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Abstract: Enhanced understanding of the mechanisms responsible for wind turbine blade leading 20 

edge erosion (LEE) and advancing technology readiness level (TRL) solutions for monitoring its 21 

environmental drivers, reducing LEE, detecting LEE evolution and mitigating its impact on power 22 

production are a high priority for all wind farm owner/operators and wind turbine manufacturers. 23 

Identifying and implementing solutions has the potential to continue historical trends towards 24 

lower Levelized Cost of Energy (LCoE) from wind turbines by reducing both energy yield losses 25 

and operations and maintenance costs associated with LEE. Here we present results from the first 26 

Phenomena Identification and Ranking Tables (PIRT) assessment for wind turbine blade LEE. We 27 

document the LEE-relevant phenomena/processes that are deemed by this expert judgement 28 

assessment tool to be the highest priorities for research investment. We then discuss and summarize 29 

example research endeavors that are currently being undertaken and/or could be initiated to reduce 30 

uncertainty in the identified high priority research areas and thus enhance the TRL of solutions to 31 

mitigate/reduce LEE.  32 

Keywords: Blades, Expert Judgement, LEE, Machine Learning, PIRT, TRL, Wind Turbine  33 

 34 

1. Introduction 35 

1.1. Background and Motivation 36 

The global wind resource greatly exceeds both current electricity demand and total 37 

primary energy supply [1]. Wind energy is a potential mechanism to reduce energy-38 

related environmental issues (e.g. anthropogenic climate forcing [2]) and to enhance 39 

energy security [3,4]. Many countries have ambitious plans to expand both onshore and 40 

offshore wind energy installed capacity [5]. Thus, it is expected that more wind turbines 41 

will be deployed and we will become increasingly reliant on them for electricity 42 

generation.  43 

The Levelized Cost of Energy (LCoE) in $/MWh of electricity can be computed from 44 

𝐿𝐶𝑜𝐸 =
∑ (𝐶𝐴𝑃𝐸𝑋𝑛+𝑂&𝑀𝑛)/(1+𝑟)

𝑛𝑖
𝑛=1

∑ 𝐴𝐸𝑃/(1+𝑟)𝑛𝑖
𝑛=1

      (1) 45 
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Where: CAPEX = Capital expenditures in each year (n). O&M = Operations and 46 

Maintenance costs in each year. r = annual discount rate. AEP = amount of electricity (in 47 

MWh) produced each year. i = wind turbine lifetime in years.  48 

In locations with good wind resources, onshore wind energy has the lowest LCoE of any 49 

electricity generation type [6]. However, LCoE from onshore wind energy is no longer 50 

declining [7] and costs for offshore deployments exceed those for onshore [8]. 51 

O&M typically account for 25–30% of lifecycle LCoE from wind turbines [9]. Blades 52 

contribute > 20% of the overall cost of wind turbines [10], and blade integrity is a 53 

fundamental determinant of both O&M and power generation (AEP). An important 54 

contributing factor to wind turbine blade lifespan is leading edge erosion (LEE). LEE 55 

refers to the material loss of wind turbine blade coatings leading to exposure and 56 

ultimately loss of the laminate that provides the structure of the blade. It results primarily 57 

from materials stresses induced when hydrometeors (e.g. rain droplets or hailstones) 58 

impact on the rapidly rotating blades [11-14]. The material loss leads to roughening of the 59 

surface, reducing lift and increasing drag [15] and thus negatively impacts AEP [15-19]. 60 

LEE requiring emergency blade repair can occur within two years of installation [20], far 61 

short of the expected lifetime of 30 years [21]. O&M expenditures associated with total 62 

blade replacement for onshore wind turbines are > $200,000 and blade replacement may 63 

lead to multiple days of lost power production [22]. 64 

Wind turbines being deployed offshore are physically larger and have both longer 65 

blades and higher tip speeds than those deployed onshore [23]. This leads to higher 66 

closing velocities with falling hydrometeors, higher materials stresses [20] and thus a 67 

higher erosion rate [24,25]. Wind turbines being deployed at the South Fork wind farm off 68 

the USA east coast are GE Haliade-X 13 MW machines with blades of 107 m length each 69 

of which weighs 55 tons [26]. These wind turbines have maximum tip speeds of > 90 ms-70 

1. The 22 MW reference wind turbine that has recently been released for use in offshore 71 

research [27] has even longer blades and a rated tip-speed of 105 ms-1. Manufacturing 72 

defects and damage during transportation/deployment are likely enhanced in longer 73 

blades [28,29] and even small imperfections may be important sites for initiation of LEE 74 

