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ABSTRACT: Recent advances in explainable artificial intelligence (XAI) methods show promise for understanding
predictions made by machine learning (ML) models. XAl explains how the input features are relevant or important for the
model predictions. We train linear regression (LR) and convolutional neural network (CNN) models to make 1-day predic-
tions of sea ice velocity in the Arctic from inputs of present-day wind velocity and previous-day ice velocity and concentra-
tion. We apply XAI methods to the CNN and compare explanations to variance explained by LR. We confirm the
feasibility of using a novel XAI method [i.e., global layerwise relevance propagation (LRP)] to understand ML model pre-
dictions of sea ice motion by comparing it to established techniques. We investigate a suite of linear, perturbation-based,
and propagation-based XAI methods in both local and global forms. Outputs from different explainability methods are
generally consistent in showing that wind speed is the input feature with the highest contribution to ML predictions of ice
motion, and we discuss inconsistencies in the spatial variability of the explanations. Additionally, we show that the CNN
relies on both linear and nonlinear relationships between the inputs and uses nonlocal information to make predictions.
LRP shows that wind speed over land is highly relevant for predicting ice motion offshore. This provides a framework to
show how knowledge of environmental variables (i.e., wind) on land could be useful for predicting other properties (i.e.,
sea ice velocity) elsewhere.

SIGNIFICANCE STATEMENT: Explainable artificial intelligence (XAI) is useful for understanding predictions
made by machine learning models. Our research establishes trustability in a novel implementation of an explainable Al
method known as layerwise relevance propagation for Earth science applications. To do this, we provide a comparative
evaluation of a suite of explainable AI methods applied to machine learning models that make 1-day predictions of
Arctic sea ice velocity. We use explainable Al outputs to understand how the input features are used by the machine
learning to predict ice motion. Additionally, we show that a convolutional neural network uses nonlinear and nonlocal
information in making its predictions. We take advantage of the nonlocality to investigate the extent to which knowl-
edge of wind on land is useful for predicting sea ice velocity elsewhere.
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1. Introduction prediction (Karpatne et al. 2019; McGovern et al. 2019). In
fact, linear models are often used instead of deep learning for
applications that favor interpretability at the expense of a
more skillful prediction (Schneider et al. 2021).

However, recent advances in explainable artificial intelli-
gence (XAI) techniques have shown promise in probing the
inner workings of the black box and providing a useful under-
standing of how complex ML models make their predictions
(Samek et al. 2021). For applications in geosciences, these

Machine learning (ML) is emerging as a powerful tool for
applications in Earth sciences (Eyring et al. 2024; Reichstein
et al. 2019; McGovern et al. 2019; Gil et al. 2018; Karpatne
et al. 2019; Toms et al. 2020; Camps-Valls et al. 2021; Gordon
and Barnes 2022). Deep learning models in the form of neural
networks can make highly skilled predictions through the use
of a hierarchy of features that allows the models to incorpo-
rate complex, nonlinear relationships between the predictors.
A major limitation of deep learning models has been their XAI methods are used to understand when and where the in-
lack of interpretability. Neural networks are often thought of ~ Put features are relevant or important in making predictions
as “black-box” models because their complex architecture and can provide this information in the form of useful rele-

makes it difficult to interpret the reasoning behind any given ~ Vance heatmaps (McGovern et al. 2019; Toms et al. 2020).
There are several examples of recent studies using XAI to

both understand ML models and answer scientific questions

(Ebert-Uphoff and Hilburn 2020; Gagne et al. 2019; Toms

WSupplemental information related to this paper is available et al. 2020; Hilburn et al. 2021; Labe and Barnes 2021).
at the Journals Online website: https:/doi.org/10.1175/AIES-D-  NcGovern et al. (2019) provided a comprehensive review of

240027 s1. several different XAI methods applied to problems in the
geosciences. Furthermore, recent studies have focused on
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2 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

(Mamalakis et al. 2022; Flora et al. 2024; Bommer et al. 2024).
An understanding of how ML predictions are made not only
improves user trust in the model predictions but also, in the
case of a skillful model, can be used to draw information from
the data and learn about emergent physical behaviors that have
not yet been recognized (Murdoch et al. 2019; Ebert-Uphoff
and Hilburn 2020).

In this study, we employ linear regression (LR) and convo-
lutional neural network (CNN) models to make 1-day predic-
tions of ice motion from inputs of present-day wind velocity
and previous-day ice velocity and concentration. We build off
of the models described in Hoffman et al. (2023), which were
shown to have high predictive skill. We apply XAl to our sta-
tistical models to confirm historical findings that show that
wind velocity explains a large portion of the variability in sea
ice motion in the central Arctic on 1-day time scales (Thorndike
and Colony 1982) and to gain further understanding of what in-
formation in the input features is most relevant or important
for the model predictions of sea ice motion. We explore the fea-
sibility of using a novel, global formulation of an XAI method
known as layerwise relevance propagation (LRP) for this par-
ticular application. In this case, “global” refers to the XAI
method providing explanations for all predictions (grid points),
compared to a “local” method that would only explain the
prediction at one grid location (Molnar 2020). We evaluate fea-
sibility based on the consistency of local and global LRP explan-
ations with other XAI methods and our understanding of the
physics of sea ice motion. We put an emphasis on analyzing the
localization of XAl explanations because our main goal is to ex-
tend the scope of LRP from local to global. Additionally, we an-
alyze the degree of linearity of the CNN predictions to identify
possible discrepancies between explanations given by the LR
and CNN. In summary, we investigate the following questions:

e What do the outputs from XAI methods show us about the
contribution of the various input features for making 1-day
predictions of sea ice motion in the Arctic?

e To what extent does the nonlocality of the CNN predic-
tions and XAI explanations provide information about the
contribution of the input features on land to the prediction
of sea ice motion offshore?

e To what extent does a CNN rely on nonlinear information
when making predictions?

Following this introduction, section 2 discusses the datasets
and the processing steps applied to the data before they are
used to train the models. In section 3, we provide details
about the model setup and descriptions of the various XAI
methods applied to the models. We show the results from
both localized and global XAI methods applied to the LR
and CNN models in section 4. We finish with a discussion of
these results in section 5 and final remarks in section 6.

2. Data

We train the LR and CNN models based on the frame-
works in Hoffman et al. (2023) to make predictions of pre-
sent-day zonal and meridional sea ice velocity (u;, and v;,)
from inputs of

VOLUME 4

e present-day zonal and meridional wind velocity (u,, and v,,),

e previous-day zonal and meridional sea ice velocity (u;,—1
and v;,—1), and

e previous-day sea ice concentration (¢,—).

Daily maps of wind velocity, ice velocity, and ice concentra-
tion from 1989 to 2021 are from satellite and reanalysis products
(Table S1). Wind velocity is from the Japanese Meteorological
Agency 55-year Reanalysis-based surface dataset for driving
ocean-sea ice models (JRA55-do; Tsujino et al. 2018); ice ve-
locity is from the Polar Pathfinder Daily Sea Ice Motion Vec-
tors, version 4 (Tschudi et al. 2019); ice concentration is from
the Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Mi-
crowave Data (Cavalieri et al. 1996). We use present-day wind
rather than previous-day wind as a predictor due to the spuri-
ous nature of atmospheric wind speeds and because the canoni-
cal linear relationship between ice and wind speed (Thorndike
and Colony 1982) is based on present-day interactions. Addi-
tionally, present-day wind is readily obtained by observation,
while sea ice properties are provided from satellites at a 1-day
lag. We refer to Hoffman et al. (2023) for further information
regarding the choice of using these particular datasets.

