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Abstract
Purpose: To introduce a novel deep model-based architecture (DMBA),
SPICER, that uses pairs of noisy and undersampled k-space measurements of
the same object to jointly train a model for MRI reconstruction and automatic
coil sensitivity estimation.
Methods: SPICER consists of two modules to simultaneously reconstructs accu-
rate MR images and estimates high-quality coil sensitivity maps (CSMs). The
first module, CSM estimation module, uses a convolutional neural network
(CNN) to estimate CSMs from the raw measurements. The second module,
DMBA-based MRI reconstruction module, forms reconstructed images from the
input measurements and the estimated CSMs using both the physical measure-
ment model and learned CNN prior. With the benefit of our self-supervised
learning strategy, SPICER can be efficiently trained without any fully sampled
reference data.
Results: We validate SPICER on both open-access datasets and experimen-
tally collected data, showing that it can achieve state-of-the-art performance in
highly accelerated data acquisition settings (up to 10×). Our results also high-
light the importance of different modules of SPICER—including the DMBA, the
CSM estimation, and the SPICER training loss—on the final performance of
the method. Moreover, SPICER can estimate better CSMs than pre-estimation
methods especially when the ACS data is limited.
Conclusion: Despite being trained on noisy undersampled data, SPICER can
reconstruct high-quality images and CSMs in highly undersampled settings,
which outperforms other self-supervised learning methods and matches the per-
formance of the well-known E2E-VarNet trained on fully sampled ground-truth
data.
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1 INTRODUCTION

MRI is a medical imaging technology known to suffer
from slow data acquisition. Parallel MRI (PMRI) is a
widely used acceleration strategy that relies on the spatial
encoding provided by multiple receiver coils to reduce the
amount of data to acquire.1–4 The multicoil under-sampled
data can be reconstructed by fitting the missing k-space
lines1,2 or in the image space using coil sensitivity maps
(CSMs).3,4 Compressed sensing (CS) is a complementary
technique used to further accelerate data collection by
using prior knowledge on the unknown image (sparsity,
low-rankness).5,6

Deep learning (DL) has recently emerged as a promis-
ing paradigm for image reconstruction in CS-PMRI.7–9

Traditional DL methods train convolutional neural net-
works (CNNs) to map acquired measurements to the
desired images.10,11 Recent work has shown that deep
model-based architectures (DMBAs) can perform better
than generic CNNs by accounting for the measurement
model of the parallel imaging system.12–17 Most of these
methods require precalibrated CSMs as an important ele-
ment in their model. However, CSM pre-estimation strate-
gies rely on sufficient auto-calibration signal (ACS) lines,
which limits the acceleration rates for data acquisition. To
address this limitation, recent work has proposed to jointly
estimate high-quality images and CSMs in an end-to-end
manner.18–20 However, these methods still require fully
sampled ground-truth images as training targets, which
limits their applicability to settings where ground-truth is
difficult to obtain or unavailable. On the other hand, there
has also been a broad interest in developing self-supervised
DL methods that rely exclusively on the information avail-
able in the undersampled measurements.17,21–26

Despite the rich literature on DMBAs and
self-supervised DL, the existing work in the area has not
investigated joint image reconstruction and coil sensitiv-
ity estimation directly from noisy and undersampled data.
We bridge this gap by presenting Self-Supervised Learn-
ing for MRI with Automatic Coil Sensitivity Estimation
(SPICER) as a new self-supervised learning framework for
parallel MRI that is equipped with an automatic CSM esti-
mator. SPICER is a synergistic combination of a powerful
model-based architecture and a flexible self-supervised
training scheme. The SPICER architecture consists of two
branches: (a) a CNN for estimating CSMs from possibly
limited ACS data, while ensuring physically realistic pre-
dictions; (b) a DMBA that uses the estimated CSMs for
high-quality image reconstruction. The SPICER training is
performed using undersampled and noisy measurements
without any fully sampled ground-truth. For training,
SPICER necessitates at least one pair of undersampled

and noisy measurements from each slice. We extensively
validated SPICER on in vivo MRI data for several acceler-
ation factors. Our results show that SPICER can achieve
state-of-the-art performance on PMRI at high acceleration
rates (up to 10×). Moreover, SPICER can estimate better
CSMs than pre-estimation methods especially when the
ACS data is limited.

This paper extends the preliminary work presented
in the workshop paper.27 Compared to the method in
Reference 27, SPICER uses a different forward model,
model-based DL architecture, and training loss function.
This paper also provides an expanded discussion on related
work, additional technical details, as well as completely
new numerical results using real in vivo MRI data acquired
using a 32-channel coil.

2 THEORY

2.1 Problem formulation

Consider the following CS-PMRI measurement model

y = Ax + e, (1)

where x ∈ Cn is an unknown image, y = (y1, … , ync
)

are the multicoil measurements from nc ≥ 1 coils, e =
(e1, … , enc) is the noise vector, and A = (A1, … ,Anc) is
the measurement operator (or forward operator). The mea-
surement model for each coil can be represented as

yk = PFSk⏟⏟⏟
Ak

x + ek, k = 1, 2, … ,nc, (2)

where Sk ∈ Cn×n is the CSM of the kth coil, F ∈
Cn×n is the Fourier transform operator, P ∈ Cn×n is the
k-space sampling operator, and e ∈ Cn is the noise vec-
tor. Note that S = (S1, … ,Snc) varies for each scan,
since it depends on the relative location of the coils
with the object being imaged. When S are known,
image reconstruction can be formulated as regularized
optimization

x̂ = arg min
x

f (x) with f (x) = g(x) + h(x), (3)

where g is the data fidelity term that quantifies consis-
tency with the observed data y and h is a regularizer that
infuses prior knowledge on x. Examples of g and h used
in CS-PMRI are the least-squares and total variation (TV)
functions28

g(x) = 1
2 ||Ax − y||22 and h(x) = 𝜏||Dx||1, (4)
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where D denotes the image gradient and 𝜏 > 0 is a regular-
ization parameter.

