound carries the smallness factor N, % for some § > 0.
The ||Vy @ ||L%L% and M|| e ||L%L% estimates.
It suffices to deal with the |V, o || 1212 horm, as the estimate for the M || e || 222 horm

follows the same way. Noting that f; is supported on [|v| SNy ! }, we have

IV Ve foll 2z SNy A S22 S N7IMP ™ exp [|t|M1—S]<|r|M1—S>2,
(3.51)

where the last inequality follows from the proof of (3.26) with one x-derivative producing
a factor of M. We then insert in |Ty| = M*~!(InInIn M) to get

13
[vi [ et w9, o
T

STl sup |[Vx(v- vxfr)”L%L%
to€[T%,0]

1212

v

<M (nlnln MY)N; ' M>~(Inln M)?
< N7'M(Inn M)*.

The Ny || @ 117 and M~'N5 ||V, @ |10 estimates.
We only need to treat the M*1N71||VX e ||; 17~ norm, as the Nyt || ®||71700 nOrm
2 LlL? 2 LIL?
can be dealt with in a similar way. Recalling that (d = 3)

fe(t,x,v) = M%ﬂN? exp [—B(t, x, V)] x (Mx) x (N1v), (3.52)
we use the pointwise upper bound (3.17) to get
Ve (- Vi follp1poo

< NTIMPESNT expl—B(t, x, (V20 (M) x (Nl
NN IV, . v) expl =B x, VIV Mx) X (N1v) 170
F NN IV2B(1, x, v) expl— B, x, V)1 (M) x (N1) |1
+ NflM%_“NI% V2B, x, ) [? expl—B(t, x, V)] x (Mx) x (N1) | 1 10

< NTUNT MM explM 1M ).

When multiplied by |T;| = M*~!(In1nIn M), this gives

t
MO [ V) di
T

LyLy
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_5
SN, 2Ny MY M2 exp[ M= T, [|(M' | T, |)>

_3 3
< NN M2 (Inin M), (3.53)

1 1
The Ny |e| s and M~!NJ |V e| s estimates.
L3 L Ly L

These two norms can be estimated in the same manner as (3.53) with the Lllj norm

5
replaced by the L; norm. Therefore, we also have

1
—1 3
M~'N;

t
Vi / e~V 0V, f)(t0) dro |
LjL®

T
31 ; ‘ ‘
ST INTINy ON; MY M3 explM! S T 1M 5| T, )
_3 1
< NN NS M2 (nin M)
_ 14
< Ny OM3 (Inln M)*, (3.54)

where in the last inequality we have used that N; > N». O

3.3.2. Analysis of O* (fr, fo), OF(fo, f), and QF(fr, f;) Before getting into the anal-
ysis of the terms, we recall some estimates on f;, and f;, which are established in Lemma

3.6 and Lemma 3.7. That is,

I foll Loor,.002) M5, (3.55)
||fr||L°°([T*,0];Z) <M'(Inln M)?, (3.56)
2 -5 3
||fr||L1Lm||fr||g <N, 2M2 5 (Inln M)?, (3.57)
L3 L®
5 _1 3
IV, fr||L1Loo||vxfr||°% SNy 2M2>(Inln M)?, (3.58)
Ly L};O

where the last two inequalities (3.57)—(3.58) follow from estimates (3.44), (3.46). In
addition, during the proof of the bilinear estimate on Q¥ in Lemma 3.13 we postpone
to Sect. 3.4, we actually have that

3
; v, frnLlLoonv £ill®s )
)3 00 L3>

x /’ Y

10~ (o, fllz S I follz (IIfrllLlellfrII6

5 5
10" (for fllz < 11 follz IlfrIILch,ollfrll6 v, frIIL.LOOIIV fell®s

L3 L?c L3 L®

3

3
6
B

1 5

—1 7 4

IV fell o IV Sl
Lv L v L3 L®

\—/\_/v

5 1 5
105 (fr. fllz S iz ||fr||LlLoo||fr||6 + MV IS o1V 5%
L b L L

10*(frs fllz < Il follz (IIfrIILlLoollfrll
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Note that such an estimate is not possible for Q™ ( f;, fp), which is not contained in the
error terms. Therefore, for

(sgn, 1,2) e {(+,r,b), (£,b,r), (£,1,1)},

by estimates (3.55)—(3.57), we have

t
[ oo du,

T

1

STz + L foll2) (”fr”ZbL;o”fr”%)

1 5
s HMTUVANS IV fill s
L3 L v L L
_1
< | T,/ M" (Inln M)2N; 2 M2~ (Inln M)?
1
< Ny 2M375(Inln M)°,

where in the last inequality we have inserted in |7,| = M*~!(Inlnln M). This bound
1

suffices for our goal as it carries the smallness factor N 1_ Z.

