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Abstract— This work focuses on the problem of robotic

picking in challenging multi-object scenarios. These scenarios

include difficult-to-pick objects (e.g., too small, too flat objects)

and challenging conditions (e.g., objects obstructed by other

objects and/or the environment). To solve these challenges,

we leverage four dexterous picking skills inspired by human

manipulation techniques and propose methods based on deep

neural networks that predict when and how to apply the skills

based on the shape of the objects, their relative locations to each

other, and the environmental factors. We utilize a compliant,

under-actuated hand to reliably apply the identified skills in

an open-loop manner. The capabilities of the proposed system

are evaluated through a series of real-world experiments, com-

prising 45 trials with 150+ grasps, to assess its reliability and

robustness, particularly in cluttered settings. The videos of all

experiments are provided at https://dexterouspicking.wpi.edu/.

This research helps bridge the gap between human and robotic

grasping, showcasing promising results in various practical

scenarios.

I. INTRODUCTION

Humans possess an extraordinary ability to grasp objects
with remarkable precision and adaptability, which is particu-
larly evident in how we approach each object uniquely. The
intricate skill of grasping an object involves the combined
effort of sensory perception, motor control, and cognitive
decision-making that enables us to tailor our grasp to the
specific characteristics of the target object and the manip-
ulation scene. The dexterous nature of human picking has
been a source of inspiration aiming to replicate the versatility
in grasping techniques [1], [2]. However, despite extensive
efforts, there have been significant challenges in translating
the nuances of human grasping into robotic systems. A
significant issue lies in dynamically adjusting grasp strategies
for a wide range of objects, especially within cluttered or
unstructured environments, where the unique characteristics
of each object and the conditions in the manipulation scene
demand a flexible and context-aware approach to grasping.

Building on the foundation of human dexterity [3], we
propose a set of algorithms and a manipulation pipeline that
utilizes four dexterous manipulation skills inspired by fre-
quently employed human picking skills. These skills include
sliding objects to the edge, pushing them to a vertical surface,
leveraging a horizontal surface to facilitate their picking,
and flipping them. Our algorithms are capable of choosing
when and how to utilize these skills for picking objects
in challenging multi-object scenarios, including complex
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Fig. 1. Overview of our dexterous picking pipeline.

objects and varying conditions (Fig. 1). Leveraging these
algorithms, we have developed an end-to-end pipeline aimed
at efficiently clearing objects from a tabletop.

In the robotics literature, it is demonstrated that these
skills can be highly effective in picking difficult objects
and handling complex scenarios. [1], [4] underscores the
potential and significance of these skills. For instance, slid-
ing flat, medium-sized objects to the edge of the table
frees up grasping surfaces. Furthermore, for flat and small
objects, flipping skill helps stabilize the object with one
finger while the other pivots and lifts it towards a grasp.
Another distinctive use case is leveraging horizontal surfaces
to pick medium-sized round objects that might otherwise
move during the grasp motions. Similarly, pushing the object
to a vertical surface helps stabilize it and is especially useful
when the object is flushed to that surface.

Nevertheless, given an image of the manipulation scene,
the system needs to be able to decide when and how to adopt
these skills. Choosing the right skill for a target object surely
depends on its shape, but it is not the only factor. The context
that the object is in, i.e., the relative positions of the other
objects, and the configuration of the environment (e.g., the
existence and locations of table edges and vertical walls),
both play essential roles. We would like to illustrate this
with two examples: when a cylindrical object is lying on a
table, well-separated from other items, it can be manipulated
using simple picking methods. If the object is adjacent to a
wall, the push-to-vertical skill becomes particularly effective,
allowing the object to be cornered and securely grasped.
Similarly, for picking a flat plate from a tabletop, the system
would benefit from sliding the plate to the edge of the table.



However, if an obstacle lies between the plate and the table’s
edge or if another object is resting on the plate, the system
must first remove these obstructions before attempting to
slide the plate. Also, while sliding the plate to the edge,
it is essential to identify how to apply these skills, i.e. where
to establish contact with the object so that it allows for
successful execution of the skill.