DL has recently gained popularity in MRI image recon-
struction due to its excellent empirical performance.7,8,29

Traditional DL methods are based on training CNNs
(such as U-Net30) to map the corrupted images31,32 or the
under-sampled measurements11,33 to their desired fully
sampled ground-truth versions. There is also growing
interest in DMBAs that can combine physical measure-
ment models and learned CNN priors. Well known exam-
ples of DMBAs are plug-and-play priors,34,35 regularized
by denoising,36 and deep unfolding (DU).15,16,37 In partic-
ular, DU has gained considerable recognition due to its
ability to achieve the state-of-the-art performance, while
providing robustness to changes in data acquisition. DU
architectures are typically obtained by unfolding iterations
of an image reconstruction algorithm as layers, represent-
ing the regularizer within image reconstruction as a CNN,
and training the resulting network end-to-end. Different
DU architectures can be obtained by using various opti-
mization/reconstruction algorithms. In this paper, we will
rely on a DU variant of the regularized by denoising model
as the basis of our image reconstruction method.38

2.2 Reconstruction using precalibrated
CSMs

There are two widely-used image formation approaches
in CS-PMRI (see recent review8): (a) reconstruction in
the k-space domain and (b) reconstruction in the image
domain. GRAPPA2 is a well-known example of (a) that
fills in unacquired k-space values by linearly interpolat-
ing acquired neighboring k-space samples. Recent work39

extends GRAPPA by using a CNN to learn a non-linear
interpolator in k-space. SENSE3 and ESPIRiT4 are two
well-known examples of (b) that first precalibrate CSMs
and then use it to solve the inverse problem (1). Our work
in this paper adopts strategy (b), which will be the focus of
the subsequent discussion.

Pre-estimated CSMs can either be obtained by doing
a separate calibration scan40 or estimated directly from
the ACS region of the undersampled measurements. The
drawback of the former approach is that it extends the total
scan time. ESPIRiT4 is based on the latter approach. There
are several issues and challenges with the pre-estimated
approaches.40,41 One issue is that the inconsistencies
between the calibration scan and the accelerated scan can
result in imaging artifacts. Another issue is that estimat-
ing CSMs from a small number of ACS lines may not be
sufficiently accurate. DeepSENSE,42 a recent supervised
DL method, uses a CNN to learn a mapping from the
ACS data to CSM references, obtained by dividing the

fully sampled individual coil images by the sum-of-squares
reconstruction from the fully sampled measurements.
While DeepSENSE improves over methods based on
pre-estimating CSMs, especially when the ACS data is
limited, DeepSENSE still requires fully-sampled data to
generate training CSMs.

2.3 Joint reconstruction and CSM
estimation

Traditionally, optimization-based methods for joint image
reconstruction and CSM estimation treat S as another
unknown variable in (3) and alternate between updating
the image and updating the coil sensitivities.40,41 DU has
recently been adopted to perform joint estimation of image
and CSMs without any precalibration procedure.18–20,43–46

The concept behind these methods is to model CSM esti-
mated as a trainable DNN module that can be optimized
simultaneously with other learnable parameters in the
deep network. The inputs to the CSM estimated modules
could be the original undersampled measurements20 or
the intermediate results available at different layers of the
deep unfolded networks.18,19 However, these joint learn-
ing methods rely on fully-sampled ground-truth images
as training targets, which limits their applicability when
ground-truth data is not available. Our work contributes
to this area by investigating a self-supervised learning
approach for joint image reconstruction and CSM calibra-
tion that requires no fully sampled ground-truth data.

2.4 Self-supervised image
reconstruction

There is a growing interest in DL-based image recon-
struction to reduce the dependence of training on
high-quality ground-truth data (see recent reviews47–49).
Some well-known strategies include Noise2Noise (N2N),23

Noise2Void,50 deep image prior,51 Compressive Sensing
using Generative Models,52 and equivariant imaging.53

This work is most related to N2N, where a DNN R𝜽 is
trained on a set of noisy images {x̂i,𝑗 = xi + ei,𝑗} with
𝑗 indexing different realizations of the same underlying
image i.The N2N learning is formulated as follows

𝜽̂ = arg min
𝜽

∑
i

∑
𝑗≠𝑗′

‖‖‖f𝜽(yi,𝑗) − yi,𝑗′
‖‖‖

2

2
, (5)

where f𝜽 denotes a CNN with 𝜽 being trainable param-
eters. N2N and its extensions have been investigated in
several papers on PMRI reconstruction.24–26 For example,
DURED-Net54 proposes an unsupervised learning method
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for MRI image reconstruction combining an unsuper-
vised denoising network and a plug-and-play priors
method. SSDU and NLINV-Net are related self-supervised
DL methods for MRI reconstruction that use a sim-
ilar approach of dividing each MRI acquisition into
two subsets for training. However, they have distinct
strategies for CSM estimation. Specifically, SSDU relies
on pre-calibrated CSMs, while NLINV-Net adopts a
model-based approach for estimating CSMs. Our SPICER
method is different from NLINV-Net in that it trains
a CNN module to estimate CSMs within the proposed
DMBA architecture, thus distinguishing it from the
NLINV-Net’s pure model-based approach.

While the concept of N2N enables the training of the
DNN for PMRI without any fully sampled data, to the
best of our knowledge, the prior work is based on using
pre-estimated CSMs. Our SPICER method does not require
prescan calibration, instead using the N2N framework
for joint reconstruction and CSM estimation without any
ground-truth. In addition, our CSMs are estimated using a
learning based strategy.