3.3.3. Analysis of O~ (fv, fv)

Lemma 3.11. For T, <t <t <0,

Proof. As we have required that N> > M in (3.12), the desired smallness comes from
the factor N, % for some 8 > 0. As the x-derivative, which is put on fj,, produces a factor
5

t
[ e sardn] < w7 (3:59)

T

of M, it is sufficient to estimate the L2L2, L} L%° and L; L% norms.
The M| o liz2r2 estimate.
Note that ‘

t
m| / e~V 0= (A ) (t0) dio

Loy S ITAMIQ™ os )l er, 0:2312)-

(3.60)
We only need to control M| Q™ (fb, fo)ll L1212+ Recall the upper bound (3.19) that

Ml—s J -
Solt,x,u) < Nz Kj(x)1j(u), (3.61)
2 j=I1

- MPL x P, x 10P, . (u — Nye;)
Kj(X):X( ! >X<1(;v2)’ Ij(u)=x(MPiju)x<#>-
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Then we have

O™ (fo, fo)(t, x,v)

2
Ml S ~ ~ ~ ~
s( N2) Y KK Up pwm+ Y KK )0 U, I)(v)

2 lj—k| <1 lj—kI>1
(3.62)

Case I: |j — k| < 1.
For the case that |j — k| < 1, the summands in the double sum Z,{ Z]j are reduced
to (M N,)?. By Holder and Hardy—Sobolev—Littlewood inequality (A.5), we obtain

()] =

’

j—kI<1 o
Mi-s ~ I (u)
( ) ( LA
u— |
Ml S 2
< HZK (01 (u>\ 11 LA
M= ’ 1 A2 2 a7\ 2
< ) v
2
4
_ M———ZAN 3 (363)

where in the second-to-last inequality we have used the disjointness of the v-support to
get

H Z K1 |’

i S Z 1K 721117, S (MN)*(M72N2)? = M72N3.
(3.64)

Case II:|j — k| 2 1.
For the case that |j — k| 2 1, this implies that sino;x 2 (M N>)~!, where ok
denotes the angle between e and e;. Then we have

Ik(u) d

|u
—I (v)/ X(MP W)X (—wpek(” _Nzek)>du
|u N

1
<1 >f (MPL ) (
) P — ol Py

0~ (1. )W) =1;(v) f

10Pe; (4 — Noey) )du
Ny

Due to the v-support and u-support, we write

1 1
v=uaej+ce;, u=bhbe+de;

J
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where a ~ b ~ Ny and ¢ ~ d ~ M~!. Therefore, this gives
| Py (u — v)| =| Py (bey +dey — aej — cey)|
za|PeJk‘ej| —d—c
>Nasinajp—M' > M (3.65)

where in the last inequality we have used that sine;; 2 (MN,)~!. By the estimate
(3.65), we then set & = (u, ex) to get

1 1 10P, — N
Ij(v)f |uk£u) <I; (v)f [Po i — )+ M T x (MN, u)x(—"(ij2 2ek))alu
ek
' 1 L (10 — Ny) N
S0 [ e )X( N2 )dédé
1 10 ,v) — N
SLM™? / I M_lx( @”g}"vzw 2)>d§

_ 1 M 10(N2& + (ex, v) — N2)
7. 2
=LiM Nz/_I MNS E] + 1X( N2 )dé

1 M
StomN, [ et s
In(MNy)
< - &
Ij(v) 2 (3.66)

Consequently, we arrive at

M=\’ -~
( 2> Y KK U k)

2 lji—kI21

1—s 2
=(Afv2> 3 K(x)l@(x)l()/ [k(”)
2 lj—kIZ1

2

M N

5( = ) > KR
2

M5 \" In(MN,) N, \?  «x 5
S(N%) M? <|x|+M—1> X(E);Kj(x)lj(v) (3.67)

where in the last inequality we have used that

- ' (MPix P x N> 2 /x
;Kk(x)=§x< 10 )X(N2 )S’<|x|+M—1) X(N_2> (3.68)

To see (3.68), we might as well take x = (0, 0, |x|) with M~! < |x| < Na. Let 0; be
the angle between e; and (0, 0, 1). Then, we have

1 .
ix M Pgix (P :ix Mix|sin6;\ _ 5 LN N3
- 10 Ny I 10 (|x|M)2 '

|x|2
jisin®; < ‘
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Applying the L2L?2 norm, we have

()] =

lj—kIZ1

M=\’ ln(MN ~
5( N2 ) n(MZ . HZJ,:KJ'(X)IJ(”)‘

Jo

(—N2 ’ (—)
x+m1) N,

L3LY L?
A In(MN,) 3
s N2 e N; (M3N3)
1 _1
= M2"%N, 2 In(MN>) (3.69)
2
where we have used that
3
2
12 M
and
2 2
H 1= :M?NZZH ! Py <M%N22.
|x|+M Ny )2 [x|+1 MN;y )Lz ™~
(3.70)

Combining estimates (3.63) and (3.69) in the two cases, we finally reach

3 5. 1
MIIQ™ (fo. fo)ll 222 S M272 N, 2 In(MNy).

Together with (3.60), we insert in |7,| = M*~!(InlnIn M) to obtain

<N, 2M27‘ In(MN>)(Inlnln M),

ZLZ ~

M| / I 0 (o i)t di

which suffices for our goal.
The N{l | ® ;1 estimate.
. VX .
For convenience, we use the notation

t
D — / e~ 0= (fo. fo) (to)dro.