The algorithms proposed in this paper provide precisely
these kinds of decisions. Summarizing our contributions:
1) We have developed a Skill Detection Module that lever-
ages deep learning to predict the most suitable picking skills
for each object within a multi-object scene, along with
confidence levels for each prediction. As such, given an
RGB-D image of the scene, our algorithm decides which
object should be picked first (based on the confidence value)
along with the skill that should be applied. The algorithm
is capable of producing the appropriate skills, taking into
account both the object’s shape and its context (including
the positions of nearby objects and the overall environmental
setup). 2) We developed a Skill Location Module based
on an attention gate-based neural network that is capable
of identifying the application location of the chosen skill.
Both models were trained on datasets comprising manually
labeled images from both simulated environments and real-
world settings, with approximately a 70:30. 3) We present an
end-to-end pipeline that applies these neural networks to the
task of clearing objects from a tabletop. The effectiveness
of this system was thoroughly evaluated through 45 real-
world tests, encompassing more than 150 instances of object
grasping. As supplementary data [5], we have provided
detailed information, including accounts of each experiment
and their corresponding video recordings.

For executing these skills, we utilize an open-source com-
pliant underactuated hand: OpenHand Model-O [6]. Compli-
ant hands not only simplify robotic grasping by adapting to
the shape of the object but also facilitate contact-rich oper-
ations, enabling dexterous manipulation as outlined above.
These hands allow us to implement the selected skills in an
open-loop manner, similar to [7]. While our neural network
models can also be deployed with rigid grippers, this would
necessitate additional development effort and precise force
sensing.

In our approach to skill execution, we employ predefined
motion parameters for the robot arm, specific to each skill.
For most skills, the orientations of the gripper are fixed
and the distances to environmental features like table edges
and walls are assumed to be known in advance. The robot
determines the locations to apply these skills based on the
skill location model.

II. RELATED WORK

In this discussion, we focus on dexterous picking strategies
that utilize various human-inspired hand motions. Various
studies in the literature have concentrated on motion plan-
ning and execution of dexterous manipulation skills. For
instance, [4] presents methods for specific skills like slide-
to-edge, push-to-vertical, and push-to-horizontal. Another

study [7] implements the flip skill. Notably, these works
focus on single-object scenarios and lack mechanisms for
automatically identifying suitable skills for different objects.
In contrast, our approach targets the automatic identification
of skills and their application in multi-object environments.

The method in [8] explores human-like grasp strategies
learned from minimal examples. This paper is also designed
for single-object scenarios, and purely relying on RGB data
reduces its capability to utilize contextual information in
multi-object scenes. Similarly, [1] employs anthropomorphic
soft hands for a more human-like grasping approach. Again,
focusing on single object scenes, this work mainly demon-
strates the efficacy of the various dexterous skills.

Considering multi-object scenes, the work in [9] proposes
a multi-affordance approach. Rather than dexterous hand-
oriented skills, this method utilizes a suction cup and a
parallel-jaw gripper. The system is capable of choosing
among multiple affordances to pick the objects. Different
from that work, our method focuses on hand-oriented dex-
terous manipulation skills.

We would also like to highlight the potential of the method
in [10] leveraging synthetic data to train deep networks
for primitive shape recognition. While, that work does not
explicitly focus on dexterity, it could be useful to assign
skills based on the object shape. Nevertheless, incorporating
contextual information would still require training additional
models.

III. METHODOLOGY

In this work, we aim to enable robots to utilize dexterous
picking skills in complex multi-object scenarios via auto-
mated skill selection and application algorithms. We focus
on five picking strategies as explained in Section III-A. The
dataset that is used to train our algorithms is explained in
Section III-B. Our skill selection algorithm is explained in
Section III-C. Our network that identifies the application
location of a chosen skill is presented in Section III-D.
Finally, we present our entire pipeline utilizing these two
networks for clearing a tabletop in Section III-E.

A. Primitive skills and gripper

In this work, we utilize five picking strategies as follows:
• Slide-to-Edge: Previously proposed by [4], this skill

is utilized for grasping medium-sized flat objects by
sliding the objects to the edge of the table and exposing
the lower side for easier grasping. Example objects:
plates, books.

