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Abstract: Enhanced understanding of the mechanisms responsible for wind turbine blade leading
edge erosion (LEE) and advancing technology readiness level (TRL) solutions for monitoring its
environmental drivers, reducing LEE, detecting LEE evolution and mitigating its impact on power
production are a high priority for all wind farm owner/operators and wind turbine manufacturers.
Identifying and implementing solutions has the potential to continue historical trends towards
lower Levelized Cost of Energy (LCoE) from wind turbines by reducing both energy yield losses
and operations and maintenance costs associated with LEE. Here we present results from the first
Phenomena Identification and Ranking Tables (PIRT) assessment for wind turbine blade LEE. We
document the LEE-relevant phenomena/processes that are deemed by this expert judgement
assessment tool to be the highest priorities for research investment. We then discuss and summarize
example research endeavors that are currently being undertaken and/or could be initiated to reduce
uncertainty in the identified high priority research areas and thus enhance the TRL of solutions to
mitigate/reduce LEE.

Keywords: Blades, Expert Judgement, LEE, Machine Learning, PIRT, TRL, Wind Turbine

1. Introduction
1.1. Background and Motivation

The global wind resource greatly exceeds both current electricity demand and total
primary energy supply [1]. Wind energy is a potential mechanism to reduce energy-
related environmental issues (e.g. anthropogenic climate forcing [2]) and to enhance
energy security [3,4]. Many countries have ambitious plans to expand both onshore and
offshore wind energy installed capacity [5]. Thus, it is expected that more wind turbines
will be deployed and we will become increasingly reliant on them for electricity
generation.

The Levelized Cost of Energy (LCoE) in $/MWh of electricity can be computed from

i
LCOE = Zn:1(CA:PEXn+O&Mn)/(1+r)n (1)
Sh—1AEP/(1+T)"
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Where: CAPEX = Capital expenditures in each year (n). O&M = Operations and
Maintenance costs in each year. r = annual discount rate. AEP = amount of electricity (in
MWh) produced each year. i = wind turbine lifetime in years.

In locations with good wind resources, onshore wind energy has the lowest LCoE of any
electricity generation type [6]. However, LCoE from onshore wind energy is no longer
declining [7] and costs for offshore deployments exceed those for onshore [8].

O&M typically account for 25-30% of lifecycle LCoE from wind turbines [9]. Blades
contribute > 20% of the overall cost of wind turbines [10], and blade integrity is a
fundamental determinant of both O&M and power generation (AEP). An important
contributing factor to wind turbine blade lifespan is leading edge erosion (LEE). LEE
refers to the material loss of wind turbine blade coatings leading to exposure and
ultimately loss of the laminate that provides the structure of the blade. It results primarily
from materials stresses induced when hydrometeors (e.g. rain droplets or hailstones)
impact on the rapidly rotating blades [11-14]. The material loss leads to roughening of the
surface, reducing lift and increasing drag [15] and thus negatively impacts AEP [15-19].
LEE requiring emergency blade repair can occur within two years of installation [20], far
short of the expected lifetime of 30 years [21]. O&M expenditures associated with total
blade replacement for onshore wind turbines are > $200,000 and blade replacement may
lead to multiple days of lost power production [22].

Wind turbines being deployed offshore are physically larger and have both longer
blades and higher tip speeds than those deployed onshore [23]. This leads to higher
closing velocities with falling hydrometeors, higher materials stresses [20] and thus a
higher erosion rate [24,25]. Wind turbines being deployed at the South Fork wind farm off
the USA east coast are GE Haliade-X 13 MW machines with blades of 107 m length each
of which weighs 55 tons [26]. These wind turbines have maximum tip speeds of > 90 ms-
1. The 22 MW reference wind turbine that has recently been released for use in offshore
research [27] has even longer blades and a rated tip-speed of 105 ms. Manufacturing
defects and damage during transportation/deployment are likely enhanced in longer
blades [28,29] and even small imperfections may be important sites for initiation of LEE
[29]. Thus, LEE issues may be particularly prominent offshore where O&M costs are much
higher [23] and avoidance of excess maintenance is paramount to reducing LCoE. In 2018
Renew.Biz reported; The consortium behind the 630MW London Array in the UK was
planning “emergency” blade repair to 140 of the project’s 175 wind turbines and ‘A similar
repair campaign has begun at Orsted’s 400MW Anholt wind farm off Denmark, where 87
of 111 ..... turbines are being fitted with rubber-like shells to fix the problem’.

LEE thus represents an important challenge to the cost-effectiveness and reliability
of wind-derived electricity and there is a need to advance fundamental understanding of
the processes that cause LEE and to advance effective solutions.

1.2. The Interdisciplinary Nature of LEE: Introduction to the four LEE themes

Over 40 years ago, the US National Aeronautics and Space Administration
introduced “technology readiness levels” (TRLs) as a conceptual framework for
measuring and articulating the maturity, or readiness for deployment, of emerging
technologies. TRL assessments are usually based on a 9-point scale with higher values
indicating more mature technologies and lower values indicating more nascent
technologies that were in the stages of basic research, or feasibility studies [30,31].

Enhancement of the TRL for solutions to mitigate/reduce LEE requires
multidisciplinary research within four linked themes (Figure 1). Theme 1 is focused on
the atmospheric drivers of LEE and thus requires research primarily in the field of
atmospheric science. Theme 2 is focused on detection and quantification of blade damage
and thus requires research primarily within imaging and image processing plus acoustic
monitoring. Theme 3 is focused on blade response/redesign/repair/protection and thus
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97 requires research primarily within the materials science field. Theme 4 is focused on
98 detection of aerodynamic changes due to LEE and estimation of resulting power reduction
99 and thus requires research primarily within the field of aerodynamics. All themes further
100 require advances in computational tools and measurement technologies. An introduction
101 to each of these themes is briefly given below.
Theme 1: Theme 2:
Atmospheric Drivers of LEE Damage detection & quantification
k | o
¥ ¢
N
1 \

Theme 3: Theme 4:

Materialsresponse & redesign n WE
= xa
>
3~ Rough edge 2D

102

103 Figure 1 Schematic overview of the four LEE themes. RET = Rain Erosion Tester.

104 Theme 1. Atmospheric drivers of LEE

105 The amount of kinetic energy transferred into the blade from an ensemble of falling
106 hydrometeors and the materials response is dictated by the closing velocity (v<) between
107 the falling hydrometeor(s) and the rotating blades, plus the number, diameter (D) and
108 phase of hydrometeors (i.e., hailstones, graupel or rain droplets). The impact force and
109 the kinetic energy transferred into the coating scales with the hydrometeor mass and
110 closing velocity squared [32]. Larger diameter drops may be of greater importance in
111 dictating the kinetic energy transfer to the blades and hence the duration of the incubation
112 period (i.e. period prior to material loss, see details below) [14,33] while smaller drops
113 may be more critical in the transition and steady-state progression [34]. The Waterhammer
114 equation describes the pressure exerted on a coating by the impact as a function of closing
115 velocity [32,35,36]. For vc = 80 ms! a single 2 mm diameter rain droplet may exert a
116 pressure of up to 120 MPa on the blade surface [32]. Hydrometeor phase is of importance
117 because the materials response to hail (ice) exceeds that due to collisions with rain (liquid)
118 droplets [32,37-40]. As few as five hailstone impacts (D of 15 and 20 mm) at vc > 110 ms™!
119 can cause damage to a glass fibre reinforced plastic composite [41]. Thus, prediction of
120 LEE requires accurate and consistent descriptions of hydroclimate conditions, including
121 precipitation intensity, phase and hydrometeor size distributions (HSD) from
122 measurements and models across the wide range of environments in which wind turbines
123 are or will be deployed. However, as discussed in detail below, best practice for the
124 selection and operation of precipitation sensors within the context of LEE has not yet been
125 advanced [14] and numerical models exhibit only partial fidelity for precipitation rate and
126 phase and most simulations do not explicitly simulate or output HSD.

