

1 *Type of the Paper (Article)*

2 **Prioritizing Research for Enhancing the Technology Readiness** 3 **Level of Wind Turbine Blade Leading Edge Erosion Solutions**

4 **Sara C Pryor ^{1,*}, Rebecca J Barthelmie², Jacob Coburn¹, Xin Zhou¹, Marianne Rodgers³, Heather Norton³, M. Sergio**
5 **Campobasso⁴, Beatriz Mendez Lopez⁵, Charlotte Hasager⁶, Leon Mishnaevsky Jr.⁶, and Antonios Tempelis⁶**

6 ¹ Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA;
7 sp2279@cornell.edu; jic457@cornell.edu; xin.zhou@cornell.edu

8 ² Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA;
9 rb737@cornell.edu

10 ³ Wind Energy Institute of Canada, Tignish, PE C0B 2B0, Canada; marianne.rodgers@weican.ca;
11 heather.norton@weican.ca

12 ⁴ School of Engineering, University of Lancaster, Lancaster LA1 4YW, United Kingdom;
13 m.s.campobasso@lancaster.ac.uk

14 ⁵ National Renewable Energy Center (CENER), Sarriguren, 31621, Spain; bmendez@cener.com

15 ⁶ Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark;
16 cbha@dtu.dk; lemi@dtu.dk; atem@dtu.dk

17 * Correspondence: sp2279@cornell.edu; Tel.: 1-607-255-3376

18 **Abstract:** Enhanced understanding of the mechanisms responsible for wind turbine blade leading
19 edge erosion (LEE) and advancing technology readiness level (TRL) solutions for monitoring its
20 environmental drivers, reducing LEE, detecting LEE evolution and mitigating its impact on power
21 production are a high priority for all wind farm owner/operators and wind turbine manufacturers.
22 Identifying and implementing solutions has the potential to continue historical trends towards
23 lower Levelized Cost of Energy (LCoE) from wind turbines by reducing both energy yield losses
24 and operations and maintenance costs associated with LEE. Here we present results from the first
25 Phenomena Identification and Ranking Tables (PIRT) assessment for wind turbine blade LEE. We
26 document the LEE-relevant phenomena/processes that are deemed by this expert judgement
27 assessment tool to be the highest priorities for research investment. We then discuss and summarize
28 example research endeavors that are currently being undertaken and/or could be initiated to reduce
29 uncertainty in the identified high priority research areas and thus enhance the TRL of solutions to
mitigate/reduce LEE.

30 **Citation:** To be added by editorial staff during production.

31 Academic Editor: Firstname Lastname

32 Received: date

33 Accepted: date

34 Published: date

35 **Publisher's Note:** MDPI stays
36 neutral with regard to jurisdictional
37 claims in published maps and
38 institutional affiliations.

39 **Copyright:** © 2024 by the author.
40 Submitted for possible open access
41 publication under the terms and
42 conditions of the Creative Commons
43 Attribution (CC BY) license
<https://creativecommons.org/licenses/by/4.0/>.

35 **Keywords:** Blades, Expert Judgement, LEE, Machine Learning, PIRT, TRL, Wind Turbine

1. Introduction

1.1. Background and Motivation

35 The global wind resource greatly exceeds both current electricity demand and total
36 primary energy supply [1]. Wind energy is a potential mechanism to reduce energy-
37 related environmental issues (e.g. anthropogenic climate forcing [2]) and to enhance
38 energy security [3,4]. Many countries have ambitious plans to expand both onshore and
39 offshore wind energy installed capacity [5]. Thus, it is expected that more wind turbines
40 will be deployed and we will become increasingly reliant on them for electricity
41 generation.

42 The Levelized Cost of Energy (LCoE) in \$/MWh of electricity can be computed from

$$43 LCoE = \frac{\sum_{n=1}^i (CAPEX_n + O\&M_n) / (1+r)^n}{\sum_{n=1}^i AEP / (1+r)^n} \quad (1)$$

46 Where: CAPEX = Capital expenditures in each year (n). O&M = Operations and
47 Maintenance costs in each year. r = annual discount rate. AEP = amount of electricity (in
48 MWh) produced each year. i = wind turbine lifetime in years.

49 In locations with good wind resources, onshore wind energy has the lowest LCoE of any
50 electricity generation type [6]. However, LCoE from onshore wind energy is no longer
51 declining [7] and costs for offshore deployments exceed those for onshore [8].

52 O&M typically account for 25–30% of lifecycle LCoE from wind turbines [9]. Blades
53 contribute > 20% of the overall cost of wind turbines [10], and blade integrity is a
54 fundamental determinant of both O&M and power generation (AEP). An important
55 contributing factor to wind turbine blade lifespan is leading edge erosion (LEE). LEE
56 refers to the material loss of wind turbine blade coatings leading to exposure and
57 ultimately loss of the laminate that provides the structure of the blade. It results primarily
58 from materials stresses induced when hydrometeors (e.g. rain droplets or hailstones)
59 impact on the rapidly rotating blades [11–14]. The material loss leads to roughening of the
60 surface, reducing lift and increasing drag [15] and thus negatively impacts AEP [15–19].
61 LEE requiring emergency blade repair can occur within two years of installation [20], far
62 short of the expected lifetime of 30 years [21]. O&M expenditures associated with total
63 blade replacement for onshore wind turbines are > \$200,000 and blade replacement may
64 lead to multiple days of lost power production [22].

65 Wind turbines being deployed offshore are physically larger and have both longer
66 blades and higher tip speeds than those deployed onshore [23]. This leads to higher
67 closing velocities with falling hydrometeors, higher materials stresses [20] and thus a
68 higher erosion rate [24,25]. Wind turbines being deployed at the South Fork wind farm off
69 the USA east coast are GE Haliade-X 13 MW machines with blades of 107 m length each
70 of which weighs 55 tons [26]. These wind turbines have maximum tip speeds of > 90 ms^{−1}.
71 The 22 MW reference wind turbine that has recently been released for use in offshore
72 research [27] has even longer blades and a rated tip-speed of 105 ms^{−1}. Manufacturing
73 defects and damage during transportation/deployment are likely enhanced in longer
74 blades [28,29] and even small imperfections may be important sites for initiation of LEE
75 [29]. Thus, LEE issues may be particularly prominent offshore where O&M costs are much
76 higher [23] and avoidance of excess maintenance is paramount to reducing LCoE. In 2018
77 Renew.Biz reported; The consortium behind the 630MW London Array in the UK was
78 planning “emergency” blade repair to 140 of the project’s 175 wind turbines and ‘A similar
79 repair campaign has begun at Orsted’s 400MW Anholt wind farm off Denmark, where 87
80 of 111 turbines are being fitted with rubber-like shells to fix the problem’.

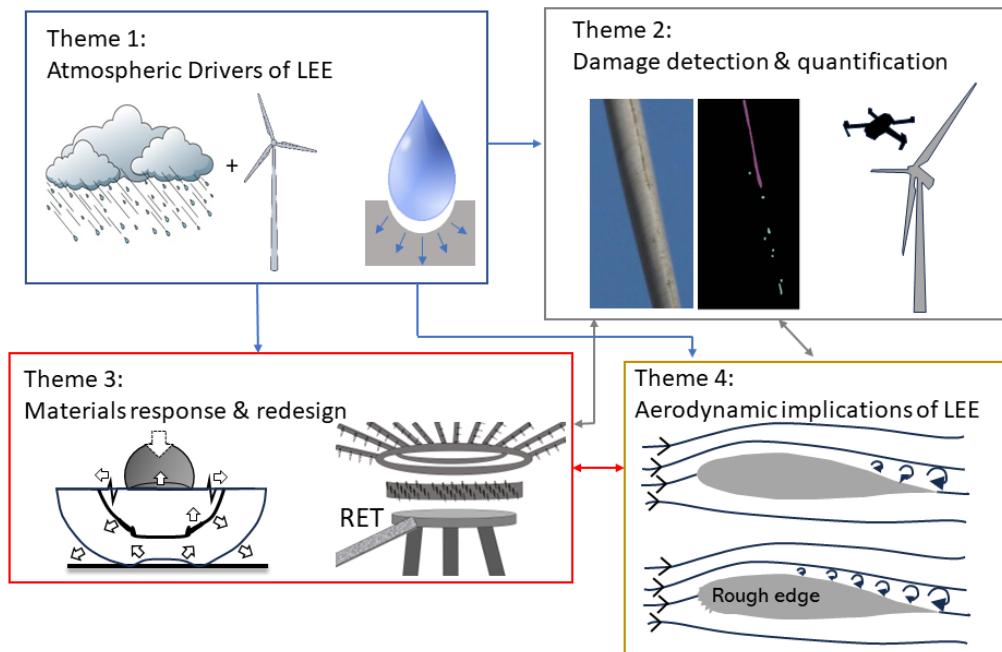
81 LEE thus represents an important challenge to the cost-effectiveness and reliability
82 of wind-derived electricity and there is a need to advance fundamental understanding of
83 the processes that cause LEE and to advance effective solutions.

84 1.2. The Interdisciplinary Nature of LEE: Introduction to the four LEE themes

85 Over 40 years ago, the US National Aeronautics and Space Administration
86 introduced “technology readiness levels” (TRLs) as a conceptual framework for
87 measuring and articulating the maturity, or readiness for deployment, of emerging
88 technologies. TRL assessments are usually based on a 9-point scale with higher values
89 indicating more mature technologies and lower values indicating more nascent
90 technologies that were in the stages of basic research, or feasibility studies [30,31].

91 Enhancement of the TRL for solutions to mitigate/reduce LEE requires
92 multidisciplinary research within four linked themes (Figure 1). Theme 1 is focused on
93 the atmospheric drivers of LEE and thus requires research primarily in the field of
94 atmospheric science. Theme 2 is focused on detection and quantification of blade damage
95 and thus requires research primarily within imaging and image processing plus acoustic
96 monitoring. Theme 3 is focused on blade response/redesign/repair/protection and thus

97 requires research primarily within the materials science field. Theme 4 is focused on
 98 detection of aerodynamic changes due to LEE and estimation of resulting power reduction
 99 and thus requires research primarily within the field of aerodynamics. All themes further
 100 require advances in computational tools and measurement technologies. An introduction
 101 to each of these themes is briefly given below.



102
 103 Figure 1 Schematic overview of the four LEE themes. RET = Rain Erosion Tester.

104 **Theme 1. Atmospheric drivers of LEE**

105 The amount of kinetic energy transferred into the blade from an ensemble of falling
 106 hydrometeors and the materials response is dictated by the closing velocity (v_c) between
 107 the falling hydrometeor(s) and the rotating blades, plus the number, diameter (D) and
 108 phase of hydrometeors (i.e., hailstones, graupel or rain droplets). The impact force and
 109 the kinetic energy transferred into the coating scales with the hydrometeor mass and
 110 closing velocity squared [32]. Larger diameter drops may be of greater importance in
 111 dictating the kinetic energy transfer to the blades and hence the duration of the incubation
 112 period (i.e. period prior to material loss, see details below) [14,33] while smaller drops
 113 may be more critical in the transition and steady-state progression [34]. The Waterhammer
 114 equation describes the pressure exerted on a coating by the impact as a function of closing
 115 velocity [32,35,36]. For $v_c = 80 \text{ ms}^{-1}$ a single 2 mm diameter rain droplet may exert a
 116 pressure of up to 120 MPa on the blade surface [32]. Hydrometeor phase is of importance
 117 because the materials response to hail (ice) exceeds that due to collisions with rain (liquid)
 118 droplets [32,37-40]. As few as five hailstone impacts (D of 15 and 20 mm) at $v_c \geq 110 \text{ ms}^{-1}$
 119 can cause damage to a glass fibre reinforced plastic composite [41]. Thus, prediction of
 120 LEE requires accurate and consistent descriptions of hydroclimate conditions, including
 121 precipitation intensity, phase and hydrometeor size distributions (HSD) from
 122 measurements and models across the wide range of environments in which wind turbines
 123 are or will be deployed. However, as discussed in detail below, best practice for the
 124 selection and operation of precipitation sensors within the context of LEE has not yet been
 125 advanced [14] and numerical models exhibit only partial fidelity for precipitation rate and
 126 phase and most simulations do not explicitly simulate or output HSD.

127 A hierarchy of models have been generated to translate from precipitation

intensity/HSD and closing velocities to provide estimates of potential erosion. First-order erosion models rely on the volume (or depth) of impinged water without explicit consideration of hydrometeor size and/or phase [24]. Alternatively, VN curves (velocity-number of impacts to failure, see 'Materials response') derived from rain erosion testers can be used to articulate functions that describe the number of impacts at a given closing velocity for a given hydrometeor diameter required for initiation of coating damage and that can be used (with caution) to extend beyond the measured range of closing velocities. For example, assuming all hydrometeors have an effective diameter of 0.76 mm, the accumulated distance to failure (ADF) of the coating is given by;

$$ADF = \sum_{i=1}^j \frac{v_{tip} \cdot I \cdot \Delta t}{H_0 \cdot \left(\frac{v_c}{V_0}\right)^m} / v_f \quad (2)$$

Where V_0 is 1 ms^{-1} , v_c is the closing velocity between the hydrometeor and blade, v_f is the hydrometeor fall velocity (ms^{-1}), Δt is the time interval (s) for the specification of the tip speed and precipitation intensity (I , in ms^{-1}). H_0 and m are fitting parameters that are specific to the coating material tested but for one coating and $D = 0.76$, these fitting parameters are 2.85×10^{22} m and -10.5, respectively [42]. The summation is over all time periods; $i=1$ to j . Thus, the challenge is to specify a representative effective diameter to characterize precipitation that falls from stratiform and cumulus clouds and over a wide range of intensity ranges [43]. More mechanistic models require greater specificity in terms of the HSD/phase and range of fall velocities and are described below in Theme 3.

Less is known regarding the possible contribution of other meteorological variables to LEE. Prolonged exposure to radiation within the visible range, and particularly UV-A (wavelengths (λ) = 320 and 400 nm), may lead to degradation of polyurethane coatings [32,44]. Theoretical and experimental work has also indicated that low temperatures degrade the erosion performance of polyurethane protective leading-edge coatings [45]. Thermal cycling (expansion and contraction of the blades) is an important source of materials wear [46]. Other plausible meteorological co-stressors include impacts from aerosols (e.g. wind-blown dust/sand [47,48]) and ice accretion on blades [49].

Theme 2. Damage detection and quantification

LEE pattern categorization frequently employs five classes with Class 1 "small pinholes" exhibiting erosion depth of 0.1-0.2 mm, average feature damage of 2 mm and approximate cord coverage of 3% [17]. Even Class 1 LEE may result in AEP loss. Early detection and close monitoring of damage progress can help optimize mitigation strategies and identify appropriate maintenance actions (patching and minor repair to full scale blade removal) [50-53].

Current techniques for real-time wind turbine blade damage detection [54,55] include; vibration-based techniques [56], ultrasound scanning techniques [57], acoustic emission monitoring [58], and machine vision image or video processing [59]. Three out of four of these LEE detection methods (acoustic emission, ultrasound, vibration-based techniques) require the use of physical sensors placed along the blade or near the wind turbine, which can be costly and vulnerable to damage in extreme meteorological conditions [60]. Image processing methods can be used to assess blade conditions from 2-D and 3-D images or videos captured by instrumentation deployed on unmanned aerial vehicles (UAVs) [61] or taken by technicians [62]. However, as discussed below, the fidelity of different damage detection methods has not been fully quantified.

Theme 3. Materials response

Wind turbine blades are made of composites (e.g. epoxy or polyester, with reinforcing glass or carbon fibers) [63] coated to protect them by distributing and absorbing energy from hydrometeor and other impacts [64]. Defects such as air bubbles in these coatings have a critical impact on crack initialization [65] and re-emphasizes the

177 importance of wind turbine blade manufacturing quality in dictating erosion rates.
178

179 Erosion mechanics comprises an incubation period during which no damage is
180 observed but microstructural material changes can generate nucleation sites for
181 subsequent material removal. Material removal commences when a threshold level of
182 accumulated impacts is reached [66]. This is followed by a period during which additional
183 impacts lead to observable damage as stress waves propagate from impact locations. This
184 leads to growth of pits/cracks and an increase in material loss [67-69]. The number of
185 impacts required to reach the threshold at which material failure becomes evident is thus
186 a nonlinear function of the number, magnitude and phase of the hydrometeors and
187 hydrometeor closing velocity plus the material strength [70].