3 METHODS

3.1 SPICER model

Our SPICER method takes multicoil undersampled mea-
surements as its input and produces the reconstructed
images and CSMs at its output. As illustrated in Figure 1,
SPICER consists of two modules: (a) a CSM estimation

module that uses information extracted from the raw mea-
surements, and (b) a DMBA-based MRI reconstruction
module that forms reconstructed images from the input
measurements and the estimated CSMs. Our training pro-
cedure uses a pair of multicoil undersampled measure-
ment {(yi, y′i)}i which are acquired from the same object

yi = Aixi + ei and y′i = A′
ixi + e′i , (6)

where (Ai,A′
i) and (ei, e′i) denote distinct forward operators

and noise vectors, respectively. The measurements yi and
y′i can correspond to two subsets extracted from a single
acquisition17 or two separate MRI acquisitions. Note that
our training procedure does not require any ground-truth
images or known CSMs.

3.2 Coil sensitivity estimation Module

Let ŷ be an input measurement and P the correspond-
ing sampling matrix. The coil sensitivity estimation mod-
ule forms CSMs from multicoil measurements without
a prescan calibration by performing three steps: (a) the
ACS regions of the undersampled measurements are
extracted, which are represented as yACS; (b) yACS is
mapped back to the image domain by applying the
zero-filled inverse Fourier transform p0 = F−1(yACS); (c) p0

is fed into a CNN P𝝋 with trainable parameters 𝝋 ∈ Rq to
obtain estimated CSMs: Ŝ = P𝝋(p0). (d) Finally, the esti-
mated sensitivity maps Ŝ are normalized by dividing their
root-square-of-sum to ensure that Ŝ−1Ŝ = I.

(A)

(B)

F I G U R E 1 The self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction (SPICER) method
consists of a deep model-based architecture-based MRI reconstruction module and a coil sensitivity estimation module that map multicoil
undersampled measurements to a single high-quality image and a set of coil sensitivity maps, respectively. The reconstruction module,
described in (7), is composed of two key components, a data consistency module and a convolutional neural network prior. The network is
trained directly on raw k-space measurements where the input and the target measurement correspond to a pair of undersampled
measurements from the same object. (A) DMBA MRI reconstruction module; (B) CSM estimation module.
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1052 HU et al.

3.3 Image reconstruction module

The image reconstruction module of SPICER incorporates
a DMBA, which is built upon regularized by denoising.38

Figure 1 visually represents the DMBA MRI reconstruc-
tion module, highlighting two essential steps: the data
consistency module and the CNN Prior module. The image
reconstruction process is performed iteratively by integrat-
ing information from CNN R𝜽 with learnable parameters
𝜽 and imposing consistency between the predicted and the
raw k-space measurements via∇g in (8). Let ĉ0 = F−1ŷ rep-
resent the initial image, and K ≥ 1 be the total number of
DU layers, The steps of SPICER are given by

ck+1 = ck − 𝛾k

⎛
⎜
⎜
⎜
⎜⎝

∇g
(

ck, y
)

⏟⏞⏞⏟⏞⏞⏟
Data consistency

+ 𝜏kSRk
𝜽
(

S−1ck)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Regularization

⎞
⎟
⎟
⎟
⎟⎠

, (7)

where 𝜏k and 𝛾k are learnable parameters, ck are the inter-
mediate multicoil images in the kth step, and

∇g(ck, y) = F−1P−1(PFck − y). (8)

The CNN Rk
𝜽 in (7) takes a single image as an input, requir-

ing S−1 and S for fusing multiple images into a single image
and expanding a single image into multiple images, respec-
tively. The final reconstructed image x can be obtained
from the output of the last step as x = S−1cK . It is worth
noting that unlike existing DU methods that rely on pre-
calibrated S,14–17 SPICER jointly trains a S calibration
network P𝝋 simultaneously with the image reconstruction
network. During inference, the pretrained P𝝋 network pre-
dicts S as a preliminary step, which is then utilized by the
image reconstruction network.

3.4 Self-supervised training procedure

We use standard stochastic gradient method to jointly
optimize {𝜽k}K

k=1 and 𝝋 by minimizing the loss function

Loss = Lossrec + 𝜆 ⋅ Losssmooth, (9)

where 𝜆 is a regularization parameter.
Lossrec seeks to map each yi and the corresponding y′i to

each other. The key idea here is to map the reconstructed
images back to the k-space domain by applying the for-
ward operator of the training target. For example, one can
map xi back to the k-space domain by applying the for-
ward operator A′

i then penalize the discrepancy between
the resulting measurements A′

ixi and raw measurements
y′i. Note that, forward operator A′

i uses the same sampling

mask P′ employed in the acquisition of the undersam-
pled raw measurement y′i. Here, the CSMs Si in Ai are
estimated by the coil sensitivity estimation module after
feeding yi as the input. The formulation of Lossrec is

Lossrec =
1
N

N∑
i=1
rec(A′

ixi , y′i) + rec(Aix′i , yi), (10)

where N is number of samples, x′i is the reconstructed
image when y′i is the input measurement, andrec denotes
the 𝓁2-norm. During minimization, Lossrec enforces the
accuracy between the predicted and the raw measure-
ments, but it can also generate nonsmooth CSMs that
are not physically realistic and cause overfitting. There-
fore, we include Losssmooth, a smoothness regularization
for CSMs, to impose smoothness within the field of view
(FOV) region of estimated CSMs.

Losssmooth = 1
N

N∑
i=1

‖‖‖D(S)FOV
i

‖‖‖
2

2
, (11)

where the D is the gradient of the CSMs Si. The combina-
tion of Lossrec and Losssmooth can enable the optimization
on the measurement domain and the stability of CSMs,
thus it is named as a smoothness-enhanced measurement
domain loss function.

3.5 Implementation

In our experiment, all CNNs in SPICER are based on
U-Net30 and implemented using PyTorch.55 To process
complex-valued data, we reshape all the complex-valued
images by splitting their real and imaginary parts and con-
catenating them into the channel (= 2) dimensions. The
total number of unrolling layers K in (7) is 8 and the
regularization parameter 𝜆 in (9) is 0.01. The initial val-
ues we used in (7) is 𝛾0 = 1 and 𝜏0 = 0.1. We used Adam
as the optimizer with a learning rate 0.001 for the ini-
tial 30 epochs and 0.0001 for the rest. We performed all
our experiments on a machine equipped with an Intel
Xeon Gold 6130 Processor and an NVIDIA GeForce RTX
3090 GPU. The implementation details can be found in:
https://github.com/wustl-cig/SPICER.