• Push-to-Vertical: Introduced by [4], this skill corners the
objects by pushing them against vertical surfaces such
as shelf walls or bin walls. This skill is especially useful
when the objects are flushed against the vertical surface
and/or could otherwise move during the grasping mo-
tion (e.g., a cylindrical object). Example objects: bottle,
banana.

• Flip: This skill, inspired by the insights from [7] and
[11], is used for picking up small flat objects. It supports
one side of the object with one of the fingers while



another finger sweeps the surface, establishes contact
with the object, and lifts it to a grasp position. Example
objects: coins, keys.

• Push-to-Horizontal: As detailed in [4], in this skill,
the hand approaches the object from the top, gets
close to the table surface so that the fingers of the
hand sweep the surface while grasping the object. This
strategy makes the picking system more robust to the
object position uncertainties and is especially useful
when grasping round objects that may move during
the grasping motions. For example, if a non-dexterous
picking strategy is used while grasping a ball, one of
the fingers could touch the ball before the other, which
may make it move and fail the grasp. Sweeping the
horizontal surface allows to guide the fingers towards
the object, cage it before the grasp, and make the grasp
more robust to measurement noise. Example objects:
ball, plum.

• Simple-Pick: Some objects (and conditions) might not
require dexterous picking skills, they can simply be
grasped without needing dexterity. Here, we choose a
very simple picking strategy, taking advantage of the
compliant nature of the underactuated hand: the gripper
approaches the object from the top and orients its fingers
to grasp the object along its principle axis. Example
objects: cup, small box.

In the manipulation literature, it is shown that the execution
of these skills is greatly simplified when adaptive/compliant
grippers are used [1], [6]. Gripper compliance allows the
robot to safely make contact with the object and the envi-
ronment without requiring force sensing. For instance, in the
push-to-horizontal skill, the gripper is initially positioned in
a predefined pose with its fingers partially closed. It is then
pushed towards the horizontal surface, mechanically adapting
its shape during this motion while its fingers sweep the
surface to grasp the object. In this paper, we utilize an Open-
hand Model-O three-finger underactuated hand. As such, the
execution of the skills is largely open-loop, following very
similar procedures to the cited papers above (we do not claim
any novelty in the execution of these skills). Nevertheless,
the robot should still know the locations of the objects to
apply these skills as well as identify when to use which
skill. We first present our dataset to train the algorithms for
these purposes.

B. Dataset

To train our Skill Detection and Skill Location models,
we compiled a dataset of depth images (top-down view)
from 570 diverse multi-object scenes, with over 1,500 object
instances. These instances are manually labeled with the
appropriate skill ID and skill location with all the label-
ing informed by the context of the scene. For example,
when a cylindrical object is flushed toward a vertical wall,
it is labeled as push-to-vertical, whereas, when the same
object is away from the wall, it is labeled as simple-pick.
To ensure our model develops an understanding of skill
applicability, we intentionally included a larger number of

instances depicting straightforward contexts for each skill.
This approach allows the model to assign higher confidence
scores to simpler scenarios during skill classification. For
example, we provided slightly more examples of flat objects
being at the edge of the table, than the examples when it is in
the middle of clutter. This training strategy enables the model
to more confidently identify the “slide-to-edge” skill when
an object is near the table’s edge. The dataset is available at
[5].

For every object within our dataset, we assigned labels
indicating the precise location for skill application. Specifi-
cally, for the slide-to-edge skill, it is the exact point where the
gripper should initiate contact to slide the object. Similarly,
for other skills such as push-to-vertical, push-to-horizontal,
simple-pick, and flip, it is the point where the gripper should
approach to execute the skill successfully. These detailed
positional labels are utilized for the training of our Skill
Location Model to learn where to effectively apply each skill.

We developed separate skill detection and location models
for depth and RGB images, with the reasoning that depth data
offers greater consistency across simulated and real-world
environments. This allows us to train the models using both
simulations and real-world samples, saving us data collection
effort. In our approach, simulation images contribute to 70%
of our dataset. To bridge the gap between the simulated and
real-world depth images, we applied techniques like reducing
contrast and adding Gaussian noise around the edges of
objects in simulated images. These measures aim to reduce
the domain gap between simulated and real-world scenarios,
improving the models’ ability to adapt and generalize across
different settings.