188 Whirling-Arm Rain ERosion testers (WARERs, or more simply Rain Erosion Testers,
189 RET) artificially simulate the erosion process by spinning a sample of the blade, often with
190 a leading edge protection applied, at very high speeds and bombarding the sample with
191 liquid droplets (of a confined droplet diameter range) supplied via needles [71]. These
192 experiments can be used to develop VN curves and thus to derive empirical coefficients
193 for use in Equation (2). However, the range of closing velocities sampled and used to
194 derive the fitting parameters m and H_0 specified below Equation (2) for hydrometeor D of
195 0.76 mm are 90 to 150 ms^{-1} and thus exceed many of those that will occur.

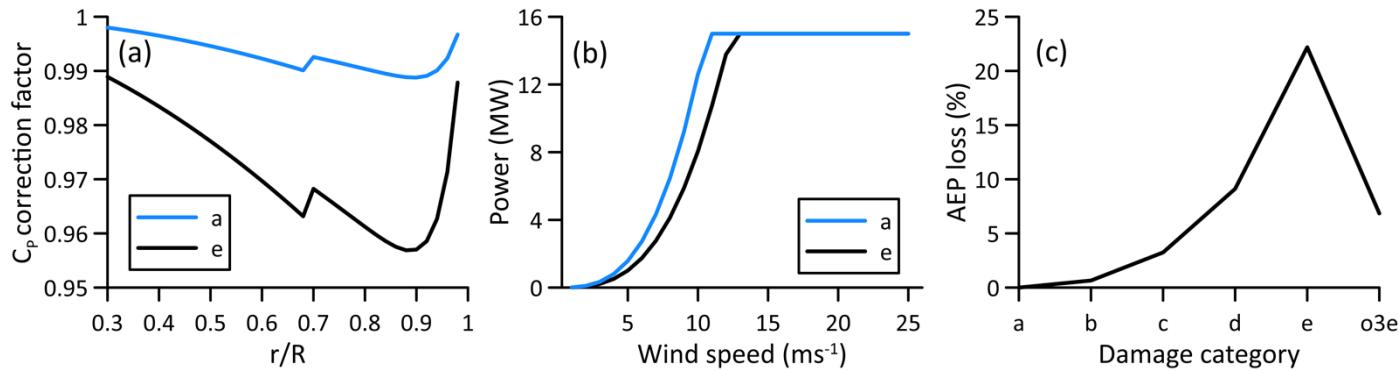
196 Alternatively, a range of modeling techniques have been advanced to simulate the
197 process of material stresses that lead to LEE as a function of hydrometeor size distribution
198 and closing velocity [68,70,72]. The simplest is the Springer model [73,74] combined with
199 Miner's rule to integrate across all hydrometeor diameters to quantify the accumulated
200 distance to failure (ADF) [66,75]. However, these simple engineering models of LEE
201 include multiple coefficients/assumptions that limit the robustness of lifetime estimates
202 and when invoking Miner's rule, assume damage is linearly accumulated.

203 Theme 4. Aerodynamic implications of LEE

204 A smooth leading edge reduces turbulence and drag, optimizing the lift-to-drag ratio
205 of a wind turbine blade. The outer part of the blade (towards the tip) produces most of
206 the energy and experiences the highest relative wind speeds. Thus, the leading edge
207 towards the blade tip is both the most vulnerable to roughening by material loss and is
208 also where reducing lift/increasing drag maximizes negative impacts on AEP. Maximum
209 lift force on blades has been modeled to be reduced for damage associated with roughness
210 heights of 0.11 mm for a rotor with a 175 m diameter [16]. Erosion classes 3 to 5 (large
211 patches of missing coating, erosion of laminate and complete loss of laminate,
212 respectively), are associated with AEP reductions of 1-5% [76]. Recent reports found LEE-
213 induced AEP losses from onshore wind turbines after only 1-3 years [77] but there is a
214 paucity of data regarding underlying blade LEE topologies. Damage location on the blade
215 is known to play a critical role in alteration of the aerodynamic behavior and so there are
216 clear links between themes 2 and 4 [78].

217 The Simplified Aerodynamic Loss Tool (SALT) model [79] can be used to illustrate
218 the predicted effect of erosion on the power coefficient (C_p) and AEP loss relative to a
219 clean or undamaged blades, while acknowledging it omits many of the details of more
220 complex models [80]. Within SALT damage is specified in 2% increments over the outer
221 70% of the blade (location r as a fraction of blade radius R) using a five-level
222 categorization. Category a is undamaged, and lift-to-drag ratio (C_l/C_d) is estimated as 1.
223 Category e represents the most severe damage deeper than 0.3% of the blade chord and
224 $C_l/C_d = 0.3$. For the IEA 15 MW reference wind turbine [81] and a hub-height wind speed
225 of 10 ms^{-1} , C_p for an entirely undamaged blade is ~ 0.4551 reducing to ~ 0.2907 for category
226 e damage. C_p correction factors (multipliers to C_p) are shown as a function of r/R in Figure
227 2a for wind speed of 10 ms^{-1} . The impact of roughening of the leading edge on blade lift
and drag and power production is a non-linear function of inflow wind speed and is

228 specifically important at below rated wind speeds (Figure 2b) and also depends on
 229 turbulence intensity [19]. Thus, the AEP loss is dependent on the site wind climate.
 230 Assuming a Weibull distribution of hub-height wind speeds for a typical US Central
 231 Plains site [14], AEP loss for different erosion levels along the outer 70% of the blade is
 232 shown in Figure 2c. While this analysis is useful for illustrative purposes, uniform damage
 233 is unlikely to occur across such large areas of a blade thus the AEP loss estimates greatly
 234 exceed those that are likely to be observed. Further, attribution of any loss in blade
 235 performance to any specific cause (e.g. LEE, gearbox wear-and-tear, soiling of blades) is
 236 very challenging [82,83] particularly in operating wind farms.



237 Figure 2 Results from the SALT model for (a) C_p correction factors as a function of distance along the blade for a clean
 238 blade (shown by the blue line, Category a damage) and substantial damage (shown by the black line, Category e
 239 damage) along the outer two thirds of the blade for a hub-height wind speed of $10 ms^{-1}$ for the IEA 15 MW reference
 240 wind turbine. (b) Power curves (power generation as a function of hub-height wind speed) for the IEA 15 MW
 241 reference wind turbine for a clean blade (Category a damage) and a damaged blade (Category e damage). (c) AEP loss
 242 for damage categories a to e and o3e (level 3 damage only for the outer 1/3 of the blade) for the IEA 15 MW reference
 243 wind turbine and the Weibull distributed wind speeds from a US Southern Great Plains site [14].

244 Optimizing O&M as LEE progresses for cost-effectiveness requires not only accurate
 245 damage assessment but also robust, quantitative understanding of the effect of LEE on
 246 blade aerodynamics. For example, if the damage is minor pitting without material losses,
 247 the aerodynamic efficiency may only be slightly lower than its design, and potentially
 248 even only impacting the aerodynamics at some tip speed ratios. In this case, unless the
 249 damage is likely to propagate it may be more cost effective to wait rather than to order
 250 repairs. On the other hand, if material damage has penetrated beyond the blade coating,
 251 even a small gouge may potentially leave open the possibility of further material loss and
 252 extensive delamination impacting not only the aerodynamics but necessitating costly on-
 253 site repairs.

255 1.3 Possible Solutions for Leading Edge Erosion

256 Fundamentally, efforts to reduce LEE can be placed into two classes:

- 257 • Enhanced blade resilience. This may be achieved by blade redesign and/or use of
 258 improved materials (e.g. more energy consuming coatings) [84,85], improved
 259 manufacture and/or use of leading edge protection (LEP) products. A range of LEP
 260 products are available including: (1) In-mould application of a gelcoat (e.g. epoxy)
 261 during blade manufacture or co-bonding to an erosion shield (rigid/semi rigid
 262 covers). (2) Post-mould application of flexible coatings (e.g. polyurethane [86])
 263 using sprayers/rollers or flexible tapes [87] or thermoplastic erosion shields [88].
 264 Details of the relative merits of these solutions, including their durability have
 265 been previously reviewed [20,89,90]. Best practice for the optimal length of LEP
 266 from the tip of the blade is being investigated [91] as is the optimal thickness of

267 application [92]. All protective solutions incur additional costs and reductions in
268 aerodynamic performance and AEP. For example, some research has reported 2-
269 3% AEP losses from LEP tapes [87,93]. Further, some post-mould LEP products are
270 challenging to apply (see below, section 3.4) and/or lack durability [94].

271 • Operation of wind turbines in a manner to reduce materials stresses. Specifically,
272 use of erosion safe mode [11] wherein wind turbine operation is modified during
273 highly erosive periods to reduce blade rotational speed, thus sacrificing AEP to
274 elongate blade lifetime [95].

275 Both classes of solution require detailed assessment of site conditions regarding likely
276 severity of LEE since the incubation, transition and steady-state progression of damage
277 on the leading edge differs as a function of precipitation climate and possibly other
278 operating conditions [16]. Quantitative comparison of overall cost effectiveness requires
279 detailed information regarding (i) AEP loss from LEE, LEP application (including down-
280 time if LEP is applied post commissioning) and/or adoption of erosion safe mode. (ii) Cost
281 of LEP measures and expense of deployment [96] and robust economic/financial
282 information such as the spot market price for electricity [97]. Ultimately an optimal
283 solution is likely to be one which maximize revenues over a specific period of time for a
284 given wind farm [98]. Consideration of either solution type for a given situation demands
285 robust knowledge of processes/phenomena in each of the four themes described above.
286 Thus, the issue confronting the wind energy industry is how to prioritize research to
287 reduce uncertainty and increase confidence for wind farm owners/operators and enhance
288 the TRL for LEE mitigation.

289 *1.4 Objectives of this Work*

290 Our goal is to map priorities for LEE research that can enhance the technology
291 readiness levels for LEE solutions such as those described in section 1.3, and thus aid in
292 reducing the LCoE from wind turbines. To achieve this goal we undertook, and herein
293 present, the first Phenomena Identification and Ranking Tables (PIRT) assessment for
294 wind turbine blade LEE (section 2). Following presentation of the PIRT analysis, we
295 discuss research required and/or being conducted to address the highest priority research
296 needs identified during the PIRT process and that is necessary to enhanced TRL of LEE
297 solutions (section 3). We conclude in section 4 by describing next steps.

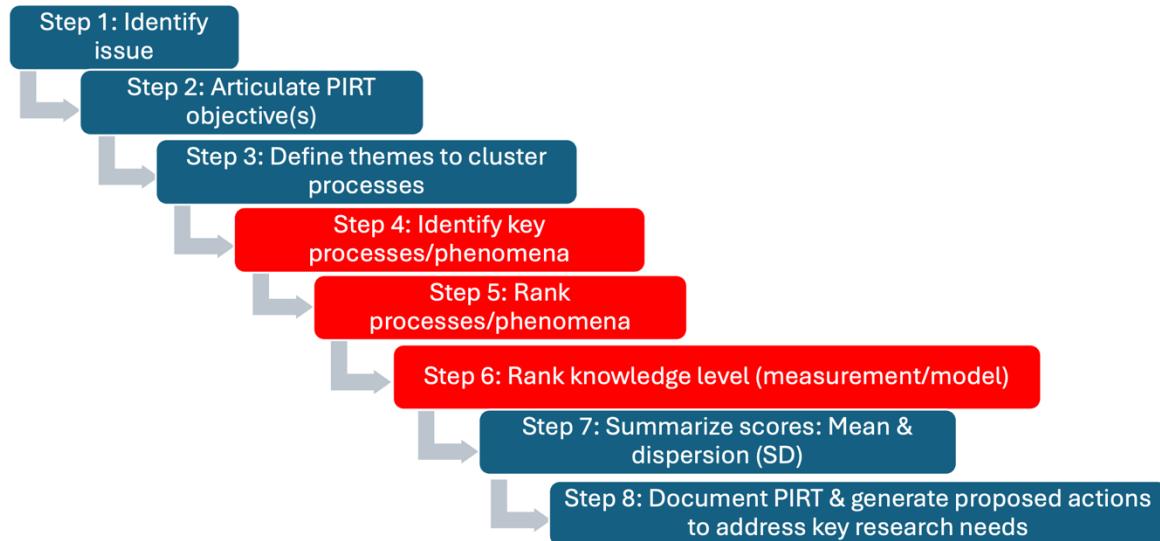
298 **2. PIRT**

299 The PIRT process is a systematic way of gathering information regarding processes
300 on a specific concept and ranking their importance to meet some decision-making
301 objective such as prioritization of research activities to enhance the TRL. PIRT has been
302 widely applied within, for example, nuclear safety [96,99,100], but is gaining traction in
303 other disciplines [101].

304 A schematic workflow of the PIRT process as applied in this research is given in
305 Figure 3. Steps 1 and 2 require identification of a topic of interest and then articulation of
306 the PIRT objective(s). To aid in structuring the PIRT by thematically clustering of
307 processes/phenomena, in Step 3 four LEE themes were articulated (section 1). The PIRT
308 analysis then proceeded by polling experts to identify key phenomena in each of those
309 LEE themes, acknowledging that some phenomena cross the thematic boundaries.
310 Following best practice in prior PIRT analyses [96], once each of the processes/phenomena
311 were identified then domain experts were asked to provide for each a ranking of 'High',
312 'Medium' or 'Low' priority. To derive a mean ranking and the standard deviation (SD)
313 across respondents, rankings of 'high' were allocated 1 point, medium as 0.5 and low as
314 0. As an example, the need for hydrometeor size distributions (HSD) (jointly with wind
315 speeds) to inform LEE assessment was given a mean ranking of 0.86 and the standard
316 deviation is 0.32 (Table 1). These rankings are because > 80% of respondents gave a

317

ranking of high, and approximately 10% gave a ranking of either medium or low.



318

Figure 3 Workflow of the PIRT process. Steps in red indicate solicitation of expert judgements.

320 Table 1. PIRT analysis results. Column 1: Processes/phenomena of interest. Columns 2 and 3: Mean (Mean) ranking and the
 321 standard deviation (SD) of the rankings across respondents. Expert judgement evaluation of the knowledge regarding each
 322 process/phenomenon as translated into state-of-the-art measurements (columns 4 and 5) and modeling (columns 6 and 7). Items in
 323 black have high importance (mean > 0.8) and process-level understanding has been well-translated to measurement technologies
 324 and/or modeling (mean > 0.5). Process/phenomena in red have high-importance (mean > 0.8) but process-level knowledge is
 325 lacking and/or translation of that knowledge to measurement and modeling capabilities is poor (mean < 0.5) and thus are defined
 326 as Tier 1 for research. Items in blue are Tier-2 priorities for research; moderate importance (0.5 < mean < 0.8) and process-level
 327 knowledge and translation to models and measurements incomplete (mean < 0.6). Items in green have importance level scores
 328 (mean < 0.5). Note: Process/phenomena are listed in the order in which they were presented to the respondents to avoid confusion
 329 that the rank order of importance is systematically a function of the row number in the PIRT.