We apply the following processing to the data before using
them to train the models:

¢ Daily values: The satellite products for ice motion and con-
centration are provided on a daily basis, but for wind veloc-
ity from JRAS55-do, we calculate a daily mean from 3-hourly
wind velocity vectors.
Regrid to 25-km Equal-Area Scalable Earth (EASE) Grid:
We use the nearest-neighbor approach to regrid wind and
ice concentration to the 25-km EASE grid of the Polar
Pathfinder Ice Motion product for consistency. The EASE
grid provides information at latitude and longitude coordi-
nates in a 361 X 361 grid. Taking the form of the Lambert
azimuthal equal-area projections in polar regions, the EASE
grid was defined by the NOAA-NASA Polar Pathfinder
Program to accurately represent area and support spatial
comparisons from the satellite data (Brodzik et al. 2012).
¢ Imputation to fill in the North Pole hole in sea ice concentra-
tion: The Nimbus-7 sea ice concentration dataset is missing
data in a circular sector centered over the North Pole as a

result of the orbit inclination of the satellite. This dataset is
generated from brightness temperature measurements from
the SMMR, SSM/Is, and SSMIS sensors, which have pole
holes from latitudes of 84.5°, 87.2°, and 89.18°N, respectively
(Cavalieri et al. 1996). In the analysis in Hoffman et al.
(2023), these grid locations were simply filled in with zeros
before implementation in model training. For XAI studies
here, we have filled in this polar hole using imputation meth-
ods, replacing locations with “Not a Number” (NaN) values
with the mean of the 40 nearest neighboring grid points.
We opted to apply imputation here because while the polar
hole did not significantly impact the overall performance of
the model [which was the focus of Hoffman et al. (2023)], we
want to ensure that it does not play a role in the XAl explan-
ations as we know that the CNN exploits nonlocal informa-
tion in making its predictions.
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e Remove the seasonal cycle from each parameter: We are
interested in the response of ice motion to the inputs on
daily time scales without the impact of long-term variabil-
ity. The seasonal cycle explains a much larger portion of
the variance in wind, ice speed, and ice concentration
(7.4%, 11%, and 63%, respectively) in comparison to the
long-term linear trend, which explains 0.07%, 0.8%, and
2.3% for wind, ice speed, and ice concentration, respec-
tively (Fig. S1 in the online supplemental material). There-
fore, we only subtract the daily climatology and not the
long-term linear trends for each parameter. For the case that
we do not remove the seasonal cycle, the large amount of vari-
ance explained by the seasonal cycle in sea ice concentration
increases the relevance of sea ice concentration as a predictor
of sea ice motion in LRP explanations (not shown).

e Feature scaling: Feature scaling is an important part of pre-
processing data as it attempts to give all of the attributes
equal weight by expressing them in the same units and
within a common range (Garcia et al. 2015). We standard-
ize all data to zero mean and one standard deviation, based
on gridwise statistics of the training data. For each input
feature, we remove the mean at each grid location and di-
vide by the standard deviation calculated over all grid loca-
tions. The mean is removed by grid point, but the standard
deviation is calculated across the domain to preserve the
variance structure of the input features.

¢ Replace “NaN” values with zero: Sea ice velocity and con-
centration are set to zero rather than NaN in regions with-
out ice because the CNN requires inputs to be numerical
values.

3. Methods
a. Model setup

The model frameworks are taken from Hoffman et al.
(2023) and further described here. Results from a manual
k-fold cross-validation show that there is a low coefficient of
variation in the performance (correlation and skill) between
fifteen different LR and CNN model runs, where the years
used in the train (28 years), validation (2 years), and test
(2 years) sets are varied (Table S2). Therefore, we move for-
ward in our analyses using only one of these model runs.

1) LR
The LR is expressed as Eq. (1):

* * * *
u, = A“a,; + By, + CCL-J,1 + D. 1)

Here, the inputs and coefficients (i.e., uZ,t and A, etc.) are the
complex numbers, with the real and imaginary parts repre-
senting the zonal and meridional components and their re-
spective parameters. The LR is applied gridwise so that each
grid location has a unique set of LR coefficients to predict sea
ice velocity at a particular grid point. Each grid point has
three inputs (wind velocity, sea ice velocity, and sea ice con-
centration) and one output (sea ice velocity). The prediction
(output) occurs at some other location [i.e., the input features
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at each (X, Y) predict the output at a particular location
(A, B)]. We run the LR at a number of different analysis loca-
tions (A, B), each of which provides a heatmap covering the
entire spatial domain showing a map of the variance ex-
plained by each input feature for predicting sea ice velocity at
the given (A, B) location. This is in contrast to how the LR
was applied previously in Hoffman et al. (2023), where each
location was used to predict itself. The method used in this
study allows us to take into account nonlocal linear interac-
tions when investigating relevance. We apply a time-variable
mask that only uses grid points and times where the ice con-
centration is greater than zero. We apply ridge regression
with a ridge parameter of A = 1072 to prevent unrealistically
large LR parameters (Marquardt and Snee 1975).

2) CNN

The CNN architecture is illustrated in Fig. S2. The model is
set up with five repeating units of Conv2D-ReLU-MaxPool,
where the hyperparameters (i.e., number of filters and filter
size) for each layer are shown in Table S1. These are followed
by a 20% dropout, a flattening, and a dense layer that applies
a regression to predict the output at each grid point. Inputs
and outputs are in the form of spatial maps; we refer to each
input map from each predictor as an “input feature.” We em-
phasize that this CNN makes a regression (rather than classifi-
cation) prediction of ice motion at each grid location.

The CNN is implemented in Python using the TensorFlow/
Keras library (Abadi et al. 2015). The model is trained to opti-
mize the loss function (normalized root-mean-square error)
using an Adam optimizer and L2 regularization (Table S1).
Data are split into train, validation, and test sets with an
88%-6%—-6% split (28, 2, and 2 years of daily data). We run
the model over 50 epochs with a batch size of 365; the number
of epochs refers to the number of times the model will work
through the entire training dataset, while the batch size repre-
sents the number of samples the model works through before
updating the internal model parameters (i.e., weights and
biases).

b. Explainability methods

In this study, we explore the level to which explanations
provided by the local LRP explainability method can be ag-
gregated to produce global explanations. We obtain global ex-
planations by taking the average of local LRP explanations
over the domain of interest (the Arctic) (Murdoch et al. 2019;
Molnar 2020; Wilming et al. 2022). The global LRP is useful
for our study because our ML model is built to make predic-
tions of sea ice velocity at every grid location throughout the
Arctic, and local LRP can only provide explanations for the
model prediction at individual grid points. Global explana-
tions will enhance our exploration of how ML models use
each of the input features (i.e., maps of present-day wind ve-
locity u,; previous-day ice velocity u;; and previous-day ice
concentration ¢;) to predict the output (i.e., maps of present-
day ice velocity u;).

To our knowledge, this study is the first application of a
global implementation of LRP to a regression problem in
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TABLE 1. Details about the various explainability methods applied to the ML models in this study based on the classifications
discussed in section 3b and the appendix. The asterisk (*) refers to XAI methods not applied in this study; asterisked rows in the
CPU time column refer to estimates made for the methods not used in this study: for the PERT, global case, we multiplied the
computational cost for the local PERT by the number of points included in the global LRP analysis (i.e., 219 points); the PFI, local is
assumed to have the same computational cost as a local PERT, as they involve the same steps.

Type of Model
Methodology explanation awareness
Model (linear, PERT, (sensitivity ~ Importance (specific or CPU time,

Method applied to  or propagation)  or salience) or relevance agnostic) OM (s)
(i) Variance explained by inputs in LR: LR Linear Salience Relevance  Model specific —

LR, gridwise, local 2

LR, gridwise, global 5
(i) PERT: CNN PERT based Sensitivity  Relevance =~ Model agnostic —

PERT, local 4

PERT, global* 6*
(iii) PFL: CNN PERT based Sensitivity ~ Importance Model agnostic —

PFI, local* 4%

PFI, global 4
(iv) LRP: CNN Propagation based Salience Relevance =~ Model specific —

LRP, local 5

LRP, global 7

geosciences. Therefore, we compare it to other XAI methods
to provide context. Because our focus is to evaluate the trust-
worthiness and utility of a particular method (global LRP) to
represent the physical drivers of ice motion, we choose a suite
of XAI methods that provide us with similar comparisons for
moving from local to global explanations. For each scope
(local and global), we investigate explanations from a linear,
perturbation (PERT), and propagation method. We stick to
one of each of these categories due to the intensive nature of
applying global explanations on this scale. However, we note
that several XAI methods exist that are not applied in this
study. Mamalakis et al. (2022), Flora et al. (2024), and Bommer
et al. (2024) discuss an array of those that have been success-
fully implemented for geoscience problems, including but not
limited to deep Shapley additive explanations (Lundberg and
Lee 2017) and integrated gradients (Sundararajan et al. 2017).
We choose to leave these methods out of our analysis because
Han et al. (2022) show that Shapley methods pose challenges
for continuous data, and both are vulnerable to producing noisy
explanations (Mamalakis et al. 2022).