T

From the analysis on O (fp, fp) in estimates (3.63) and (3.69), we actually get a
pointwise estimate on Q~ (fp, fb) that

0 (fo. fo)

M!S In(MN>) N> 2 /x 2
N( ) 2}: x)Ij(v)|: 2 <|x|+M—1> X(E>+(M 2N2)3j|.




283 Page 32 of 51 X. Chen, S. Shen, Z. Zhang
Expanding D™ gives that
t
D~ =/ O™ (fo, fo)to, x — v(t —19), v)dty
T

t Ml—s 2 -
5f ( 2 ) D K — vt — 1)1 (v)
’ J

2

In(M N3) N> 2 ot — 1) . ,
><|: M? <IX—v(t—t0)\+M—l> X( N, )+(M N2)3:|dto

M2 0 Ny 2 x —v(t — 1) 2
< 1 In(MN d MN»>)3
SN (”)[”( 2)/r*<|x—v<r—ro>\+M*1> (R Yot

where in the last inequality we have used that

T <lvl=

1 10

Y OKjx— vt — o)) <> 1) = I(v) ~ 1{% &}(u).
j j

We then deal with the time integral. By change of variable, we have

0 N, 2 x—v(t—ty)
) T*<|x—v<z—ro)|+M1> X( N )dto

Tl MN, 2 X —vo
<I1(v) — | x do
T, [Mx — Mvo|+1 N>

_ (MNP I ) M ( 1 )2

Mv| —MTp \ o — Mlx|| +1

< MN2/ (v),

where in the last inequality we have used that |[v| ~ N, and f % < 1. Hence, after
carrying out the 1D dfy integral, we arrive at

—2s

M
1y y— —1

Ny 1D N1z SN, N
2
—2s

17y [InMN2MN; + (MNo) 5 ]

<N, 3 N3 In(MN2)MN,
2

=N; "M In(MNy). (3.71)

1
The N, || o || s estimate.
[o¢]
v Ly

By the interpolation inequality, we have
4
3

1 1 1 5
. A
NIDT 5 = (M D ) (NZZIID ||L5L;o) .67
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For the L%L;" norm on D™, by Holder inequality, we have

1 1
Ny IID™ Nl 2p00 SN ITINQ™ (fo, fo)ll 200

3 Jo(x, u)
<N2Z2 ?
<N IT / ), el

We then use the L*° estimate (A.5) in Lemma A.3 and interpolation inequality to get

folx, u) < p <yl 3
I Bl P TP 1oll"s SN Mol + VAN 5 = 1ol
By the Z-norm bound on f; in Lemma 3.6, we have that
1
Ifollz S M5 NFlfollapee S M.
Thus, inserting in || = M*~1(InlnIn M), we obtain
1
NF D™ [l g2 SM'*(Inlnin M). (3.73)
Combining estimates (3.71), (3.72) and (3.73), we reach
1 _1 6
NS ID™| s SN, SM'=55 In(MNy)(InIn In M). (3.74)
Ly LY
_1
This bound is enough as it carries the smallness parameter N, °. O
3.3.4. Analysis of O*(fo, fo)
Lemma 3.12. For T, <1t <t <0,
t
| [ om0t o an |, < w7, (3.75)
T

Proof. In asimilar way to estimate O~ ( fp, fp), we obtain the desired estimate provided

the upper bound carries the smallness factor N, % for some § > 0. For convenience, we
use the notation

t
Dt = / e UTVV OF (fy, fo)(to)dto.

The x-derivative produces the factor of M, so we only need to estimate the L2 L2, L1 L%

5
and Lj LS norms.
The M| o || 1212 estimate.
We use again the upper bound (3.19) that

1-s J -
> K1), (3.76)

j=1

folt,x,u) S

N3
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where

- MPL x P,.x 10P,, (u — Nae;)
Kj(x) =x( 18’ )X(l(;;\]z)» 1,/(”)=X(MP$M)X<%>-

Then we expand Q*(fp, fb) to get
0™ (for fo)lI722

M474S - - - -
I~ 8 Z Kj(X)Kj,(x)Kj;(x)K j, (x) 0" (1j,, I;,) (v) Q" (I};, 1;,)(v)dxdv.
2 jrjaadsa

By using that Ejz (x) < 1and Ej4 (x) <1, we obtain

Z /1’5,l WK j, (K ;50K j,(x)0 U, 1) (0) 0 (15, 1;,)(v)dxdv

J1s2,J3.J4
Y / Kj (0)K jy (x)dx / Q" (Ijy, 1) (0) Q* (15, I) (v)dv
J15J25J3,J4
= Z/I?jl(x)l?h(x)dx/ 0* U, H()Q*j;, I (v)dv
J1J3
where

J
I(v) = Z[j(v) ~ 1{%SIUIS%}(U)'
J

By Holder inequality and bilinear estimate (A.6) for Q* in Lemma A.4,

4—4s

M ~ ~
10" (for f)llfzr2 S5 2 / K (0)K 5 (0)dx ]| Q¥ (I, D21 Q* (. Dl 2
2 i
M4—4S ) - -
< % ||1||L3Z/K,-1<x)K,-3<x)dx||1j.||L§||1,~3||Lg.