	Process/Phenomena Importance Level	Measurement		Modeling	
		Mean	SD	Mean	SD
Theme 1: Atmospheric drivers					
Hub-height wind speeds: existing wind farms	0.92	0.19	1	0	0.73
Hub-height wind speeds: prospective wind farms	0.91	0.2	0.82	0.25	0.68
Hydrometeor size distribution	0.86	0.32	0.27	0.41	0.2
Hydrometeor phase (rain/hail/other)	0.91	0.3	0.36	0.39	0.14
Hydrometeor fall velocities	0.58	0.36	0.41	0.38	0.32
Impinged water (blade capture efficiency as a function of droplet diameter)	0.55	0.44	0.15	0.34	0.1
Real-time data for 'erosion safe mode'	0.68	0.25	0.18	0.34	0.46
Space/time variability in hydroclimate conditions	0.64	0.23	0.59	0.2	0.59
Non-hydrometeor weathering stressors (e.g. UV radiation, icing, thermal expansion, aerosols (incl. dust & pollution))	0.55	0.27	0.18	0.25	0.27
Reanalysis/gridded product data quality	0.44	0.17	0.67	0.25	0.81
Theme 2: Damage detection and quantification	Mean	SD	Mean	SD	Mean
Availability of blade images & methods to quantify damage	0.83	0.25	0.54	0.33	0.5
Damage characterization from varying image types & methods to translate to damage classification	0.88	0.23	0.58	0.29	0.44
Methods for 3-D characterization of damage morphology & rate of progression	0.71	0.26	0.25	0.26	0.18
Translating water impingement to materials loss/stress (e.g. metrics: Kinetic Energy, Springer-ADF, VN curves)	0.86	0.23	0.27	0.26	0.36

Quantification of materials loss	0.71	0.26	0.5	0.39	0.27	0.26
Quantification of equivalent surface roughness for aerodynamic loss	0.75	0.26	0.41	0.3	0.45	0.27
Microplastic loss for environmental impacts	0.5	0.21	0.21	0.26	0.27	0.26
Theme 3: Materials response	Mean	SD	Mean	SD	Mean	SD
Rain erosion tester reliability & reproducibility	0.92	0.19	0.59	0.3	0.4	0.21
Rain erosion tester representation of atmospheric conditions: hydrometeors: phase (e.g. rain and hail), size distributions & collision velocities	0.83	0.25	0.5	0.33	0.28	0.26
Rain erosion tester representation of atmospheric conditions: flow field (e.g. impact velocities)	0.71	0.33	0.45	0.28	0.28	0.36
Methodologies to translate lab experimental data (incl. rain erosion tester) to field conditions & failure modes	0.88	0.23	0.35	0.24	0.3	0.26
Damping and energy dissipation properties of LEPs/coatings (single/multilayer)	0.67	0.25	0.32	0.25	0.45	0.16
Linking mechanical and viscoelastic properties to failure mechanisms/modes	0.73	0.26	0.32	0.25	0.4	0.32
Coating adhesion & mechanics of multi-layer materials	0.75	0.26	0.45	0.44	0.55	0.28
Material response to non-hydrometeor weathering stressors (e.g. UV radiation, icing, thermal expansion, aerosols (incl. dust))	0.64	0.23	0.36	0.32	0.35	0.24
Theme 4: Aerodynamic implications of LEE	Mean	SD	Mean	SD	Mean	SD
Quantification of damage and surface roughness progression through time	0.95	0.16	0.4	0.32	0.45	0.28
Attribution of AEP loss to LEE (via effective surface roughness)	0.88	0.23	0.35	0.34	0.5	0.24
Attribution of AEP loss to application of LEP measures	0.75	0.26	0.4	0.39	0.55	0.28
Quantifying evolution of power curve through time (incl. post deployment)	0.75	0.26	0.3	0.42	0.3	0.42
Optimization of damage repair solution/timing	0.9	0.21	0.35	0.34	0.5	0.33

The second component of PIRT analyses (Step 6) is to evaluate the state of knowledge with respect to each process/phenomenon. Here we broke this down into two aspects:

1. What is the state of knowledge regarding this phenomenon/process and how well has knowledge regarding this process/phenomenon been translated into measurement technologies and data analysis procedures?
2. What is the state of knowledge regarding this phenomenon/process and how well has knowledge regarding this process/phenomenon been translated into state-of-the-art modeling tools?

Conceptually, the goal of this combined rating system is to identify phenomena/processes that have high importance and where critical knowledge gaps preclude full treatment of those phenomena/processes in numerical models or current measurement technologies and data analysis tools. Such phenomena/processes will have high importance ratings but low measurement/modeling ratings. Advancing knowledge for these topics is most likely to enhance TRL for LEE solutions. In this preliminary PIRT analysis respondents were also encouraged to supply narratives explaining their rankings.

Based on PIRT tables one can identify key processes and phenomena that are of high importance but where the state-of-the-art ability to measure or simulate them is deemed good. An example is hub-height wind speeds at operating wind farms. These wind speeds are critical to power production and blade tip speed predictions. The mean ranking for phenomena importance was > 0.9 with small standard deviation (≤ 0.2) indicating consensus of this ranking. But the ratings for translation of knowledge to measurements and/or models is also rated as high. Nacelle mounted anemometers and/or remote sensing technologies such as lidars have been demonstrated to have relatively high fidelity with

355 respect to wind speeds within the rotor plane even in complex terrain [102] and offshore
356 [103]. Multiple modeling exercises have also demonstrated that numerical weather
357 prediction (NWP) models such as the Weather Research and Forecasting (WRF) model,
358 particularly when coupled to micro-scale flow models, also exhibit relatively high fidelity
359 [104]. This does not imply there is not a need for continuing to improve measurement and
360 modeling capabilities but that, in the context of LEE, other research activities should be
361 prioritized.

362 Equally, there are processes/phenomena where understanding is lacking but
363 uncertainty in a process/phenomenon is not deemed to be a current primary limitation on
364 TRL for LEE solutions. Such a process/phenomenon might be deemed tier-2 for research
365 effort. An example drawn from Theme 1 Atmospheric drivers is non-hydrometeor
366 stressors, which received a mean process/phenomena importance level rating of 0.55 and
367 both measurement and modeling require improvement.

368 High SD of rankings also conveys information about the divergence of opinions
369 across the experts. An example from theme 1 is the estimation of impingement efficiency
370 as a function of hydrometeor diameter [105]. The mean rating for importance is 0.55 but
371 the variability around that is large (SD = 0.44). Thus, there is substantial variability in the
372 opinions regarding whether ‘capture’ of hydrometeors of different sizes by the blade
373 leading edge is < 1 for hydrometeors of greatest importance to damage, and whether there
374 is uncertainty in the D and v_c dependence of impingement efficiency.

375 3. Discussion of exemplar research activities designed to address critical research needs 376 identified in the PIRT process and thus to improve TRL of LEE solutions

377 3.1 Phenomena/processes given Tier 1 priority within the atmospheric drivers theme

378 Two processes/phenomena within Theme 1 were identified as tier 1 priority:
379 Hydrometeor size distribution (HSD) and phase. The narratives supplied within the PIRT
380 framework and past research suggest that although these are phenomena of importance,
381 knowledge or translation of knowledge to improved measurement/data analysis
382 procedures or to modeling tools is insufficient. Materials stresses are demonstrably a
383 function of the number and diameter of impinging hydrometeors. The HSD (and
384 hydrometeor phase) is also a reciprocal function of precipitation intensity and of temporal
385 and spatial scale [106]. For example, analyses of data from the US Southern Great Plains
386 showed that 10% of 1-minute precipitation rates exceed 4.5 mmhr^{-1} , while this 90th
387 percentile value for 10-minute precipitation rates are $< 2.3 \text{ mmhr}^{-1}$ [14]. A study in
388 Switzerland using automated hail sensors found that ‘75 % of local hailfalls last just a few
389 minutes (from less than 4.4 min to less than 7.7 min, depending on a parameter to
390 delineate the events) and that 75 % of the impacts occur in less than 3.3 min to less than
391 4.7 min.’ [107] These findings imply not only a need for robust assessments of
392 precipitation rate, HSD and phase but also that such data, whether from measurements
393 or models, need to be available at high spatiotemporal resolution.

394 A range of technologies exist to measure the precipitation intensity (collectively
395 referred to as rain gauges (RG)) [108] and HSD (i.e. instruments that measure
396 hydrometeor number concentrations in size classes and are referred to as disdrometers)
397 [14]. Some disdrometers also measure the fall velocity, phase and sphericity (which is
398 required to compute the hydrometeor mass and kinetic energy transfer) [14]. In the case
399 of optical (or laser) disdrometers the hydrometeor D is measured by the number of
400 horizontal laser beams broken by the hydrometeor and the v_f is derived from the duration
401 of time the beams are interrupted.

402 Assuming spherical droplets, the precipitation rate (RR in mmhr^{-1}) from a
403 disdrometer is proportional to the sum of the number of size-distributed (n in diameter
404 (D) class i=1 to j):

405 $RR \propto \sum_{i=1}^j n_i D_i^3$ (3a)

406 Or more explicitly for the OTT Parsivel² disdrometer (which has 32 diameter classes):

407 $RR = \frac{\pi}{6} \frac{3.6}{10^3 F_t} \sum_{i=1}^{32} n_i D_i^3$ (3b)

408 Where F is the instrument ‘field of view’ and t is the duration of time during which the
409 hydrometeor counts are made.

410 The implication of Equation (3a,b) is that small errors in hydrometeor diameter can yield
411 large errors in RR . Hence, if the precipitation rate is to be derived from disdrometers
412 accurate assessment of the hydrometer diameter is a necessary pre-requisite, but the axis
413 ratio (the ratio of the vertical dimension of the hydrometeor to the horizontal dimension)
414 for liquid hydrometeors is generally < 1 , and scales with the horizontal dimension [95,109].
415 Most disdrometers report RR computed by integrating over all hydrometeor diameters
416 and fall velocities using proprietary software which includes correction factors e.g. for the
417 axis ratio of hydrometeors that are not fully specified.

418 When the accumulated depth of precipitation (or precipitation intensity) from
419 disdrometers is compared with tipping or weighing rain gauges that measure only the
420 mass or depth of water accumulated over a time interval, incomplete closure is achieved
421 [110]. Thus, even if using first-order models of nominal erosion rates (such as those
422 described above) are employed, the source of the precipitation data is a major source of
423 uncertainty in lifetime estimates. For example, data are being collected at the Wind Energy
424 Institute of Canada (WEICan) wind farm on Prince Edward Island Canada, using an OTT
425 Parsivel² optical disdrometer and an unheated Campbell Scientific TE525 Tipping Bucket
426 Rain Gauge (RG) (Figure 4a). Because the RG is unheated, in the following we select only
427 data collected during the summer months to avoid periods with snowfall. Hourly
428 summertime accumulated precipitation from the disdrometer is consistently lower than
429 those from a RG across a wide range of precipitation rates and wind regimes (Figure 4b,c).
430 Although the disdrometer is more likely to report non-zero precipitation (even when the
431 threshold to detect precipitation is set to that determined by the tip-volume of the rain
432 gauge, Figure 4d), of particular importance to LEE, the RG at WEICan exhibits twice the
433 frequency of occurrence of precipitation rates > 10 mm/hr. When conditionally sampled
434 to select periods when both sensors exhibited non-zero precipitation, the probability of
435 extreme precipitation being reported by the RG is also higher than that from the
436 disdrometer (Figure 4c).

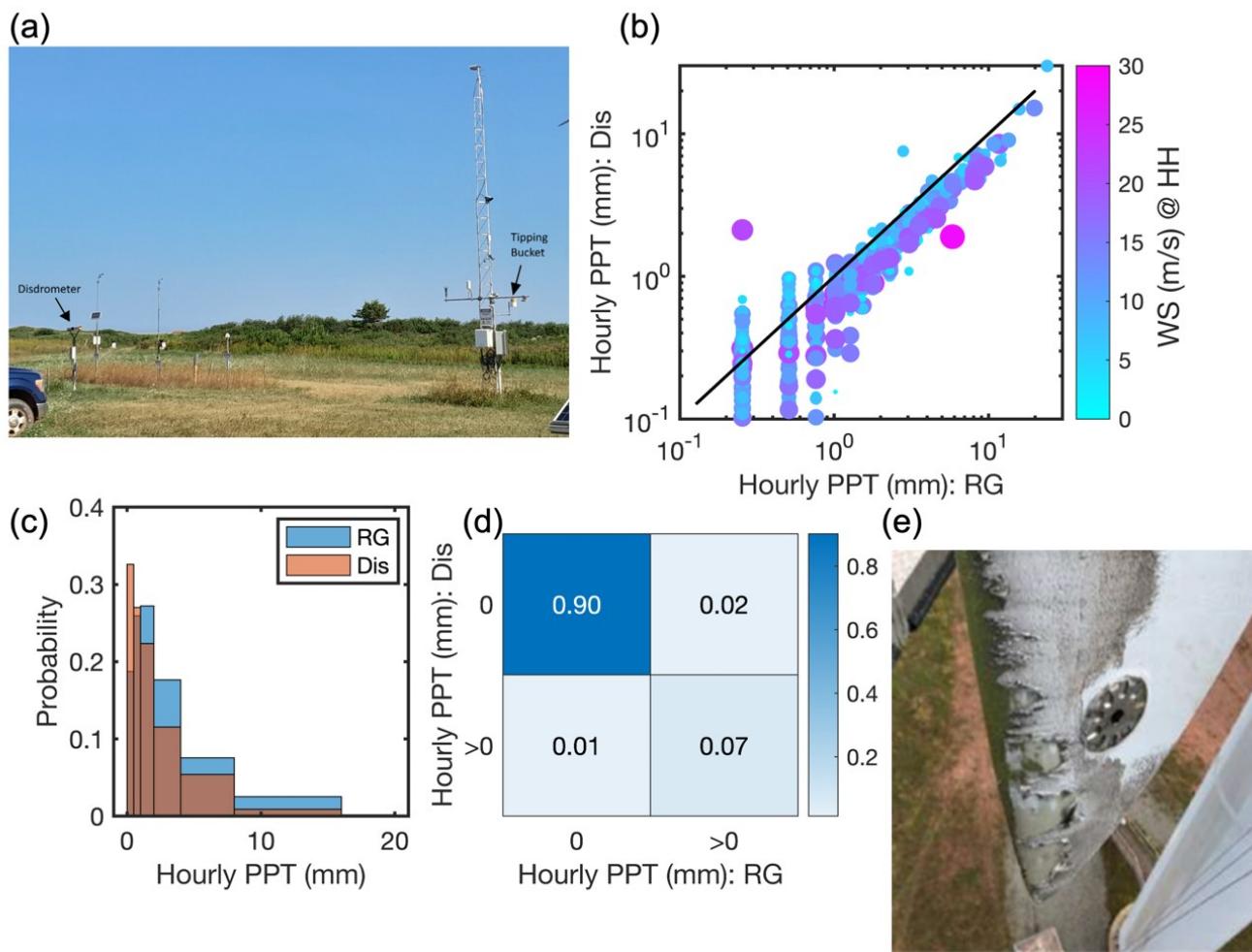


Figure 4 (a) Precipitation sensors deployed at WEICan. (b) Scatterplot of hourly precipitation (PPT) from the rain gauge (RG) and OTT disdrometer (Dis) for data collected during May–October of 2002 and 2023. Symbols scale with prevailing wind speed at wind turbine hub-height (HH). (c) Histograms of hourly precipitation for all hours when both sensors report non-zero precipitation. (d) Heatmap of the joint probability of no precipitation (defined using a threshold of 0.126 mm, i.e. minimum reported by the RG) from RG and Dis. As shown, 7% of hours exhibited precipitation of > 0.126 mm from both sensors. (e) Example photograph of leading edge erosion on one of the wind turbines operating at WEICan.