For this study, localized methods include analyzing the vari-
ance explained by each parameter in LR, perturbation analy-
ses with the CNN, and gridwise-LRP applied to the CNN.
Global methods include the analysis of the variance explained
by each parameter in LR, permutation feature importance
(PFI) applied to the CNN, and a global implementation of the
LRP applied to the CNN. Each of these methods is summa-
rized in Table 1 and Fig. 1 and further described below. We
refer the reader to the appendix for further clarification about
the classification of XAI methods. Locations used in local
(red points) and global analyses (yellow points) are indicated
in Fig. 2. The performance of the CNN is shown to be high
throughout most regions of the Arctic (Fig. 2; correlation be-
tween prediction and observations is above 0.4 for all points
and above 0.7 for most points), which justifies our use of ex-
plainability methods to understand skillful model predictions.

We compare outputs from different XAI methods applied
to a CNN and an LR case for a robust analysis and to bolster
confidence in the understanding of our models. Results from
Hoffman et al. (2023) show that LR is comparable in skill to
the CNN (correlation of 0.78 = 0.02 for LR and 0.81 * 0.02
for the CNN); therefore, we use LR as a baseline for compari-
son with outputs from various XAI methods applied to the
CNN, as done by Toms et al. (2020). We run XAI analyses on
the training data based on suggestions from Lakshmanan et al.
(2015) and Flora et al. (2024), who argue that using out-of-
sample data (i.e., the testing data) could expose extrapolation
errors that might not be useful for understanding the model
behavior. We note that we found only slight differences in the
explanations when applying XAI to the testing rather than
training data, where explanations were more localized for the
training case (not shown).

1) VARIANCE EXPLAINED BY INPUTS IN
LINEAR REGRESSION

In contrast to the CNN, LR is an interpretable model and
can be understood through the analysis of the model parame-
ters without the application of post hoc XAI methods. The
linear regression parameters identify locations where each of
the input features is relevant for predicting sea ice motion.
However, the inputs are not orthogonal; wind and ice velocity
in particular are highly correlated (not shown). Therefore, we
use the fraction of variance explained by each of the inputs in
LR as a metric for relevance, rather than the LR parameter it-
self. We calculate variance explained for each input from Eq.

(2):
R=1- (- En)(c~ Em)a™) @)

where x is the data, E is the LR kernel, m is the LR model,
and Em; is the LR model prediction with the two parameters

Unauthenticated | Downloaded 0:

/10/25 03:39 AM UTC



JANUARY 2025

(@) ML Model

(b) Perturbation

HOFFMAN ET AL. 5

| (c) Propagation

Input Féatures: Perturb‘input

u.,v ,u .,V

at’ at’ it1’ i,t-1’ci,t-1

. ﬁﬁi Vi

feature at location*

trained
ML

Outputs: u,

location*

Local:

one location

Global:  -n-output

all locations Propagate
e WG back
ML through
model trained ML

A(prediction)*
Relevance:
A(output)
Importance: Relevance Eéatmabs
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FIG. 1. Schematic of the (a) CNN applied in this study for predicting present-day sea ice velocity components (outputs) from present-
day wind velocity, previous-day sea ice velocity, and previous-day sea ice concentration (inputs). (b),(c) XAI methods applied to under-
stand model predictions. (b) PERT methods measure sensitivity and analyze how the model prediction [either the output itself (rele-
vance), or the skill of the model (importance)] changes in response to PERTSs of an input feature at specific grid locations (a single grid
point for local; all grid points for global). (c) Propagation methods measure salience and analyze the relevance of every grid location in
each input feature for making a prediction at a specific output grid location. Local studies show relevance heatmaps for the input features
in predicting a particular grid point in the output, while global studies show relevance heatmaps for the input features in predicting the en-
tire spatial domain. Maps shown here cover the spatial region north of 60°N latitude.

that are not being analyzed set to zero. In comparison to attri-
bution studies using the CNN, LR only shows information
about linear relationships. We run the LR analysis for both
the local and global cases. For the local case, there are 17 dif-
ferent sets of gridwise LR models to predict sea ice velocity at
each of the 17 analysis locations from the inputs at every
other grid point in the Arctic. For each analysis location
(A, B) (red points in Fig. 2), there is a separate LR model at
each grid point, (X, Y), where the inputs are the aforemen-
tioned features at that grid point and the output is the sea ice
velocity at the analysis location (A, B). The local case allows
us to investigate how the sea ice velocity at each of the
17 analysis locations is dependent on the input features at ev-
ery other grid location throughout the Arctic. For the global
case, we apply the local method at 219 analysis locations
throughout the Arctic (yellow points in Fig. 2). Each of the
219 analysis locations produces an individual variance ex-
plained heatmap for each input feature, showing the rele-
vance of the entire spatial domain for making a prediction
at that particular location. We average the heatmaps pro-
duced by each of these locations to obtain the global vari-
ance explained heatmaps. The global case allows us to
investigate how the sea ice velocity throughout the Arctic is
dependent on the input features at every other grid location
throughout the Arctic.

We note that because LR is an interpretable model, there
are nuances in classifying this method within the scope of
local or global explainability. Because there is a different LR
model at each grid location, each model itself is fully de-
scribed (global) by the LR parameters at that grid point.
However, we refer to local and global explainability for the
two LR cases as described above in this study. The analysis of
the variance explained by each input feature in LR allows
comparison with the explainability studies applied to the
CNN. We use this method as a baseline for comparison with
explainability methods applied to a more complex model (i.e.,
a neural network).

2) PERTURBATION ANALYSIS

Perturbation analyses provide information about the sensi-
tivity of an ML model prediction to a perturbed element
(McGovern et al. 2019; Ivanovs et al. 2021). The relevance of
the perturbed element is quantified from the magnitude of
the change to the prediction. We are interested in understand-
ing the relative relevance of each of the input predictors at
various geographical locations. Thus, we apply perturbation
analyses for each input feature at 17 different locations
throughout the Arctic. We follow a procedure similar to that
of Sinha and Abernathey (2021). After the CNN has been
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FIG. 2. Locations used in analysis for local (red points; labeled
1-17) and global LRP implementations of XAI (yellow points). Re-
gions of the Arctic are labeled for reference during discussion. Map
colors show the performance of the CNN in terms of the correlation
[Eq. (4)] between the model prediction and observations.

trained, we apply the model to the training dataset (1979-2017)
to make a prediction (the control). Next, a new dataset is
made for each of the five input features and each of
the 17 hand-picked locations, for a total of 17 X 5 = 85 per-
turbation runs. Here, the input feature is perturbed at the
chosen location while keeping the rest of the variables
and locations fixed. For each perturbation, we add a frac-
tion of the standard deviation (+0.50) of the input feature.
We also tested using +1o perturbations to the inputs.
This impacted the magnitude of the change in the output,
but not the comparative relevance of each of the input
features, which is our main interest here. The model is run
on each perturbed test dataset to make a prediction.
For each perturbation, the root-mean-square difference
(RMSD) is calculated over the temporal domain from

Eq. (3):

n

1§
RMSD = - 2. (§; ~ y)’.

i

®)

where 7 is the number of time steps, J; is the prediction made
using the input with a perturbation applied at a specific grid
point, and y; is the control model prediction using the nonper-
turbed input. The output is a map of the spatial extent of the
effect of the perturbation for each input feature and grid loca-
tion analyzed.

3) PFI

Another way to evaluate the sensitivity of the ML model to
the various input features is through PFI methods (Breiman
2001; Radivojac et al. 2004). Similar to perturbation, in PFI,
the relative importance of the input features is determined by
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the extent to which the ML model predictions are impacted
by changing elements of the input features. To apply PFI, we
randomly shuffle the values of each input feature between
examples (i.e., time steps) for the training dataset (i.e.,
1979-2017). We then use the shuffled data to make a predic-
tion with a trained CNN. The performance (correlation) of
the CNN is calculated and compared to that of a control case
without randomization at each grid location:

Z(x,' - f)()’,- - y)

corr, , = i . 4)
\/Z (x; — f)z\/z ;= y)

Here, n refers to the number of time steps over which the
metric is evaluated, the overbar represents the time average,
x represents the observations, and y represents the model out-
put. We look at the difference in the performance between
each permuted case and a control case. The most important
feature is the one for which permutation results in the largest
loss in performance in comparison to the control run. From
this analysis, we can determine the input feature with the
overall highest importance, in addition to spatial locations
that are identified as important by the CNN. We also perform
PFI by shuffling the spatial values of each input (not shown)
and find there is little difference in the result compared to the
case where the input features are shuffled between examples.
This PFI method has been applied to ML predictions made in
geosciences in the form of classification problems involving
sea ice (Shen et al. 2017) and weather event detection (Molina
et al. 2021; Lakshmanan et al. 2015), as well as for regression
problems for predicting motions of wave gliders (Amador
et al. 2021).