127 A hierarchy of models have been generated to translate from precipitation
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128 intensity/HSD and closing velocities to provide estimates of potential erosion. First-order
129 erosion models rely on the volume (or depth) of impinged water without explicit
130 consideration of hydrometeor size and/or phase [24]. Alternatively, VN curves (velocity-
131 number of impacts to failure, see ‘Materials response’) derived from rain erosion testers
132 can be used to articulate functions that describe the number of impacts at a given closing
133 velocity for a given hydrometeor diameter required for initiation of coating damage and
134 that can be used (with caution) to extend beyond the measured range of closing velocities.
135 For example, assuming all hydrometeors have an effective diameter of 0.76 mm, the
136 accumulated distance to failure (ADF) of the coating is given by;

Veip At
137 ADF = Z{;l# @)

Ho'(75)
138 Where Vois 1 ms, v is the closing velocity between the hydrometeor and blade, vt is the
139 hydrometeor fall velocity (ms), At is the time interval (s) for the specification of the tip
140 speed and precipitation intensity (I, in ms?). Ho and m are fitting parameters that are
141 specific to the coating material tested but for one coating and D = 0.76, these fitting
142 parameters are 2.85x102 m and -10.5, respectively [42]. The summation is over all time
143 periods; i=1 to j. Thus, the challenge is to specify a representative effective diameter to
144 characterize precipitation that falls from stratiform and cumulus clouds and over a wide
145 range of intensity ranges [43]. More mechanistic models require greater specificity in
146 terms of the HSD/phase and range of fall velocities and are described below in Theme 3.
147 Less is known regarding the possible contribution of other meteorological variables
148 to LEE. Prolonged exposure to radiation within the visible range, and particularly UV-A
149 (wavelengths (A) = 320 and 400 nm), may lead to degradation of polyurethane coatings
150 [32,44]. Theoretical and experimental work has also indicated that low temperatures
151 degrade the erosion performance of polyurethane protective leading-edge coatings [45].
152 Thermal cycling (expansion and contraction of the blades) is an important source of
153 materials wear [46]. Other plausible meteorological co-stressors include impacts from
154 aerosols (e.g. wind-blown dust/sand [47,48]) and ice accretion on blades [49].
155 Theme 2. Damage detection and quantification
156 LEE pattern categorization frequently employs five classes with Class 1 “small
157 pinholes” exhibiting erosion depth of 0.1-0.2 mm, average feature damage of 2 mm and
158 approximate cord coverage of 3% [17]. Even Class 1 LEE may result in AEP loss. Early
159 detection and close monitoring of damage progress can help optimize mitigation
160 strategies and identify appropriate maintenance actions (patching and minor repair to full
161 scale blade removal) [50-53].
162 Current techniques for real-time wind turbine blade damage detection [54,55]
163 include; vibration-based techniques [56], ultrasound scanning techniques [57], acoustic
164 emission monitoring [58], and machine vision image or video processing [59]. Three out
165 of four of these LEE detection methods (acoustic emission, ultrasound, vibration-based
166 techniques) require the use of physical sensors placed along the blade or near the wind
167 turbine, which can be costly and vulnerable to damage in extreme meteorological
168 conditions [60]. Image processing methods can be used to assess blade conditions from 2-
169 D and 3-D images or videos captured by instrumentation deployed on unmanned aerial
170 vehicles (UAVs) [61] or taken by technicians [62]. However, as discussed below, the
171 fidelity of different damage detection methods has not been fully quantified.
172 Theme 3. Materials response
173 Wind turbine blades are made of composites (e.g. epoxy or polyester, with
174 reinforcing glass or carbon fibers) [63] coated to protect them by distributing and
175 absorbing energy from hydrometeor and other impacts [64]. Defects such as air bubbles

176 in these coatings have a critical impact on crack initialization [65] and re-emphasizes the
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177 importance of wind turbine blade manufacturing quality in dictating erosion rates.

178 Erosion mechanics comprises an incubation period during which no damage is
179 observed but microstructural material changes can generate nucleation sites for
180 subsequent material removal. Material removal commences when a threshold level of
181 accumulated impacts is reached [66]. This is followed by a period during which additional
182 impacts lead to observable damage as stress waves propagate from impact locations. This
183 leads to growth of pits/cracks and an increase in material loss [67-69]. The number of
184 impacts required to reach the threshold at which material failure becomes evident is thus
185 a nonlinear function of the number, magnitude and phase of the hydrometeors and
186 hydrometeor closing velocity plus the material strength [70].

187 Whirling-Arm Rain ERosion testers (WARERs, or more simply Rain Erosion Testers,
188 RET) artificially simulate the erosion process by spinning a sample of the blade, often with
189 a leading edge protection applied, at very high speeds and bombarding the sample with
190 liquid droplets (of a confined droplet diameter range) supplied via needles [71]. These
191 experiments can be used to develop VN curves and thus to derive empirical coefficients
192 for use in Equation (2). However, the range of closing velocities sampled and used to
193 derive the fitting parameters m and Ho specified below Equation (2) for hydrometeor D of
194 0.76 mm are 90 to 150 ms™ and thus exceed many of those that will occur.

195 Alternatively, a range of modeling techniques have been advanced to simulate the
196 process of material stresses that lead to LEE as a function of hydrometeor size distribution
197 and closing velocity [68,70,72]. The simplest is the Springer model [73,74] combined with
198 Miner’s rule to integrate across all hydrometeor diameters to quantify the accumulated
199 distance to failure (ADF) [66,75]. However, these simple engineering models of LEE
200 include multiple coefficients/assumptions that limit the robustness of lifetime estimates
201 and when invoking Miner’s rule, assume damage is linearly accumulated.

202 Theme 4. Aerodynamic implications of LEE

203 A smooth leading edge reduces turbulence and drag, optimizing the lift-to-drag ratio
204 of a wind turbine blade. The outer part of the blade (towards the tip) produces most of
205 the energy and experiences the highest relative wind speeds. Thus, the leading edge
206 towards the blade tip is both the most vulnerable to roughening by material loss and is
207 also where reducing lift/increasing drag maximizes negative impacts on AEP. Maximum
208 lift force on blades has been modeled to be reduced for damage associated with roughness
209 heights of 0.11 mm for a rotor with a 175 m diameter [16]. Erosion classes 3 to 5 (large
210 patches of missing coating, erosion of laminate and complete loss of laminate,
211 respectively), are associated with AEP reductions of 1-5% [76]. Recent reports found LEE-
212 induced AEP losses from onshore wind turbines after only 1-3 years [77] but there is a
213 paucity of data regarding underlying blade LEE topologies. Damage location on the blade
214 is known to play a critical role in alteration of the aerodynamic behavior and so there are
215 clear links between themes 2 and 4 [78].

216 The Simplified Aerodynamic Loss Tool (SALT) model [79] can be used to illustrate
217 the predicted effect of erosion on the power coefficient (Cr) and AEP loss relative to a
218 clean or undamaged blades, while acknowledging it omits many of the details of more
219 complex models [80]. Within SALT damage is specified in 2% increments over the outer
220 70% of the blade (location r as a fraction of blade radius R) using a five-level
221 categorization. Category a is undamaged, and lift-to-drag ratio (Ci/Ca) is estimated as 1.
222 Category e represents the most severe damage deeper than 0.3% of the blade chord and
223 C/Ca=0.3. For the IEA 15 MW reference wind turbine [81] and a hub-height wind speed
224 of 10 ms, Cr for an entirely undamaged blade is ~ 0.4551 reducing to ~ 0.2907 for category
225 e damage. Cr correction factors (multipliers to Cr) are shown as a function of 1/R in Figure
226 2a for wind speed of 10 ms™. The impact of roughening of the leading edge on blade lift

227 and drag and power production is a non-linear function of inflow wind speed and is
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specifically important at below rated wind speeds (Figure 2b) and also depends on
turbulence intensity [19]. Thus, the AEP loss is dependent on the site wind climate.
Assuming a Weibull distribution of hub-height wind speeds for a typical US Central
Plains site [14], AEP loss for different erosion levels along the outer 70% of the blade is
shown in Figure 2c. While this analysis is useful for illustrative purposes, uniform damage
is unlikely to occur across such large areas of a blade thus the AEP loss estimates greatly
exceed those that are likely to be observed. Further, attribution of any loss in blade
performance to any specific cause (e.g. LEE, gearbox wear-and-tear, soiling of blades) is
very challenging [82,83] particularly in operating wind farms.
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Figure 2 Results from the SALT model for (a) Cr correction factors as a function of distance along the blade for a clean
blade (shown by the blue line, Category a damage) and substantial damage (shown by the black line, Category e
damage) along the outer two thirds of the blade for a hub-height wind speed of 10 ms™ for the IEA 15 MW reference
wind turbine. (b) Power curves (power generation as a function of hub-height wind speed) for the IEA 15 MW
reference wind turbine for a clean blade (Category a damage) and a damaged blade (Category e damage). (c) AEP loss
for damage categories a to e and o3e (level 3 damage only for the outer 1/3 of the blade) for the IEA 15 MW reference
wind turbine and the Weibull distributed wind speeds from a US Southern Great Plains site [14].