More mechanistic models of material stress and erosion include information regarding HSD (i.e. the number concentration of hydrometeors of given diameters, D_i) which can be derived from disdrometer measurements of the number counts ($n(i,v)$) in diameter (i) and fall velocity (v_f) classes:

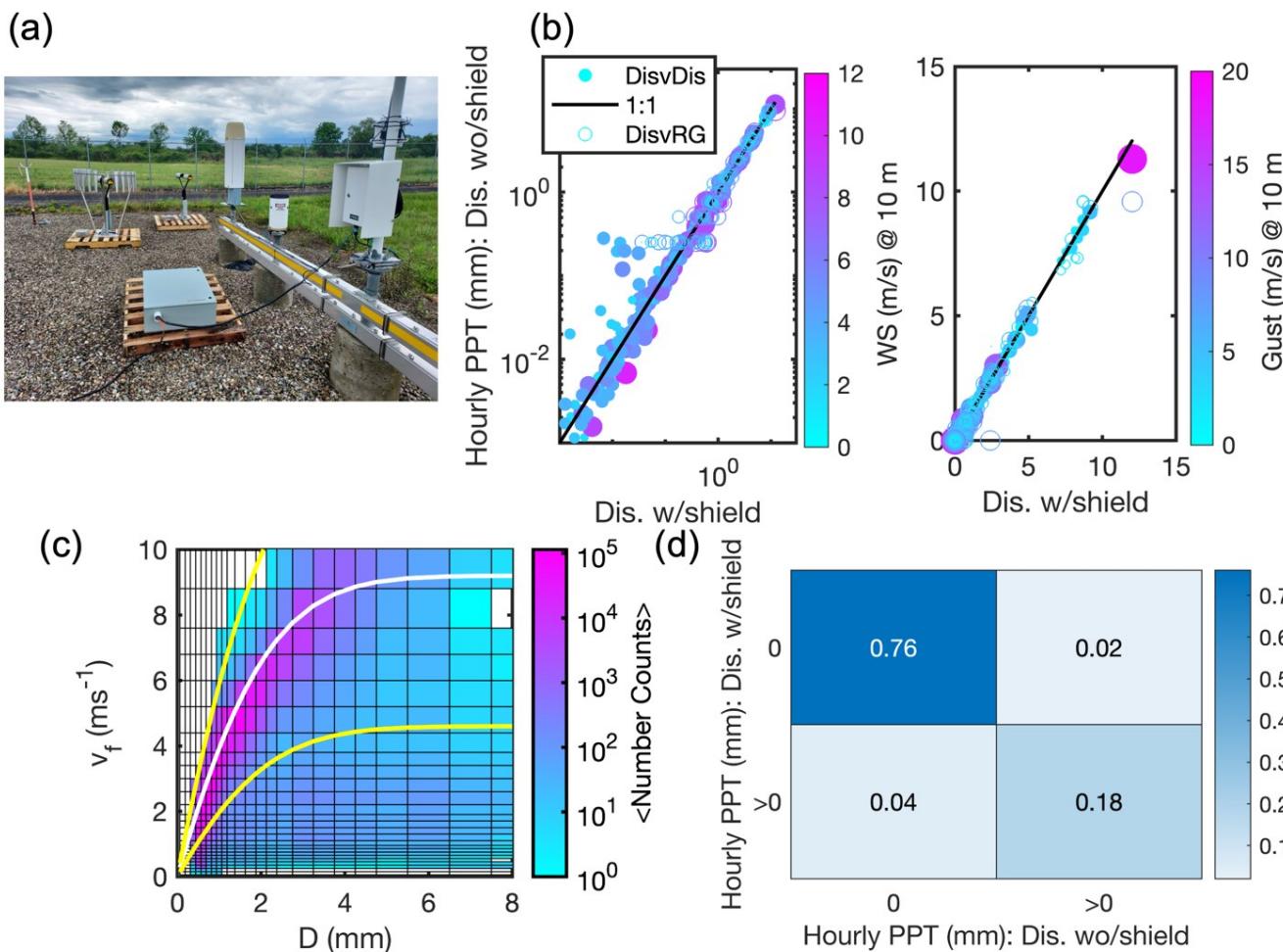
$$N(D_i) = \sum_{v=1}^x \frac{n(i,v)}{Ftv_f(i,v)\Delta D_i} \quad (4)$$

Where x is the number of fall velocity classes and ΔD_i is the width of each diameter class, i . The implication of Equation (4) is that small errors in either hydrometeor D or fall velocity can yield substantial errors in the derived HSD (i.e. expression of number concentrations as a function of hydrometeor diameter). However, measured HSD also differ across different disdrometers and standardized data processing procedures are lacking [14,95,111]. Further, there is evidence that the relative performance of different disdrometers is a function of the prevailing climate [14]. Accordingly, when measurements from the three most commonly used disdrometer types (optical, impact and video) are used to compute accumulated kinetic energy of transfer from hydrometeor

459 impacts to wind turbine blades at an example site in the US Southern Great Plains, the
460 results differ by 38% [95]. The results differ by 100% when different data analysis
461 protocols that vary in terms of the permitted range of fall velocities regarding
462 hydrometeor asymmetry are applied to a single disdrometer [95]. Also, even excluding
463 effects from hydrometeor hardness, hail may be substantially more erosive than rain due
464 to the higher diameters of these hydrometeors. Many disdrometers use proprietary
465 empirical functions to indicate possible presence of hail based on hydrometeor diameter
466 and/or fall velocity rather than directly detecting it.

467 Research to reduce uncertainty in HSD/ v_f /sphericity (axis ratio)/phase and ultimately
468 to provide best practice for measurements at prospective or operating wind farms is
469 ongoing. This includes an experiment performed at an airport in upstate New York in
470 which two identical OTT Parsivel² optical disdrometers have been deployed close to a
471 highly maintained Mesotech heated tipping bucket RG (part number 29000503) deployed
472 as part of the Automated Weather Observing System operated by the US Federal Aviation
473 Administration. The experiment ran from June to September 2024, inclusive (154 days of
474 1-minute observations), and focused on summer months to avoid snowfall periods. It is
475 designed to test whether the presence of large diameter hydrometeors reported at $v_f < v_t$
476 (where v_t is the terminal fall velocity) for that D [112] is due to horizontal advection of the
477 droplets during high wind events. Accordingly, one of the disdrometers was deployed
478 with a windshield and the other without as typifies current deployments at operating
479 wind farms (Figure 5a). In contrast to the data being collected at WEICan (Figure 4) good
480 achievement is found between hourly precipitation intensity from the RG and
481 disdrometers across the entire dynamic range of the precipitation intensities (Figure 5b).
482 Across the range of observed wind speeds (0–12 ms^{−1}) and wind gusts (0–18 ms^{−1}) measured
483 using a sonic anemometer deployed at 10-m AGL, the two disdrometers exhibit a high
484 degree of agreement in terms of detection of precipitation (Figure 5d) and amount of
485 precipitation (Figure 5b), and there is no evidence that the degree of agreement between
486 the disdrometers and with the RG scales with wind intensity (Figure 5b). This experiment
487 does not suggest that wind shielding of disdrometers greatly reduces the frequency of
488 occurrence of hydrometeors falling with $v_f < v_t$ (Figure 5c), or greatly improves agreement
489 with precipitation rates sampled with a RG (Figure 5b).

490 There remains an urgent need for a comprehensive instrument inter-comparison
491 experiment, openness from instrument manufacturers regarding hardware settings and
492 for development of best practice for instrument deployment and data processing to
493 enhance the TRL for prediction of long-term LEE and nowcasting of erosive events for
494 erosion-safe mode implementation.

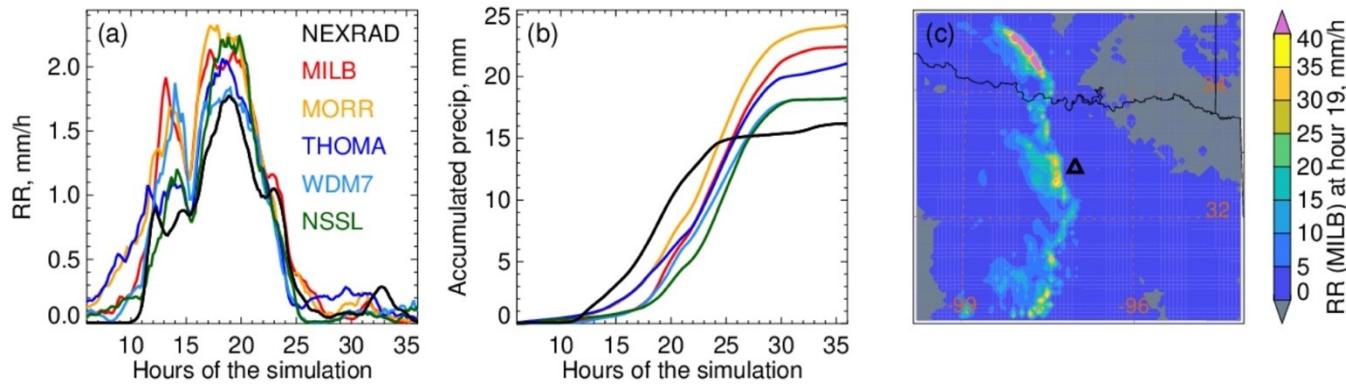


496 Figure 5. (a) Instruments deployed in upstate New York. (b) Scatterplot of hourly precipitation (PPT) from the
497 disdrometer operated without the wind shield (Dis wo/shield) versus the disdrometer with the wind shield (Dis
498 w/shield) (filled symbols) and the rain gauge (RG) (open symbols) on logarithmic and linear axes. Symbols are scaled
499 with, and colored by, the prevailing wind speed at 10 m AGL (left-hand panel) and by the fastest wind gust (right
500 panel). (c) Joint probability of hydrometeor diameter (D) and fall velocity (v_f) from Dis w/shield. White line indicates
501 terminal fall velocity (v_t) as a function of D from Gunn and Kinser [112]. Yellow lines show the ±50% bounds on v_t
502 that may indicate erroneous observations [113]. (d) Heatmap of the joint probability of no precipitation or
503 precipitation from the two disdrometers.

504 NWP models are sophisticated and skillful tools for weather forecasting and climate
505 projections. However, simulated precipitation occurrence and intensity remain less
506 skillful than other atmospheric properties and are highly dependent on model grid [114].
507 The PIRT analysis also identified the need for improvements in the numerical simulation
508 of precipitation and HSD. These issues have long been recognized within the atmospheric
509 science modeling community [115] and there are many parameterizations available to
510 represent cloud, precipitation, and convection processes from scales of millimeters to
511 kilometers, which can yield very different precipitation rates (see example in Figure 6).
512 Most NWP models use bulk microphysics schemes and employ gamma distributions for
513 cloud and hydrometeor distributions [116-120]. Binned (or classed) microphysics schemes
514 resolve the HSD at higher computational cost and improved flexibility [121], but different
515 schemes yield widely varying hydrometeor characteristics [122] and they do not always
516 out-perform bulk schemes in terms of the fidelity of RR [123]. Most modeling studies post-
517 process simulated RR using empirical relationships between near-surface HSD and

518 simulated RR [124]. Simulated hail production is also very sensitive to the pre-existing
 519 aerosol, frozen hydrometer density and other factors influencing hydrometer diameters
 520 and fall velocities [125]. The land surface scheme employed and soil moisture used to
 521 initialize numerical simulations also influence precipitation simulation fidelity [126].

522 It has been previously shown that WRF exhibits some skill for forecasting heavy
 523 precipitation and hail and the occurrence of high wind speeds, but the joint occurrence of
 524 heavy precipitation and high wind speeds and the simulation of hail diameter continue
 525 to lack the fidelity necessary to make integrative robust assessments of erosion potential
 526 or short-term forecasts of highly erosive events for erosion safe-mode operation [75, 76].



527 Figure 6 Spatial average; (a) Precipitation rate and (b) accumulated precipitation from WRF simulations ($dx = 1$ km) of
 528 an intense precipitation event during March 2017 over a region with many wind turbine assets [127]. The simulation
 529 [128] is performed in a short-term forecasting mode as would be used for predicting the need for erosion safe-mode
 530 operation of wind turbines. Time series denote simulations with five different microphysics schemes; Milbrandt-Yau
 531 (MILB), Morrison (MORR), Thompson aerosol aware (THOMA), WRF double moment seven category (WDM7), and
 532 NSSL, plus RADAR (NEXRAD) observations. (c) The domain over which the spatial averaging is performed. Black
 533 triangle indicates Dallas Fort Worth, black lines denote the state boundaries of Texas, Oklahoma and Arkansas.
 534

535 Improved representation of hydroclimatic conditions with numerical models,
 536 scoping of uncertainty and fundamental model improvements are a focus of multiple
 537 initiatives within the atmospheric science community including the World Climate
 538 Research Programme Global Precipitation Experiment lighthouse activity [129]. Machine
 539 learning climate emulators are also being developed that seek to bridge the gap between
 540 the scales resolved by NWP models and precipitation at the local-level [130]. Leveraging
 541 such initiatives can, and will, benefit the wind energy industry and enhance TRL of LEE
 542 mitigation options. However, the specific need for model and measurement fidelity for
 543 precipitation rates and HSD particularly at high wind speeds is, to some degree, specific
 544 to the wind energy community. Effort should be invested in a detailed NWP verification
 545 and validation (V&V) framework that is specifically focused on the requirements of the
 546 wind energy community to advance the TRL for model-based prediction of LEE
 547 meteorological drivers. This is a focus of the Understanding atmospheric impacts on wind
 548 turbines for better efficiency (AIRE) project (<https://aire-project.eu>).

549 3.2 Phenomena/processes given Tier 1 priority within the damage detection and quantification 550 theme

551 This PIRT process resulted in one phenomenon/process being given Tier 1 priority
 552 within the damage detection and quantification theme: Translating water impingement to
 553 materials loss/stress (e.g. metrics: Kinetic Energy, Springer-ADF, VN curves). Although
 554 this topic could legitimately be included under theme 3 – materials response, the specific
 555 theme under which it was listed is likely not a critical determinant of the PIRT rating. As
 556 described above, computing the accumulated kinetic energy (AKE) of collisions between

557 falling hydrometeors and rotating blades through time is trivial presuming adequate data
558 regarding the hydrometeors and hub-height wind speed are available at high time
559 resolution. However, AKE does not directly translate to material damage.

560 Springer's model uses material properties of the blade and coating and the
561 hydrometeor impact number, diameter, velocity and impact angle to estimate a distance
562 to failure or the end of the incubation period for coating wear for each hydrometeor
563 diameter that combined with Miner's rule is used to estimate ADF [95]. However,
564 Springer's model is not very mechanistically defined and the parameter estimates are
565 highly uncertain [66].

566 As described above many RET experiments are confined to a fairly narrow range of
567 droplet sizes and can generate only liquid droplets. However, actual precipitation is
568 comprised of an ensemble of multiple hydrometeor diameters. A recommended practice
569 from DNV [131] considers only one droplet diameter ($D = 2.38$ mm) that naturally will not
570 reflect the range of observed hydrometeors. Indeed, based on data from the US Southern
571 Great Plains, where deep convection and intense precipitation is relatively common [14],
572 the mass-weight hydrometeor mean diameter is ≥ 2.38 mm during only 6% of 1-minute
573 precipitation periods. Further, to achieve damage results in a reasonable time (i.e. to
574 accelerate erosion), RETs are operated at higher closing velocities than represent real
575 operating conditions. The resulting VN-curves are then extrapolated to derive estimates
576 at lower v_c of the number of impacts at a given diameter that would yield damage. Testing
577 viscoelastic coatings at very high closing velocities may result in rain erosion testers
578 underestimating coating or LEP durability because wind turbines frequently operate at
579 lower tip-speeds. A comprehensive rain erosion test with multiple droplet sizes
580 underlines the need for further research on the derivation of the VN-curves from RETs
581 [132]. More detail is given in section 3.3.

582 Other phenomena/processes in the damage detection theme that are characterized as
583 tier 2 priority for research relate to the accuracy of damage estimates. The use of drones
584 and robots for blade inspection is becoming more routine particularly for larger wind
585 turbines and offshore wind farms and potentially decreases costs/time/risk of injury to
586 technicians [133]. Full automation of damage detection data derived using such tools is
587 leveraging advanced Machine Learning (ML) image processing tools [62,134]. Further
588 innovations in this field include construction of digital twins using high-resolution
589 topographic leading edge roughness (LER) data from operating/decommissioned blades
590 that can be analyzed aerodynamically using 3-D computational fluid dynamics (CFD) or
591 wind tunnels [135].

592 Efforts to commercialize damage detection solutions are ongoing (e.g. using thermal
593 imaging [136], laser profilometry [137] or gloss measurement [138]) implying relative high
594 TRL, even as research is being conducted to evaluate efficacy as a function of damage
595 severity and extent [139].

596 3.3 Phenomena/processes given Tier 1 priority within the materials response theme

597 This PIRT analysis identified two phenomena within Theme 3: Materials response as
598 Tier 1 priority for research that links to the usefulness of RETs and specifically their
599 representation of atmospheric conditions including hydrometeors phase (e.g. rain and
600 hail), size distributions & collision velocities [12], and whether accelerated lab-tests
601 represent pre-stressing of blade materials that enhances hydrometeor erosion of the
602 leading edge [140]. These concerns also link to the second Tier-1 research priority:
603 Methodologies to translate lab experimental data (incl. rain erosion testers) to field
604 conditions & failure modes (see section 3.2).

605 Important new research is testing multiple key aspects of translation of RET to real-
606 world conditions. For example, RET tend to operate with continuous bombardment with
607 droplets, while in the real-world precipitation is discontinuous. Experiments with a

608 pulsating jet erosion tester has evolved evidence that duration of time between
609 precipitation events may play a role in the dictating the number of droplet impacts
610 required to reach the end of the incubation time [141]. Recent RET tests performed with
611 and without UV exposure have found that UV weathering reduced the LEE coating life
612 by about 30%, which greatly influenced resulting VN curve parameters [142].