J1sJ3

Using || 1;]| 5 < (M_zNz)%, 111,53 < Na, estimates (3.68) and (3.70) for the sum, we
L; v

obtain
M4—4S 5 ~ 12
2 -2 2 A72

10 (o 1z ™ UM I3 K

j X
MA—4s B Ny 2 x \ 2
e ] (s ) o)
~ N28( 2N\ ) A\ ) s

4—4s - 5 5 4

2

5 _1
_agx—4s 3
=M3""N, °.
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Thus, we arrive at
TR
MIQ* (fo, fi)ll 2z SNy “M . (3.77)

Upon multiplying by the time factor |Ty| = M*~'(Inlnln M), this yields a desired
bound

_1
MID* |22 SN, *M3~*(lnlnln M), (3.78)

The N, Uie L1200 estimate.
Recall that

1—

M
folt) = Z Kj(x —vn)I;(v),

2]1

N n 10P, ; (v—Naej) X
where K ;(x) = x (M P; x)x I (v)_X(MP V)X ’N—2 . The gain

term is
ot (f. 9 = /;2 /]1&3 Bu—v,0) f(0)gw")dudow,
with the relationship that
*=Plu+Ptv, u*=Plv+Plu,
v :Paf‘v* + Pallu*, u = Pallv’k + P(j‘u*.

Then, expanding D* gives

MZ—ZS t
Dt == ZZ/ e~ TV OF (K (x — t0) Ik (v), K (x — 1)1 (v))(t0)d1o
2 T
M2 2s
Z/ / Bu—v,w)Sji(t, x,w, u*, vdudw,
S22 JR3
where

Sikt, x, 0, u*,v¥)
t
= / Ki(x —v(t —1tg) — v*to)lk(v*)Kj(x —v(t —1ty) — u*t())]j(u*)dt(). (3.79)
T

We estimate by

D% 1110
M2-2s J o J
< N ZZ/SZ/HQzB(u—Uw)S]k(wau v )dudw
. LiL
M2—2S

< ZZ] fszRs B(u — v, ) | Sx(t, x, 0, 0", 0" o dudvdae
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M2-2s J

— N—E‘ ZZ /SZ /R3xR3 B(u —v, w) || Sikt,x, 0, u*, U*)”L;O du*dv*dw

2-2s J
M ZZ/du /dv /Sde ISiatex 0,000
k

(3.80)

N

where in the second-to-last equality we used the change of variable, and in the last
inequality we used that B(u — v, ) = |u — v|~'b(cos 0) < lu— v|™Vand |u —v| =
|[u* — v*|. We note that
v—ut = Pj(v*—u*), U—U*z—Pc!l(U*—M*),

and hence get

x—v(t—ty) — vy =x — vt — Pcﬂ(v* —uMt,

x—v(t—1ty) —uttg=x —vt + P(j‘(v* — uM.
For fixed u™* and v*, we get

Six(t, x, w,u*, v")

0 _ _ples o«
< f x(MPeﬂx—vt—PL(v*—u*)m))x(P“(x v Pty ”‘”)@(v*)

T, N>
P, (x — vt + PE(v* — u®)tp)
X (MPj}. (x — vt + Pr(v* — u*)to)) x< el Nw 0 >1j (u)dr
2
< L") Er(t, x, v, o, u*, v"), (3.81)

where
0
Ev(t,x,v, 0, u™, v") =:/ (MPL (x —vt — Pcﬂ(v* — u*)to)) dr.

We split into two cases in terms of the angle o x between e; and ey.

Case I: o # 0. (In this case, we have that sina ; 2 M+\12.)

Now, we get into the analysis of Ei (¢, x, v, w, u™*, v*). First of all, it gives a trial
upper bound that

Ep(t,x,v,0,u”,v") <|Ty| < 1. (3.82)

By the radial symmetry and monotonicity of the cutoff function x, we obtain
/ X( ity + m)dto < —/ X (t9)dty. (3.83)
R

To see (3.83), without loss of generality, we take 7= (0,0,1) and m = (my, my, m3)

to get
/ X(E)Z‘() + W)dl() 2/ X <\/m% + m% + (to + m3)2> dty
R R
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5/ x (lto +m3]|) dty =/X(to)dt0-
R R

Thus, by (3.83) we arrive at

0
Ev(t,x,v,0,u*,v)= [ x (MP:(x —vr — Pl(v* —u*)19)) drg
ek w

[ x(10)d1o
T MIPLPY @ — u)]
1 1

S— , (3.84)
M sin ¢y, |Pa!(v* — u*)|

where ¢ is the angle between w and e;. Due to the v*-support and u*-support, we have

*_w*)? ~ |aey — bejl2 =(a — b)*> +2ab(1 — cos o k)

>Nj(1 —cosa;j) = Ni(sina ). (3.85)

|v

Let 0 be the angle between w and v* — u*. Then we obtain
|Pu‘)|(v* —u)| = |v* —u*[cosf Z Nysinaj cosb. (3.86)
Therefore, we get a useful upper bound that

I (V) 1 (u™)
MN; sin ¢ cos 0 sinej

L ()W) Ep(t, x, v, 0, u™,v") S (3.87)