Optimizing O&M as LEE progresses for cost-effectiveness requires not only accurate
damage assessment but also robust, quantitative understanding of the effect of LEE on
blade aerodynamics. For example, if the damage is minor pitting without material losses,
the aerodynamic efficiency may only be slightly lower than its design, and potentially
even only impacting the aerodynamics at some tip speed ratios. In this case, unless the
damage is likely to propagate it may be more cost effective to wait rather than to order
repairs. On the other hand, if material damage has penetrated beyond the blade coating,
even a small gouge may potentially leave open the possibility of further material loss and
extensive delamination impacting not only the aerodynamics but necessitating costly on-
site repairs.

1.3 Possible Solutions for Leading Edge Erosion

Fundamentally, efforts to reduce LEE can be placed into two classes:

e Enhanced blade resilience. This may be achieved by blade redesign and/or use of
improved materials (e.g. more energy consuming coatings) [84,85], improved
manufacture and/or use of leading edge protection (LEP) products. A range of LEP
products are available including: (1) In-mould application of a gelcoat (e.g. epoxy)
during blade manufacture or co-bonding to an erosion shield (rigid/semi rigid
covers). (2) Post-mould application of flexible coatings (e.g. polyurethane [86])
using sprayers/rollers or flexible tapes [87] or thermoplastic erosion shields [88].
Details of the relative merits of these solutions, including their durability have
been previously reviewed [20,89,90]. Best practice for the optimal length of LEP
from the tip of the blade is being investigated [91] as is the optimal thickness of
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267 application [92]. All protective solutions incur additional costs and reductions in
268 aerodynamic performance and AEP. For example, some research has reported 2-
269 3% AEP losses from LEP tapes [87,93]. Further, some post-mould LEP products are
270 challenging to apply (see below, section 3.4) and/or lack durability [94].

271 e  Operation of wind turbines in a manner to reduce materials stresses. Specifically,
272 use of erosion safe mode [11] wherein wind turbine operation is modified during
273 highly erosive periods to reduce blade rotational speed, thus sacrificing AEP to
274 elongate blade lifetime [95].

275 Both classes of solution require detailed assessment of site conditions regarding likely
276 severity of LEE since the incubation, transition and steady-state progression of damage
277 on the leading edge differs as a function of precipitation climate and possibly other
278 operating conditions [16]. Quantitative comparison of overall cost effectiveness requires
279 detailed information regarding (i) AEP loss from LEE, LEP application (including down-
280 time if LEP is applied post commissioning) and/or adoption of erosion safe mode. (ii) Cost
281 of LEP measures and expense of deployment [96] and robust economic/financial
282 information such as the spot market price for electricity [97]. Ultimately an optimal
283 solution is likely to be one which maximize revenues over a specific period of time for a
284 given wind farm [98]. Consideration of either solution type for a given situation demands
285 robust knowledge of processes/phenomena in each of the four themes described above.
286 Thus, the issue confronting the wind energy industry is how to prioritize research to
287 reduce uncertainty and increase confidence for wind farm owners/operators and enhance
288 the TRL for LEE mitigation.

289 1.4 Objectives of this Work

290 Our goal is to map priorities for LEE research that can enhance the technology
291 readiness levels for LEE solutions such as those described in section 1.3, and thus aid in
292 reducing the LCoE from wind turbines. To achieve this goal we undertook, and herein
293 present, the first Phenomena Identification and Ranking Tables (PIRT) assessment for
294 wind turbine blade LEE (section 2). Following presentation of the PIRT analysis, we
295 discuss research required and/or being conducted to address the highest priority research
296 needs identified during the PIRT process and that is necessary to enhanced TRL of LEE
297 solutions (section 3). We conclude in section 4 by describing next steps.

298 2. PIRT

299 The PIRT process is a systematic way of gathering information regarding processes
300 on a specific concept and ranking their importance to meet some decision-making
301 objective such as prioritization of research activities to enhance the TRL. PIRT has been
302 widely applied within, for example, nuclear safety [96,99,100], but is gaining traction in
303 other disciplines [101].

304 A schematic workflow of the PIRT process as applied in this research is given in
305 Figure 3. Steps 1 and 2 require identification of a topic of interest and then articulation of
306 the PIRT objective(s). To aid in structuring the PIRT by thematically clustering of
307 processes/phenomena, in Step 3 four LEE themes were articulated (section 1). The PIRT
308 analysis then proceeded by polling experts to identify key phenomena in each of those
309 LEE themes, acknowledging that some phenomena cross the thematic boundaries.
310 Following best practice in prior PIRT analyses [96], once each of the processes/phenomena
311 were identified then domain experts were asked to provide for each a ranking of ‘High’,
312 ‘Medium’ or ‘Low’ priority. To derive a mean ranking and the standard deviation (SD)
313 across respondents, rankings of ‘high” were allocated 1 point, medium as 0.5 and low as
314 0. As an example, the need for hydrometeor size distributions (HSD) (jointly with wind
315 speeds) to inform LEE assessment was given a mean ranking of 0.86 and the standard

316 deviation is 0.32 (Table 1). These rankings are because > 80% of respondents gave a
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ranking of high, and approximately 10% gave a ranking of either medium or low.

Step 1: Identify
issue
Step 2: Articulate PIRT

objective(s)

Step 3: Define themes to cluster
processes

Step 4: Identify key

processes/phenomena

Step 5: Rank
processes/phenomena
Step 6: Rank knowledge level (measurement/model
Step 7: Summarize scores: Mean &
dispersion (SD)

Step 8: Document PIRT & generate proposed actions
to address key research needs

Figure 3 Workflow of the PIRT process. Steps in red indicate solicitation of expert judgements.

Table 1. PIRT analysis results. Column 1: Processes/phenomena of interest. Columns 2 and 3: Mean (Mean) ranking and the
standard deviation (SD) of the rankings across respondents. Expert judgement evaluation of the knowledge regarding each
process/phenomenon as translated into state-of-the-art measurements (columns 4 and 5) and modeling (columns 6 and 7). Items in
black have high importance (mean > 0.8) and process-level understanding has been well-translated to measurement technologies
and/or modeling (mean > 0.5). Process/phenomena in red have high-importance (mean > 0.8) but process-level knowledge is
lacking and/or translation of that knowledge to measurement and modeling capabilities is poor (mean < 0.5) and thus are defined
as Tier 1 for research. Items in blue are Tier-2 priorities for research; moderate importance (0.5 < mean < 0.8) and process-level
knowledge and translation to models and measurements incomplete (mean < 0.6). Items in green have importance level scores
(mean < 0.5). Note: Process/phenomena are listed in the order in which they were presented to the respondents to avoid confusion
that the rank order of importance is systematically a function of the row number in the PIRT.