613 Experimental technologies clearly have an important role in projecting damage
614 emergence and progression, but mechanistically-sound numerical models can permit
615 more diagnostic analyses and sampling across a broader spectrum of conditions. An
616 important source of uncertainty in such numerical models is that the precise composition
617 of LEPs and/or coating is proprietary. In addition, the temperature and strain rate
618 sensitivity of the flow stress are either ignored in modeling or at best implemented with
619 empirical constitutive equations. This may lead to significant deviations from reality
620 considering the adiabatic nature of hydrometeor impacts deforming surface layers at
621 relatively high strain rates [143].

622 More sophisticated and explicit models such as Finite Element (FE) models of
623 multiple liquid impact on multilayered viscoelastic materials take into account microscale
624 materials structure and porosity [84,144] and thus are preferable to empirical or semi-
625 empirical models. However, they are relatively computationally demanding and require
626 information regarding a range of material properties and behaviors that can be difficult
627 to acquire. The computational cost is amplified if all possible combinations of
628 hydrometeor diameter and closing velocity are to be included in coating lifetime
629 estimations. Thus, an emerging area of research is construction of ML emulators
630 conditioned using output from numerically sophisticated models but taking the form of
631 considerably faster closed-form architectures [145]. Such emulators can be used to more
632 rapidly and efficiently evaluate uncertainty space. An example is the incorporation of a
633 ML model trained by the output of FE simulations of the spatial and temporal evolution
634 of the stress field in the coating for various impact speeds and hydrometeor diameters
635 (see schematic in Figure 7). To illustrate this potential a surrogate model based on a neural
636 network was trained to make predictions for the peak stresses in the coating layer. A
637 relatively small number of FE simulations was used to generate training data for droplet
638 diameters (D) of 0.5 to 4 mm and impact speeds (v_c) between 80 and 90 ms^{-1} . A neural
639 network surrogate model was trained to predict peak von Mises stresses at each point in
640 the coating as a function of D and v_c . An independent set of FE simulations was used to
641 evaluate the surrogate model predictions (Figure 8). The ML predictions capture the
642 topology of the peak stress contour, but the peak values show an error $\sim 10\%$ relative to
643 independent FE simulations. Building a larger suite of training simulations would likely
644 aid in building a more robust surrogate model.

645 In principle, the workflow shown in Figure 7 could be expanded such that wind
646 speed, rain intensity and HSDs measured or modeled for any location can be combined
647 with the surrogate model to obtain coating stresses for all possible combinations of impact
648 parameters in an analogous manner to their use with the Springer model. The properties
649 of the coating material could also be used as input to the machine learning model, and in
650 principle this workflow can be extended to estimate not only to lifetimes of coatings, but
651 also to levels of surface damage for estimating AEP losses.

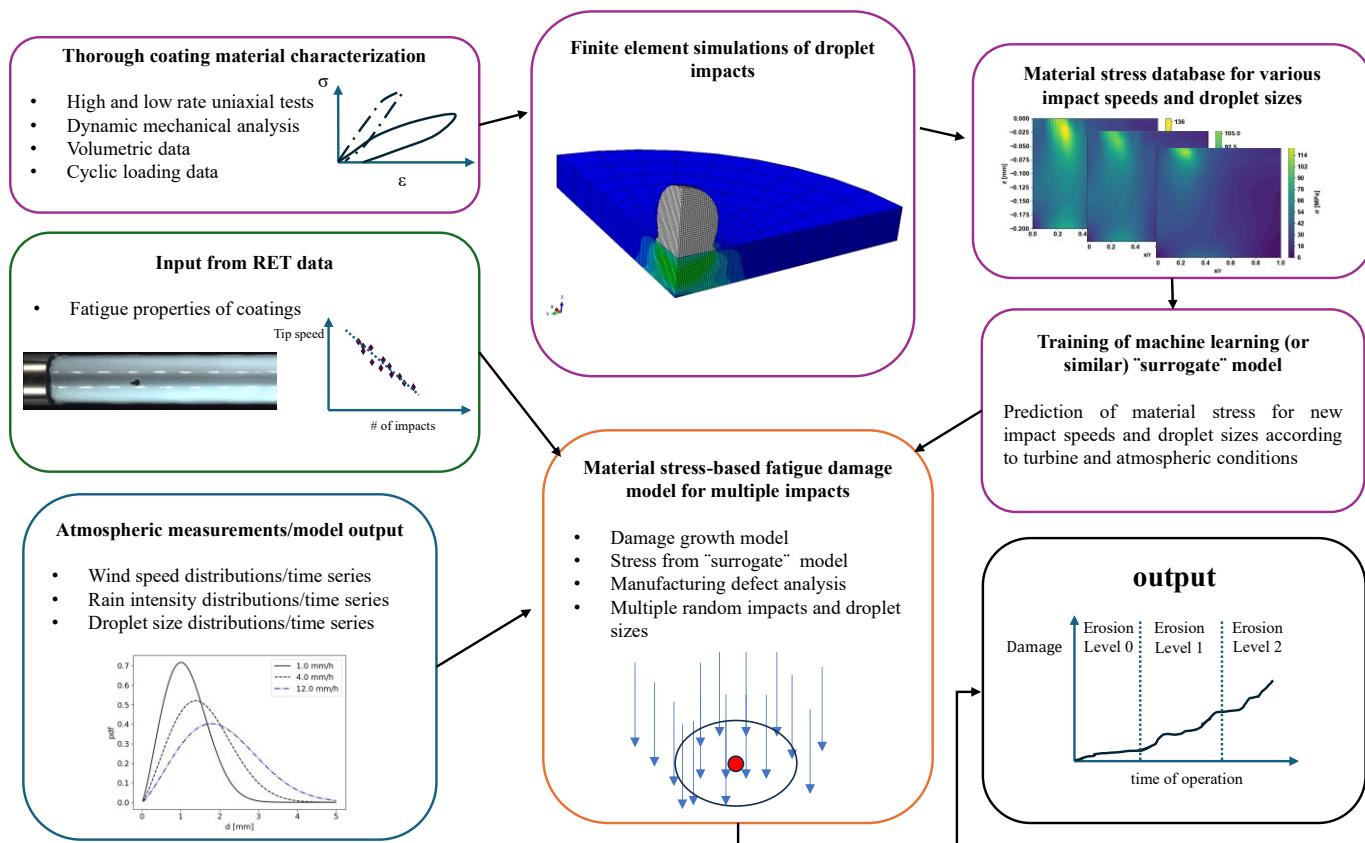


Figure 7 Schematic of a proposed combination of material testing and modeling, atmospheric measurements and lifetime modeling through the use of a machine learning surrogate model.

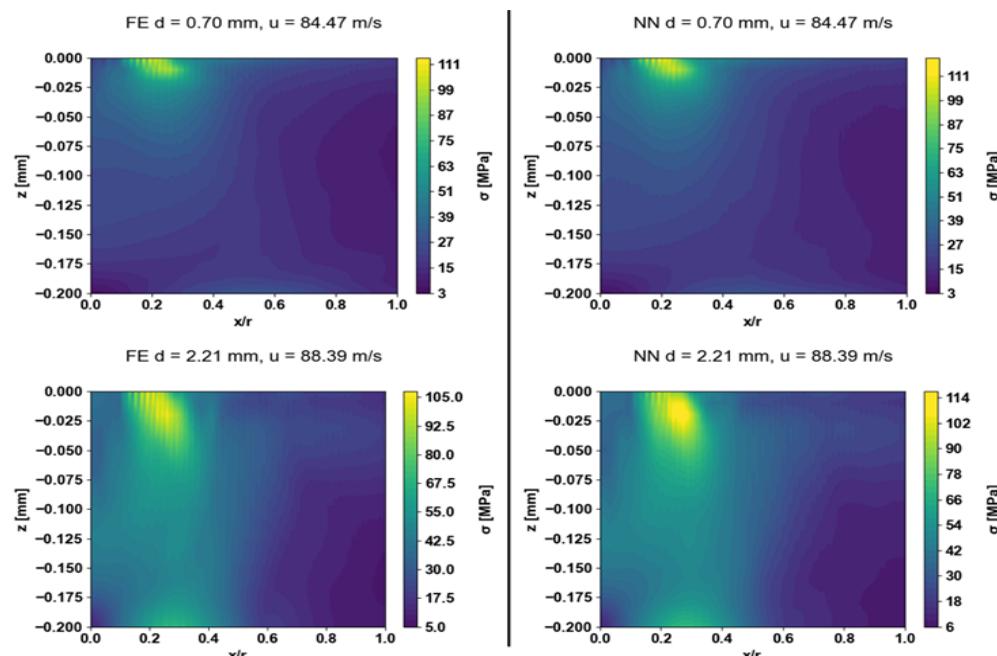


Figure 8 Comparison of peak von Mises stress (σ in MPa) contours over a cross section of the coating layer that spans from the top surface ($z=0$) to the full layer thickness ($z=0.2 \text{ mm}$) and from the impact axis ($x/r=0$) to a distance equal to the droplet radius ($x/r=1$) based on the finite element (FE) simulations (left) and the predictions of the neural network surrogate model (NN) (right) for two different hydrometeor diameters (d) and closing velocities (u).

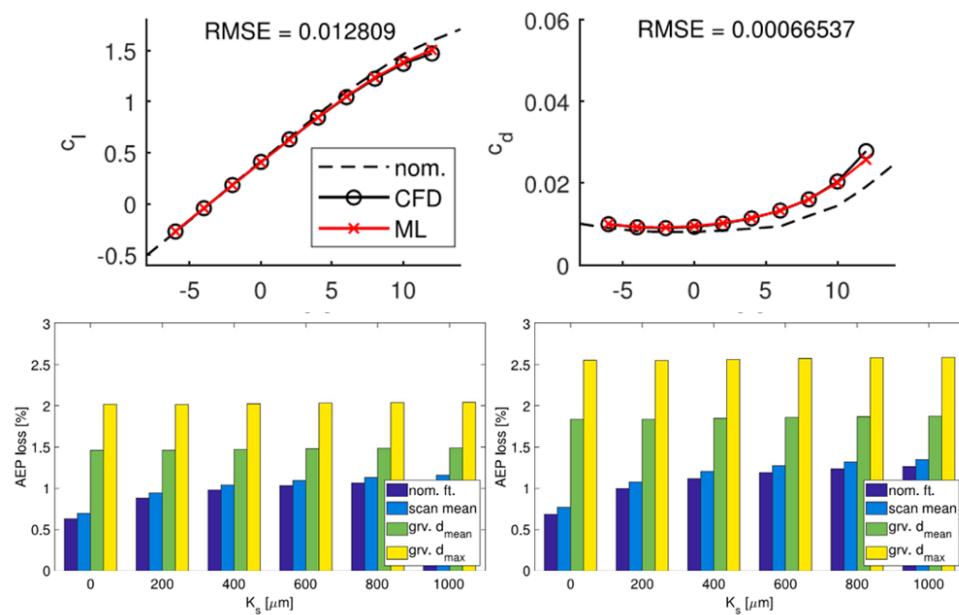
661 While use of ML-based surrogate models shows great promise, the response of
662 viscoelastic polyurethane-based coatings depends on the loading rate, temperature and
663 the level of experienced strain. A more thorough experimental characterization of these
664 materials is required, which includes high and low-rate uniaxial data for wide strain
665 ranges, dynamic mechanical analysis, cyclic loading-reloading and volumetric strain
666 measurements. Data from RET experiments can aid in determining parameters related to
667 the fatigue behavior of coatings and to enhance the accuracy of predictions. Improvements
668 in experimental procedures related to RET are therefore also highly valuable.

669 *3.4 Phenomena/processes given Tier 1 priority within the aerodynamics theme*

670 Finally, three phenomena/processes were identified as Tier 1 priority in the
671 aerodynamic implications theme: (a) Quantification of damage and surface roughness
672 progression through time. This links strongly to theme 2 – damage detection. (b)
673 Attribution of AEP loss to LEE (via effective surface roughness). (c) Optimization of
674 damage repair solution/timing.

675 Quantification of wind turbine power and AEP losses due to LEE typically relies on
676 blade force coefficient data obtained with wind tunnel testing or simulations with
677 computational fluid dynamics (CFD) models [146,147]. In both cases, the geometry of
678 damage and corresponding surface roughness at any time between installation and
679 leading edge resurfacing are key to achieving reliable estimates of the blade performance
680 degradation. For moderate to intermediate LEE, which typically corresponds to damage
681 of the thin external protection system of the leading edge (e.g. coating), the effects of
682 roughness can be modeled by means of the equivalent sand grain roughness [148]. The
683 equivalent roughness height, yielding the same wall shear stress as that achieved with the
684 observed roughness, can be obtained by using geometry-, experimental data or very high-
685 fidelity CFD [149]. Their use for LEE applications, however, is associated with uncertainty,
686 in part due to the difficulty of measuring blade roughness with sufficient resolution. One
687 of the aims of the Leading Edge Roughness categorization (LERcat) efforts is to reduce
688 this uncertainty [76]. When LEE becomes severe, with damage also to the leading edge
689 composite material, the sand grain model is no longer applicable, and the erosion
690 geometry needs to be resolved [150]. The above highlights the importance of acquiring,
691 with sufficient resolution, the depth and surface map of LEE and thus links to new
692 innovations in damage characterization mentioned under Theme 2.

693 Once erosion topographies are acquired with adequate geometric resolution, ML can
694 also play a key role in developing blade predictive maintenance frameworks by providing
695 erosion aerodynamics and resulting AEP losses, as demonstrated with the AEP loss
696 prediction system (ALPS) [146]. Determining the LEE-induced blade performance
697 degradation for each erosion topography encountered in operation would require
698 numerous lengthy CFD analyses and specialized expertise for each wind turbine
699 assessment, a cost increased by the large number of turbines in a wind farm and the
700 potentially high temporal frequency of these assessments in the wind farm lifetime. An
701 initial (one-off) execution of many CFD simulations corresponding to many diverse
702 erosion topographies can be used to train the fast ML metamodels that be used to quickly
703 determine blade force coefficients for AEP loss assessment. Preliminary work, shown in
704 Figure 9 [146], has demonstrated the high reliability of fast ML metamodels for predicting
705 lift coefficient (c_l) and drag coefficient (c_d) of eroded blade sections, allowing the ML
706 models to be used for AEP loss assessment [150,151]. More development work is needed
707 in this area to; generalize these ML approaches, enable them to consider even wider LEE
708 patterns observed in operation, and consider the variability of the nominal blade
709 geometry among different wind turbine classes.



710

711
 712
 713
 714
 715
 716
 717
 718 Figure 9 Top: Eroded blade section force coefficients (lift (C_l) and drag (C_d)) for varying angles of attack (bottom axis) from geometry-resolving CFD ('CFD') and ML models ('ML') trained using metadata of the erosion topography (curve labelled 'nom.' denotes nominal section performance curves) [128]. Bottom: offshore (left) and onshore (right) AEP losses for a multi-MW wind turbine derived using blade section force coefficients from ML models of type displayed in top plots for broad patterns and extent of erosion topographies; ' K_s ' = equivalent sand grain roughness, 'nom/ft.' & 'scan mean' denote moderate to intermediate LEE severity, and 'grv. d_{mean} ' & 'grv. d_{max} ' denote severe LEE stages [150].

719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742 Optimizing the timing of blade leading edge repair was identified as an important phenomena/process in the PIRT. Optimization of repair at any operating wind farm depends on factors such as wind turbine age, damage severity, cost of electricity and accessibility. Considerations used by commercial wind farm owner/operators regarding repair decisions are usually considered proprietary and thus are held in confidence. Thus, information from WEICan is briefly presented below to illustrate the process by which repair decisions and LEP application were made and the results of those actions. WEICan owns and operates five 2 MW turbines on a coastal, high wind site with turbines 1-4 being locations on an escarpment and experiencing a very similar wind climate [152]. All wind turbines at WEICan have exhibited advanced levels of LEE since commissioning in 2013. WEICan have chosen to initiate repair measures prior to "moderate" or "severe" levels of erosion, and indeed before there was significant mass loss or clear detection via power curve degradation or acoustic tracking [153], due to factors such as the severity of the winter climate that means the O&M window is relatively short and the remote location that means access for more extensive O&M is challenging. The two main indications that trigger WEICan's decision to carry out a blade repair are:

1. Rapid degradation of LEP. If a LEP product experiences significant peeling and bubbling within a year, it saves on repair expenses to replace it before the blade is completely exposed.
2. First sign of visible fiberglass. The more fiberglass is eroded away, the more blade preparation work is required before repairs. With light erosion, only sanding and buffing of the surface is required before reapplying the LEP, which takes about half a day per blade. With moderate to heavy erosion, the blade must be sanded, built back into shape with additional fillers and fiberglass before reapplying the LEP product,

743 which can take 1.5 days to 2 days per blade. Therefore, repairing blades at the first
 744 sign of visible fiberglass saves time and cost.