3.6 In vivo brain dataset

The data acquisition was performed on a Siemens 3T
Prisma scanner (Siemens Healthcare) with a 32-channel
head coil. Images were collected with sagittal T1
magnetization-prepared rapid gradient-echo sequence.
The acquisition parameters were as follows: repetition
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F I G U R E 2 The leftmost four in the first row shows the cartesian equispaced sampling masks P used in the experimental validation: R
= 4, 6, 8, 10, with corresponding auto-calibration signal (ACS) lines = 24, 24, 8, and 5. The second row shows the zero-filled images of the
same slice for the four acceleration rates. The third row shows the self-supervised learning for MRI with automatic coil sensitivity estimation
and reconstruction (SPICER) reconstructed images of the same slice and include the peak signal-to-noise ratio (PSNR)/structural similarity
index (SSIM) values with respect to the reference as shown in the rightmost column.

time = 2400 ms, echo time = 2.62 ms, inversion time =
1000 ms, flip angle = 8 degrees, field of view = 256 mm ×
256 mm, voxel size = 1 × 1 × 1 mm3, slices per slab = 176,
slice and phase resolution = 100% and slice and phase
partial Fourier off. A 2× oversampling was used in the
frequency encoding direction, and the asymmetric echo
was turned on to allow short echo time. Fully sampled
measurements were acquired with GRAPPA turned off,
and the total acquisition time was 10 min and 16 s. The
reference images were obtained by the sum-of squares
reconstruction computed on the fully sampled multicoil
data. Upon the approval of our Institutional Review Board,
we used brain MRI data from 14, 1, and 5 participants in
this study for training, validation, and testing, respectively.
To obtain undersampled measurements, the multicoil
k-space data were retrospectively undersampled using
one-dimensional (1D) Cartesian equispaced sampling
masks with ACS lines. The sampling strategy is based
on the clinical-used 2× acceleration sampling pattern,

which is acquired with GRAPPA R = 2 in phase encod-
ing direction with 24 ACS lines. As shown in Figure 2,
we conducted our experiments for acceleration factors
R = 4, 6, 8, and 10 with 1D equispaced Cartesian masks,
that contain 24, 24, 8, and 5 ACS lines, respectively. They
correspond to the retrospective sampling rates of 32%,
24%, 15%, and 12%. For each undersampling pattern,
one pair of under-sampled measurements are generated
for self-supervised training. We generate 1932 (138 × 14)
pairs of training data for each undersampling rate using
the entire training dataset. Each training data pair corre-
sponds to one of 138 slices from each of the 14 subjects in
the dataset.

3.7 fastMRI Brain dataset

The T2 MR brain dataset was obtained from the multicoil
fastMRI dataset. We used the T2 MR brain acquisitions of

 15222594, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30121 by W

ashington U
niversity School O

f M
edicine, W

iley O
nline Library on [09/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



1054 HU et al.

165 subjects obtained from the multicoil dataset as the raw
reference. These 165 subjects were split into 130, 15, and 20
for training, validation, and testing, respectively. For each
subject, we extracted the first 12 slices on the transverse
plane, containing the most relevant regions of the brain. In
order to obtain undersampled measurements, we use the
1D Cartesian equispaced sampling pattern provided in the
fastMRI database with acceleration rate = 4, 8.

3.8 Comparisons

3.8.1 Baseline methods

We selected several well-known methods as references to
compare the performance of SPICER:

• TV (with ESPIRiT): The traditional TV regularized
image reconstruction.28

• GRAPPA: Traditional GRAPPA1 that linearly interpo-
lates missing k-space points using nearby acquired
k-space points from all coils.

• U-Net: The U-Net architecture30 trained to maximize
SSIM between the reconstructed image and the image
obtained using GRAPPA on the same amount of mea-
surements as SPICER.

• SSDU: A well-known self-supervised learning
method17 that trains a DU network by dividing each
k-space MRI acquisition into two subsets and using
them as training targets for each other. For fair compar-
ison, SSDU network use the same U-Net architecture
as SPICER.

• SSDUauto: A variant of SSDU17 that incorporates a same
automatic CSM learning module as SPICER. The strat-
egy to generate training data pairs is the same with
SSDU.

• SSDU∗: A variant of SSDU17 that trained with paired
training data and automatic CSM learning module as
SPICER. The training data pairs are generated with
Cartesian subsampling strategy (same as SPICER).

• E2E-VarNet: An idealized variant of method from20

trained using SSIM on fully sampled reference data.
E2E-VarNet shows the upper bound on performance
achievable by the self-supervised variants of the
method.

All the CSMs used in TV (with ESPIRiT), U-Net, and
SSDU are pre-estimated using ESPIRiT.4 We observed that
when the number of ACS lines is less than 24, reconstruc-
tion using the CSMs estimated by ESPIRiT are of poor
quality. Therefore, we use 24 ACS lines for estimating
CSMs with ESPIRiT to be used in TV, U-Net, and SSDU.

3.8.2 Ablation study

We also performed an ablation study to highlight the influ-
ence of the DMBA module, the CSMs estimation module,
and the CSMs smoothness regularization within SPICER.
We compared the original SPICER model with three dif-
ferent models as follows:

• Joint U-Net: We replace the DMBA module of SPICER
with U-Net to show the benefit of using a DMBA.

• DMBA (ESPIRiT): We use the same DMBA as SPICER
but use ESPIRiT on undersampled measurements to
replace the CSM estimation module of SPICER.

• SSDU∗: SPICER trained without the CSMs smoothness
regularization loss Losssmooth in (11).

3.8.3 Evaluation of CSMs estimation

In order to evaluate the quality of the estimated CSMs, we
use CSMs estimated by the proposed and ESPIRiT within
the iterative TV reconstruction. We use the fminbound
method in the scipy.optimize toolbox to find the
optimal regularization parameters for TV.