Now, we are able to establish the effective bound on Ej (¢, x, v, @, u™, v*). Set

1 T 1
2
= : —_— __9 —_—
A {weg ¢kSMN2}U{2 SMNQ}’

and denote by A€ the complementary set of A. With the trivial bound that E; < 1 on
the set A, we have

[ 1B x v ot vlupdo < [ 1dos [ 1B x v 00 0 i do
S A c

1
§—+/ | Ex(t, x, v, 0, u*, v*)||Lxdw.
MN2)2 S e :
(3.88)

For the second term on the right hand side of (3.88), by the upper bound (3.87), we get

L)1) / VEc(t, x. v, 0,4, v) | edo
AC

_ L) I (u*) 1
~ MN2sinaj g Jac singy cos6

< QDL Wh [/ ! dco+/ ! da):|. (3.89)
MN; sinej i | Jae (singy)? Ac (cos6)2
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For the last two terms on the right hand side of (3.89), by the rotational symmetry, we
might as well to consider

1
/ 52 N[i912 57k; | Gingr

where ¢ is the angle between the z-vector (0, 0, 1) and w. Using the surface integral
formula,

1 | sin ¢ /‘75
do S —d < In(MN
/Szm{|¢|>MlN2} (sin )2 wN/|¢|> _ (sing)? W= 612y 1] ? = In(MR2).

Together with (3.89), this bound yields

L) I (u )f IEc(t, x, v, @, u*, v") | Lood I"(vl\)dIN(” YInMN2) 3 99)
2sinejk

Therefore, combining estimates (3.81), (3.88) and (3.90), we arrive at

In(MN>»)
/ ||S] vt x, w, u* , U )“LOOd m k(U*)IJ(M*) (3.91)
Then, going back to the estimate (3.80) on D*, we have
ID¥Il 1 oo
M2—2s
S Z/du /dv f do e I18ix(t. 5, 0. ¥, v*)| e
2 k#j
MHS In(MN
< n(MN;) / fdv e DL, 392
Ny oyt Mstmoz]k

In this case, since we have that sinojx 2 M#Nz, we can use estimate (3.66), which is
established in the analysis of O~ (fp, fv), to get

/du /dv Ik(v)l( )<M/1( )d*:m(ﬂl\;ﬂ 2N,
(3.93)

Consequently, combining estimates (3.92) and (3.93), we arrive at

M2 L In(MN,)  In(MN>)
4 ZMN sino M4 N2

2 ggj 2RIk

| M%7 In(MNp) (MN* In(MN>) Ny
N MNy M*

=N,y 'M'7% [In(MNp) 2, (3.94)

—1 + —1
Ny D™ N1 SN,

SNy
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where in the second-to-last inequality we have used that

J J MN

DR 55 SHD D
sinaj 4 . osinajig
k#j Joi=l1 smotjk'vMNz

J MN,

< (MNo)*.

52 ZMNgsm(x]k

J

This completes the estimate of the L} L% norm for D*.
Case []:aj ~ 0. (Thatis, |[j — k| S 1.)

In this case, the summands in the double sum Z,{ ZJJ are reduced to (MN2)2, SO we
only need to use the trivial bound that

/ I1Sjk(t, x, 0, u”, v) || Ledw S T(v*) 1 (u™).
s? ’

Then, with the estimate (3.80) on D*, we use Hardy—Sobolev-Littlewood inequality
(A.2) to get

+
D™ M L1 o0

m2-2 L
§N—§ZZ/du /dv/da) “Sjk(txa)u v)HLOc
ko j
2-2s
MN4 Z /du /dv Ik(v ) (u*)
2

lj *k|<1

A

M272s
- Z 1711 g il s

<
8

Nz lj—kIS1

2—2s 5
S (MN2)*(M™>N2)3

2

225 _%

SM3™FN, . (3.95)
Combining estimates (3.94) and (3.95) in the two cases, we finally reach
Ny D1 S M2 Ny [In(M NI (3.96)

The N2 | o || 5 estimate.
L

By the 1nterp01at10n inequality, we have
3 + -1 + % 3 + %
NFIDY 3 < (NTHID g (N; ID ||L5Lgo> : (3.97)
For the L%Li" norm, by the bilinear estimate (A.6) for Q* in Lemma A.4, we have

1 1
N ID* Nl 2pee SN ITMNQ (for fo)ll 210
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1
SNIITAAN 3 Mol
Ly LY
SIT M M
<M (InInln M), (3.98)

where we have used the bounds on fj established in Lemma 3.6 that
1
Il 3 <Ny Uflpie + N3 Al s <Ifllz S M,
L7LY® v L3 LY
) '
N3 follparge SM'.
Thus, combining estimates (3.96), (3.97) and (3.98), we reach

_1
< N, M8 (nlnln M) In(MNy), (3.99)

X

1
N3 || DY
L

oy

which is sufficient for our goal. O

3.4. Z-norm bounds on the correction term. Recall the equation (3.3) for the correction
term f. that

o fe+tv-Vife =G,

(3.100)
G =+0"(fe, f) £ O (fa, f) £ 0T (fe, f) = Fenr.
ForT, = —M s—4t (Inlnln M) <t < 0, we are looking for the correction term f;(¢)
with
el 20 o S M2, (3.101)