However, depth data has its limitations, particularly in
capturing very small or flat objects due to their minimal
depth profiles. Relying solely on depth-based models would
result in overlooking these objects with no significant depth
signature. To address this, we also compiled a smaller RGB
dataset focused exclusively on these left-out small and/or flat
objects. This dataset, comprising 80 images, is specifically
labeled by concentrating on the slide-to-edge and flip skills
(since these are the only two skills suitable for such objects).
In contrast, the depth image dataset includes other skills
(except flip) and a large variety of objects.

C. Training the Skill Detection Models

Using the above-mentioned dataset, we trained two Skill
Detection Models: one depth-based and one RGB-based.
These models can identify the appropriate skill for each
object in the scene and determine its success confidence
based on contextual information. Both models utilize the
following architecture.

We adopted Mask R-CNN [12] implemented via Detec-
tron2 [13] for our architecture choice. Mask R-CNN is a
convolutional neural network designed for instance segmen-
tation, enabling the identification and delineation of objects
at a pixel level within images. It comprises several key
components: a backbone network for feature extraction, a
Region Proposal Network (RPN) for generating regions of



Fig. 2. Visualization of Skill Detection and Skill Location heatmap. Red
Mask: Slide-to-Edge, Blue Mask: Push-to-Vertical, Purple Mask: Push-to-
Horizontal, Green Mask: Simple-Pick. The top image shows scene captured
by the eye-in-hand depth camera. The left side of the image corresponds to
the wall in the scene and the middle part is the robot workspace.

interest, and ROI Alignment for precise mapping. It also
supports multi-task learning with diverse loss functions and
can adapt to custom tasks through transfer learning.

The architecture is well-tailored for our task as it adeptly
captures global context, by extracting the relevant features
from the entire image. By leveraging these features, the
RPN identifies regions of interest, allowing us to segment
objects corresponding to different manipulation skills. Our
implementation involves decomposing an input depth image
into segmentations aligned with the five skills and an extra
class designated for the “no object” category.

For the optimization of our skill detection model, we
used the Stochastic Gradient Descent (SGD) method, setting
the learning rate at 0.00025, momentum at 0.9, and imple-
menting a weight decay of 0.0001. To enhance the training
efficiency, the model’s ResNet50 backbone was initialized
using pre-trained weights from the ImageNet dataset.

D. Training the Skill Location Models

For training the Skill Location Models, we utilized the
above-mentioned manually-labeled dataset, using the U2Net
[14] architecture combined with an attention-gate to gener-
ate a heatmap corresponding to the optimal grasp regions.
The proposed approach fuses the previous encoder and the
decoder features maps via the attention gate, which helps
enhance the target regions while suppressing the irrele-
vant features. This improved feature map and the previous
decoder output are then passed on to the next decoder
for aggregating features. The introduction of the attention
gate helps generate a more focused and rich representation,
enhancing our model’s generalizability to unseen objects.

In the implementation of the Attention U2Net model,
we opted for the Adam optimizer, setting ω1 = 0.9 and

ω2 = 0.999, along with a learning rate set to 0.001. The
training process utilizes a composite loss function, which
encompasses the complement of the Structural Similarity
Index (SSIM), Intersection over Union (IOU), and Binary
Cross Entropy(BCE) loss. The overall loss function is given
by:

L = BCEpred,target + (1→ SSIMpred,target)

+ IoUpred,target
(1)

where:
• BCE: The Binary Cross Entropy loss, which measures

the pixel-wise error in binary classification between the
predicted and target heatmaps.

• SSIM: The Structural Similarity Index, which as-
sesses the similarity between the predicted and target
heatmaps. We use its complement, 1→SSIM, to penalize
dissimilarity and enhance structural consistency.

• IoU: The Intersection over Union loss, which measures
the overlap between the predicted and target regions,
penalizing any mismatch.

E. End-to-end pipeline for Table Clearing

We utilize the above-mentioned models for a table-clearing
task, where the robot systematically addresses the complexity
of scenes with multiple objects. In this task, the robot is
expected to resolve the challenges of the multi-object scenes
by assigning the appropriate skills to the object/situations,
prioritizing the objects with the highest likelihood of picking
success, and continuing a cyclic picking process until every
object is successfully picked. The process begins with cap-
turing a depth image and sending it to the depth-based Skill
Detection model, where every detectable object is segmented
and assigned an appropriate skill and confidence value.