3.9 Evaluation metrics

For in vivo Brain Dataset, SPICER was compared with all
the baselines shown in Section 3.8 at acceleration rates
R = 4, 6, 8, and 10. For fastMRI Brain Dataset, SPICER
was compared with TV, GRAPPA, SSDU, and supervised
method E2E-VarNet trained on fully sampled data at the
same acceleration R = 4 and 8. We used widely used quan-
titative metrics, peak signal-to-noise ratio (PSNR), mea-
sured in dB, structural similarity index (SSIM), and the
normalized mean squared error (NMSE), with respective
to the reference images obtained from the fully sampled
data. The quantitative results were statistically analyzed
by comparing SPICER with other image reconstruc-
tion methods within the targeted brain region, using
the same threshold operator in ESPIRiT. We used the
non-parametric Friedman’s test and the post hoc test of the
original FDR method of Benjamini and Hochberg.56 The
statistical analysis was performed using GraphPad Prism 9
(Version 9.3.1 for macOS, GraphPad Software). Statistical
significance was defined as p <0.05.

4 RESULTS

We now present the numerical validation of SPICER
on both in vivo MRI dataset and fastMRI dataset. The
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F I G U R E 3 Visual and quantitative evaluation on in-vivo brain dataset corresponding to 8× and 10× acceleration rates. The top-right
corner of each image provides the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values with respect to the
reference. We highlight the visually significant differences using zoom views and error maps. The visually important differences are
highlighted using arrows. U-Net, SSDUauto, and self-supervised learning for MRI with automatic coil sensitivity estimation and
reconstruction (SPICER) in the figure are based on self-supervised learning. E2E-VarNet is a supervised learning method trained using
ground-truth. SPICER achieves the best performance compared to the baseline methods by jointly performing image reconstruction and
CSM estimation with end-to-end self-supervised training. Note how compared to other methods, SPICER recovers sharper images and
reduces artifacts, even achieving comparable performance to the supervised learning method. (A) 8× acceleration and (B) 10× acceleration.

results show that SPICER achieves state-of-the-art perfor-
mance in highly accelerated acquisition settings. For better
visualization, the two-dimensional visualization cases in
Figures 3–6 are chosen randomly from middle 50 slides of
the three-dimensional volume.

Figure 3 illustrates the results of image reconstruction
on the in vivo dataset for acceleration rates R = 8 (top) and
R = 10 (bottom). TV (with ESPIRiT) and GRAPPA con-
tain blurring and ghosting artifacts, especially at higher
acceleration rates. While U-Net has better performance
than TV (with ESPIRiT) and GRAPPA by learning the
prior from data, SSDU and SSDUauto outperform it due
to their model-based DL architectures. SSDUauto performs
joint CSMs estimation, which enables it to do better than
SSDU. However, it continues to exhibit blurring, stem-
ming from the incongruence between the training and
testing phases, further intensified by the absence of paired

data utilization. This issue arises due to the undersampled
measurement splitting strategy employed, highlighting the
need for paired undersampled data and corresponding
new splitting strategy. The supervised learning baseline
E2E-VarNet and our proposed method SPICER achieve
significant improvements compared to other methods.
Overall, our proposed method SPICER can provide the
best performance in artifact removal and sharpness com-
pared to all of the self-supervised baseline methods.

Table 1 summarizes quantitative results of all the eval-
uated methods. In Table 1, SPICER achieves the highest
PSNR, highest SSIM, and lowest NMSE values compared
to other methods over all considered acceleration rates.
Notably, SPICER outperformed all variants of the SSDU
method, which highlights that the success of SPICER
comes not merely from the access to paired undersampled
data or a simplistic automated CSM estimation module.
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F I G U R E 4 Visual and quantitative evaluation on fastmri brain dataset corresponding to 4× and 8× acceleration rates. The top-right
corner of each image provides the peak signal-to-noise ratio and structural similarity index values with respect to the reference. We highlight
the visually significant differences using zoom views and error maps. The visually important differences are highlighted using arrows. SSDU
and Self-supervised searning for MRI with automatic coil sensitivity estimation and reconstruction (SPICER) in the figure are based on
self-supervised learning. E2E-VarNet is a supervised learning method trained using ground-truth. SPICER achieves the best performance
compared to the self-supervised baseline methods by jointly performing image reconstruction and coil sensitivity map estimation with
end-to-end self-supervised training. Note how compared to other methods, SPICER recovers sharper images and reduces artifacts, even
achieving comparable performance to the supervised learning method. (A) 4× acceleration and (B) 8× acceleration.

Moreover, our method achieves very competitive perfor-
mance with a state-of-the-art supervised learning method
E2E-VarNet. Note that E2E-VarNet also utilizes the joint
learning of unrolling network and CSM estimation net-
work. Statistical analysis of PSNR, SSIM, and NMSE values
in Table 1 also highlights that SPICER can achieve statisti-
cally significant results compared to all the self-supervised
image reconstruction baseline methods.

Figure 4 shows the results of image reconstruction
on fastMRI dataset for acceleration rates R = 4 (top) and
R = 8 (bottom). TV (with ESPIRiT) and GRAPPA con-
tain artifacts and noise, especially at higher acceleration
rates. SSDU successfully removes most of the artifacts and

noise, but it still suffers from some blurring, due to the use
of suboptimal precalibrated CSMs. The supervised learn-
ing baseline E2E-VarNet and our proposed self-supervised
method SPICER significantly outperform other methods.
Overall, our proposed method SPICER can provide the
best performance in artifact removal and sharpness com-
pared to all of the self-supervised baseline methods on
fastMRI dataset.