To achieve it, we apply a perturbation argument and work on the stronger Z-norm (3.36).
By interpolation inequality, for d = 2, 3, we indeed have

3—d d—1
2

o< < 2
”f”Lf”OH;O =< ||f||L%,,0H¥d21 _||f”Lﬁ‘r0L§||<vx>f”

L2
d-1 d-3
<M 2 ”f”Lﬁ”OLZ +M2 ||<Vx)f||L%J‘0L2 <Iflz.
X X

Certainly, there are multiple choices of Z-norms. As we are fully in the perturbation
regime, we expect the correction term f, to be much smoother and hence we choose the

L%’ro H; norm. On the other hand, to beat the difficulties caused by singularities of soft

5
potentials, the L1 L%° and L; LS norms’

(3.102).

In the section, we first prove a closed estimate for the loss and gain terms in Lemma
3.13 and then use it to conclude the existence of small correction term f(¢) in Proposition
3.14.

are needed as shown in the following estimate

9 The index % is just one of the multiple choices. We choose it, as it would not yield much more difficulties
in the estimates on the approximation solution and error terms.
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Lemma 3.13. (Bilinear Z-norm estimates for loss/gain operator Q%) For fi, f», we
have

10*(f1, Mz S Ifilzl fallz.
Proof. We only need to prove that

10% (. llz S 1Az (VAN AN e M IVl 1w o
LU LY® Lv L
(3.102)

since we have that

2d
—1 Sty
IIfIIle‘;IIfII e <Ny Il + N AN s < Sz,
L o0

LOC va
v, v, i <M~ 'N;Y Vv
I f|| ) wll fls =< 5 IV fllpipeo
L, LY vlx
L LY

1 +V
+ M~ N25 IVifll s =<Iflz.
L3 L®

d-=3 d—1
The M 2 ||V, e ||Lz,,-0L2 and M 7 | e ||Lz,r0L2 estimates for O (f1, ).

. d=3 d—1
It suffices to deal with M 2 ||V, @ || 2, ,, normasthe M 2 || e | 2, , norm can
L0102 L0102

be estimated in a similar way. For the estimate on Q~, we use Leibniz rule and Holder
inequality to get

M%MQ—(f], P2
TUQTVafie Pl 2o + MTNQ™ (i Vi Sl 2o

= Sax, w)

<M \(v e [ B,
Vi

e I (B =

J
s il 200

/ f2(x, u) pbw
lu —v|7v g,

/foz(x,u)d ‘

lu — o7

d-3
+M 2 2,
Ll 200,

Lo

v,x

Then by L™ estimate (A.4) in Lemma A.3, we obtain
d=3 _
M TNV Q (fis )l 20 2

<MV Al 2roLz||f2||L1Loc||f2|| el
L) LY
d—1 74
+M 2| fill 2 Vil IIV ll s El
vaoLz LlLoo L Loo
v

S IAlzI 2Nz
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For the estimate on Q™, from the conservation of energy that |v|>+|u|> = [v*|>+|u*|?,
we use Leibniz rule to get

[()°VL 0T (f1, )1 SOT()°IVx fil, [ 2D + QF (W)L fil, Ve f21)
+ QT (Vi fil, (V)1 2D + Q7 (L fil, (0)° Vi f2]).

Then by bilinear estimate (A.6) on Q*, we have

a3 +
M V0 (fis )l 2

d—1 -1
)V, f1||L2L2||f2|| +M 7 |[()" fill 22 M Vs foll
V 0 Y Y 100
U Lx LU Lx
4 -1 =3
+M TNV il o M) ol + 1AL o M2 {0) OV follp22.
LI Lo v L Lo v

By the interpolation inequality that

1£1 < ||f||L1Lm||f|| o
L

_d_
L L

L

X

we arrive at

d—3
M2 IIVxQ+(f1,f2)||Lg.roL2 SAalzl 2z

The N, || @ [|,1, and N2 "lle| s estimates for QX (f1, f>).

ULOO

For the estimate on Q~, we use Holder inequality and the L° estimate (A.4) to get

falx,u)

‘|
— 7 e

NYIQ™(fr. Pl <N2V||f1||L1LooH/|

<N;||fl||L1LOO|| 72|| 1 oo||72|| Zd
LyL%
LU L%

ShAlzI 2z (3.103)

In the same way, we also have

Yy o Yy a
Ny O™ (fi, I s SN Al s ||fz||L1Lm||f2||
L3L® L L®

X v L)o{o
SIfillzI 2z

For the estimate on Q7, by the bilinear estimate (A.6) for Q* in Lemma A.4, we have

14+ =Sy
NIQ s g S N Il Nl 1 S 1Az Rl
LJL

(3.104)

Similarly, by the bilinear estimate (A.6) in Lemma A.4, we obtain

oo Fay AP
Ny TN N s SNy AL s RIS S TAlzI Az
L3 L L3 L% v E

Ly L%

X



Well/Ill-Posedness of the Boltzmann Equation Page 43 of 51 283

2d
The M_lN%/ [IVx @11, and M‘1N25 T (Ve 5 estimates for Q% (f1, f>).
v Ly LY

For the estimate on O, in a similar way to (3.103), we use the Leibniz rule to get
M=INJIVQ™ (fi, )l
= MV (107 (Va fi Plliyess + 107 (A Ve )l e

< MTINY|IVifi ||L1Loo||fz||L1Loo||fz|| o

L()O
% —1 1+34 =¥
+ Ny L fullizee M Ve f2ll 1o I VR 2175
’ v L3 L%

S ANz z.