745 Initially, the blades on the wind turbines deployed at WEICan had no LEP, only standard
 746 polyurethane paint. In 2014, after LEE was observed visually, the blades
 747 were repaired, and standard polyurethane paint was re-applied. LEE was observed again
 748 in 2015. Since 2016, WEICan has engaged in testing of five different LEPs, including paints,
 749 tapes, and shells. The first four LEPs were applied from 30 m to 45 m, while the fifth LEP
 750 was applied from 35 m to 45 m, measuring from the root of the blade. Each type of LEP
 751 has specific application instructions which typically require filling, sanding, and cleaning
 752 to achieve a smooth surface; and specify maximum and minimum temperatures and
 753 relative humidities for curing and drying. Most of the wind turbine blade LEP materials
 754 have failed in one year to two years (Table 2, see example in Figure 4e), which LEP
 755 manufacturers generally have attributed to improper or inadequate surface preparation
 756 and installation. For example, epoxies or adhesives were not appropriately activated,
 757 surface was not adequately cleaned, blade repairs with fillers or coatings ahead of
 758 installation were still curing, conditions may have been appropriate at the start but were
 759 not sustained, or the skills of technicians was not adequate. The original blade quality has
 760 also been identified as an important factor impacting LEP failure.

761
 762 Table 2. Leading edge protections used, dates applied and damage and failures observed at WEICan.

Type of LEP	Turbine	Year Applied, Year Reapplied	Year Damage Observed	Types of Damage Observed
Paint (2 component epoxy)	T1, T5	2016, 2017, 2019	2017, 2019, 2021	Pitting, cracking, peeling, bubbling
Paint (polyurethane)	T4	2016, 2017, 2019	2017, 2019, 2021	Pitting, peeling
Tape (2-component polyurethane)	T2	2016, 2017	2017, 2021	Pitting, peeling, bubbling
Tape (2-component polyurethane)	T3	2016, 2019	2019, 2021	Pitting, peeling, bubbling
Shell (polyurethane)	T1	2021, 2023	2023	Peeling, bubbling
	T2	2022		
	T3	2022		
	T4	2021, 2022	2022	Peeling, bubbling
	T5	2022		

763
 764 Current leading edge repair work instructions have many requirements, including
 765 filling, sanding, and cleaning with maximum and minimum temperatures and relative
 766 humidities for curing and drying, as well as wind speed restrictions, depending on the
 767 method used to access the blade. This leads to small windows of time where repair is even
 768 possible and long and expensive repair times. TRL would be enhanced by simplifying the
 769 repair process so that there are fewer restrictions, and it can be done more quickly and
 770 economically.

771 A Tier 2 priority in theme 4 relates to the aerodynamic performance reductions due
 772 to LEP and their efficacy in slowing LEE. Data from the WEICan wind turbines was used
 773 in a decomposition analysis to remove effects due to prevailing meteorology (e.g. changes
 774 in the wind speed distribution before and after application) and isolate the impact of LEP
 775 on wind turbine performance. The results showed minimal to no improvements in
 776 performance due to LEP application and resulting smoothing of the blade [153]. This is
 777 likely due to the high proportion of time WEICan's wind turbines spend operating at rated
 778 power when AEP loss due to LEE is minimum, as well as the fact that WEICan repairs
 779 blades before any reduction in performance is observed.

780 Ultimately, decision-making with regards to LEE at WEICan relies on information
781 from many of the Tier I and Tier II themes: existing and expected progression of damage,
782 the resulting AEP reductions, and impacts of LEP options. Uncertain durability of LEP
783 options, perhaps resulting from unreliable LEP installation, has been the most substantial
784 barrier to effective O&M planning for this site.

785 4. Concluding Remarks and Next Steps

786 The PIRT tables presented herein represent the first attempt to collate expert
787 judgements on research priorities to enhance the TRL for solutions to reduce AEP (and
788 revenue) losses and wind turbine operation and maintenance costs caused by wind
789 turbine blade LEE. We used a snowball sampling technique to identify possible
790 respondents [81] and had a relatively small sample size ($n < 20$). Thus, the results must be
791 considered preliminary. Nevertheless, the PIRT presented herein yields some important
792 insights and lays the foundation for a comprehensive PIRT survey of wind energy experts
793 that will be conducted during 2025 via the International Energy Agency Wind Energy
794 (IEA) Technology Collaboration Programme (TCP) Task 46: Leading Edge Erosion.

795 PIRT analyses are valuable because they allow systematic identification of
796 phenomena/processes of importance and that require further research to enhance TRL or
797 reduce safety risks. However, PIRT analyses are inherently subjective, since they leverage
798 expert knowledge and judgment [82]. While some have advocated that PIRT
799 methodologies should be based on literature-based meta-analyses [83], these too are not
800 fully objective due to inherent biases in publishing [84]. An important advancement of
801 this PIRT analysis is that the standard deviation of rankings across respondents is
802 captured and presented to provide quantitative information about the presence or absence
803 of consensus in the rankings. Divergence of opinion may derive from knowledge gaps
804 due to the trans-disciplinary nature of a topic or the rapidly evolving nature of a complex
805 topic. Expert-knowledge based frameworks for research priority identification using PIRT
806 may also not fully reflect emerging issues. An example of this that was identified in the
807 PIRT but not given a Tier 1 ranking is possibility of micro-plastic shedding to the ocean
808 environments. This research topic is being addressed in the Preventing Micropollutants
809 pollution in SEa water from offshore wind (PREMISE) project [154]. Emergence of such
810 new topics strongly advocates for PIRT assessments to be continuously updated to ensure
811 they evolve as knowledge is advanced.

812 The PIRT process and discussions summarized above indicate the TRL for LEE
813 solutions remains relatively low. However, investment in the priority areas articulated
814 herein will enhance fundamental understanding and can be used to evolve robust
815 framework for end-to-end LEE prediction (Figure 7). Investments should be made in
816 building a robust model V&V framework for each component of such a model chain [155].
817 Successful implementation of such a framework will require sharing of a range of data
818 from industrial partners. Needed information include LEP product material properties,
819 greater transparency regarding hardware settings in meteorological sensors and data
820 from operating wind farms linking LEE state and AEP. End-to-end assessment of damage
821 as a function of operating climate would also greatly benefit from sharing of blade damage
822 reports/images from operating wind farms for use in evaluation of location specific
823 meteorologically-driven LEE predictions [34]. Availability of time-histories of wind
824 turbine Supervisory Control and Data Acquisition (SCADA) data and adequately
825 resolved LEE topographies for eroded blades will enable faster progress in blade
826 predictive maintenance technologies.

827 Nomenclature

828 ADF Accumulated Distance to Failure

829	AEP Annual Energy (electricity) Production
830	AKE Accumulated Kinetic Energy
831	CAPEX CAPItal EXpenditures
832	CFD Computational Fluid Dynamics
833	D Hydrometeor Diameter
834	Dis Disdrometer
835	FE Finite Element
836	HSD Hydrometeor Size Distribution
837	IEA International Energy Agency
838	LCoE Levelized Cost of Energy
839	LEE Leading Edge Erosion
840	LEP Leading Edge Protection
841	LER Leading Edge Roughness
842	LERcat Leading Edge Roughness categorization
843	ML Machine Learning
844	NWP Numerical Weather Prediction
845	O&M Operations and Maintenance
846	PIRT Phenomena Identification and Ranking Tables
847	PPT Precipitation
848	RET Rain Erosion Tester
849	RG Rain Gauge
850	RR Precipitation (or Rain) Rate
851	SALT Simplified Aerodynamic Loss Tool
852	SCADA Supervisory Control and Data Acquisition
853	SD Standard Deviation
854	TRL Technology Readiness Level
855	UAV Unmanned Aerial Vehicle
856	USA United States of America
857	UV-A Ultra Violet radiation at wavelengths (λ) = 320 and 400 nm
858	VN curves Velocity-Number of impacts to failure
859	V&V Verification and Validation
860	WARERs Whirling-Arm Rain Erosion testers
861	WRF Weather Research and Forecasting
862	v_c Closing velocity
863	v_f Fall velocity
864	v_t Terminal fall velocity
865	

Author Contributions: Conceptualization, SCP and RJB.; methodology, SCP and RJB; software, SCP; validation, SCP and RJB; formal analysis, SCP, RJB, MR, HN, SC and AT; investigation, all authors; resources, SCP; data curation, SCP, AT, MR and HN; writing—original draft preparation, SCP and RJB; writing—review and editing, all authors; visualization, SCP, RJB, MR, HN, AT, SC; supervision, SCP; project administration, SCP, RJB; funding acquisition, SCP, RJB, CBH and BM. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the US National Science Foundation (2329911 to SCP and RJB), Sandia National Laboratory (to SCP) IEA task 46 “Erosion of wind turbine blades”, EUDP grant J.nr. 64021-0003 (to CBH) the HORIZON Europe Grant “AIRE” (101083716) (to CBH and BM) and by Danish-American Innovation Network for Wind Energy (DAINWE, grant no. 2084-00014B) funded by the Danish Agency for Higher Education and Science. Computational resources to SCP and RJB used in these analyses are provided by the NSF Extreme Science and Engineering Discovery Environment (XSEDE2) (award TG-ATM170024).

Data Availability Statement: The PIRT results are summarized in Table 1. All other data can be provided upon request to the authors.

Acknowledgments: The authors acknowledge the PIRT analysis respondents and the contributions of Joachim Reuder and Mostafa Hassani to development of the PIRT. The Cornell University team gratefully acknowledge Jeffry Reimel (FAA) and Roxan Noble (Director) for enabling access to the Ithaca Airport AWOS site and Fred Letson for his assistance with instrument maintenance. WEICan gratefully acknowledge research support from Robbie Sanderson.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate change impacts on wind power generation. *Nature Reviews Earth & Environment* **2020**, *1*, 627-643, doi:10.1038/s43017-020-0101-7.
2. Barthelmie, R.J.; Pryor, S.C. Climate Change Mitigation Potential of Wind Energy. *Climate* **2021**, *9*, 136, doi:110.3390/cli9090136.
3. Gökgöz, F.; Güvercin, M.T. Energy security and renewable energy efficiency in EU. *Renewable and Sustainable Energy Reviews* **2018**, *96*, 226-239.
4. Borba, P.C.S.; Júnior, W.C.S.; Shadman, M.; Pfenninger, S. Enhancing drought resilience and energy security through complementing hydro by offshore wind power—The case of Brazil. *Energy Conversion and Management* **2023**, *277*, 116616.
5. GWEC. *Global wind report 2024*; Global Wind Energy Council, Brussels, Belgium. Available for download from:<https://gwec.net/global-wind-report-2024/>; 2024; p. 168.
6. Lazard. *Lazard's Levelized Cost of Energy Analysis—Version 16.0 [Online]*; Available for download from: <https://www.lazard.com/research-insights/levelized-cost-of-energyplus/>; Zurich, Switzerland, 2023.
7. Bolinger, M.; Wiser, R.; O'Shaughnessy, E. Levelized cost-based learning analysis of utility-scale wind and solar in the United States. *Iscience* **2022**, *25*, 104378.
8. Barthelmie, R.J.; Larsen, G.C.; Pryor, S.C. Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas. *Energies* **2023**, *16*, 4550.
9. Rinaldi, G.; Thies, P.R.; Johanning, L. Current status and future trends in the operation and maintenance of offshore wind turbines: A review. *Energies* **2021**, *14*, 2484.
10. Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. *Mechanical Systems and Signal Processing* **2020**, *141*, 106445.
11. Bech, J.I.; Hasager, C.B.; Bak, C. Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events. *Wind Energy Science* **2018**, *3*, 729-748.
12. Bartolomé, L.; Teuwen, J. Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades. *Wind Energy* **2019**, *22*, 140-151.
13. Zhang, S.; Dam-Johansen, K.; Nørkjær, S.; Bernad Jr, P.L.; Kiil, S. Erosion of wind turbine blade coatings—design and analysis of jet-based laboratory equipment for performance evaluation. *Progress in Organic Coatings* **2015**, *78*, 103-115.
14. Pryor, S.C.; Barthelmie, R.J.; Cadence, J.; Dellwik, E.; Hasager, C.B.; Kral, S.T.; Reuder, J.; Rodgers, M.; Veraart, M. Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research. *Energies* **2022**, *15*, 8553, doi: 8510.3390/en15228553.
15. Sareen, A.; Sapre, C.A.; Selig, M.S. Effects of leading edge erosion on wind turbine blade performance. *Wind Energy* **2014**, *17*, 1531-1542.
16. Mishnaevsky Jr, L.; Hasager, C.B.; Bak, C.; Tilg, A.-M.; Bech, J.I.; Rad, S.D.; Fæster, S. Leading edge erosion of wind turbine blades: Understanding, prevention and protection. *Renewable Energy* **2021**, *169*, 953-969.
17. Gaudern, N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. *Journal of Physics: Conference Series* **2014**, *524*, 012031, doi:10.1088/1742-6596/524/1/012031.
18. Froese, M. Wind-farm owners can now detect leading-edge erosion from data alone. *Windpower Engineering and Development* **2018**, August 14, 2018.
19. Campobasso, M.S.; Castorrini, A.; Ortolani, A.; Minisci, E. Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry. *Renewable and Sustainable Energy Reviews* **2023**, *178*, 113254.

931 20. Herring, R.; Dyer, K.; Martin, F.; Ward, C. The increasing importance of leading edge erosion and a review of
932 existing protection solutions. *Renewable and Sustainable Energy Reviews* **2019**, *115*, doi: 10.1016/j.rser.2019.109382.

933 21. Wiser, R.; Jenni, K.; Seel, J.; Baker, E.; Hand, M.; Lantz, E.; Smith, A. Expert elicitation survey on future wind
934 energy costs. *Nature Energy* **2016**, *1*, 16135, doi:10.1038/nenergy.2016.135.

935 22. Mishnaevsky Jr., L.; Thomsen, K. Costs of repair of wind turbine blades: Influence of technology aspects. *Wind*
936 *Energy* **2020**, *23*, 2247-2255, doi:10.1002/we.2552.

937 23. Pryor, S.C.; Barthelmie, R.J.; Shepherd, T.J. Wind power production from very large offshore wind farms. *Joule*
938 **2021**, *5*, 2663-2686, doi:10.1016/j.joule.2021.09.002.

939 24. Maniaci, D.C.; Westergaard, C.; Hsieh, A.; Paquette, J.A. Uncertainty quantification of leading edge erosion
940 impacts on wind turbine performance. In Proceedings of the Journal of physics: Conference series, 2020; p. 941
052082.

942 25. Shankar Verma, A.; Jiang, Z.; Ren, Z.; Hu, W.; Teuwen, J.J. Effects of onshore and offshore environmental
943 parameters on the leading edge erosion of wind turbine blades: A comparative study. *Journal of Offshore*
944 *Mechanics and Arctic Engineering* **2021**, *143*, 042001.

945 26. McMorland, J.; Flannigan, C.; Carroll, J.; Collu, M.; McMillan, D.; Leithead, W.; Coraddu, A. A review of
946 operations and maintenance modelling with considerations for novel wind turbine concepts. *Renewable and*
947 *Sustainable Energy Reviews* **2022**, *165*, 112581.

948 27. Zahle, F.; Barlas, T.; Lonbaek, K.; Bortolotti, P.; Zalkind, D.; Wang, L.; Labuschagne, C.; Sethuraman, L.; Barter,
949 G. *Definition of the IEA Wind 22-Megawatt Offshore Reference Wind Turbine*; Roskilde, Denmark: Technical
950 University of Denmark (DTU): United States, 2024; p. Medium: ED; Size: 69 p.

951 28. Shohag, M.A.S.; Hammel, E.C.; Olawale, D.O.; Okoli, O.I. Damage mitigation techniques in wind turbine
952 blades: A review. *Wind Engineering* **2017**, *41*, 185-210.

953 29. Mishnaevsky Jr, L. Root causes and mechanisms of failure of wind turbine blades: Overview. *Materials* **2022**, *15*,
954 2959.

955 30. Mankins, J.C. Technology readiness levels; Available for download from:
956 https://aiaa.kavi.com/apps/group_public/download.php/2212/TRLs_MankinsPaper_1995.pdf, 1995; p. 1995.