Process/Phenomena .
Measurement Modeling
Importance Level
Theme 1: Atmospheric drivers Mean SD Mean | SD Mean | SD
Hub-height wind speeds: existing wind farms 0.92 0.19 1 0 0.73 | 0.26
Hub-height wind speeds: prospective wind farms 0.91 0.2 0.82 | 0.25 | 0.68 | 0.25
Hydrometeor size distribution 0.86 0.32 0.27 | 041 0.2 0.26
Hydrometeor phase (rain/hail/other) 0.91 0.3 0.36 | 0.39 | 0.14 | 0.23
Hydrometeor fall velocities 0.58 0.36 0.41 | 0.38 | 0.32 | 0.34
Impinged water (blade capture efficiency as a function of droplet 0.55 0.44 015 | 0.34 01 0.21
diameter)
Real-time data for ‘erosion safe mode' 0.68 0.25 0.18 | 0.34 | 0.46 | 0.33
Space/time variability in hydroclimate conditions 0.64 0.23 0.59 0.2 0.59 0.2
Non-hydrometeorWegtherlng stressprs (e.g. UV rad|aF|on, icing, 0.55 0.27 018 | 025 | 027 | 034
thermal expansion, aerosols (incl. dust & pollution))
Reanalysis/gridded product data quality 0.44 0.17 0.67 | 0.25 | 0.81 | 0.26
Theme 2: Damage detection and quantification Mean SD Mean | SD Mean | SD
Availability of blade images & methods to quantify damage 0.83 0.25 0.54 | 0.33 0.5 0.33
Damage characterization from varymgmgge types& methods to 0.88 0.23 058 | 029 | 044 | 03
translate to damage classification
Methods for 3-D characterization of.damage morphology & rate of 071 0.96 025 | 026 | 018 | 025
progression
Translating water impingement to materials loss/stress (e.g.
metrics: Kinetic Energy, Springer-ADF, VN curves) 0.86 0.23 0271 0.26 1 0.36 | 0.23
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Quantification of materials loss 0.71 0.26 0.5 0.39 | 0.27 | 0.26
Quantification of equivalent SLlJcr)fSasce roughness for aerodynamic 0.75 0.96 0.41 03 045 | 0.27
Microplastic loss for environmental impacts 0.5 0.21 0.21 | 0.26 | 0.27 | 0.26
Theme 3: Materials response Mean SD Mean | SD Mean | SD
Rain erosion tester reliability & reproducibility 0.92 0.19 0.59 0.3 04 |0.21
Rain erosion tester representation of atmospheric conditions:
hydrometeors: phase (e.g. rain and hail), size distributions & 0.83 0.25 0.5 0.33 | 0.28 | 0.26
collision velocities
Rain erosion tester rgpresentgnon of atmo‘spherlc conditions: flow 0.71 0.33 045 | 028 | 028 | 036
field (e.g. impact velocities)
Methodol'ogles to trans{ate lab e>'<per|ment.al data (incl. rain 0.88 0.93 035 | 0.24 0.3 0.26
erosion tester) to field conditions & failure modes
Damping and energy dissipation properties of LEPs/coatings
. ) 0.67 0.25 0.32 | 0.25 | 0.45 | 0.16
(single/multilayer)
Linking mechanical and V|§coelast|c properties to failure 0.73 0.96 032 | 025 0.4 0.32
mechanisms/modes
Coating adhesion & mechanics of multi-layer materials 0.75 0.26 0.45 | 0.44 | 0.55 | 0.28
Material response.to non-hydrometeqr weathering s.tressors (e.g. 0.64 0.23 036 | 032 | 035 | 024
UV radiation, icing, thermal expansion, aerosols (incl. dust))
Theme 4: Aerodynamic implications of LEE Mean SD Mean | SD Mean | SD
Quantification of damage and surface roughness progression 0.95 0.16 0.4 032 | 045 | 028
through time
Attribution of AEP loss to LEE (via effective surface roughness) 0.88 0.23 0.35 | 0.34 0.5 0.24
Attribution of AEP loss to application of LEP measures 0.75 0.26 0.4 0.39 | 0.55 | 0.28
Quantifying evolution of power curve through time (incl. post 0.75 0.26 0.3 0.42 0.3 0.42
deployment)
Optimization of damage repair solution/timing 0.9 0.21 0.35 | 0.34 0.5 0.33

The second component of PIRT analyses (Step 6) is to evaluate the state of knowledge

with respect to each process/phenomenon. Here we broke this down into two aspects:

1. What is the state of knowledge regarding this phenomenon/process and how
well has knowledge regarding this process/phenomenon been translated into
measurement technologies and data analysis procedures?

2. What is the state of knowledge regarding this phenomenon/process and how
well has knowledge regarding this process/phenomenon been translated into
state-of-the-art modeling tools?

Conceptually, the goal

of this

combined

rating

system

is to

identify

phenomena/processes that have high importance and where critical knowledge gaps
preclude full treatment of those phenomena/processes in numerical models or current
measurement technologies and data analysis tools. Such phenomena/processes will have
high importance ratings but low measurement/modeling ratings. Advancing knowledge
for these topics is most likely to enhance TRL for LEE solutions. In this preliminary PIRT
analysis respondents were also encouraged to supply narratives explaining their
rankings.

Based on PIRT tables one can identify key processes and phenomena that are of high
importance but where the state-of-the-art ability to measure or simulate them is deemed
good. An example is hub-height wind speeds at operating wind farms. These wind speeds
are critical to power production and blade tip speed predictions. The mean ranking for
phenomena importance was > 0.9 with small standard deviation (< 0.2) indicating
consensus of this ranking. But the ratings for translation of knowledge to measurements
and/or models is also rated as high. Nacelle mounted anemometers and/or remote sensing
technologies such as lidars have been demonstrated to have relatively high fidelity with
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355 respect to wind speeds within the rotor plane even in complex terrain [102] and offshore
356 [103]. Multiple modeling exercises have also demonstrated that numerical weather
357 prediction (NWP) models such as the Weather Research and Forecasting (WRF) model,
358 particularly when coupled to micro-scale flow models, also exhibit relatively high fidelity
359 [104]. This does not imply there is not a need for continuing to improve measurement and
360 modeling capabilities but that, in the context of LEE, other research activities should be
361 prioritized.

362 Equally, there are processes/phenomena where understanding is lacking but
363 uncertainty in a process/phenomenon is not deemed to be a current primary limitation on
364 TRL for LEE solutions. Such a process/phenomenon might be deemed tier-2 for research
365 effort. An example drawn from Theme 1 Atmospheric drivers is non-hydrometeor
366 stressors, which received a mean process/phenomena importance level rating of 0.55 and
367 both measurement and modeling require improvement.

368 High SD of rankings also conveys information about the divergence of opinions
369 across the experts. An example from theme 1 is the estimation of impingement efficiency
370 as a function of hydrometeor diameter [105]. The mean rating for importance is 0.55 but
371 the variability around that is large (SD = 0.44). Thus, there is substantial variability in the
372 opinions regarding whether ‘capture’ of hydrometeors of different sizes by the blade
373 leading edge is <1 for hydrometeors of greatest importance to damage, and whether there
374 is uncertainty in the D and v. dependence of impingement efficiency.

375 3. Discussion of exemplar research activities designed to address critical research needs
376 identified in the PIRT process and thus to improve TRL of LEE solutions

377 3.1 Phenomenalprocesses given Tier 1 priority within the atmospheric drivers theme

378 Two processes/phenomena within Theme 1 were identified as tier 1 priority:
379 Hydrometeor size distribution (HSD) and phase. The narratives supplied within the PIRT
380 framework and past research suggest that although these are phenomena of importance,
381 knowledge or translation of knowledge to improved measurement/data analysis
382 procedures or to modeling tools is insufficient. Materials stresses are demonstrably a
383 function of the number and diameter of impinging hydrometeors. The HSD (and
384 hydrometeor phase) is also a reciprocal function of precipitation intensity and of temporal
385 and spatial scale [106]. For example, analyses of data from the US Southern Great Plains
386 showed that 10% of 1-minute precipitation rates exceed 4.5 mmhr, while this 90t
387 percentile value for 10-minute precipitation rates are < 2.3 mmhr?! [14]. A study in
388 Switzerland using automated hail sensors found that ‘75 % of local hailfalls last just a few
389 minutes (from less than 4.4 min to less than 7.7 min, depending on a parameter to
390 delineate the events) and that 75 % of the impacts occur in less than 3.3 min to less than
391 4.7 min.’ [107] These findings imply not only a need for robust assessments of
392 precipitation rate, HSD and phase but also that such data, whether from measurements
393 or models, need to be available at high spatiotemporal resolution.

394 A range of technologies exist to measure the precipitation intensity (collectively
395 referred to as rain gauges (RG)) [108] and HSD (i.e. instruments that measure
396 hydrometeor number concentrations in size classes and are referred to as disdrometers)
397 [14]. Some disdrometers also measure the fall velocity, phase and sphericity (which is
398 required to compute the hydrometeor mass and kinetic energy transfer) [14]. In the case
399 of optical (or laser) disdrometers the hydrometeor D is measured by the number of
400 horizontal laser beams broken by the hydrometeor and the vt is derived from the duration
401 of time the beams are interrupted.