Table 2 presents the quantitative analysis of all the
evaluated methods on fastMRI dataset. Table 2 shows that
SPICER achieves the highest PSNR, highest SSIM, and
lowest NMSE values compared to other self-supervised
methods over all considered acceleration rates. Moreover,
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F I G U R E 5 Quantitative evaluation of self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction
(SPICER) on in vivo brain dataset at 8× and 10× acceleration rates. The top-right corner of each image provides the peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) values with respect to the reference. We highlight visually significant differences using zoom
views and error maps. This figure shows that the deep model-based architecture (DMBA), coil sensitivity map (CSM) estimator, and CSM
smoothness regularization of SPICER play important role in enhancing both quantitative and visual performance in terms of both
artifact-removal and sharpness. (A) 8× acceleration and (B) 10× acceleration.

our method achieves competitive performance with the
supervised learning method E2E-VarNet.

Figure 5 illustrates reconstruction results of the abla-
tion study on 8× and 10× acceleration. Figure 5 shows
that the DMBA model, CSM estimator, and CSM smooth-
ness regularization of SPICER improve the imaging qual-
ity. Table 3 presents the results of an ablation study
showing the influence of each module of our SPICER
model and the effectiveness of Losssmooth in the proposed
self-supervised loss function (9). As can be seen, Joint
U-Net obtains the worst performance, due to the U-Net
model not using the PMRI measurement model. The

results suggest that pre-estimated CSMs generated with
ESPIRiT used in DMBA lead to sub-optimal performance
in all acceleration rates, especially with limited ACS lines.
Note that at high acceleration rates (8× and 10×), even
the CSMs pre-estimated with ESPIRiT on 4× accelerated
data, the performance is still much worse than that of the
joint CSM learning methods. The results of SSDU∗ and
SPICER show that CSM smoothness regularization plays
an important role in the reconstruction. Statistical analy-
sis of quantitative values in Table 3 highlights that SPICER
achieves statistically significant results compared to
other methods.
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1058 HU et al.

F I G U R E 6 Visual and quantitative evaluation on in-vivo brain dataset corresponding to different sampling strategies for 8× acceleration
rate. The first row shows the results from one-dimensional (1D) random sampling, 1D equispaced sampling with only three auto-calibration
signal (ACS) lines, 1D equispaced sampling with 8 ACS lines and reference. The bottom-left corner of each image provides the peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values with respect to the reference. The top-right corner of each image
provides the number of ACS lines used for each undersampling pattern. Visually significant differences are highlighted using error maps.

Figure 6 illustrates the performance of our SPICER
method using various sampling patterns. We consider
three distinct sampling patterns: 1D random sampling
with eight ACS lines, 1D equispaced sampling with
three ACS lines, and 1D equispaced sampling with eight
ACS lines. The results suggest that SPICER can consis-
tently provide high-quality reconstruction results even
even in challenging scenarios involving random sam-
pling patterns and extremely limited ACS regions (only
three lines).

Figure 7 illustrates the performance of the estimated
CSMs. We use ESPIRiT and SPICER to estimate CSMs
from data at various accelerated acquisition rates (from
4× to 10×). Estimated CSMs are then used within TV
reconstruction from data corresponding to 4× acceler-
ated acquisition rate. The reconstructed images are quan-
titatively evaluated using PSNR and SSIM values rela-
tive to the reference images. The top row of Figure 7
illustrates the TV reconstruction results equipped with
CSMs estimated from different ACS data and different
methods. The bottom row of Figure 7 illustrates the
visualization of CSMs of one specific coil. Note that,
even with CSMs estimated by SPICER from five ACS
lines, the following TV reconstruction can achieve bet-
ter performance than ESPIRiT CSMs (generated from
24 ACS lines).

5 DISCUSSION AND
CONCLUSIONS

5.1 Discussion

In this manuscript, we proposed a self-supervised DMBA,
namely SPICER, for joint MRI reconstruction and auto-
matic coil sensitivity calibration. The key benefit of
SPICER is that it is trained directly on pairs of noisy
and undersampled k-space measurements of the same
object without any fully sampled ground-truth data, which
makes it broadly applicable when ground-truth is impossi-
ble or difficult to obtain. In addition, the automatic CSMs
estimation module in SPICER shows the potential to esti-
mate the high quality from only a few ACS lines, which
can sharply increase the acceleration rate for the Cartesian
sampling strategy.

Despite being trained on undersampled and noisy data,
numerical results on the in-vivo Brain dataset demon-
strate that SPICER can significantly outperform every
self-supervised baseline while still achieving comparable
reconstruction performance with the widely used super-
vised method E2E-VarNet. Additionally, we further vali-
dated SPICER’s efficacy using data from fastMRI dataset.
Both qualitatively and quantitatively, the reconstruction
performances of SPICER at the acceleration rates of 4,
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HU et al. 1059

T A B L E 1 Quantitative evaluation (mean ± SD) of self-supervised learning for MRI with automatic coil sensitivity estimation and
reconstruction (SPICER).

Method PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓

Acceleration factor 4× acceleration 6× acceleration

Zero-Filled 18.27 ± 1.672⋆ 0.775 ± 0.3842⋆ 0.6212 ± 0.3460⋆ 18.07 ± 1.694⋆ 0.745 ± 0.0419⋆ 0.6532 ± 0.3732⋆

Total variation28 37.87 ± 1.491⋆ 0.959 ± 0.0097⋆ 0.0043 ± 0.0019⋆ 32.99 ± 1.305⋆ 0.898 ± 0.0152⋆ 0.0171 ± 0.0050⋆

GRAPPA1 38.54 ± 1.467⋆ 0.966 ± 0.0071⋆ 0.0039 ± 0.0012⋆ 33.05 ± 1.205⋆ 0.902 ± 0.0151⋆ 0.0471 ± 0.0132⋆

U-Net30 35.36 ± 1.455⋆ 0.925 ± 0.0139⋆ 0.0111 ± 0.0034⋆ 33.33 ± 1.425⋆ 0.903 ± 0.0160⋆ 0.0179 ± 0.0051⋆