The system focuses on the object with the highest skill
confidence and runs the corresponding Skill Location model,
which returns a heatmap. Choosing the highest value on the
heatmap as the skill application location, the algorithm trig-
gers the execution of the chosen skill. The subsequent phase
involves motion planning for the open-loop execution of the
skill (adjusted with the identified skill application location).
In our implementation, we utilized Relaxed IK [15], which
generates robust and smooth IK solutions. Notably, slide-to-
edge and push-to-vertical skills impose particular constraints
on the end effector’s orientation, which must be maintained
during the Cartesian motion.

Our approach does not utilize a 6D object pose to handle
the orientation of the end effector. Instead, we predefine end-
effector orientation values for each skill except simple-pick.
For instance, consider the “push-to-vertical” skill, which
consists of four execution steps: approaching the object,
pushing the arm towards the object, closing the gripper,
and placing the object in the bin. For each step, we have
predefined the roll, pitch, and yaw values of the end effector.
Whereas for the Simple-pick, we utilize the yaw given by
the skill detection model, which is calculated using the ori-
entation of the segmentation mask. The arm maintains these



orientation values while adjusting to the variable position
values provided by the skill location model during skill
execution.

In the execution of the slide-to-edge and push-to-vertical
skills, we consider two motion parameters. The direction
of movement for slide-to-edge is determined to be the
opposite of the normal vector of the table edge. Similarly,
the movement direction for push-to-vertical is opposite of
the normal vector of the wall. To calculate the distances that
need to be covered in the specified directions, assume that the
positions of walls and table edges are predefined and known.
This allows us to calculate the motion parameters accurately
by measuring the distance from these fixed environmental
features to the locations identified for skill application,
ensuring the effective execution of each skill.

This process continues until all the objects segmented by
the depth image are cleared off of the table. Nevertheless,
there can be objects that are too small and/or too flat to
be detected by the depth image (e.g. a coin). To clear
these objects, we run the RGB-based models and follow the
same iterative process, which involves executing the skills
sequentially, starting with the one identified with the highest
confidence, until all objects have been successfully picked
from the table.

IV. EXPERIMENTS

Our experimental setup uses a Franka Emika Panda 7-
DOF robot arm integrated with an OpenHand Model-O
three-fingered gripper affixed to its end effector. The camera
is attached to the robot’s end effector, capturing images
from a consistent height of 0.81 m above the tabletop. We
have delimited our workspace dimensions to 41x41 cm2,
considering the workspace of the robot and the motions
that are required to apply skills. The computational setup
is an Intel i7-8400 CPU with an NVIDIA GeForce GTX
2080 GPU, running Ubuntu 20.04 operating system and ROS
Noetic.

A. Evaluation of the Models

We employ the accuracy score metric to assess the perfor-
mance of our skill detection model, while the Mean Absolute
Error (MAE) and Intersection over Union (IOU) are utilized
to evaluate the skill location model as presented in Table I.
To obtain the skill detection accuracy, we utilized a training
set of 570 images and a separate test set of 84 images. We
calculated the accuracy for the skill location model by an
Intersection over Union (IOU) threshold, which was set to
0.5. We also present the average IOU. Both of our models
provide over 92% accuracy.

B. Real-world experiments

We implemented the pipeline in Section III-E for clearing
a tabletop with vertical walls. The experiments were con-
ducted using both known and unknown objects, representing
a range of shapes, sizes, stiffness, and materials as presented
in Fig. 3. The five known objects are chips can, mug, racket
ball, metal plate, and lego piece, which were used in our

TABLE I
PERFORMANCE EVALUATION OF SKILL DETECTION AND SKILL

LOCATION MODELS

Model Metric Value

Skill Detection Accuracy 92.85
mAP 76.076

Skill Location
MAE 0.027

Accuracy 92.85
Average IOU 0.66

Fig. 3. Objects used in our experiments. The five objects on the left are
“known” objects utilized in the model training process. The other ten objects
on the right are “unknown” objects not included in the dataset.