4) LRP

We use the LRP method to trace the explanation of CNN
predictions (Bach et al. 2015; Montavon et al. 2015, 2019,
2018). LRP provides information on the relevance of individ-
ual input features by progressively redistributing the activa-
tion score of the output layer during a backward propagation
through the neural network to the first layer after the model
weights and biases have been frozen. The output from LRP is
a heatmap showing the relevance of each input feature at
each mapped location (latitude and longitude). Each grid lo-
cation in the output produces an individual LRP heatmap for
each input feature showing the relevance of the entire spatial
domain for making a prediction at that particular grid loca-
tion. For more details, Toms et al. (2020) and Ebert-Uphoff
and Hilburn (2020) provide excellent overviews of LRP for
other geoscience applications.

We proceed with the analysis of LRP in two different ways:
local and global. For the local case, we pick 17 different lati-
tude-longitude locations in the Arctic (red points in Fig. 2)
and analyze the relevance heatmaps produced from each of
these locations in comparison to other explainability methods
that are confined to one grid point (i.e., maps of variance ex-
plained by LR and perturbation). For global analyses, we
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create integrated heatmaps by running LRP for 219 selected
points throughout the Arctic (yellow points in Fig. 2) and av-
eraging the relevance maps produced by each of these loca-
tions at each time step. This allows LRP to be compared to
more spatially comprehensive explainability methods, such as
the variance explained by LR parameters or PFI outputs. We
note that a fully global implementation would integrate the
LRP heatmaps produced by every output grid point in the
Arctic, not just the selected 219 points. However, we stick to
this subset of points for the sake of computational efficiency.

As with the other XAI methods, we run the LRP analysis
on the training data. We average the LRP relevance heatmaps
over the temporal domain. We use the iNNvestigate package
(Alber et al. 2019) with the “sequential preset A” configura-
tion of LRP that applies different rules at different layers of
the model, where LRP-of3 is applied for convolutional
layers and LRP-€ is applied for dropout, flatten, and dense
layers. This configuration is similar to the LRPcomp that was
demonstrated to be a good explainability method for geosci-
ence applications in Mamalakis et al. (2022). The LRPcomp
of Mamalakis et al. (2022) uses LRP-z where we apply the
LRP-€ rule. In comparison to LRP-z, LRP-€ includes a pa-
rameter that leads to less noisy explanations (Montavon et al.
2019). We refer to Montavon et al. (2019) for more informa-
tion about the different LRP rules.

The LRP relevance scores can be positive or negative. For
the case of a classification problem, the sign of the relevance
shows which points contributed positively or negatively to a
correct prediction. However, here, we apply LRP to a regres-
sion problem and the sign of the relevance indicates whether
the input at a particular location contributed positively or
negatively to the prediction itself, i.e., which regions in each
input made the prediction of sea ice velocity different (larger
magnitude relevance for larger contributions to velocity
changes, regardless of sign) than zero. Therefore, we take the
absolute value as we are looking for the magnitude of the con-
tribution, rather than the directionality. We tested whether a
large negative relevance score was indicative of a highly
relevant point by integrating relevance maps calculated for
points within given regions and found that both large negative
and large positive relevance scores were indicative of highly
relevant points (not shown). Additionally, Mamalakis et al.
(2022) have identified that LRP automatically assigns zero
relevance to zero values in the input features due to input
multiplication at the final step of LRP. This is less important
for the input features for sea ice velocity and concentration in
our study, where a zero value represents regions where there
is no sea ice and it would not make sense to distribute rele-
vance to these points. However, there could be places where
the standardized wind velocity input is zero and subject to this
ignorant-to-zero-input issue.

While LRP methods were developed for classification
rather than regression (Bach et al. 2015; Montavon et al.
2019), there have been examples of LRP being applied for re-
gression in other fields (Dobrescu et al. 2019; Rahman et al.
2021; Schnake et al. 2020) and within geosciences (Ebert-
Uphoff and Hilburn 2020; Hilburn et al. 2021). Additionally,
Letzgus et al. (2021) and Mamalakis et al. (2023) discuss
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methods to extend LRP to regression problems. These meth-
ods involve retraining the CNN with respect to a carefully
chosen reference value (i.e., subtracting the reference value
from the outputs before training). Here, the question that is
being asked by XAl is “where are the input features relevant
in predicting the output to be different from the baseline ref-
erence value?” The choice of the baseline reference value
changes the scientific question being asked by XAI (Letzgus
et al. 2021; Mamalakis et al. 2023).

In this study, we use XAI to evaluate a CNN trained to
make regressive predictions of sea ice motion at each grid lo-
cation throughout the Arctic. We reiterate that the model is
trained on data from which the seasonal cycle has been re-
moved and which is standardized to have zero mean and one
standard deviation. We move forward using the default base-
line reference value of zero for the method’s analysis of this
study. This is synonymous with choosing a reference value as
the mean. We will apply a carefully chosen reference value in
future work when the aim is to use XAl to answer a scientific
question about the underlying physics of ice motion.

¢. Localization

One of the benefits of using a CNN (in contrast to a non-
convolutional neural network) is its ability to incorporate
information from neighboring pixels into predictions by per-
forming convolutions over multiple grid points. For a tradi-
tional CNN, the spatial extent of the influence of the input
features on a prediction at a particular grid location is known
as the receptive field, which can be extended by adjusting the
network architecture (i.e., adding more convolutional layers,
changing filter sizes, etc.) (Araujo et al. 2019). In addition to
convolutional layers, our CNN includes a fully connected
layer (Table S1), which extends the long-range dependencies
to give the model a global capacity for feature interactions
(Ding et al. 2021). The nonlocality of the CNN will be incor-
porated into explainability. We analyze the radius of influence
of the explanations from different local XAI methods to as-
sess the degree to which nonlocal points are incorporated into
the model predictions.

d. Decomposition into linear and nonlinear responses
using perturbations

Perturbation studies are also used to decompose the model
into its linear or nonlinear responses based on techniques de-
scribed by Verdy et al. (2014) and Swierczek et al. (2021). In this
case, we run perturbation experiments where we either add or
subtract one standard deviation from a particular grid point in
each of the input features (i.e., 10). The differences between
the model response to positive 4, and negative 4_ anomalies
and the control run Ay are given as 6hy = (hy — hg) and
Shy = (h— — hy), respectively. We decompose the perturbed
runs as Taylor expansions around the control run and separate the
odd-order and even-order terms into 8H, = (122)(6hy — 6hy),
and 8H, = (1/2)(6hy + &hy), which, assuming third-order and
higher terms are negligible, are representative of the linear and
nonlinear responses, respectively. Under the condition that 6H, is
roughly an order of magnitude smaller than 6H,, we can assume
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the model is primarily linear and that 6H, is representative of this
linear response. When the magnitude of 8H, approaches §H, (i.e.,
positive and negative perturbation responses no longer cancel
out), the model response is assumed to be nonlinear, and the anal-
ysis of the higher-order terms in the Taylor series becomes more
important.

We calculate these terms for each point in time and space
at the 17 perturbation locations. We calculate the root-mean-
square (RMS) of 6H; and 8H, and the fraction of the re-

sponse that is linear, 8H,/,/(1/2)(6H? + 6H3), for (i) spatial

and (ii) temporal domains from Eq. (5),

RMS = ,f%ihz, (5)

where 4 is the term of interest (either §Hy, 6H,, or the frac-
tion of the response that is linear) and » is the number of data
points. Spatial analyses use the RMS taken over the temporal
domain (7 is the number of time steps) and provide maps that
show which parts of the Arctic have a linear or nonlinear re-
sponse to a perturbation at a given location. For temporal
analyses, we take the RMS over space (n is the number of
spatial coordinates) and follow the RMS calculation by com-
puting the monthly mean of each of the three metrics and
comparing them to the monthly mean sea ice concentration at
each perturbation location to understand how the model re-
sponse is linked to the sea ice state.