2d
The same also holds for the M_1N25 T VO~ (f1, f2)||L%L0o norm.

X

For the estimate on Q%, in a similar way to (3.104), we also have
M=INJ IV (fi, )l
= 7N (10° (Ve fis lgrss +10* (1 Vel iz

1
S MTINS |V, fl“LlLOO”fZ”LlLoo”fZ” E
L LYe

+ NS fill e M Ve fanlenV 17
L LY

S izl f2llz-

The estimate for the M~ lN2 oy I

VO (f1, I 3 _ norm follows the same way by
Ly LY
using bilinear estimate (A.6) in Lemma A.4. |

Now, we take a perturbation argument to generate the correction term f; (¢) using the
Z-norm bounds on f, in Proposition 3.8 and the Z-norm bounds on F in Proposition
3.9.

Proposition 3.14. Suppose that f. solves (3.100) with f.(0) = 0. Then for all t such
that
T, = —M°~“T (Inlnln M) <t <0,

we have the bound
Ifellz S M2 (3.105)

Proof. Let the time interval T, <t < 0 be partitioned as
T.=T,<T, 1 <Tho<---<Th<T <Tp=0

where

—iMsT
Ti=——, n=+~InM(nlnlnM).
! VIn M
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Thus, the length of each time interval I; = [T}41, T;] is

|| =

Fort € I; = [T}+1, T}], we rewrite the Eq. (3.100) in Duhamel form

13
fe(Tj+1) = e TV (1) + / e 1TV G (1) d1g

T;

with f.(To) = 0. Applying the Z-norm,

t
| fellugez <N ATz + | / eV G|
! Tj L7

< fe(TP)lz + ;11 0F(fe, fllizz
+11110%(fa, fllugez + [ 110F (fe, fe Mgz

t
+ H / e—U—fO”‘VXFeH(tO)dm‘
T;

L°Z
fj

For these terms on the second line, we apply the bilinear estimate in Lemma 3.13, and
then the estimate (3.47) on || fa|| ¥z from Lemma 3.8. For the Fg,; term on the last line,

we use the estimate (3.49) in Proposition 3.9. Then we have
C(Inln M)2 iy cm—5
VInM ML VInM

where C is some absolute constant. Absorbing the || f.|| Lz term on the right gives
J

Ifellzzez < 1fe(Tplz + ||fclli7]o_Z+CM_1,

| fellgez = 20Tz +2CM ™
Applying this successively for j =0, 1, ..., we obtain

I fellgez < Q' — 2ecm.

With j =n = +/In M(Inlnln M), we arrive at

Ce«/lannlnM Ce«/lannlnM

M - eln M

Il fe(Tllz < SMﬁl/z < 1.
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3.5. Proof of illposedness. We get into the proof the ill-posedness.
Proof of Ill-posedness in Theorem 1.2. Let
Jex(t) = fr(0) + fo(0) + fe (1),

with f.(¢) given in Proposition 3.14. By the upper and lower bounds in Lemma 3.3 that

1O 270 0 S (TN 20 o0 21

InlnM’

we can take g € [T, 0] such that ||fr(t0)||L24r0 o = 1. Note that

a1 _ _
Ifillz S M7 Anin M), v Vefillz < M7 0% (fr, follz < M7,

which are established in Lemma 3.7 and Sect. 3.3. Therefore, by the same perturbation
argument in Lemma 3.14, we generate an exact solution gex (#) to Boltzmann equation

8ex(t) = fr(t0) + gc(1),
with g.(0) = 0. This gives that
I8ex(O 20 0 = IOl 200 0 = 1,
_1
lgc Ol LT, 0120 S M™2.
Now, we have two solutions with the decompositions

{ Jex@) =fr(0) + fo (1) + fe (D),
Zex (1) =fr(10) + gc (1),
which gives

Jex(t) = gex(t) = (fr (1) = fr(10)) + fo () + fe(t) — gc(1).
For t € [Ty, 0], by Lemma 3.1 and Proposition 3.14, we have

1
s0—S __
LoD 200 g0 < MO = e

_1
1Ol 20 0 < 1@z S M2,

_1
8ell 200,00 < gz S M2,

Thus, we obtain
1 fex(t0) = gex (t0) 200 o S 1777

and
I fex(0) = 8ex )l 210 30 ~ IL+(0) = et 20y ~ G0 20 0 = 1.

1
where we have used that || £ (0)]| L270 %0 < - Hence, we complete the proof. O
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Remark 3.15. We actually have found an exact solution fex () which satisfies the norm
deflation property. This is the key to conclude the failure of uniform continuity of the
data-to-solution map.