dataset for training skill detection and skill location models.
All the other 15 objects in Fig. 3 are unknown to the
system a priori. We conducted experiments for three different
scenarios of increasing difficulty:

• Experiments with only known objects.
• Experiments with both known and unknown objects.
• Experiments with only unknown objects.
While designing these experiments, we included many

challenging scenarios, e.g. where certain skills were ob-
structed by the placement of objects, instances where objects
were positioned directly against a wall, and cases involving
overlapping objects, with some resting atop others. These
experiments comprised 45 multi-object manipulation scenes
with over 150 grasping trials, with a minimum of 10 tests
conducted for each object. The complete set of results
for every single experiment is provided as a table in the
supplementary document. The videos of all the experiments
are provided in [5].

The results of the experiments can be found in Table II.
Here, we have included an additional row for exclusively
presenting the experiments with overlapping (occluded) ob-
jects within the known+unknown and unknown object ex-
periments. It is observed that the system is successful in
picking known objects even in challenging scenarios, and it
still presents high success rates when unknown objects are
introduced. In cases where not all objects were cleared from
the table, the rate of object picking remained satisfactory.
Table III further breaks down these results by the number of



TABLE II
EXPERIMENT-SPECIFIC GRASPING RESULTS

Experiment Type Successful Tri-

als

Average % of

table cleared

Known 5 / 5 100%
Known + Unknown 16 / 20 90.83%
Unknown 15 / 20 93.9%
Occluded 8 / 10 91.6%

TABLE III
OVERALL TABLE CLEARING SUCCESS RATES

Number of objects Successful Tri-

als / Total # of

Trials

Average

Grasped

Objects Count

2 4 / 5 1.6
3 13 / 15 2.86
4 13 / 17 3.76
5 4 / 5 4.8
6 1 / 2 5.5
7 1 / 1 7

objects present in each scene. The findings consistently show
that the system effectively picks a high average number of
objects, even as the scenes become more cluttered.

Table IV offers a detailed analysis of the picking success
associated with each specific skill, including common fail-
ures observed during the experiments. Note that we allowed
for one retry if a skill fails for the first time and the object is
still on the table. We did not do anything special for this retry
mechanism; since the pipeline works cyclically, it captures
a new image of the scene and runs the process again. The
success rates reported in Table IV also reflect those retries.
An important observation here is the lower success rate of
the slide-to-edge skill. The failures are partially due to the
failure of the skill location model, which, we believe, can be
fixed by adding more training data for this skill. We have also
observed that in some cases, even though the sliding action
was successful, the robot was unable to complete the pick
due to the execution of the grasping motion. Specifically for
slide-to-edge, 10 out of 26 picks failed in the first attempt.
However, in 6 of the 10 cases, the system was successful
in the second attempt. All the experimental details can be
found in our supplementary document.

The flip skill also exhibits a lower success rate, primarily
due to occasional inaccuracies in predicting the precise
location for skill application. Given that objects targeted for
flipping are typically small, even minor deviations in the
identified skill location can lead to unsuccessful attempts,
necessitating retries.

Discussing Specific Experiments: We discuss the steps
involved in executing 2 specific experiments in detail as
shown in Fig. 4. In Experiment 12, the manipulation scenario
involved a variety of objects necessitating different robotic
skills, and the system/trained model automatically deter-
mined and applied a successful skill sequence for clearing
these items. The notable aspects of this experiment were the
positioning of the mug on a plate, the cylinder being flushed

TABLE IV
OVERALL GRASPING SUCCESS RATES AND SKILL-SPECIFIC

BREAKDOWN

Skills Success

Rate

Algorithmic

failures

Mechanical

Failures

Push-to-Vertical 92% - Obj. slipped
during
grasping

Push-to-Horizontal 85.29% Wrong skill
detected

Obj. slipped
during
grasping.

Slide-to-Edge 66.66% Optimal
skill
location
not found.

Unachievable
robot pose

Simple-Pick 92.5% - Environmental
interfer-
ence.

Flip 71.88% Optimal
skill
location
not found.