402 Assuming spherical droplets, the precipitation rate (RR in mmhr') from a
403 disdrometer is proportional to the sum of the number of size-distributed (n in diameter

404 (D) class i=1 to j):
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405 RR « ¥J_ n;D} (3a)

406 Or more explicitly for the OTT Parsivel? disdrometer (which has 32 diameter classes):

407 RR = %%% 32 n;D} (3b)

408 Where F is the instrument ‘field of view” and t is the duration of time during which the
409 hydrometeor counts are made.

410 The implication of Equation (3a,b) is that small errors in hydrometeor diameter can yield
411 large errors in RR. Hence, if the precipitation rate is to be derived from disdrometers
412 accurate assessment of the hydrometer diameter is a necessary pre-requisite, but the axis
413 ratio (the ratio of the vertical dimension of the hydrometeor to the horizontal dimension)
414 for liquid hydrometeors is generally <1, and scales with the horizontal dimension [95,109].
415 Most disdrometers report RR computed by integrating over all hydrometeor diameters
416 and fall velocities using proprietary software which includes correction factors e.g. for the
417 axis ratio of hydrometeors that are not fully specified.

418 When the accumulated depth of precipitation (or precipitation intensity) from
419 disdrometers is compared with tipping or weighing rain gauges that measure only the
420 mass or depth of water accumulated over a time interval, incomplete closure is achieved
421 [110]. Thus, even if using first-order models of nominal erosion rates (such as those
422 described above) are employed, the source of the precipitation data is a major source of
423 uncertainty in lifetime estimates. For example, data are being collected at the Wind Energy
424 Institute of Canada (WEICan) wind farm on Prince Edward Island Canada, using an OTT
425 Parsivel? optical disdrometer and an unheated Campbell Scientific TE525 Tipping Bucket
426 Rain Gauge (RG) (Figure 4a). Because the RG is unheated, in the following we select only
427 data collected during the summer months to avoid periods with snowfall. Hourly
428 summertime accumulated precipitation from the disdrometer is consistently lower than
429 those from a RG across a wide range of precipitation rates and wind regimes (Figure 4b,c).
430 Although the disdrometer is more likely to report non-zero precipitation (even when the
431 threshold to detect precipitation is set to that determined by the tip-volume of the rain
432 gauge, Figure 4d), of particular importance to LEE, the RG at WEICan exhibits twice the
433 frequency of occurrence of precipitation rates > 10 mm/hr. When conditionally sampled
434 to select periods when both sensors exhibited non-zero precipitation, the probability of
435 extreme precipitation being reported by the RG is also higher than that from the

436 disdrometer (Figure 4c).
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Figure 4 (a) Precipitation sensors deployed at WEICan. (b) Scatterplot of hourly precipitation (PPT) from the rain
gauge (RG) and OTT disdrometer (Dis) for data collected during; May-October of 2002 and 2023. Symbols scale with
prevailing wind speed at wind turbine hub-height (HH). (c) Histograms of hourly precipitation for all hours when
both sensors report non-zero precipitation. (d) Heatmap of the joint probability of no precipitation (defined using a
threshold of 0.126 mm, i.e. minimum reported by the RG) from RG and Dis. As shown, 7% of hours exhibited
precipitation of > 0.126 mm from both sensors. (e) Example photograph of leading edge erosion on one of the wind

turbines operating at WEICan.

More mechanistic models of material stress and erosion include information
regarding HSD (i.e. the number concentration of hydrometeors of given diameters, D)
which can be derived from disdrometer measurements of the number counts (n(i,v)) in
diameter (i) and fall velocity (vt) classes:

_yx )
N(Dy) = V=1 Fty(i,v)AD; .

Where x is the number of fall velocity classes and AD; is the width of each diameter class,
i. The implication of Equation (4) is that small errors in either hydrometer D or fall velocity
can yield substantial errors in the derived HSD (i.e. expression of number concentrations
as a function of hydrometeor diameter). However, measured HSD also differ across
different disdrometers and standardized data processing procedures are lacking
[14,95,111]. Further, there is evidence that the relative performance of different
disdrometers is a function of the prevailing climate [14]. Accordingly, when
measurements from the three most commonly used disdrometers types (optical, impact
and video) are used to compute accumulated kinetic energy of transfer from hydrometeor
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459 impacts to wind turbine blades at an example site in the US Southern Great Plains, the
460 results differ by 38% [95]. The results differ by 100% when different data analysis
461 protocols that vary in terms of the permitted range of fall velocities regarding
462 hydrometeor asymmetry are applied to a single disdrometer [95]. Also, even excluding
463 effects from hydrometeor hardness, hail may be substantially more erosive than rain due
464 to the higher diameters of these hydrometeors. Many disdrometers use proprietary
465 empirical functions to indicate possible presence of hail based on hydrometeor diameter
466 and/or fall velocity rather than directly detecting it.

467 Research to reduce uncertainty in HSD/v¢/sphericity (axis ratio)/phase and ultimately
468 to provide best practice for measurements at prospective or operating wind farms is
469 ongoing. This includes an experiment performed at an airport in upstate New York in
470 which two identical OTT Parsivel? optical disdrometers have been deployed close to a
471 highly maintained Mesotech heated tipping bucket RG (part number 29000503) deployed
472 as part of the Automated Weather Observing System operated by the US Federal Aviation
473 Administration. The experiment ran from June to September 2024, inclusive (154 days of
474 1-minute observations), and focused on summer months to avoid snowfall periods. It is
475 designed to test whether the presence of large diameter hydrometeors reported at vt < vt
476 (where vtis the terminal fall velocity) for that D [112] is due to horizontal advection of the
477 droplets during high wind events. Accordingly, one of the disdrometers was deployed
478 with a windshield and the other without as typifies current deployments at operating
479 wind farms (Figure 5a). In contrast to the data being collected at WEICan (Figure 4) good
480 achievement is found between hourly precipitation intensity from the RG and
481 disdrometers across the entire dynamic range of the precipitation intensities (Figure 5b).
482 Across the range of observed wind speeds (0-12 ms™) and wind gusts (0-18 ms) measured
483 using a sonic anemometer deployed at 10-m AGL, the two disdrometers exhibit a high
484 degree of agreement in terms of detection of precipitation (Figure 5d) and amount of
485 precipitation (Figure 5b), and there is no evidence that the degree of agreement between
486 the disdrometers and with the RG scales with wind intensity (Figure 5b). This experiment
487 does not suggest that wind shielding of disdrometers greatly reduces the frequency of
488 occurrence of hydrometeors falling with vt < ve(Figure 5c), or greatly improves agreement
489 with precipitation rates sampled with a RG (Figure 5b).

490 There remains an urgent need for a comprehensive instrument inter-comparison
491 experiment, openness from instrument manufacturers regarding hardware settings and
492 for development of best practice for instrument deployment and data processing to
493 enhance the TRL for prediction of long-term LEE and nowcasting of erosive events for

494 erosion-safe mode implementation.
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495
496 Figure 5. (a) Instruments deployed in upstate New York. (b) Scatterplot of hourly precipitation (PPT) from the
497 disdrometer operated without the wind shield (Dis wo/shield) versus the disdrometer with the wind shield (Dis
498 w/shield) (filled symbols) and the rain gauge (RG) (open symbols) on logarithmic and linear axes. Symbols are scaled
499 with, and colored by, the prevailing wind speed at 10 m AGL (left-hand panel) and by the fastest wind gust (right
500 panel). (c) Joint probability of hydrometeor diameter (D) and fall velocity (v¢) from Dis w/shield. White line indicates
501 terminal fall velocity (vt) as a function of D from Gunn and Kinser [112]. Yellow lines show the £50% bounds on vt
502 that may indicate erroneous observations [113]. (d) Heatmap of the joint probability of no precipitation or
503 precipitation from the two disdrometers.
504 NWP models are sophisticated and skillful tools for weather forecasting and climate
505 projections. However, simulated precipitation occurrence and intensity remain less
506 skillful than other atmospheric properties and are highly dependent on model grid [114].
507 The PIRT analysis also identified the need for improvements in the numerical simulation
508 of precipitation and HSD. These issues have long been recognized within the atmospheric
509 science modeling community [115] and there are many parameterizations available to
510 represent cloud, precipitation, and convection processes from scales of millimeters to
511 kilometers, which can yield very different precipitation rates (see example in Figure 6).
512 Most NWP models use bulk microphysics schemes and employ gamma distributions for
513 cloud and hydrometeor distributions [116-120]. Binned (or classed) microphysics schemes
514 resolve the HSD at higher computational cost and improved flexibility [121], but different
515 schemes yield widely varying hydrometeor characteristics [122] and they do not always
516 out-perform bulk schemes in terms of the fidelity of RR [123]. Most modeling studies post-

517 process simulated RR using empirical relationships between near-surface HSD and
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simulated RR [124]. Simulated hail production is also very sensitive to the pre-existing
aerosol, frozen hydrometer density and other factors influencing hydrometer diameters
and fall velocities [125]. The land surface scheme employed and soil moisture used to
initialize numerical simulations also influence precipitation simulation fidelity [126].