4. Results
a. Local attribution studies

We use local XAI methods to understand the relevance or
importance of each of the input features for making a predic-
tion at a specific grid location. Our focus is on determining
the spatial structure of the feature attribution in order to de-
termine how much information is extracted from nonlocal
inputs by each method: variance explained by local LR, per-
turbation analysis, and localized LRP. These local XAI meth-
ods produce a separate relevance heatmap for each specific
grid location and time step to which they are applied, indicat-
ing either (i) the degree to which the input at a specific loca-
tion impacts the prediction of the output throughout the
Arctic (perturbation) or (ii) the degree to which the entire
map of each input was relevant in predicting the output at a
specific location (variance explained by LR and LRP). We
run each of these analyses for 17 different locations (red
points in Fig. 2) and average over all time steps. We identify
the spatial extent of the relevance of each of the input fea-
tures (e.g., wind velocity) in predicting the output (i.e., sea ice
velocity) for location 11 (Fig. 3). The spatial mean and stan-
dard deviation are indicated in the legend. We show the mean
to compare the overall relevance attributed to each input fea-
ture for each method; therefore, these statistics are calculated
over the entire spatial domain shown (i.e., north of 60°N). An
extensive look at this set of maps for each location can be
found in Figs. S3-S109.
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The outputs from XAI perturbation and propagation-based
studies are normalized by dividing the temporal mean by the
value at the 99.5th percentile for each particular method to
create similar magnitudes for visual comparison among the
different methods. We normalize to the 99.5th percentile
rather than the overall maximum because of the risk of the abso-
lute maximum being an outlier. Because the normalization is
based on overall magnitude instead of a particular spatial loca-
tion, the location of the normalization value is not necessarily
the same for each method. Thus, when we refer to relevance, we
are referring to the XAl outputs, each normalized to the 0.5%
maximum value for each of the perturbation and LRP methods,
respectively. The relevance scores are not used to compare be-
tween the methods but instead are used to compare how each
method assigns relevance to the various input features.

1) XAI EXPLANATIONS

The variance explained by each LR parameter decreases
with increasing distance from the analysis point for wind ve-
locity and ice velocity (Figs. 3a,b). The spatial mean of the var-
iance explained by the various LR parameters is the highest for
wind velocity, followed by ice velocity, and is much lower for
sea ice concentration (legends in Figs. 3a—). The variance ex-
plained by wind velocity also extends over land, indicating wind
on land can be linked to sea ice velocity offshore. We show re-
sults for location 11. Figures in the supplemental information
show that the same patterns of a decreasing variance explained
with an increasing distance from the analysis point tend to hold
for all 17 analysis points (Figs. S3-S19).

Perturbation analyses on the CNN show decreasing relevance
with increasing distance from the analysis point for all predictors
(Figs. 3d-f). Wind velocity has the highest relevance and largest
radius of influence, followed by ice velocity and then ice concen-
tration. The perturbation relevance score for wind velocity re-
mains above 0.8 even for locations far from the analysis point
(e.g., off the northeast coast of Greenland), while those for ice ve-
locity and ice concentration drop below 0.2 at the same locations.

The LRP applied at the analysis location also shows high lo-
calized relevance that decreases with increasing distance from
the analysis point for wind and sea ice velocity (Figs. 3g—i).
Sea ice concentration shows a substantially smaller relevance
(the mean in the legend is nonzero) but is not entirely irrele-
vant as in the LR case. Here, ice velocity shows the largest lo-
calized relevance in predicting next-day ice velocity, followed
by wind velocity and ice concentration. Conversely, wind ve-
locity is found to have the highest spatial mean relevance.
While these regions may not represent regions with the highest
relevance, the relevance of wind over land is consistent with
the variance explained by LR in many cases. Generally, areas
of high relevance tend to extend coherently within a certain ra-
dius of the analysis point for all methods.

2) LOCALIZATION

We also analyze the extent to which the relevance values
vary with distance from the analysis location for all locations
and each of the attribution methods and input features
(Fig. 4). Here, we only show data within 2000 km of the
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FIG. 3. Results from localized XAl studies for each of the input features at location 11, indicated by the red dot. These relevance heat-
maps show the spatial extent to which each input feature is relevant in predicting the outputs at the location indicated by the red dot. The
columns represent each of the different input features: (a),(d),(g) wind velocity u,; (b),(e),(h) ice velocity u;; and (c),(f),(i) sea ice concen-
tration c;. The rows represent the different sensitivity methods: (a)-(c) variance explained by LR, (d)—-(f) normalized RMSD from PERT
analysis, and (g)—(i) normalized relevance score from LRP. The bottom two rows are normalized by dividing by the top 0.5% relevance
value for each method. The spatial mean and standard deviation are indicated in the legend; these statistics are calculated over the entire
spatial domain shown.
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FIG. 4. (a)-(i) Probability density of the relevance of each localized sensitivity study as a function of the distance from the point of analy-
sis for each of the input features and for all locations. The columns represent each of the different input features: (a),(d),(g) wind velocity
ug; (b),(e),(h) ice velocity u; and (c),(f),(i) sea ice concentration c¢;. The rows represent the different sensitivity methods: (a)-(c) variance
explained by LR, (d)—(f) normalized RMSD from PERT analysis, and (g)—(i) normalized relevance score from LRP. The middle two rows
are normalized by dividing by the maximum relevance value for each method. The red lines represent exponential fits to the data. The leg-
end gives the e-folding distance for that fit which gives a measure of the radius of influence for each of the relevance methods. The legend
also shows the r* values for each fit; an 72 > 0.12 is statistically significant with 95% confidence based on the degrees of freedom for each
fit. (j)~(1) Mean and standard deviation radius of influence (i.e., e-folding distance) for each location (points), input feature (columns), and
relevance method [colors: red for variance explained by LR, purple for PERT, and green for LRP]. Statistics are calculated using Monte
Carlo methods. The mean and standard deviation over all locations for each input feature and method are shown in the legend below each
panel. The outlier has been omitted for LRP for c; at location 11 (33 704 km). The low /2 value for the fit of the LR relevance of ¢; in (c) in-
dicates the inability of the fit to describe the e-folding distance for this particular case; thus, it is omitted from (1).

analysis point because our interest concerns the regions of
high relevance. The red lines represent exponential fits, and
the legend shows the 7> value and the e-folding distance,
which is a measure of the radius of influence of each method.
Relevance decreases exponentially with increasing distance
from the analysis point. This is true for almost all attribution
methods and input features and makes sense because the spa-
tial correlation of ice motion in the Arctic decreases exponen-
tially with increasing distance from the point of interest (not
shown). The exception is the LR variance explained by sea
ice concentration (Fig. 4c), which exhibits a low 7* for the ex-
ponential fit, indicating its statistical insignificance. We do not
necessarily expect the relevance of each input feature to be

modeled well by a Gaussian, but use this as a simplified repre-
sentation of the radius of influence of each of the input fea-
tures in making predictions of the output at various locations
throughout the Arctic. While the #* values calculated over the
distribution of the relevance for the combined 17 locations
show fits that are statistically significant (legends in Figs. 4a—i),
the fits calculated at each location separately (represented in
Figs. 4j-1) do not all exhibit significant  values, particularly
for the case of ice concentration.

For the LR variance explained, the relevance score for wind
velocity and ice velocity has similar radii of influence (Figs. 4a,b).
Outputs from perturbation show that the predictors have
largely different relevance scores but similar radii of influence
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FIG. 5. Maps showing the RMSD of the response of the CNN prediction of sea ice velocity to PERTs of the input features at the loca-
tions of six different Arctic research stations. The PERT outputs have units of sea ice velocity (cm s~ 1). The legend shows the mean and
standard deviation of the RMSD response for locations where there is ice (i.e., not including land).

(Figs. 4d-f). Similar to results in Fig. 3, wind velocity has the
highest relevance for perturbation, followed by ice velocity
and ice concentration. Consistent with results in Fig. 3, sea ice
velocity has the highest localized (i.e., close to the analysis
point) relevance for the LRP method. The XAI methods ap-
plied to the CNN (perturbation and LRP) show larger radii of
influence that are 1.6-2.3 times that of the variance explained
by LR parameters (legends in Figs. 4a—i), which suggests that
the far-reaching spatial information incorporated into the
CNN predictions includes nonlinear interactions between loca-
tions and or input features.