957 31. Mankins, J.C. Technology readiness assessments: A retrospective. *Acta Astronautica* **2009**, *65*, 1216-1223.

958 32. Keegan, M.H.; Nash, D.; Stack, M. On erosion issues associated with the leading edge of wind turbine blades.
959 *Journal of Physics D: Applied Physics* **2013**, *46*, 383001.

960 33. Letson, F.; Barthelmie, R.J.; Pryor, S.C. RADAR-derived precipitation climatology for wind turbine blade
961 leading edge erosion. *Wind Energy Science* **2020**, *5*, 331-347.

962 34. Visbech, J.; Göçmen, T.; Hasager, C.B.; Shkalov, H.; Handberg, M.; Nielsen, K.P. Introducing a data-driven
963 approach to predict site-specific leading edge erosion. *Wind Energy Science* **2023**, *8*, 173-191.

964 35. Preece, C.M. *Treatise on Materials Science and Technology*, Vol. 16. *Erosion*; 1979; p. 450.

965 36. Slot, H.; Gelinck, E.; Rentrop, C.; van der Heide, E. Leading edge erosion of coated wind turbine blades: Review
966 of coating life models. *Renewable Energy* **2015**, *80*, 837-848.

967 37. Zhu, X.; Fu, X.; Liu, L.; Xu, K.; Luo, G.; Zhao, Z.; Chen, W. Damage mechanism of composite laminates under
968 multiple ice impacts at high velocity. *International Journal of Impact Engineering* **2022**, *168*, 104296.

969 38. Heymsfield, A.; Szakáll, M.; Jost, A.; Giammanco, I.; Wright, R. A comprehensive observational study of graupel
970 and hail terminal velocity, mass flux, and kinetic energy. *Journal of the Atmospheric Sciences* **2018**, *75*, 3861-3885.

971 39. Macdonald, J.; Stack, M. Some thoughts on modelling hail impact on surfaces. *Journal of Bio-and Tribio-Corrosion*
972 **2021**, *7*, 1-7m doi: 10.1007/s40735-40020-00458-40734.

973 40. Kim, H.; Kedward, K.T. Modeling hail ice impacts and predicting impact damage initiation in composite
974 structures. *AIAA journal* **2000**, *38*, 1278-1288.

975 41. Savana, R. Effect of Hail Impact on Leading Edge Polyurethane Composites. TU Delft, Available from
976 <http://repository.tudelft.nl/>. 2022.

977 42. Hannesdóttir, Á.; Kral, S.T.; Reuder, J.; Hasager, C.B. Rain erosion atlas for wind turbine blades based on ERA5
978 and NORA3 for Scandinavia. *Results in Engineering* **2024**, *22*, 102010.

979 43. Dolan, B.; Fuchs, B.; Rutledge, S.; Barnes, E.; Thompson, E. Primary modes of global drop size distributions.
980 *Journal of the Atmospheric Sciences* **2018**, *75*, 1453-1476.

981 44. Mayer, P.; Lubecki, M.; Stosiak, M.; Robakowska, M. Effects of surface preparation on the adhesion of UV-aged
982 polyurethane coatings. *International Journal of Adhesion and Adhesives* **2022**, *117*, 103183.

983 45. Godfrey, M.; Siederer, O.; Zekonyte, J.; Barbaros, I.; Wood, R. The effect of temperature on the erosion of
984 polyurethane coatings for wind turbine leading edge protection. *Wear* **2021**, *476*, 203720.

985 46. Lachenal, X.; Daynes, S.; Weaver, P.M. Review of morphing concepts and materials for wind turbine blade
986 applications. *Wind energy* **2013**, *16*, 283–307.

987 47. Wan, D.; Chen, S.; Li, D.; Zhen, Q.; Zhang, B. Sand-Laden Wind Erosion Pair Experimental Analysis of
988 Aerodynamic Performance of the Wind Turbine Blades. *Energies* **2024**, *17*, 2279.

989 48. Alajmi, A.F.; Ramulu, M. Characterization of the Leading-Edge Erosion of Wind Turbine Blades by Sand
990 Particles Impingement. In Proceedings of the ASME International Mechanical Engineering Congress and
991 Exposition, 2021; p. V08BT08A033.

992 49. Vinnes, M.K.; Hearst, R.J. Aerodynamics of an airfoil with leading-edge icing. *Wind Energy* **2021**, *24*, 795–811.

993 50. Rempel, L. Rotor blade leading edge erosion-real life experiences. *Wind Systems Magazine* **2012**, *11*, 22–24.

994 51. Amirat, Y.; Benbouzid, M.E.H.; Al-Ahmar, E.; Bensaker, B.; Turri, S. A brief status on condition monitoring and
995 fault diagnosis in wind energy conversion systems. *Renewable and sustainable energy reviews* **2009**, *13*, 2629–2636.

996 52. Song, X.; Xing, Z.; Jia, Y.; Song, X.; Cai, C.; Zhang, Y.; Wang, Z.; Guo, J.; Li, Q. Review on the damage and fault
997 diagnosis of wind turbine blades in the germination stage. *Energies* **2022**, *15*, 7492.

998 53. Lopez, J.C.; Kolios, A. An autonomous decision-making agent for offshore wind turbine blades under leading
999 edge erosion. *Renewable Energy* **2024**, *227*, 120525.

1000 54. Kong, K.; Dyer, K.; Payne, C.; Hamerton, I.; Weaver, P.M. Progress and trends in damage detection methods,
1001 maintenance, and data-driven monitoring of wind turbine blades—A review. *Renewable Energy Focus* **2023**, *44*,
1002 390–412.

1003 55. Cao, Z.; Li, S.; Li, C.; Li, P.; Ko, T.J. Formation mechanism and detection and evaluation methods as well as
1004 repair technology of crack damage in fiber-reinforced composite wind turbine blade: a review. *The International
1005 Journal of Advanced Manufacturing Technology* **2022**, *120*, 5649–5672.

1006 56. Yan, Y.; Cheng, L.; Wu, Z.; Yam, L. Development in vibration-based structural damage detection technique.
1007 *Mechanical systems and signal processing* **2007**, *21*, 2198–2211.

1008 57. Juengert, A.; Grosse, C.U. Inspection techniques for wind turbine blades using ultrasound and sound waves. In
1009 Proceedings of the Proceedings of the confernece on Non-Destructive Testing in Civil Engineering: NDTCE,
1010 Nantes, France, 2009; p. 8pp.

1011 58. Van Dam, J.; Bond, L.J. Acoustic emission monitoring of wind turbine blades. In Proceedings of the Smart
1012 Materials and Nondestructive Evaluation for Energy Systems 2015, 2015; pp. 55–69.

1013 59. Xu, D.; Wen, C.; Liu, J. Wind turbine blade surface inspection based on deep learning and UAV-taken images.
1014 *Journal of Renewable and Sustainable Energy* **2019**, *11*, 053305.

1015 60. Sørensen, B.F.; Lading, L.; Sendrup, P. *Fundamentals for remote structural health monitoring of wind turbine blades—a pre-project*; Risoe National Laboratory, Report # RISO-R-1336(EN): Report available from :
1016 <https://www.osti.gov/etdeweb/biblio/20273791>, 2002; p. 37 pp.

1017 61. Shihavuddin, A.; Chen, X.; Fedorov, V.; Nymark Christensen, A.; Andre Brogaard Riis, N.; Branner, K.;
1018 Bjorholm Dahl, A.; Reinhold Paulsen, R. Wind turbine surface damage detection by deep learning aided drone
1019 inspection analysis. *Energies* **2019**, *12*, 676.

1020 62. Aird, J.A.; Barthelmie, R.J.; Pryor, S.C. Automated Quantification of Wind Turbine Blade Leading Edge Erosion
1021 from Field Images. *Energies* **2023**, *16*, 2820.

1022 63. Mishnaevsky, L.; Branner, K.; Petersen, H.; Beauson, J.; McGugan, M.; Sørensen, B. Materials for wind turbine
1023 blades: an overview. *Materials* **2017**, *10*, 1285.

1024 64. Brøndsted, P.; Lilholt, H.; Lystrup, A. Composite materials for wind power turbine blades. *Annu. Rev. Mater.
1025 Res.* **2005**, *35*, 505–538.

1026 65. Fæster, S.; Johansen, N.F.J.; Mishnaevsky Jr, L.; Kusano, Y.; Bech, J.I.; Madsen, M.B. Rain erosion of wind turbine
1027 blades and the effect of air bubbles in the coatings. *Wind Energy* **2021**, *24*, 1071–1082.

1028 66. Hoksbergen, N.; Akkerman, R.; Baran, I. The Springer model for lifetime prediction of wind turbine blade
1029 leading edge protection systems: A review and sensitivity study. *Materials* **2022**, *15*, 1170.

1030

1031 67. Cortés, E.; Sánchez, F.; O’Carroll, A.; Madramany, B.; Hardiman, M.; Young, T.M. On the Material
1032 Characterisation of Wind Turbine Blade Coatings. *Materials* **2017**, *10*, 1146.

1033 68. Eisenberg, D.; Laustsen, S.; Stege, J. Wind turbine blade coating leading edge rain erosion model: Development
1034 and validation. *Wind Energy* **2018**, *21*, 942–951.

1035 69. Traphan, D.; Herráez, I.; Meinlschmidt, P.; Schlüter, F.; Peinke, J.; Gülker, G. Remote surface damage detection
1036 on rotor blades of operating wind turbines by means of infrared thermography. *Wind Energy Science* **2018**, *3*,
1037 639–650.

1038 70. Verma, A.S.; Castro, S.G.; Jiang, Z.; Teuwen, J.J. Numerical investigation of rain droplet impact on offshore
1039 wind turbine blades under different rainfall conditions: A parametric study. *Composite Structures* **2020**, *241*,
1040 112096.

1041 71. Nash, D.; Leishman, G.; Mackie, C.; Dyer, K.; Yang, L. A staged approach to erosion analysis of wind turbine
1042 blade coatings. *Coatings* **2021**, *11*, 681.

1043 72. Castorrini, A.; Venturini, P.; Bonfiglioli, A. Generation of Surface Maps of Erosion Resistance for Wind Turbine
1044 Blades under Rain Flows. *Energies* **2022**, *15*, 5593.

1045 73. Springer, G.S. *Erosion by liquid impact*; John Wiley and Sons, New York, NY: United States, 1976; p. 278.

1046 74. Springer, G.S.; Yang, C.-I.; Larsen, P.S. Analysis of rain erosion of coated materials. *Journal of Composite Materials*
1047 **1974**, *8*, 229–252.

1048 75. Herring, R.; Domenech, L.; Renau, J.; Šakalytė, A.; Ward, C.; Dyer, K.; Sánchez, F. Assessment of a wind turbine
1049 blade erosion lifetime prediction model with industrial protection materials and testing methods. *Coatings* **2021**,
1050 *11*, 767.

1051 76. Maniaci, D.C.; MacDonald, H.; Paquette, J.; Clarke, R. *Leading Edge Erosion Classification System*. Technical report
1052 from IEA Wind Task 46 Erosion of wind turbine blades; Technical report from IEA Wind Task 46 Erosion of wind
1053 turbine blades, 2022; pp. 52, Available from: <https://iea-wind.org/task46/t46-results/>.

1054 77. Panthi, K.; Iungo, G.V. Quantification of wind turbine energy loss due to leading-edge erosion through infrared-
1055 camera imaging, numerical simulations, and assessment against SCADA and meteorological data. *Wind Energy*
1056 **2023**, *26*, 266–282.

1057 78. Saenz, E.; Mendez, B.; Muñoz, A. Effect of erosion morphology on wind turbine production losses. In
1058 Proceedings of the Journal of Physics: Conference Series, 2022; p. 032059.

1059 79. Bak, C. A simple model to predict the energy loss due to leading edge roughness. In Proceedings of the Journal
1060 of Physics: Conference Series, 2022; p. 032038.

1061 80. Özçakmak, Ö.S.; Bretos, D.; Méndez, B.; Bak, C. Determination of annual energy production loss due to erosion
1062 on wind turbine blades. In Proceedings of the Journal of Physics: Conference Series, 2024; p. 022066.

1063 81. Gaertner, E.; Rinker, J.; Sethuraman, L.; Zahle, Z.; Anderson, B.; Barter, G.; Abbas, B.; Meng, F.; Bortolotti, F.;
1064 Skrzypinski, W.; et al. *Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine*; National Renewable
1065 Energy Laboratory: Golden, CO. NREL/TP-5000-75698. Available for download from:
1066 <https://www.nrel.gov/docs/fy20osti/75698.pdf>, 2020.

1067 82. Malik, T.H.; Bak, C. Challenges in Detecting Wind Turbine Power Loss: The Effects of Blade Erosion, Turbulence
1068 and Time Averaging. *Wind Energy Science Discussions* **2024**, *2024*, 1–23.

1069 83. Han, W.; Kim, J.; Kim, B. Effects of contamination and erosion at the leading edge of blade tip airfoils on the
1070 annual energy production of wind turbines. *Renewable energy* **2018**, *115*, 817–823.

1071 84. Mishnaevsky Jr, L.; Tempelis, A.; Kuthe, N.; Mahajan, P. Recent developments in the protection of wind turbine
1072 blades against leading edge erosion: Materials solutions and predictive modelling. *Renewable Energy* **2023**,
1073 118966.

1074 85. Verma, A.S.; Yan, J.; Hu, W.; Jiang, Z.; Shi, W.; Teuwen, J.J. A review of impact loads on composite wind turbine
1075 blades: impact threats and classification. *Renewable and Sustainable Energy Reviews* **2023**, *178*, 113261.

1076 86. Dashtkar, A.; Johansen, N.F.-J.; Mishnaevsky Jr, L.; Williams, N.A.; Hasan, S.W.; Wadi, V.S.; Silvello, A.;
1077 Hadavinia, H. Graphene/sol-gel modified polyurethane coating for wind turbine blade leading edge
1078 protection: Properties and performance. *Polymers and Polymer Composites* **2022**, *30*, 09673911221074197.

1079 87. Major, D.; Palacios, J.; Maughmer, M.; Schmitz, S. Aerodynamics of leading-edge protection tapes for wind
1080 turbine blades. *Wind Engineering* **2021**, *45*, 1296–1316.

1081 88. Kyle, R.; Wang, F.; Forbes, B. The effect of a leading edge erosion shield on the aerodynamic performance of a
1082 wind turbine blade. *Wind Energy* **2020**, *23*, 953–966.

1083 89. Bera, P.; Lakshmi, R.; Pathak, S.M.; Bonu, V.; Mishnaevsky Jr, L.; Barshilia, H.C. Recent Progress in the
1084 Development and Evaluation of Rain and Solid Particle Erosion Resistant Coatings for Leading Edge Protection
1085 of Wind Turbine Blades. *Polymer Reviews* **2024**, *64*, 639–689.

1086 90. Jones, S.M.; Rehfeld, N.; Schreiner, C.; Dyer, K. The Development of a Novel Thin Film Test Method to Evaluate
1087 the Rain Erosion Resistance of Polyaspartate-Based Leading Edge Protection Coatings. *Coatings* **2023**, *13*, 1849.

1088 91. Verma, A.S.; Noi, S.D.; Ren, Z.; Jiang, Z.; Teuwen, J.J. Minimum leading edge protection application length to
1089 combat rain-induced erosion of wind turbine blades. *Energies* **2021**, *14*, 1629.

1090 92. Ansari, Q.M.; Sánchez, F.; Mishnaevsky Jr, L.; Young, T.M. Evaluation of offshore wind turbine blades coating
1091 thickness effect on leading edge protection system subject to rain erosion. *Renewable Energy* **2024**, *226*, 120378.

1092 93. Sareen, A.; Sapre, C.A.; Selig, M.S. Effects of leading edge erosion on wind turbine blade performance. *Wind*
1093 *Energy* **2014**, *17*, 1531–1542.

1094 94. Katsivalis, I.; Chanteli, A.; Finnegan, W.; Young, T.M. Mechanical and interfacial characterisation of leading-
1095 edge protection materials for wind turbine blade applications. *Wind Energy* **2022**, *25*, 1758–1774.

1096 95. Letson, F.; Pryor, S.C. From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade
1097 Leading Edge Erosion. *Energies* **2023**, *5*, 3906 doi: 3910.3390/en16093906.