It has been previously shown that WRF exhibits some skill for forecasting heavy
precipitation and hail and the occurrence of high wind speeds, but the joint occurrence of
heavy precipitation and high wind speeds and the simulation of hail diameter continue
to lack the fidelity necessary to make integrative robust assessments of erosion potential
or short-term forecasts of highly erosive events for erosion safe-mode operation [75, 76].
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Figure 6 Spatial average; (a) Precipitation rate and (b) accumulated precipitation from WRF simulations (dx =1 km) of
an intense precipitation event during March 2017 over a region with many wind turbine assets [127]. The simulation
[128] is performed in a short-term forecasting mode as would be used for predicting the need for erosion safe-mode
operation of wind turbines. Time series denote simulations with five different microphysics schemes; Milbrandt-Yau
(MILB), Morrison (MORR), Thompson aerosol aware (THOMA), WRF double moment seven category (WDM?7), and
NSSL, plus RADAR (NEXRAD) observations. (c) The domain over which the spatial averaging is performed. Black

triangle indicates Dallas Fort Worth, black lines denote the state boundaries of Texas, Oklahoma and Arkansas.

Improved representation of hydroclimatic conditions with numerical models,
scoping of uncertainty and fundamental model improvements are a focus of multiple
initiatives within the atmospheric science community including the World Climate
Research Programme Global Precipitation Experiment lighthouse activity [129]. Machine
learning climate emulators are also being developed that seek to bridge the gap between
the scales resolved by NWP models and precipitation at the local-level [130]. Leveraging
such initiatives can, and will, benefit the wind energy industry and enhance TRL of LEE
mitigation options. However, the specific need for model and measurement fidelity for
precipitation rates and HSD particularly at high wind speeds is, to some degree, specific
to the wind energy community. Effort should be invested in a detailed NWP verification
and validation (V&V) framework that is specifically focused on the requirements of the
wind energy community to advance the TRL for model-based prediction of LEE
meteorological drivers. This is a focus of the Understanding atmospheric impacts on wind
turbines for better efficiency (AIRE) project (https://aire-project.eu).

3.2 Phenomena/processes given Tier 1 priority within the damage detection and quantification
theme

This PIRT process resulted in one phenomenon/process being given Tier 1 priority
within the damage detection and quantification theme: Translating water impingement to
materials loss/stress (e.g. metrics: Kinetic Energy, Springer-ADF, VN curves). Although
this topic could legitimately be included under theme 3 — materials response, the specific
theme under which it was listed is likely not a critical determinant of the PIRT rating. As
described above, computing the accumulated kinetic energy (AKE) of collisions between
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557 falling hydrometeors and rotating blades through time is trivial presuming adequate data
558 regarding the hydrometeors and hub-height wind speed are available at high time
559 resolution. However, AKE does not directly translate to material damage.

560 Springer’s model uses material properties of the blade and coating and the
561 hydrometeor impact number, diameter, velocity and impact angle to estimate a distance
562 to failure or the end of the incubation period for coating wear for each hydrometeor
563 diameter that combined with Miner’s rule is used to estimate ADF [95]. However,
564 Springer’s model is not very mechanistically defined and the parameter estimates are
565 highly uncertain [66].

566 As described above many RET experiments are confined to a fairly narrow range of
567 droplet sizes and can generate only liquid droplets. However, actual precipitation is
568 comprised of an ensemble of multiple hydrometeor diameters. A recommended practice
569 from DNV [131] considers only one droplet diameter (D =2.38 mm) that naturally will not
570 reflect the range of observed hydrometeors. Indeed, based on data from the US Southern
571 Great Plains, where deep convection and intense precipitation is relatively common [14],
572 the mass-weight hydrometeor mean diameter is > 2.38 mm during only 6% of 1-minute
573 precipitation periods. Further, to achieve damage results in a reasonable time (i.e. to
574 accelerate erosion), RETs are operated at higher closing velocities than represent real
575 operating conditions. The resulting VN-curves are then extrapolated to derive estimates
576 at lower vc of the number of impacts at a given diameter that would yield damage. Testing
577 viscoelastic coatings at very high closing velocities may result in rain erosion testers
578 underestimating coating or LEP durability because wind turbines frequently operate at
579 lower tip-speeds. A comprehensive rain erosion test with multiple droplet sizes
580 underlines the need for further research on the derivation of the VN-curves from RETs
581 [132]. More detail is given in section 3.3.

582 Other phenomena/processes in the damage detection theme that are characterized as
583 tier 2 priority for research relate to the accuracy of damage estimates. The use of drones
584 and robots for blade inspection is becoming more routine particularly for larger wind
585 turbines and offshore wind farms and potentially decreases costs/time/risk of injury to
586 technicians [133]. Full automation of damage detection data derived using such tools is
587 leveraging advanced Machine Learning (ML) image processing tools [62,134]. Further
588 innovations in this field include construction of digital twins using high-resolution
589 topographic leading edge roughness (LER) data from operating/decommissioned blades
590 that can be analyzed aerodynamically using 3-D computational fluid dynamics (CFD) or
591 wind tunnels [135].

592 Efforts to commercialize damage detection solutions are ongoing (e.g. using thermal
593 imaging [136], laser profilometry [137] or gloss measurement [138]) implying relative high
594 TRL, even as research is being conducted to evaluate efficacy as a function of damage
595 severity and extent [139].

596 3.3 Phenomenalprocesses given Tier 1 priority within the materials response theme

597 This PIRT analysis identified two phenomena within Theme 3: Materials response as
598 Tier 1 priority for research that links to the usefulness of RETs and specifically their
599 representation of atmospheric conditions including hydrometeors phase (e.g. rain and
600 hail), size distributions & collision velocities [12], and whether accelerated lab-tests
601 represent pre-stressing of blade materials that enhances hydrometeor erosion of the
602 leading edge [140]. These concerns also link to the second Tier-1 research priority:
603 Methodologies to translate lab experimental data (incl. rain erosion testers) to field
604 conditions & failure modes (see section 3.2).

605 Important new research is testing multiple key aspects of translation of RET to real-
606 world conditions. For example, RET tend to operate with continuous bombardment with

607 droplets, while in the real-world precipitation is discontinuous. Experiments with a
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608 pulsating jet erosion tester has evolved evidence that duration of time between
609 precipitation events may play a role in the dictating the number of droplet impacts
610 required to reach the end of the incubation time [141]. Recent RET tests performed with
611 and without UV exposure have found that UV weathering reduced the LEE coating life
612 by about 30%, which greatly influenced resulting VN curve parameters [142].

613 Experimental technologies clearly have an important role in projecting damage
614 emergence and progression, but mechanistically-sound numerical models can permit
615 more diagnostic analyses and sampling across a broader spectrum of conditions. An
616 important source of uncertainty in such numerical models is that the precise composition
617 of LEPs and/or coating is proprietary. In addition, the temperature and strain rate
618 sensitivity of the flow stress are either ignored in modeling or at best implemented with
619 empirical constitutive equations. This may lead to significant deviations from reality
620 considering the adiabatic nature of hydrometeor impacts deforming surface layers at
621 relatively high strain rates [143].