SSDU17 36.52 ± 1.676⋆ 0.942 ± 0.0116⋆ 0.0086 ± 0.0048⋆ 33.91 ± 2.021⋆ 0.921 ± 0.0144⋆ 0.0176 ± 0.0191⋆

SSDUauto 37.07 ± 1.485⋆ 0.943 ± 0.0125⋆ 0.0074 ± 0.0041⋆ 33.24 ± 1.520⋆ 0.912 ± 0.0181⋆ 0.0182 ± 0.0082⋆

SSDU∗ 38.21 ± 1.637⋆ 0.945 ± 0.0129⋆ 0.0050 ± 0.0019⋆ 36.19 ± 1.499⋆ 0.929 ± 0.01307⋆ 0.0095 ± 0.0040⋆

SPICER 38.93 ± 1.620 0.949 ± 0.0111 0.0048 ± 0.0017 36.77 ± 1.575 0.935 ± 0.0120 0.0081 ± 0.0037

E2E-VarNet20 38.56 ± 1.768⋆ 0.952 ± 0.0113⋆ 0.0054 ± 0.0030⋆ 36.09 ± 1.491⋆ 0.938 ± 0.0136⋆ 0.0095 ± 0.0056⋆

Acceleration factor 8× acceleration 10× acceleration
Zero-filled 17.55 ± 1.510⋆ 0.721 ± 0.0433⋆ 0.7197 ± 0.3737⋆ 16.90 ± 1.328⋆ 0.701 ± 0.0450⋆ 0.8209 ± 0.3865⋆

Total variation28 26.09 ± 1.218⋆ 0.878 ± 0.0157⋆ 0.1062 ± 0.0295⋆ 25.28 ± 1.487⋆ 0.863 ± 0.0156⋆ 0.1331 ± 0.0519⋆

GRAPPA1 28.31 ± 1.390⋆ 0.892 ± 0.0205⋆ 0.0568 ± 0.0221⋆ 25.79 ± 1.177⋆ 0.873 ± 0.0185⋆ 0.0924 ± 0.0354⋆

U-Net30 30.81 ± 1.543⋆ 0.868 ± 0.0218⋆ 0.0333 ± 0.0122⋆ 29.17 ± 1.495⋆ 0.836 ± 0.0256⋆ 0.0489 ± 0.0207⋆

SSDU17 32.58 ± 1.534⋆ 0.910 ± 0.0154⋆ 0.0216 ± 0.0127⋆ 31.08 ± 1.567⋆ 0.892 ± 0.0185⋆ 0.0310 ± 0.0218⋆

SSDUauto 31.30 ± 1.634⋆ 0.880 ± 0.0198⋆ 0.0281 ± 0.0112⋆ 30.45 ± 1.463⋆ 0.878 ± 0.0204⋆ 0.0347 ± 0.0198⋆

SSDU∗ 34.26 ± 1.539⋆ 0.910 ± 0.0169⋆ 0.0165 ± 0.0049⋆ 32.14 ± 1.386⋆ 0.894 ± 0.0208⋆ 0.0228 ± 0.0070⋆

SPICER 34.66 ± 1.397 0.918 ± 0.0153 0.0128 ± 0.0036 32.94 ± 1.456 0.909 ± 0.0191 0.0176 ± 0.0067

E2E-VarNet20 34.18 ± 1.487⋆ 0.920 ± 0.168⋆ 0.0144 ± 0.0059⋆ 32.91 ± 1.576⋆ 0.919 ± 0.0141⋆ 0.0194 ± 0.0083⋆

Notes: Note how SPICER achieves the best performance against other self-supervised baselines and comparable performance relative to the supervised method.
Statistically significant differences compared with SPICER are marked (p⋆ <0.05).
Abbreviations: NMSE, normalized mean squared error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.
The bold value means the best results among all the self-supervised method comparison.

6, 8, and 10 consistently surpassed the state-of-the-art
self-supervised method SSDU.

The proposed SPICER model achieves comparable
results to the supervised learning method E2E-VarNet, pri-
marily due to our training loss function (7) being specified
in the k-space domain, which exhibits greater robustness
to measurement noise. The training approach employed
by E2E-VarNet relies on the SSIM loss specified on image
domain, which makes it sensitive to noise and artifacts in
the training data due to image formation. Consequently,
SPICER demonstrates superior PSNR values compared to
E2E-VarNet, albeit with slightly lower SSIM values.

We performed an ablation study to highlight the influ-
ence of the DMBA module, the CSMs estimation module,
and the CSMs smoothness regularization within SPICER.
As shown in Figure 5 and Table 3, the SPICER DMBA
can lead to a sharp performance improvement compared
with traditional U-Net model, due to the U-Net model
not using the PMRI measurement model. In addition, the

joint estimation module shows the potential to estimate
more accurate CSM compared to the widely used ESPIRiT
method, which enables SPICER to achieve consistently
better performance in all acceleration rates, especially with
limited ACS lines. Additionally, the SPICER loss function
performs better both qualitatively and statistically with the
benefit of the CSM smoothness regularization.

We performed comparison to several variants of SSDU
to emphasize that the superior performance of SPICER
extends beyond our paired training data generation strat-
egy. Table 1 illustrates that directly incorporating estab-
lished self-supervised training techniques and an auto-
matic CSM learning module resulted in minimal or negli-
gible improvements. Notably, even when SSDU∗ employs
the same training data splitting methodology as SPICER
to generate data pairs, it demonstrates suboptimal per-
formance. This performance gap arises from SPICER’s
unique training approach, which not only involves the
utilization of Cartesian-subsampled data pairs but also
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1060 HU et al.

T A B L E 2 Quantitative evaluation (Mean ± SD) of self-supervised learning for MRI with automatic coil sensitivity estimation and
reconstruction (SPICER) on fastMRI dataset.