Results in Figs. 4a—i show the distribution for all 17 loca-
tions. We also calculate the radius of influence for each loca-
tion individually (Figs. 4j-1) and show the mean and standard
deviation over all locations for each input feature and method
(legend in Figs. 4j-1). The radius of influence is omitted for
the LR variance explained by sea ice concentration (Fig. 41)
due to the insignificance of the fit (i.e., low 7* in Fig. 4c). The
mean radius of influence for the LRP and perturbation meth-
ods is similar and falls within one standard deviation of each
other for each of the input features. The radius of influence
for LRP and perturbation is also similar for each location
(green and purple points in Figs. 4j-1). The LRP shows an out-
lier in the radius of influence for ¢; at location 11. This value is
omitted from Fig. 41 and from the calculation of the mean

value in the legend and is likely a result of the low spatial vari-
ability in the relevance of ice concentration.

3) PERTURBATION OF WIND AT RESEARCH STATIONS
ON LAND

The CNN incorporates nonlocal relationships to make pre-
dictions. Results from localized LR and LRP studies interest-
ingly show that wind on land is relevant for predicting sea ice
velocity at a location in the central Arctic (Fig. 3g). We run
perturbation analyses at the location of six land-based re-
search stations in the Arctic to understand the spatial extent
to which they are relevant for making predictions of sea ice
motion offshore. We show results for these perturbation stud-
ies with wind because it is the only nonzero input predictor
over land (Fig. 5).

We find that information about the wind at land-based re-
search stations is useful for making predictions of sea ice velocity
at offshore locations. The spatial extent to which information
about onshore wind is relevant for predicting offshore sea ice ve-
locity depends on the location of the research station. The rele-
vance does not extend as far offshore for stations that are
further from the ice (stations 1 and 4 in Figs. 5a,d) in comparison
to stations that are closer to the ice (stations 2, 3, 5, and 6 in
Figs. Sb,c.e,f).
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FIG. 6. Maps showing the RMS response of the CNN prediction of sea ice velocity to PERTs of the input predictors at three different lo-
cations [(a)—(c) location 3; (d)—(f) location 6; and (g)—(i) location 17]. The response is separated into (a),(d),(g) linear and (b),(e),(h) non-
linear components. (c),(f),(i) The ratio of the linear to nonlinear response. A ratio greater than one indicates stronger dominance of the
model by a linear response. The red dots represent the location that was perturbed for each case.

4) DECOMPOSITION INTO LINEAR AND NONLINEAR
RESPONSE COMPONENTS USING PERTURBATIONS

The response of the CNN prediction of sea ice velocity to
localized perturbations in each of the input features is sepa-
rated into linear §H; and nonlinear 6H, components through
the process discussed in section 3b(2). We note that these
terms represent the odd and even-ordered terms in the Taylor
series expansion and that the ability to refer to them as the
linear and nonlinear components is based on the assumption
that 6H, is roughly an order of magnitude (OM) greater than
8H, (i.e., the second-order and higher-order terms in the Tay-
lor series are small). Maps of the ratio §H/8H, show little
spatial variability and remain around 2—4 even for locations
far away from the perturbation point (not shown). While this
is not quite one OM difference, we move forward with the as-
sumption and mention alternative approaches in the discus-
sion. We analyze the fraction of the response that is linear

[6H,/,/(1/2)(8H? + 8H3)] to determine when and where the
model is dominated by linear or nonlinear terms. When this
ratio is greater than one, we can say the model is dominated
by the linear term. When the ratio is equal to one, the linear
and nonlinear terms are equal. Nonlinear terms play an im-
portant role when the ratio is less than one and as it ap-
proaches zero. We analyze the spatial and temporal RMS
responses of the CNN to perturbations at 17 different loca-
tions throughout the Arctic (red points in Fig. 2).

Maps of the temporal RMS responses to perturbations at
various locations (Fig. 6) indicate that linear terms dominate
the CNN predictions throughout most of the Arctic. We can
see that for all three locations shown (locations 3, 6, and 11),
the linear portion of the RMS response is roughly 2-4 times
larger than the nonlinear portion (Figs. 6a,d,g vs Figs. 6b,e.h).
We define this as a “weakly linear” response because the lin-
ear terms are not a full OM greater than the nonlinear terms.
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We note that the magnitude of the perturbation response is
quite small; however, we are not so much concerned with the
overall magnitude of the change as we are with the compari-
son between 6H; and 6H,. We applied different amounts of
noise to assess the magnitude of the nonlinear signal (i.e., also
applied perturbations of *0.50; not shown) and find that
larger perturbations show that nonlinear terms are more
important.

Both the linear and nonlinear responses are localized
around the perturbation location (red dot in maps of Fig. 6).
The fraction of the response that is dominated by the linear
term depends on the analysis location (Figs. 6c,f,i). Analysis
locations in the central Arctic typically exhibit a more linear
response, while nonlinearity becomes more important for
analysis locations near coastal regions and in the peripheral
seas (i.e., location 6 vs 11 in Figs. 6f.i).

We also analyze the monthly mean of the spatial RMS re-
sponse (i.e., the RMS is taken over space) to perturbations at
17 different locations throughout the Arctic and compare the
linear and nonlinear components to the monthly mean sea ice
concentration at each of these locations (Fig. 7). We show the
fraction of the response that is linear compared to ice concen-
tration (Fig. 7b). In this case, the model is described by the
linear terms for 0.2 < ¢; < 0.8, i.e., the ratio is greater than
one in Fig. 7b. The model tends to have a stronger depen-
dence on the nonlinear term for extremes in sea ice concen-
tration (i.e., ¢; < 0.2 and ¢; > 0.8 in Fig. 7b).

b. Global attribution studies

In the previous section, we analyzed the spatial extent of
the relevance of each input feature for the models in making
predictions at a particular location. In this section, we aim to
understand the relevance of each input feature for making
predictions over the entire spatial domain (in this case, the
Arctic). We achieve this by integrating the attribution of the
model’s predictions to each input over all spatial locations.
We compare explainability methods that analyze global attri-
bution of each input in predicting ice motion: variance ex-
plained by LR parameters, PFI, and global LRP (Fig. 8). The
composited explainability outputs are normalized by dividing
by the top 0.5% maximum value to create similar scales for
comparison among the three methods. However, we empha-
size that we are not comparing attribution scores between the
methods, but analyzing how each of the methods distributes
attribution to the various inputs. As with the localized studies,
normalization is based on magnitude and not a particular spa-
tial location, and therefore, a different location is used to nor-
malize across methods (not shown).

Maps in Fig. 8 show the spatial extent of the attribution of
each of the input features (columns) to the ML models
trained to predict sea ice motion for each XAI method
(rows). The spatial mean and standard deviation of the rele-
vance or importance are indicated in the legends. Similar to
the local case, the statistics are calculated over the areas north
of 60°N. We note that XAI highlights regions over land for
the LRP and variance explained by LR parameters methods,
but not for the PFI method. The PFI is unable to attribute
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importance to areas where there is no ice: there is technical
nuance in calculating the correlation over land in that both x
and y are zero in Eq. (4) where there is no sea ice, which leads
to a “divide by zero” error, and thus a NaN value for the cor-
relation in these areas. The LR and LRP are also only applied
to locations in the Arctic where there is ice (see Fig. 2), but
the nature of these methods allows relevance to be distributed
to nonlocal points.

For each method, we find that wind velocity has the highest
spatial mean relevance or importance, followed by ice velocity
and then ice concentration (legends in Fig. 8). These results
are largely consistent with a visual inspection of the heatmaps
in Fig. 8. The spatial analysis of the variance explained by the
LR parameters indicates that wind velocity has the highest
relevance in predicting ice motion for the LR model. This is
particularly true in the central Arctic, but relevance also re-
mains high in coastal regions and over land. Previous-day ice
velocity has the second largest LR variance explained in the
central Arctic, but exhibits a low variance explained in most
coastal regions (Figs. 8a—c).

The PFI method also shows that wind velocity is the most
important predictor throughout the Arctic. However, the spa-
tial variability in importance for the PFI is not consistent with
the LR case. In contrast, for PFI, the importance of wind ve-
locity is higher in coastal regions and peripheral seas (particu-
larly the Laptev Sea, Kara Sea, north of Greenland, and
Hudson Bay) and comparatively exhibits a lower importance
in the central Arctic, which is the opposite of what is seen in
LR. Spatial patterns in the importance of the ice velocity for
the PFI analysis are also in contrast to those of LR: for PFI,
the importance of ice velocity is higher for coastal regions
than for the central Arctic (i.e., the Beaufort Sea, Bering Sea,
and East Siberian Sea). Overall, wind has a higher importance
relative to sea ice velocity for the PFI method than for LR.