622 More sophisticated and explicit models such as Finite Element (FE) models of
623 multiple liquid impact on multilayered viscoelastic materials take into account microscale
624 materials structure and porosity [84,144] and thus are preferable to empirical or semi-
625 empirical models. However, they are relatively computationally demanding and require
626 information regarding a range of material properties and behaviors that can be difficult
627 to acquire. The computational cost is amplified if all possible combinations of
628 hydrometeor diameter and closing velocity are to be included in coating lifetime
629 estimations. Thus, an emerging area of research is construction of ML emulators
630 conditioned using output from numerically sophisticated models but taking the form of
631 considerably faster closed-form architectures [145]. Such emulators can be used to more
632 rapidly and efficiently evaluate uncertainty space. An example is the incorporation of a
633 ML model trained by the output of FE simulations of the spatial and temporal evolution
634 of the stress field in the coating for various impact speeds and hydrometeor diameters
635 (see schematic in Figure 7). To illustrate this potential a surrogate model based on a neural
636 network was trained to make predictions for the peak stresses in the coating layer. A
637 relatively small number of FE simulations was used to generate training data for droplet
638 diameters (D) of 0.5 to 4 mm and impact speeds (vc) between 80 and 90 ms?. A neural
639 network surrogate model was trained to predict peak von Mises stresses at each point in
640 the coating as a function of D and v.. An independent set of FE simulations was used to
641 evaluate the surrogate model predictions (Figure 8). The ML predictions capture the
642 topology of the peak stress contour, but the peak values show an error ~ 10% relative to
643 independent FE simulations. Building a larger suite of training simulations would likely
644 aid in building a more robust surrogate model.

645 In principle, the workflow shown in Figure 7 could be expanded such that wind
646 speed, rain intensity and HSDs measured or modeled for any location can be combined
647 with the surrogate model to obtain coating stresses for all possible combinations of impact
648 parameters in an analogous manner to their use with the Springer model. The properties
649 of the coating material could also be used as input to the machine learning model, and in
650 principle this workflow can be extended to estimate not only to lifetimes of coatings, but

651 also to levels of surface damage for estimating AEP losses.
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Figure 7 Schematic of a proposed combination of material testing and modeling, atmospheric measurements and
lifetime modeling through the use of a machine learning surrogate model.
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Figure 8 Comparison of peak von Mises stress (¢ in MPa) contours over a cross section of the coating
layer that spans from the top surface (z=0) to the full layer thickness (z=0.2 mm) and from the impact
axis (x/r=0) to a distance equal to the droplet radius r (x/r=1) based on the finite element (FE)
simulations (left) and the predictions of the neural network surrogate model (NN) (right) for two
different hydrometeor diameters (d) and closing velocities (u).
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661 While use of ML-based surrogate models shows great promise, the response of
662 viscoelastic polyurethane-based coatings depends on the loading rate, temperature and
663 the level of experienced strain. A more thorough experimental characterization of these
664 materials is required, which includes high and low-rate uniaxial data for wide strain
665 ranges, dynamic mechanical analysis, cyclic loading-reloading and volumetric strain
666 measurements. Data from RET experiments can aid in determining parameters related to
667 the fatigue behavior of coatings and to enhance the accuracy of predictions. Improvements
668 in experimental procedures related to RET are therefore also highly valuable.

669 3.4 Phenomena/processes given Tier 1 priority within the aerodynamics theme

670 Finally, three phenomena/processes were identified as Tier 1 priority in the
671 aerodynamic implications theme: (a) Quantification of damage and surface roughness
672 progression through time. This links strongly to theme 2 - damage detection. (b)
673 Attribution of AEP loss to LEE (via effective surface roughness). (c) Optimization of
674 damage repair solution/timing.

675 Quantification of wind turbine power and AEP losses due to LEE typically relies on
676 blade force coefficient data obtained with wind tunnel testing or simulations with
677 computational fluid dynamics (CFD) models [146,147]. In both cases, the geometry of
678 damage and corresponding surface roughness at any time between installation and
679 leading edge resurfacing are key to achieving reliable estimates of the blade performance
680 degradation. For moderate to intermediate LEE, which typically corresponds to damage
681 of the thin external protection system of the leading edge (e.g. coating), the effects of
682 roughness can be modeled by means of the equivalent sand grain roughness [148]. The
683 equivalent roughness height, yielding the same wall shear stress as that achieved with the
684 observed roughness, can be obtained by using geometry-, experimental data or very high-
685 fidelity CFD [149]. Their use for LEE applications, however, is associated with uncertainty,
686 in part due to the difficulty of measuring blade roughness with sufficient resolution. One
687 of the aims of the Leading Edge Roughness categorization (LERcat) efforts is to reduce
688 this uncertainty [76]. When LEE becomes severe, with damage also to the leading edge
689 composite material, the sand grain model is no longer applicable, and the erosion
690 geometry needs to be resolved [150]. The above highlights the importance of acquiring,
691 with sufficient resolution, the depth and surface map of LEE and thus links to new
692 innovations in damage characterization mentioned under Theme 2.

693 Once erosion topographies are acquired with adequate geometric resolution, ML can
694 also play a key role in developing blade predictive maintenance frameworks by providing
695 erosion aerodynamics and resulting AEP losses, as demonstrated with the AEP loss
696 prediction system (ALPS) [146]. Determining the LEE-induced blade performance
697 degradation for each erosion topography encountered in operation would require
698 numerous lengthy CFD analyses and specialized expertise for each wind turbine
699 assessment, a cost increased by the large number of turbines in a wind farm and the
700 potentially high temporal frequency of these assessments in the wind farm lifetime. An
701 initial (one-off) execution of many CFD simulations corresponding to many diverse
702 erosion topographies can be used to train the fast ML metamodels that be used to quickly
703 determine blade force coefficients for AEP loss assessment. Preliminary work, shown in
704 Figure 9 [146], has demonstrated the high reliability of fast ML metamodels for predicting
705 lift coefficient (c1) and drag coefficient (ca) of eroded blade sections, allowing the ML
706 models to be used for AEP loss assessment [150,151]. More development work is needed
707 in this area to; generalize these ML approaches, enable them to consider even wider LEE
708 patterns observed in operation, and consider the variability of the nominal blade

709 geometry among different wind turbine classes.
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711 Figure 9 Top: Eroded blade section force coefficients (lift (Ci) and drag (Ca)) for varying angles of
712 attack (bottom axis) from geometry-resolving CFD (‘CFD’) and ML models (‘ML) trained using
713 metadata of the erosion topography (curve labelled ‘nom.” denotes nominal section performance
714 curves) [128]. Bottom: offshore (left) and onshore (right) AEP losses for a multi-MW wind turbine
715 derived using blade section force coefficients from ML models of type displayed in top plots for
716 broad patterns and extent of erosion topographies; ‘Ks’ = equivalent sand grain roughness, ‘nom/
717 ft.” & ‘scan mean’ denote moderate to intermediate LEE severity, and ‘grv. dme” & ‘grv. dme” denote
718 severe LEE stages [150].
719 Optimizing the timing of blade leading edge repair was identified as an important
720 phenomena/process in the PIRT. Optimization of repair at any operating wind farm
721 depends on factors such as wind turbine age, damage severity, cost of electricity and
722 accessibility. Considerations used by commercial wind farm owner/operators regarding
723 repair decisions are usually considered proprietary and thus are held in confidence. Thus,
724 information from WEICan is briefly presented below to illustrate the process by which
725 repair decisions and LEP application were made and the results of those actions. WEICan
726 owns and operates five 2 MW turbines on a coastal, high wind site with turbines 1-4 being
727 locations on an escarpment and experiencing a very similar wind climate [152]. All wind
728 turbines at WEICan have exhibited advanced levels of LEE since commissioning in 2013.
729 WEICan have chosen to initiate repair measures prior to “moderate” or “severe” levels of
730 erosion, and indeed before there was significant mass loss or clear detection via power
731 curve degradation or acoustic tracking [153], due to factors such as the severity of the
732 winter climate that means the O&M window is relatively short and the remote location
733 that means access for more extensive O&M is challenging. The two main indications that
734 trigger WEICan’s decision to carry out a blade repair are:
735 1. Rapid degradation of LEP. If a LEP product experiences significant peeling and
736 bubbling within a year, it saves on repair expenses to replace it before the blade is
737 completely exposed.
738 2. First sign of visible fiberglass. The more fiberglass is eroded away, the more blade
739 preparation work is required before repairs. With light erosion, only sanding and
740 buffing of the surface is required before reapplying the LEP, which takes about half a
741 day per blade. With moderate to heavy erosion, the blade must be sanded, built back