Acceleration factor 4× acceleration 8× acceleration

Method PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓

Zero-filled 23.61 ± 1.938⋆ 0.774 ± 0.0417⋆ 0.0701 ± 0.0445⋆ 18.51 ± 1.898⋆ 0.601 ± 0.0509⋆ 0.244 ± 0.1612⋆

Total variation28 33.34 ± 1.477⋆ 0.939 ± 0.0092⋆ 0.0128 ± 0.0070⋆ 24.86 ± 1.651⋆ 0.819 ± 0.0358⋆ 0.0935 ± 0.0570⋆

GRAPPA1 35.69 ± 1.022⋆ 0.893 ± 0.0290⋆ 0.0071 ± 0.0025⋆ 26.71 ± 1.292⋆ 0.724 ± 0.0661⋆ 0.0584 ± 0.0292⋆

SSDU17 38.79 ± 1.052⋆ 0.953 ± 0.0104⋆ 0.0034 ± 0.0012⋆ 27.63 ± 2.135⋆ 0.876 ± 0.0213⋆ 0.0489 ± 0.0319⋆

SPICER 39.64 ± 0.976 0.970 ± 0.0051 0.0028 ± 0.0011 33.48 ± 1.648 0.946 ± 0.0094 0.0116 ± 0.0042

E2E-VarNet20 39.46 ± 1.128⋆ 0.972 ± 0.0063⋆ 0.0030 ± 0.0014⋆ 34.70 ± 1.341⋆ 0.950 ± 0.0084⋆ 0.0093 ± 0.0054⋆

Notes: How SPICER achieves the best performance against other self-supervised baselines and comparable performance relative to the supervised method.
Statistically significant differences compared with SPICER are marked (p⋆ <0.05).
Abbreviations: NMSE, normalized mean squared error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.
The bold value means the best results among all the self-supervised method comparison.

T A B L E 3 Quantitative evaluation (mean ± SD) using four distinct implementations of self-supervised learning for MRI with
automatic coil sensitivity estimation and reconstruction (SPICER).

Acceleration factor 4× acceleration 6× acceleration

Method PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓

Joint U-Net 35.77 ± 1.352⋆ 0.950 ± 0.0119⋆ 0.0105 ± 0.0030⋆ 33.45 ± 1.525⋆ 0.911 ± 0.0179⋆ 0.0168 ± 0.0054⋆

DMBA (ESPIRiT) 36.80 ± 1.502⋆ 0.959 ± 0.0098⋆ 0.0079 ± 0.0024⋆ 35.21 ± 1.313⋆ 0.923 ± 0.01557⋆ 0.0111 ± 0.0032⋆

SSDU∗ 38.21 ± 1.637⋆ 0.945 ± 0.01299⋆ 0.0050 ± 0.0019⋆ 36.19 ± 1.499⋆ 0.929 ± 0.01307⋆ 0.0095 ± 0.0040⋆

SPICER 38.93 ± 1.620 0.949 ± 0.0111 0.0048 ± 0.0017 36.77 ± 1.575 0.935 ± 0.0120 0.0081 ± 0.0037

Notes: This table shows the influence of the DMBA reconstruction module, the CSM estimation module, and the smooth term in the loss function. Statistically
significant differences compared with SPICER are marked (p⋆ <0.05).
Abbreviations: CSM, coil sensitivity map; DMBA, deep model-based architecture; NMSE, normalized mean squared error; PSNR, peak signal-to-noise ratio;
SSIM, structural similarity index.
The bold value means the best results among all the self-supervised method comparison.

incorporates CSMs with smoothness regularization. This
integration plays a pivotal role in achieving the superior
performance observed in comparison to SSDU∗.

5.2 Limitations and future directions

Several limitations exist for our proposed DL reconstruc-
tion framework. First, our numerical study is currently
limited to brain images. However, the approach of jointly
using self-supervised learning for CSMs and DMBA for
accurate image reconstruction can be extended to a variety
of imaging scenarios, provided that high-quality training
data is available. Future research could explore the adap-
tation of this approach to other body parts, particularly in
cases where body coils lack a fixed geometry, which could
pose additional challenges.

We furthermore recognize that our model’s current
training and testing are limited to Cartesian sampling tra-
jectories. There is growing interest in extending SPICER

to non-Cartesian sampling trajectories, such as spiral and
radial trajectories. These trajectories offer the advantage
of densely sampling the central k-space region, and the
resulting zero-filled images can be used as inputs to the
CSM estimation module, providing similar benefits to the
ACS lines in Cartesian sampling. The extension of SPICER
to non-Cartesian sampling presents an exciting opportu-
nity to improve the technique’s performance and appli-
cability in various imaging scenarios that demand high
spatiotemporal resolution or improved motion robustness.

Another limitation of SPICER is that it performs
three-dimensional reconstruction slice-by-slice. To
enhance its capabilities, we envision the formula-
tion of a three-dimensional variant for reconstructing
three-dimensional volumes in cases where undersam-
pling may occur in two dimensions. Such a development
can potentitally further accelerate the MRI acquisition.

Furthermore, the current coil sensitivity estimation
module in SPICER relies on ACS data for calibration
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F I G U R E 7 Evaluation of coil sensitivity maps (CSMs) estimated by SPICER at various acceleration rates. The first row shows the TV
reconstruction results at acceleration rate R = 4 with the corresponding CSM shown in the third row. The bottom-left corner of each
reconstruction image provides the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values with respect to the
reference. The third row shows the magnitude image of the 10th CSM. For each undersampling pattern, the number of ACS lines used is
indicated in the top-right corner of each CSM image. The bottom-left corner of each CSM image includes the NMSE value relative to the
reference CSM. Visually significant differences are highlighted using error maps in the second row.

of CSM. This dependency limits its utility to Echo Pla-
nar Imaging (EPI) sequences, such as fMRI and diffusion
MRI. Exploring the expansion of SPICER to incorporate
non-ACS data represents an intriguing and valuable direc-
tion to enhance its practicality.

6 CONCLUSION

In conclusion, we presented SPICER, as a self-supervised
MRI reconstruction method that can automatically esti-
mate CSMs to enhance the reconstruction performance
even at high undersampled rates. Our results indicate that
the synergistic combination of all three SPICER modules
enables it to outperform other self-supervised learning
methods and match the performance of the well-known
E2E-VarNet trained on fully sampled ground-truth data.
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