[29]. Thus, LEE issues may be particularly prominent offshore where O&M costs are much 75 

higher [23] and avoidance of excess maintenance is paramount to reducing LCoE. In 2018 76 

Renew.Biz reported; The consortium behind the 630MW London Array in the UK was 77 

planning “emergency” blade repair to 140 of the project’s 175 wind turbines and ‘A similar 78 

repair campaign has begun at Orsted’s 400MW Anholt wind farm off Denmark, where 87 79 

of 111 ….. turbines are being fitted with rubber-like shells to fix the problem’. 80 

LEE thus represents an important challenge to the cost-effectiveness and reliability 81 

of wind-derived electricity and there is a need to advance fundamental understanding of 82 

the processes that cause LEE and to advance effective solutions.  83 

1.2. The Interdisciplinary Nature of LEE: Introduction to the four LEE themes 84 

Over 40 years ago, the US National Aeronautics and Space Administration 85 

introduced “technology readiness levels” (TRLs) as a conceptual framework for 86 

measuring and articulating the maturity, or readiness for deployment, of emerging 87 

technologies. TRL assessments are usually based on a 9-point scale with higher values 88 

indicating more mature technologies and lower values indicating more nascent 89 

technologies that were in the stages of basic research, or feasibility studies [30,31].  90 

Enhancement of the TRL for solutions to mitigate/reduce LEE requires 91 

multidisciplinary research within four linked themes (Figure 1). Theme 1 is focused on 92 

the atmospheric drivers of LEE and thus requires research primarily in the field of 93 

atmospheric science. Theme 2 is focused on detection and quantification of blade damage 94 

and thus requires research primarily within imaging and image processing plus acoustic 95 

monitoring. Theme 3 is focused on blade response/redesign/repair/protection and thus 96 
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requires research primarily within the materials science field. Theme 4 is focused on 97 

detection of aerodynamic changes due to LEE and estimation of resulting power reduction 98 

and thus requires research primarily within the field of aerodynamics. All themes further 99 

require advances in computational tools and measurement technologies. An introduction 100 

to each of these themes is briefly given below. 101 

 102 

Figure 1 Schematic overview of the four LEE themes. RET = Rain Erosion Tester.  103 

Theme 1. Atmospheric drivers of LEE 104 

The amount of kinetic energy transferred into the blade from an ensemble of falling 105 

hydrometeors and the materials response is dictated by the closing velocity (vc) between 106 

the falling hydrometeor(s) and the rotating blades, plus the number, diameter (D) and 107 

phase of hydrometeors (i.e., hailstones, graupel or rain droplets). The impact force and 108 

the kinetic energy transferred into the coating scales with the hydrometeor mass and 109 

closing velocity squared [32]. Larger diameter drops may be of greater importance in 110 

dictating the kinetic energy transfer to the blades and hence the duration of the incubation 111 

period (i.e. period prior to material loss, see details below) [14,33] while smaller drops 112 

may be more critical in the transition and steady-state progression [34]. The Waterhammer 113 

equation describes the pressure exerted on a coating by the impact as a function of closing 114 

velocity [32,35,36]. For vc = 80 ms-1 a single 2 mm diameter rain droplet may exert a 115 

pressure of up to 120 MPa on the blade surface [32]. Hydrometeor phase is of importance 116 

because the materials response to hail (ice) exceeds that due to collisions with rain (liquid) 117 

droplets [32,37-40]. As few as five hailstone impacts (D of 15 and 20 mm) at vc ≥ 110 ms-1 118 

can cause damage to a glass fibre reinforced plastic composite [41]. Thus, prediction of 119 

LEE requires accurate and consistent descriptions of hydroclimate conditions, including 120 

precipitation intensity, phase and hydrometeor size distributions (HSD) from 121 

measurements and models across the wide range of environments in which wind turbines 122 

are or will be deployed. However, as discussed in detail below, best practice for the 123 

selection and operation of precipitation sensors within the context of LEE has not yet been 124 

advanced [14] and numerical models exhibit only partial fidelity for precipitation rate and 125 

phase and most simulations do not explicitly simulate or output HSD. 126 

A hierarchy of models have been generated to translate from precipitation 127 
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intensity/HSD and closing velocities to provide estimates of potential erosion. First-order 128 

erosion models rely on the volume (or depth) of impinged water without explicit 129 

consideration of hydrometeor size and/or phase [24]. Alternatively, VN curves (velocity-130 

number of impacts to failure, see ‘Materials response’) derived from rain erosion testers 131 

can be used to articulate functions that describe the number of impacts at a given closing 132 

velocity for a given hydrometeor diameter required for initiation of coating damage and 133 

that can be used (with caution) to extend beyond the measured range of closing velocities. 134 