Object too
small

to the wall, and the white cup blocking a potential application
of a push-to-vertical skill. The robot strategically started with
a simple-pick skill for the white cup, followed by a push-to-
horizontal skill for the unobstructed plastic plum to declutter
the scene. Next, the robot used a simple-pick to clear out the
red mug. This decision was important as it freed up space to
apply the push-to-vertical skill to the bottle. Consequently, in
the next step, the system chose push-to-vertical to pick the
bottle, and finally, it chose slide-to-edge to pick the plate.
These automatic skill decisions demonstrate the efficacy of
prioritization: the system chose to declutter the table top
by prioritizing easier cases, unblocked the skill application
locations by removing the obstructing objects, and success-
fully handled overlapping objects, highlighting the precision
of the Skill Location Module. In all the executions of this
experiment, depth-based models are used.

A similar skill selection and execution capability is
demonstrated in experiment 16. Here, the system again chose
to declutter the scene by prioritizing objects that are not
blocked by others, i.e. the white cup and blue ball with
simple-pick and push-to-horizontal respectively. The robot
then picked up the cylindrical chips box with simple-pick
which freed up the plate. This decision demonstrates a key
capability to select appropriate skills based on the context:
when a similar object was flushed to the wall in Experiment
12, the system chose push-to-vertical skill. However, in
Experiment 16, simple-pick was a more appropriate choice
since this skill can easily be applied without any obstructions.
This and similar variations in skill determination based on
the object’s location demonstrate the system’s nuanced un-
derstanding of context and its ability to dynamically adapt its
strategy to maximize efficiency and success rate. Experiment
16 also demonstrates the utility of the RGB-based models.
After all the objects that can be identified by the depth



Fig. 4. Individual steps for performing grasps. Left column: Experiment 12, Right column: Experiment 16. Grasping sequence from left to right

models were picked, the white Lego piece remained on
the table. This object was not detected by the depth-based
models due to its small size and flatness. Switching to the
RGB model, the system was able to choose the flip skill and
pick the Lego piece.

C. Limitations:

We observed the following limitations of our system:
• Having separate models for RGB and depth images

occasionally creates problems. Since the depth model
is run first, and it is not able to pick very small and/or
flat objects, if these objects are on the way of the slide-
to-edge actions, the small objects are swept off the
table. Similarly, if these objects are on top of other
objects, they go undetected and get dropped off the
table. These scenarios underscore the limitations of
using separate models. In our future work, we aim to
develop a unified model that could effectively replace
the distinct RGB and depth modules, resulting in a more
efficient framework.

• Currently, our models are only trained for a specific ta-
ble configuration; the locations of the walls and the table
edges are the same in all training data and experiments.
We believe that the models can generalize to other
environment configurations if more diverse training data
is collected and utilized. Similarly, our system is only
trained for a top-down camera viewpoint. While this
constraint might also be relaxed by more training data,
other challenges might arise for side viewpoints, such

as object occlusions.
• Some of our skill executions are not implemented very

effectively. Even though the right skills and seemingly
right locations are chosen on the objects, the motions
of the slide-to-edge and flip skills sometimes require
retries. Currently, the manipulator operates under open-
loop control, without utilizing visual feedback during
motion execution. Although the camera is mounted
on the gripper, the images captured along the arm’s
trajectory are not used to adapt the gripper’s position
in real-time. Implementing closed-loop control strate-
gies that leverage real-time visual feedback from the
gripper-mounted camera could significantly enhance the
precision and efficiency of our skill executions.

V. CONCLUSION

In our research, we have tried to demonstrate a system that
can introduce human-like dexterity. The dexterous skills can
successfully solve complex multi-object manipulation prob-
lems. The approach can be further generalized to add more
skills to the existing system. While the current system only
trained for a specific environment configuration, a larger and
more diverse dataset, encompassing different scenes, object
configurations, and camera perspectives, could generalize the
system to handle a broader range of real-world scenarios. An
interesting finding is that even though we had no overlapping
objects in our dataset, the system was successful in handling
such cases.

While the system has an inherent retry capability, we



believe that, by monitoring and analyzing the outcome of
each grasp attempt (e.g. by utilizing force sensing), it would
be possible to create a better error-handling mechanism. For
example, the system can ascertain whether the selected skill
was executed successfully, and refine its decision-making
process over time. It is also worth looking into closing the
loop for the motion execution of the dexterous skills.
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