1098 96. Mishnaevsky Jr, L.; Thomsen, K. Costs of repair of wind turbine blades: Influence of technology aspects. *Wind*
1099 *Energy* **2020**, *23*, 2247–2255.

1100 97. Skrzypinski, W.; Bech, J.; Hasager, C.B.; Tilg, A.; Bak, F.; Ch, V. Optimization of the erosion-safe operation of
1101 the IEA Wind 15 MW Reference Wind Turbine. *Journal of Physics: Conference Series* **2020**, *1618*, 052034, doi:
1102 052010.051088/051742-056596/051618/052035/052034.

1103 98. Visbech, J.; Göçmen, T.; Réthoré, P.-E.; Hasager, C.B. Erosion-safe operation using double deep Q-learning. In
1104 Proceedings of the Journal of Physics: Conference Series, 2024; p. 032047.

1105 99. Oliver, T.J.; Nowlen, S.P. A Phenomena Identification and Ranking Table (PIRT) Exercise for Nuclear Power Plant Fire
1106 Modeling Applications; Sandia National Laboratory, Report # NUREG/CR-6978: 2008; p. 441.

1107 100. Singh, P.M.; Chan, K.J.; Deo, C.S.; Deodeshmukh, V.; Keiser, J.R.; Ren, W.; Sham, T.; Wilson, D.F.; Yoder, G.;
1108 Zhang, J. Phenomena Identification and Ranking Table (PIRT) study for metallic structural materials for
1109 advanced High-Temperature reactor. *Annals of Nuclear Energy* **2019**, *123*, 222–229.

1110 101. Maniaci, D.C.; Naughton, J.W. V&V integrated program planning for wind plant performance; Sandia National
1111 Lab.(SNL-NM), Albuquerque, NM (United States); Univ. of ...: 2019.

1112 102. Klaas-Witt, T.; Emeis, S. The five main influencing factors for lidar errors in complex terrain. *Wind Energy Science*
1113 **2022**, *7*, 413–431.

1114 103. Wagner, R.; Pedersen, T.F.; Courtney, M.; Antoniou, I.; Davoust, S.; Rivera, R.L. Power curve measurement with
1115 a nacelle mounted lidar. *Wind Energy* **2014**, *17*, 1441–1453, doi:10.1002/we.1643.

1116 104. Haupt, S.E.; Kosovic, B.; Shaw, W.; Berg, L.K.; Churchfield, M.; Cline, J.; Draxl, C.; Ennis, B.; Koo, E.; Kotamarthi,
1117 R. On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. *Bulletin of the American*
1118 *Meteorological Society* **2019**, *100*, 2533–2550.

1119 105. Prieto, R.; Karlsson, T. A model to estimate the effect of variables causing erosion in wind turbine blades. *Wind*
1120 *Energy* **2021**, *24*, 1031–1044.

1121 106. Lochbihler, K.; Lenderink, G.; Siebesma, A.P. The spatial extent of rainfall events and its relation to precipitation
1122 scaling. *Geophysical Research Letters* **2017**, *44*, 8629–8636.

1123 107. Kopp, J.; Manzato, A.; Hering, A.; Germann, U.; Martius, O. How observations from automatic hail sensors in
1124 Switzerland shed light on local hailfall duration and compare with hailpads measurements. *Atmospheric*
1125 *Measurement Techniques* **2023**, *16*, 3487–3503.

1126 108. Lanza, L.G.; Cauteruccio, A.; Stagnaro, M. Rain gauge measurements. In *Rainfall*; Elsevier: 2022; pp. 77–108.

1127 109. Pruppacher, H.R.; Beard, K. A wind tunnel investigation of the internal circulation and shape of water drops
1128 falling at terminal velocity in air. *Quarterly Journal of the Royal Meteorological Society* **1970**, *96*, 247–256.

1129 110. Ro, Y.; Chang, K.-H.; Hwang, H.; Kim, M.; Cha, J.-W.; Lee, C. Comparative study of rainfall measurement by
1130 optical disdrometer, tipping-bucket rain gauge, and weighing precipitation gauge. *Natural Hazards* **2024**, *120*,
1131 2829–2845.

1132 111. Méndez, B.; Saenz, E.; Pires, Ó.; Cantero, E.; Bech, J.; Polls, F.; Peinó, E.; Udina, M.; Garcia-Benadí, A.
1133 Experimental campaign for the characterization of precipitation in a complex terrain site using high resolution
1134 observations. In Proceedings of the Journal of Physics: Conference Series, 2024; p. 042016.

1135 112. Gunn, R.; Kinzer, G.D. The terminal velocity of fall for water droplets in stagnant air. *Journal of Atmospheric*
1136 *Sciences* **1949**, *6*, 243-248.

1137 113. Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by
1138 collocated disdrometers. *Journal of Atmospheric and Oceanic Technology* **2013**, *30*, 1672-1690.

1139 114. Prein, A.; Rasmussen, R.; Wang, D.; Giangrande, S. Sensitivity of organized convective storms to model grid
1140 spacing in current and future climates. *Philosophical Transactions of the Royal Society A* **2021**, *379*, 20190546.

1141 115. Fridlind, A.M.; Li, X.; Wu, D.; van Lier-Walqui, M.; Ackerman, A.S.; Tao, W.-K.; McFarquhar, G.M.; Wu, W.;
1142 Dong, X.; Wang, J. Derivation of aerosol profiles for MC3E convection studies and use in simulations of the 20
1143 May squall line case. *Atmospheric Chemistry and Physics* **2017**, *17*, 5947-5972.

1144 116. Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A revised approach to ice microphysical processes for the bulk
1145 parameterization of clouds and precipitation. *Monthly Weather Review* **2004**, *132*, 103-120.

1146 117. Morrison, H.; Curry, J.; Khvorostyanov, V. A new double-moment microphysics parameterization for
1147 application in cloud and climate models. Part I: Description. *Journal of the Atmospheric Sciences* **2005**, *62*, 1665-
1148 1677.

1149 118. Milbrandt, J.; Yau, M. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment
1150 closure and scheme description. *Journal of the Atmospheric Sciences* **2005**, *62*, 3065-3081.

1151 119. Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of
1152 the Spectral Shape Parameter. *Journal of the Atmospheric Sciences* **2005**, *62*, 3051-3064, doi:10.1175/JAS3534.1.

1153 120. Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an
1154 improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. *Monthly Weather
1155 Review* **2008**, *136*, 5095-5115.

1156 121. Khain, A.; Beheng, K.; Heymsfield, A.; Korolev, A.; Krichak, S.; Levin, Z.; Pinsky, M.; Phillips, V.; Prabhakaran,
1157 T.; Teller, A. Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics
1158 versus bulk parameterization. *Reviews of Geophysics* **2015**, *53*, 247-322.

1159 122. Xue, L.; Fan, J.; Lebo, Z.J.; Wu, W.; Morrison, H.; Grabowski, W.W.; Chu, X.; Geresdi, I.; North, K.; Stenz, R.
1160 Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes:
1161 Dynamic and thermodynamic structure. *Monthly Weather Review* **2017**, *145*, 4789-4812.

1162 123. Fan, J.; Han, B.; Varble, A.; Morrison, H.; North, K.; Kollias, P.; Chen, B.; Dong, X.; Giangrande, S.E.; Khain, A.
1163 Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. *Journal of
1164 Geophysical Research: Atmospheres* **2017**, *122*, 9351-9378.

1165 124. Yang, Q.; Zhang, S.; Dai, Q.; Zhuang, H. WRF Rainfall Modeling Post-Processing by Adaptive Parameterization
1166 of Raindrop Size Distribution: A Case Study on the United Kingdom. *Atmosphere* **2021**, *13*, 36.

1167 125. Shpund, J.; Khain, A.; Lynn, B.; Fan, J.; Han, B.; Ryzhkov, A.; Snyder, J.; Dudhia, J.; Gill, D. Simulating a
1168 Mesoscale Convective System Using WRF With a New Spectral Bin Microphysics: 1: Hail vs Graupel. *Journal of
1169 Geophysical Research: Atmospheres* **2019**, *124*, 14072-14101, doi: 14010.11029/12019JD030576.

1170 126. Collow, T.W.; Robock, A.; Wu, W. Influences of soil moisture and vegetation on convective precipitation
1171 forecasts over the United States Great Plains. *Journal of Geophysical Research: Atmospheres* **2014**, *119*, 9338-9358.

1172 127. Pryor, S.C.; Letson, F.; Shepherd, T.J.; Barthelmie, R.J. Evaluation of WRF simulation of deep convection in the
1173 US Southern Great Plains. *Journal of Applied Meteorology and Climatology* **2023**, *62*, 41-62.

1174 128. Zhou, X.; Letson, F.; Crippa, P.; Pryor, S.C. Urban effect on precipitation and deep convective systems over
1175 Dallas-Fort Worth. *Journal of Geophysical Research: Atmospheres* **2024**, *129*, e2023JD039972.

1176 129. Zeng, X.; Alves, L.; Boucher, M.-A.; Cherchi, A.; DeMott, C.; Dimri, A.; Gettelman, A.; Hanna, E.; Horinouchi,
1177 T.; Huang, J. Global Precipitation Experiment-A New World Climate Research Programme Lighthouse Activity.
1178 *Bulletin of the American Meteorological Society* **2024**.

1179 130. Yu, S.; Hannah, W.; Peng, L.; Lin, J.; Bhouri, M.A.; Gupta, R.; Lütjens, B.; Will, J.C.; Behrens, G.; Busecke, J.
1180 ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation. In Proceedings of the
1181 Proceedings of Advances in Neural Information Processing Systems, Conference: Advances in Neural
1182 Information Processing Systems 36 (NeurIPS 2023), New Orleans, December 2023, 2024; p. 14.

1183 131. DNVGL. *DNV-RP-0171 Testing of rotor blade erosion protection systems*; Available for purchase from:
1184 [https://www.dnv.com/energy/standards-guidelines/dnv-rp-0171-testing-of-rotor-blade-erosion-protection-
1185 systems/](https://www.dnv.com/energy/standards-guidelines/dnv-rp-0171-testing-of-rotor-blade-erosion-protection-), 2018.

1186 132. Bech, J.I.; Johansen, N.F.-J.; Madsen, M.B.; Hannesdóttir, Á.; Hasager, C.B. Experimental study on the effect of
1187 drop size in rain erosion test and on lifetime prediction of wind turbine blades. *Renewable Energy* **2022**, *197*, 776-
1188 789.

1189 133. Márquez, F.P.G.; Chacón, A.M.P. A review of non-destructive testing on wind turbines blades. *Renewable Energy*
1190 **2020**, *161*, 998-1010.

1191 134. Rizk, P.; Rizk, F.; Karganroudi, S.S.; Ilinca, A.; Younes, R.; Khoder, J. Advanced wind turbine blade inspection
1192 with hyperspectral imaging and 3D convolutional neural networks for damage detection. *Energy and AI* **2024**,
1193 *16*, 100366.

1194 135. Forsting, A.M.; Olsen, A.; Sørensen, N.; Fischer, A.; Markussen, C.; Bak, C. An aerodynamic digital twin of real-
1195 world leading edge erosion: Acquisition, Generation and 3D CFD. In Proceedings of the Journal of Physics: Conference Series, 2024; p. 022021.

1196 136. Hwang, S.; An, Y.-K.; Yang, J.; Sohn, H. Remote inspection of internal delamination in wind turbine blades using continuous line laser scanning thermography. *International Journal of Precision Engineering and Manufacturing-Green Technology* **2020**, *7*, 699-712.

1197 137. Ding, K.; Wu, C.; Luo, M.; Su, Z.; Ding, H.; Ye, Y.; Zhang, D. Surface Profile Inspection for Large Structures with
1198 Laser Scanning. *Surface Topography: Metrology and Properties* **2024**, *10.1088/2051-672X/ad7523*.

1199 138. Leishman, G.; Nash, D.; Yang, L.; Dyer, K. A novel approach for wind turbine blade erosion characterization: an investigation using surface gloss measurement. *Coatings* **2022**, *12*, 928.

1200 139. Zhang, Y.; Avallone, F.; Watson, S. Leading edge erosion detection for a wind turbine blade using far-field aerodynamic noise. *Applied Acoustics* **2023**, *207*, 109365.

1201 140. Pugh, K.; Rasool, G.; Stack, M.M. Raindrop erosion of composite materials: some views on the effect of bending
1202 stress on erosion mechanisms. *Journal of Bio-and Triboro-Corrosion* **2019**, *5*, doi: 10.1007/s40735-40019-40234-40738.

1203 141. Verma, A.S.; Wu, C.-Y.; Díaz, M.A.; Teuwen, J.J. Analyzing rain erosion using a Pulsating Jet Erosion Tester (PJET): Effect of droplet impact frequencies and dry intervals on incubation times. *Wear* **2024**, *205614*.

1204 142. Castorrini, A.; Barnabei, V.F.; Domenech, L.; Šakalytė, A.; Sánchez, F.; Campobasso, M.S. Impact of meteorological data factors and material characterization method on the predictions of leading edge erosion of wind turbine blades. *Renewable Energy* **2024**, *227*, 120549.

1205 143. Hassani-Gangaraj, M.; Veysset, D.; Nelson, K.A.; Schuh, C.A. Melt-driven erosion in microparticle impact. *Nature Communications* **2018**, *9*, 5077, doi: 5010.1038/s41467-41018-07509-y.

1206 144. Tempelis, A.; Mishnaevsky Jr, L. Surface roughness evolution of wind turbine blade subject to rain erosion. *Materials & Design* **2023**, *231*, 112011.

1207 145. Reichert, P.; White, G.; Bayarri, M.J.; Pitman, E.B. Mechanism-based emulation of dynamic simulation models: Concept and application in hydrology. *Computational Statistics & Data Analysis* **2011**, *55*, 1638-1655.

1208 146. Cappugi, L.; Castorrini, A.; Bonfiglioli, A.; Minisci, E.; Campobasso, M.S. Machine learning-enabled prediction of wind turbine energy yield losses due to general blade leading edge erosion. *Energy Conversion and Management* **2021**, *245*, 114567.

1209 147. Campobasso, M.S.; Castorrini, A.; Cappugi, L.; Bonfiglioli, A. Experimentally validated three-dimensional computational aerodynamics of wind turbine blade sections featuring leading edge erosion cavities. *Wind Energy* **2022**, *25*, 168-189.

1210 148. Nikuradse, J. *Laws of flow in rough pipes*; Technical Memorandum NASA TM 1292, Lewis Research Center, Washington, USA: Available for download from: https://digital.library.unt.edu/ark%3A/67531/metadc63009/m2/1/high_res_d/19930093938.pdf, 1950.

1211 149. Kadivar, M.; Tormey, D.; McGranaghan, G. A review on turbulent flow over rough surfaces: Fundamentals and theories. *International Journal of Thermofluids* **2021**, *10*, 100077.

1212 150. Castorrini, A.; Ortolani, A.; Campobasso, M.S. Assessing the progression of wind turbine energy yield losses due to blade erosion by resolving damage geometries from lab tests and field observations. *Renewable Energy* **2023**, *218*, 119256.

1233 151. Castorrini, A.; Ortolani, A.; Minisci, E.; Campobasso, M. Opensource machine learning metamodels for
1234 assessing blade performance impairment due to general leading edge degradation. In Proceedings of the
1235 Journal of Physics: Conference Series, 2024; p. 052055.

1236 152. Barthelmie, R.J.; Doubrava, P.; Wang, H.; Giroux, G.; Pryor, S.C. Effects of an escarpment on flow parameters
1237 of relevance to wind turbines. *Wind Energy* **2016**, *19*, 2271-2286.

1238 153. Latiffianti, E.; Ding, Y.; Sheng, S.; Williams, L.; Morshedizadeh, M.; Rodgers, M. Analysis of leading edge
1239 protection application on wind turbine performance through energy and power decomposition approaches.
1240 *Wind Energy* **2022**, *25*, 1203-1221.

1241 154. Technical University of Denmark. Preventing Microplastics pollution in SEa water from offshore wind
1242 (PREMISE) project. <https://premise.dtu.dk/>. Available online: (accessed on 1 October 2024).

1243 155. Thacker, B.H.; Doebling, S.W.; Hemez, F.M.; Anderson, M.C.; Pepin, J.E.; Rodriguez, E.A. *Concepts of model
1244 verification and validation*; Los Alamos National Laboratory, Report # LA-14167-MS: California, 2004; p. 41.

1245