742 into shape with additional fillers and fiberglass before reapplying the LEP product,



Energies 2024, 17, x FOR PEER REVIEW 21 of 31

743 which can take 1.5 days to 2 days per blade. Therefore, repairing blades at the first
744 sign of visible fiberglass saves time and cost.
745 Initially, the blades on the wind turbines deployed at WEICan had no LEP, only standard
746 polyurethane paint. In 2014, after LEE was observed visually, the blades
747 were repaired, and standard polyurethane paint was re-applied. LEE was observed again
748 in 2015. Since 2016, WEICan has engaged in testing of five different LEPs, including paints,
749 tapes, and shells. The first four LEPs were applied from 30 m to 45 m, while the fifth LEP
750 was applied from 35 m to 45 m, measuring from the root of the blade. Each type of LEP
751 has specific application instructions which typically require filling, sanding, and cleaning
752 to achieve a smooth surface; and specify maximum and minimum temperatures and
753 relative humidities for curing and drying. Most of the wind turbine blade LEP materials
754 have failed in one year to two years (Table 2, see example in Figure 4e), which LEP
755 manufacturers generally have attributed to improper or inadequate surface preparation
756 and installation. For example, epoxies or adhesives were not appropriately activated,
757 surface was not adequately cleaned, blade repairs with fillers or coatings ahead of
758 installation were still curing, conditions may have been appropriate at the start but were
759 not sustained, or the skills of technicians was not adequate. The original blade quality has
760 also been identified as an important factor impacting LEP failure.
761
762 Table 2. Leading edge protections used, dates applied and damage and failures observed at WEICan.
Type of LEP Turbine | Year Applied, Year Year Damage Types of Damage
Reapplied Observed Observed
Paint (2 component T1, T5 | 2016,2017, 2019 2017,2019, 2021 | Pitting, cracking,
epoxy) peeling, bubbling
Paint (polyurethane) T4 2016, 2017, 2019 2017, 2019, 2021 Pitting, peeling
Tape (2-component T2 2016, 2017 2017, 2021 Pitting, peeling,
polyurethane) bubbling
Tape (2-component T3 2016, 2019 2019, 2021 Pitting, peeling,
polyurethane) bubbling
Shell (polyurethane) T1 2021, 2023 2023 Peeling, bubbling
T2 2022
T3 2022
T4 2021, 2022 2022 Peeling, bubbling
T5 2022
763
764 Current leading edge repair work instructions have many requirements, including
765 filling, sanding, and cleaning with maximum and minimum temperatures and relative
766 humidities for curing and drying, as well as wind speed restrictions, depending on the
767 method used to access the blade. This leads to small windows of time where repair is even
768 possible and long and expensive repair times. TRL would be enhanced by simplifying the
769 repair process so that there are fewer restrictions, and it can be done more quickly and
770 economically.
771 A Tier 2 priority in theme 4 relates to the aerodynamic performance reductions due
772 to LEP and their efficacy in slowing LEE. Data from the WEICan wind turbines was used
773 in a decomposition analysis to remove effects due to prevailing meteorology (e.g. changes
774 in the wind speed distribution before and after application) and isolate the impact of LEP
775 on wind turbine performance. The results showed minimal to no improvements in
776 performance due to LEP application and resulting smoothing of the blade [153]. This is
777 likely due to the high proportion of time WEICan’s wind turbines spend operating at rated
778 power when AEP loss due to LEE is minimum, as well as the fact that WEICan repairs

779 blades before any reduction in performance is observed.
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780 Ultimately, decision-making with regards to LEE at WEICan relies on information
781 from many of the Tier I and Tier II themes: existing and expected progression of damage,
782 the resulting AEP reductions, and impacts of LEP options. Uncertain durability of LEP
783 options, perhaps resulting from unreliable LEP installation, has been the most substantial
784 barrier to effective O&M planning for this site.

785 4. Concluding Remarks and Next Steps

786 The PIRT tables presented herein represent the first attempt to collate expert
787 judgements on research priorities to enhance the TRL for solutions to reduce AEP (and
788 revenue) losses and wind turbine operation and maintenance costs caused by wind
789 turbine blade LEE. We used a snowball sampling technique to identify possible
790 respondents [81] and had a relatively small sample size (n <20). Thus, the results must be
791 considered preliminary. Nevertheless, the PIRT presented herein yields some important
792 insights and lays the foundation for a comprehensive PIRT survey of wind energy experts
793 that will be conducted during 2025 via the International Energy Agency Wind Energy
794 (IEA) Technology Collaboration Programme (TCP) Task 46: Leading Edge Erosion.

795 PIRT analyses are valuable because they allow systematic identification of
796 phenomena/processes of importance and that require further research to enhance TRL or
797 reduce safety risks. However, PIRT analyses are inherently subjective, since they leverage
798 expert knowledge and judgment [82]. While some have advocated that PIRT
799 methodologies should be based on literature-based meta-analyses [83], these too are not
800 fully objective due to inherent biases in publishing [84]. An important advancement of
801 this PIRT analysis is that the standard deviation of rankings across respondents is
802 captured and presented to provide quantitative information about the presence or absence
803 of consensus in the rankings. Divergence of opinion may derive from knowledge gaps
804 due to the trans-disciplinary nature of a topic or the rapidly evolving nature of a complex
805 topic. Expert-knowledge based frameworks for research priority identification using PIRT
806 may also not fully reflect emerging issues. An example of this that was identified in the
807 PIRT but not given a Tier 1 ranking is possibility of micro-plastic shedding to the ocean
808 environments. This research topic is being addressed in the Preventing Mlcroplastics
809 pollution in SEa water from offshore wind (PREMISE) project [154]. Emergence of such
810 new topics strongly advocates for PIRT assessments to be continuously updated to ensure
811 they evolve as knowledge is advanced.

812 The PIRT process and discussions summarized above indicate the TRL for LEE
813 solutions remains relatively low. However, investment in the priority areas articulated
814 herein will enhance fundamental understanding and can be used to evolve robust
815 framework for end-to-end LEE prediction (Figure 7). Investments should be made in
816 building a robust model V&V framework for each component of such a model chain [155].
817 Successful implementation of such a framework will require sharing of a range of data
818 from industrial partners. Needed information include LEP product material properties,
819 greater transparency regarding hardware settings in meteorological sensors and data
820 from operating wind farms linking LEE state and AEP. End-to-end assessment of damage
821 as a function of operating climate would also greatly benefit from sharing of blade damage
822 reports/images from operating wind farms for use in evaluation of location specific
823 meteorologically-driven LEE predictions [34]. Availability of time-histories of wind
824 turbine Supervisory Control and Data Acquisition (SCADA) data and adequately
825 resolved LEE topographies for eroded blades will enable faster progress in blade
826 predictive maintenance technologies.

827 Nomenclature

828 ADF Accumulated Distance to Failure
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829 AEP Annual Energy (electricity) Production

830 AKE Accumulated Kinetic Energy

831 CAPEX CAPital EXpenditures

832 CFD Computational Fluid Dynamics

833 D Hydrometeor Diameter

834 Dis Disdrometer

835 FE Finite Element

836 HSD Hydrometeor Size Distribution

837 IEA International Energy Agency

838 LCoE Levelized Cost of Energy

839 LEE Leading Edge Erosion

840 LEP Leading Edge Protection

841 LER Leading Edge Roughness

842 LERcat Leading Edge Roughness categorization

843 ML Machine Learning

844 NWP Numerical Weather Prediction

845 O&M Operations and Maintenance

846 PIRT Phenomena Identification and Ranking Tables

847 PPT Precipitation

848 RET Rain Erosion Tester

849 RG Rain Gauge

850 RR Precipitation (or Rain) Rate

851 SALT Simplified Aerodynamic Loss Tool

852 SCADA Supervisory Control and Data Acquisition

853 SD Standard Deviation

854 TRL Technology Readiness Level

855 UAYV Unmanned Aerial Vehicle

856 USA United States of America

857 UV-A Ultra Violet radiation at wavelengths (A) = 320 and 400 nm

858 VN curves Velocity-Number of impacts to failure

859 V&V Verification and Validation

860 WARERs Whirling-Arm Rain ERosion testers

861 WRF Weather Research and Forecasting

862 ve Closing velocity

863 vt Fall velocity

864 vt Terminal fall velocity

865
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