In contrast to the other two XAI methods, wind is not con-
sistently the most relevant predictor throughout the Arctic for
LRP. The global LRP shows similarities to PFI for the spatial
distribution of the relevance of wind velocity: Wind velocity is
relevant throughout the Arctic, but some coastal regions (i.e.,
surrounding Greenland, Laptev Sea, Bering Strait, Beaufort
Sea) have a slightly higher relevance than other regions. In
contrast to PFI, the LRP relevance for previous-day sea ice
velocity is high in the central Arctic and low in coastal regions
and peripheral seas. In this regard, the relevance map of LRP
is similar to that of LR. Also, similar to LR, LRP shows that
wind is relevant throughout most of the Arctic, including over
land. Interestingly, sea ice concentration shows a small relevance
for the LRP at coastal and peripheral seas, where no rele-
vance was shown for this input feature in other methods.
We discuss potential mechanisms for the variability in the
spatial structure of the attribution between these methods
in the next section.

5. Discussion

This study aims to confirm the feasibility of using a novel
XAI method (a global implementation of LRP) to understand
predictions made by machine learning models built to predict
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FIG. 7. (a) Monthly mean of the linear and nonlinear RMS response of the CNN prediction of sea ice velocity to a
small PERT of the input features at 17 different locations vs monthly mean sea ice concentration at each location.
(b) The ratio of the linear to the nonlinear RMS response vs monthly mean sea ice concentration at each location.
A higher ratio indicates stronger dominance of the model by a linear response.

sea ice motion in the Arctic on 1-day time scales. To do this,
we compare outputs from various XAI methods and analyze
the degree of nonlocality and nonlinearity inherent in predic-
tions from a CNN. Results from this study are used to answer
the following questions.

a. What do the outputs from XAI methods show us about
the contribution of the various input features for making
one-day predictions of sea ice motion in the Arctic?

Generally, we find that wind velocity is the input feature
that contributes the most to predictions of sea ice motion. This
is confirmed in Fig. 9, which shows that the spatial mean value
of the contribution of wind velocity (red points) is higher than
that of the other input features (purple and blue points) for all
local (Figs. 9a—c) and global (Figs. 9d-f) XAI methods. We
note that the spatial mean is calculated over the entire domain
shown in Fig. 8. Additionally, the spatial mean values are not
to be used to compare between the methods, just to compare
how the different methods distribute relevance or importance
to the various input features. The fact that we generally find
wind to be the most relevant predictor is consistent with his-
torical results from Thorndike and Colony (1982), who found
that local wind explained up to 70% of the variability in ice
motion on short time scales.

Localization analyses also confirm consistencies between
the local XAI methods. We show that relevance decreases ex-
ponentially with increasing distance from the analysis point
for all methods and input features (Fig. 4). The radii of influ-
ence of the relevance for LRP and perturbation fall within
one standard deviation of each other for each of the input fea-
tures. Both the LR and CNN incorporate nonlocal informa-
tion, while the CNN alone incorporates nonlinearities. Thus,
the larger radius of influence for XAI methods applied to the
CNN in comparison to LR suggests that this nonlocal rele-
vance also includes information about nonlinear interactions.

The overlap of relevant regions between LR and XAI ap-
plied to the CNN suggests that XAI methods typically show
high localization for regions where there is a known statistical
relationship between the inputs and outputs. Regions of high
relevance that exist outside of the region where there is high
variance explained by LR could be the result of spurious rela-
tionships in the training data; they could also provide useful
insight into relationships between the inputs and outputs that
are not fully understood by linear statistics. Here, it is impor-
tant to discern whether this nonlocal relevance is consistent
with physics. For example, McNutt and Overland (2003) dis-
cuss that while wind forcing is important for sea ice dynamics
at all scales, it is of particular importance at the coherent scale
(75-300 km), and that coherent-scale motion provides nonlo-
cal forcing to motion at the aggregate scale (10-75 km). We
use sea ice motion on a 25-km grid, so it is feasible that both of
these scales are represented in our study and that some of the
nonlocal effects we are seeing in the XAl are indeed physical.

We move forward with the global implementation of LRP
because local analyses confirm consistencies between the XAl
methods and with what is known about the physics of sea ice
motion (i.e., it is largely driven by wind). These consistencies
are also confirmed in the overall mean of the global explana-
tions, as discussed above.

Analyses of the spatial extent of the contributions of the in-
put features for each of the XAI methods show varying con-
sistency with historical results that sea ice motion can be
largely explained by wind velocity in the central Arctic, but
the relationship weakens in coastal regions (Thorndike and
Colony 1982; Kimura and Wakatsuchi 2000; Kwok et al. 2013;
Maeda et al. 2020). This is true for LR, but the PFI shows in-
creased importance of wind velocity in coastal regions and
LRP shows that the relevance of wind velocity is relatively
uniform throughout the Arctic and is lower than that for sea
ice velocity at most locations. Historically, decreases in the
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FIG. 8. Results from global sensitivity studies for each of the input features and methods. The columns represent each of the different in-
put features: (a),(d),(g) wind velocity u,; (b),(e),(h) ice velocity u; and (c),(f),(i) sea ice concentration c;. The rows represent the different
sensitivity methods: (a)-(c) variance explained by LR parameters; (d)—(f) PFI; and (g)-(i) LRP. We normalize by dividing by the top 0.5%
maximum importance or relevance value of the spatial mean for each method. We note that PFI is only applied at locations where c; is non-
zero and therefore do not show relevance or importance over land. The spatial mean and standard deviation are indicated in the legend.

The statistics are calculated over all areas north of 60°N.

linear relationship between ice motion and wind velocity near
the coast have been attributed to increased ice stresses in
these regions (Hibler 1979; Thorndike and Colony 1982;
Kimura and Wakatsuchi 2000). Often, larger internal ice
stresses are associated with higher ice concentration (Hibler
1979). Interestingly, we show that LRP shows increased rele-
vance for ice concentration near the coast in comparison to
other regions, which could be linked to this mechanism. Last,
we note that the attribution of previous-day sea ice velocity in
coastal regions compared to the central Arctic is higher for
PFI, but lower for LR and LRP.

Some of the discrepancies in attribution between the global
XAI methods could stem from the nature of the different
types of models and XAI method applied. While LR

incorporates nonlocal information, it is inherently nonlinear.
The other two XAI methods are applied to the CNN, which is
inherently nonlinear and nonlocal. Predictions of ice motion
at a given coastal location could be using nonlinear informa-
tion about wind from other locations. Additionally, the PFI is
a sensitivity method measuring importance. The higher im-
portance for wind in coastal regions for PFI means that when
wind is randomized, the model becomes less skillful at pre-
dicting sea ice motion in coastal regions. This decrease in per-
formance could be related to a loss of information from either
local or nonlocal winds. The LRP is a salience method that
measures relevance. The fact that wind has coastal relevance
in LRP suggests that wind velocity from coastal locations is
relevant for predicting ice velocity throughout the Arctic.
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FIG. 9. Spatial mean relevance and importance values for (a)—(d) local and (e)—(f) global XAI methods. Local re-
sults are shown for all 17 locations. The rows represent the different types of XAI methods [(a) linear, (b) PERT
based, or (c),(d) propagation based], and the colors represent each of the different input features: red, wind velocity
u,; purple, ice velocity u; and blue, sea ice concentration c;. The information in this figure summarizes the spatial
mean values provided in the legends of Figs. 3, 8, and S2-S18.

Additionally, the fact that sea ice velocity has higher rele-
vance for LRP at most locations could be a result of correla-
tions between the input features that are difficult for the LRP
to disentangle (Flora et al. 2024). Last, while ice concentration
may not be that important by itself, the degree of nonlinearity
is tied to extreme values of ice concentration, which suggests
that ice concentration may play an important role in nonlinear
feature interactions.

b. To what extent does the nonlocality of the CNN
predictions and XAl explanations provide information
about the relevance of the inputs on land for predicting
sea ice motion offshore?

Local XAI methods (variance explained by LR and LRP)
show that nonlocal wind over land is relevant for predicting sea
ice velocity offshore, suggesting that knowledge of wind over
land could be useful in understanding ice motion offshore.
While LRP is helpful if you want to know the extent to which
the output at one grid point is sensitive to the input features
throughout the domain, perturbation is useful if you want to
know the spatial extent to which the inputs at one point can in-
form the output. Therefore, we investigate the effect of perturb-
ing wind velocity on land at the locations of several Arctic
research stations. Results show that measurements of wind ve-
locity made at these land-based stations are valuable for making
predictions of ice motion offshore. This is likely related to the
large-scale nature of atmospheric variability, as there are large
spatial correlations in the wind patterns (not shown). Studies

such as these could be further utilized for field campaign designs
to understand where it would be important to place research
stations to obtain the most useful data for predicting sea ice
motion.

c¢. To what extent does the CNN incorporate nonlinear
information when making predictions?