In the end, we prove Corollary 1.3.
Proof of Corollary 1.3. Recall the kernel

u

— v
- a)> (3.106)

B =, 0) = (1gumujznln = vl + T umsyznlu - v|—1)b(|u —

and notice the pointwise upper bound estimate

_ u—v 1 u—v
(1{‘u_v|51}|u—v|+1{|u_v|21}|u—v| l)b — | < b cw ).
lu — v lu — v| |lu — vl

(3.107)

Therefore, for the kernel B(u — v, w) in (3.106), all the same upper bound estimates on
Jo» ft» fa» Ferr, and f follow from the pointwise upper bound estimate (3.107). The only
one lower bound on f; we need is given in Remark 3.4. Then by repeating the proof of
ill-posedness for the endpoint case (d, vy, rg) = (3, —1, 0) in Theorem 1.2, we complete
the proof of Corollary 1.3. O
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Appendix A. Sobolev-Type and Time-Independent Bilinear Estimates

Lemma A.1 (Fractional Leibniz rule, [40]). Suppose 1 <r < 00, s > Oand% = %+%
withi =1,2,1 <q1 <00, 1 < py <o00. Then

V) (fllr < CI(Vx) flleeligliear + 11f e (Vi) gll Lo (A.T)

where the constant C depends on all of the parameters.

Next, we present the standard Hardy-Littlewood-Sobolev inequality, which is widely
used in our various estimates for the soft potential case.
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Lemma A.2. Let p > 1,r > land —d < y < 0 with

1 1
—+—=2+Z.
p r d

Let f € L? (RYY and h € L™ (RY), then there exists a constant C(d, ¥, P), independent
of f and h, such that

/ / F@lx = yI"h(y)dxdy < Cd,y, p, Ol flIplihllr (A2)
Re JRA

In particular, for p > 1, g > 1 with

1
1+—+Z=
q d

)

1
p
we also have

If*1-1"llee =Cd, v, p, DI fllLr- (A.3)
Lemma A.3 (Endpoint case). Letd > 2, —d <y <0,and 1 < p < éﬁy <q < .
Then for f € LP (Rd) N L? (Rd), it holds that

g=1, _y_p=1

ENEY
R

g9 p
11 1
/|x|y|f(x)|dx Sl * Ifl" 7 (A4)
In particular, when y = —1, p =1, and q > ﬁ, we have
1 1 -
f(y)
| [ 0], = TEEUT IR (A5)

Proof. The endpoint case is also known. For completeness, we include a proof. We split
the integral into two parts and use Holder inequality to get

/ x|V ] f (x)|dx S/ x|V ] f (x)]dx +/ x|V ] f (x)|dx
R4 lx|<n

IXI>n

L4y
§||f||L477‘1 + 1 flleem? ",

where p’ = —£5 and ¢’ = L. Optimizing the choice of 7 gives the desired estimate

q
that

g—1 —1

<

+

q
1_1 1_
/Rd 71 foldx Sy 11"

ENRS
ENES

m—_“‘

O

The following parts focus on time-independent bilinear estimates for gain/loss terms.
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Lemma A .4 ([5, Theorem 2, Corollary 9]). Let 1 < p,q,r < ocoand —d <y < Qwith
1 1 1
—+—-=1+ r +—.
P q d r

Assume the collision kernel

B(u—v,w):lu—v|yb<u_v ~a)),

|lu — vl

with b (= = vI - w) satisfying Grad’s angular cutoff assumption. Then, it holds that
|07/ O 1 (ray = CISIir (e lgla ey, (A.6)
[0~ (. o) ey = ClF Lo @eylglLaqrey. P> (A7)
Lemma A.5 (L! endpoint estimate for QF). For y = —1, we have
P _ 1
10* (£ ol <Al P e (A8)
1 1
10*(f. )l snfulLl S g (A9)

Proof. By the change of variable, we have

10%(f. 9l < / / @@ 1 dvde
RZ(J

lu* — v¥|
k *
/ / | f(u*)g(v )Id *dv*de
sd-1 Jrad  |u* — v¥|
Ig( Bl
ST el

Using the L estimate (A.5), we get

1™ (f )l S WS Neligl “« p>||g||Lgy ?).

In the same way, we also obtain estimate (A.9). |

Appendix B. Strichartz Estimates

Recall the abstract Strichartz estimates.

Theorem B.1 ([48, Theorem 1.2]). Suppose that for each time t we have an operator
U(t) such that

U@ Fllz SISz,
IUOWE™) fllege St = s -
Then it holds that
0O fllgare S 1F 1z (B.1)
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for all sharp o -admissible exponent pair that

2 20
T+ =0, g=2,0>1. (B.2)
q p

The symmetric hyperbolic Schrodinger equation is

{ i, + Ve - Vg =0,

B.3
$(0) =o. -3

Note that the linear propagator U(r) = e''VéVx satisfies the energy and dispersive
estimates Ly
t TVx
1Y ¥ ol 2, < goll2,
. ' ) (B.4)
V-V -
"™ Y gollzy <t~ lloll, -
Then by Theorem B.1, this gives a Strichartz estimate that
. 2 2
1 Y gollgrr, SNooliz. D+ —m=d. g22.dz2 (BS)
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