The differences between the explanations of the LR and
CNN models highlight the nonlinear interactions inherent in
the CNN. Furthermore, decomposition of the CNN into linear
and nonlinear components shows that the model is weakly de-
scribed by linear terms and tends toward nonlinearity for per-
turbations made in peripheral seas and coastal regions. We
compare the degree of linearity to sea ice concentration and
find that the model tends toward nonlinearity for both high
(¢; > 0.8) and low (¢; < 0.2) ice concentration. In this regime,
it is possible that third-order terms are also important. These
terms would show up in 6H;, inflating the importance of what
we have assumed to be the linear terms in this study. Thus,
for these cases, the nonlinear component may be even larger
than the linear component of the model. For high ice concen-
tration, the linear relationship between wind speed and ice
motion is known to diminish, as ice is not in a state of free
drift where it is highly responsive to wind forcing (Lepparédnta
2011). Therefore, it makes sense that nonlinearities become
more important for increasing ice concentration, as the known
linear relationship falls apart and the model must rely on
other inputs or input combinations to make predictions. For
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low ice concentration, nonlinearities could result from the
treatment of sea ice velocity when there is no ice. While in re-
ality the sea ice velocity would be undefined for the case of no
ice, due to the inability for the CNN to take NaN values as in-
puts, we have set u; to zero when ¢; is zero. This could lead to
discontinuities in the model predictions, as ice with an ex-
treme low value for concentration could potentially have a
high velocity. This is important, and model results may be im-
proved by setting the ice velocity to be some fraction of the
wind velocity rather than zero.

We note that our results that the model is weakly linear
could be influenced by the fact that the analysis does not quite
meet the condition for the assumption that the first term rep-
resented the linear part of the model response (i.e., §H; is not
always greater than 8§H, by a full OM). Future work would
address this by evaluating the contributions of higher-order
terms of the Taylor expansion, which could contribute to 6H;
being larger than 6H, in this study. Additionally, other physi-
cal mechanisms (e.g., the influence of coastal topography on
the winds) could also play a role in the degree of nonlinearity,
and we suggest this as an avenue for further study. Future
work could also apply perturbations to different combinations
of inputs in efforts to tease out the nonlinear interactions that
are occurring between the different input features. The short
integration period (i.e., 1-day prediction time scale) could also
contribute toward the model being less dependent on nonlin-
ear terms, as intrinsic nonlinearity scales with prediction time
(Verdy et al. 2014). It will be interesting to see if a CNN built
for multiday predictions exhibits more nonlinear behavior,
but we leave this for future work.

In summary, while the linear terms are larger than the nonlin-
ear terms, they are not an order of magnitude larger suggesting
that nonlinear relationships are an important part of the solu-
tion and that these components may be why a CNN outper-
forms LR for many instances in space and time in Hoffman
et al. (2023). Additionally, the tendency for the model to be-
come more nonlinear at lower sea ice concentration highlights
the importance of applying models that capture this nonlinear
nature, such as a CNN, as sea ice in the Arctic diminishes.

6. Conclusions

In the Arctic with diminishing sea ice cover, predictive
models that incorporate nonlinear and nonlocal information
(particularly neural networks) will become increasingly more
important as the ice enters a state of free drift where motion
is driven more by wind forcing than by local internal ice
stresses (Spreen et al. 2011; Zhang et al. 2012; Tandon et al.
2018; Maeda et al. 2020). The black-box nature of neural net-
works makes them difficult to interpret without additional
tools. Applying XAl is crucial for gaining trust in model pre-
dictions and can also be useful for providing new insights into
physical processes when applied to skillful models.

In this study, we apply a novel implementation of a global
LRP method, which integrates the local explanations pro-
vided for predictions made at each grid point. We note that
this global LRP is computationally costly in comparison to
other global XAI methods (Table 1). Additionally, the sheer
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amount of information it provides can be challenging to work
with and requires patience. There are also discrepancies in
the spatial variability of the explainability for global LRP in
comparison to what is known from physics and other XAl
methods. However, we have shown that the spatially averaged
output from global LRP is consistent with other global XAI
methods and from what is expected based on what we know
about the physics of sea ice motion. On the basis of this analy-
sis, we recommend global LRP as a powerful tool for under-
standing regression predictions made by the CNN models
applied to problems in the Earth sciences and highlight the
benefit that this method provides in showing the nonlinear
and nonlocal effects of the model predictors. In future work,
we aim to use global LRP to understand the spatiotemporal
variability of the relevance of wind for predicting sea ice mo-
tion. To avoid complexities that arise from feature correla-
tions, we will simplify this analysis and run using wind
velocity as the only input feature.

Overall, we find that XAI methods generally agree that
wind velocity is the input feature with the largest contribution
to predictions of sea ice motion. We discuss nuances in the
spatial variability of the relevance or importance of each pre-
dictor produced by each XAI method. We also confirm the
ability of the CNN to incorporate nonlocal and nonlinear in-
formation into its predictions, which is a highly useful feature.
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APPENDIX

A Taxonomy of XAI Methods

Several XAI methods have been developed to explain pre-
dictions made by ML models (Haar et al. 2023; Linardatos
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et al. 2021; McGovern et al. 2019; Samek and Miiller 2019;
Mayer and Barnes 2021). We briefly discuss the taxonomy of
these methods to clarify terminology and ensure consistency
throughout the literature. Thorough descriptions of how to clas-
sify different explainability methods are provided by Bommer
et al. (2024), Flora et al. (2024), Das and Rad (2020), and
Mamalakis et al. (2022). In summary, classification is based
on the following:

e Usage (posthoc vs antehoc): Antehoc methods modify the
model architecture to improve interpretability, whereas
posthoc methods are applied to any neural network model
after it has been trained.

» Scope (global vs local): Local XAI methods provide ex-
planations for a specific prediction (i.e., a pixel or grid
point), whereas global methods show attributions of the in-
put features across all samples (Molnar 2020). By assuming
linearity, local explanations can be aggregated to create
global explanations (Murdoch et al. 2019; Molnar 2020).
We distinguish that here the term “global” is used to de-
scribe the scope of the XAI methods rather than the spatial
extent of Earth.
Methodology (perturbation vs propagation): Perturbation-
based analyses are iterative and test the model’s response
to perturbations. A perturbation is applied to the input fea-
tures at selected grid locations after the model is trained,
and the degree to which the model prediction changes in
response to the perturbation is an indicator of the rele-
vance of the input feature at the perturbed point for the
model in making a prediction (Samek and Miiller 2019;
Linardatos et al. 2021). On the other hand, propagation-
based methods integrate the internal structure of the model
into the explanation process and focus on the influence that
each input value (i.e., each predictor at each grid point) has
on activating part of a neural network (Samek and Miiller
2019). Propagation-based methods only require one for-
ward and backward pass through the model to generate a
relevance visualization. These methods propagate the model
prediction through the neural network and analyze the weights
and activations at each layer of the model based on certain
propagation rules (i.e., analyzing gradients or applying conser-
vation rules to the relevance values propagated to each node
in the model). Outputs from propagation-based methods are
heatmaps that have the same dimensions as the input features,
allowing a comprehensive evaluation of relevance.

e Model awareness (model specific vs model agnostic): Model-
specific methods use components of the model (i.e., model
weights) for the explanation and therefore rely on the spe-
cific model architecture to produce an explainability output.
Model-agnostic methods concern only the model outputs and
do not incorporate the model architecture into explainability.
Typically, perturbation-based methods are model-agnostic,
and propagation-based methods are model-specific.

» Type of explanation output (sensitivity vs salience): Sensi-
tivity is a measure of how much the output will change
based on changes to a particular input feature and is mea-
sured by the units of output per unit of input. Salience is a
measure of the relative contribution of the input feature for
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making a prediction and indicates how many units of the
output are explained by the given input feature. (Mamalakis
et al. 2022).

Feature importance versus relevance: Importance is a mea-
sure of the feature contribution to the performance of the
model. Relevance methods measure the contribution of the
features to the model output (Flora et al. 2024).
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