For example, assuming all hydrometeors have an effective diameter of 0.76 mm, the 135 

accumulated distance to failure (ADF) of the coating is given by; 136 

𝐴𝐷𝐹 = ∑

𝑉𝑡𝑖𝑝∙𝐼∙∆𝑡
𝑣𝑓
⁄

𝐻0∙(
𝑣𝑐
𝑉0
)
𝑚

𝑗
𝑖=1         (2) 137 

Where V0 is 1 ms-1, vc is the closing velocity between the hydrometeor and blade, vf is the 138 

hydrometeor fall velocity (ms-1), t is the time interval (s) for the specification of the tip 139 

speed and precipitation intensity (I, in ms-1). H0 and m are fitting parameters that are 140 

specific to the coating material tested but for one coating and D = 0.76, these fitting 141 

parameters are 2.851022 m and -10.5, respectively [42]. The summation is over all time 142 

periods; i=1 to j. Thus, the challenge is to specify a representative effective diameter to 143 

characterize precipitation that falls from stratiform and cumulus clouds and over a wide 144 

range of intensity ranges [43]. More mechanistic models require greater specificity in 145 

terms of the HSD/phase and range of fall velocities and are described below in Theme 3. 146 

Less is known regarding the possible contribution of other meteorological variables 147 

to LEE. Prolonged exposure to radiation within the visible range, and particularly UV-A 148 

(wavelengths (λ) = 320 and 400 nm), may lead to degradation of polyurethane coatings 149 

[32,44]. Theoretical and experimental work has also indicated that low temperatures 150 

degrade the erosion performance of polyurethane protective leading-edge coatings [45]. 151 

Thermal cycling (expansion and contraction of the blades) is an important source of 152 

materials wear [46]. Other plausible meteorological co-stressors include impacts from 153 

aerosols (e.g. wind-blown dust/sand [47,48]) and ice accretion on blades [49]. 154 

Theme 2. Damage detection and quantification 155 

LEE pattern categorization frequently employs five classes with Class 1 “small 156 

pinholes” exhibiting erosion depth of 0.1-0.2 mm, average feature damage of 2 mm and 157 

approximate cord coverage of 3% [17]. Even Class 1 LEE may result in AEP loss. Early 158 

detection and close monitoring of damage progress can help optimize mitigation 159 

strategies and identify appropriate maintenance actions (patching and minor repair to full 160 

scale blade removal) [50-53].  161 

Current techniques for real-time wind turbine blade damage detection [54,55] 162 

include; vibration-based techniques [56], ultrasound scanning techniques [57], acoustic 163 

emission monitoring [58], and machine vision image or video processing [59]. Three out 164 

of four of these LEE detection methods (acoustic emission, ultrasound, vibration-based 165 

techniques) require the use of physical sensors placed along the blade or near the wind 166 

turbine, which can be costly and vulnerable to damage in extreme meteorological 167 

conditions [60]. Image processing methods can be used to assess blade conditions from 2-168 

D and 3-D images or videos captured by instrumentation deployed on unmanned aerial 169 

vehicles (UAVs) [61] or taken by technicians [62]. However, as discussed below, the 170 

fidelity of different damage detection methods has not been fully quantified. 171 

Theme 3. Materials response  172 

Wind turbine blades are made of composites (e.g. epoxy or polyester, with 173 

reinforcing glass or carbon fibers) [63] coated to protect them by distributing and 174 

absorbing energy from hydrometeor and other impacts [64]. Defects such as air bubbles 175 

in these coatings have a critical impact on crack initialization [65] and re-emphasizes the 176 
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importance of wind turbine blade manufacturing quality in dictating erosion rates. 177 

Erosion mechanics comprises an incubation period during which no damage is 178 

observed but microstructural material changes can generate nucleation sites for 179 

subsequent material removal. Material removal commences when a threshold level of 180 

accumulated impacts is reached [66]. This is followed by a period during which additional 181 

impacts lead to observable damage as stress waves propagate from impact locations. This 182 

leads to growth of pits/cracks and an increase in material loss [67-69]. The number of 183 

impacts required to reach the threshold at which material failure becomes evident is thus 184 

a nonlinear function of the number, magnitude and phase of the hydrometeors and 185 

hydrometeor closing velocity plus the material strength [70].  186 

Whirling-Arm Rain ERosion testers (WARERs, or more simply Rain Erosion Testers, 187 

RET) artificially simulate the erosion process by spinning a sample of the blade, often with 188 

a leading edge protection applied, at very high speeds and bombarding the sample with 189 

liquid droplets (of a confined droplet diameter range) supplied via needles [71]. These 190 

experiments can be used to develop VN curves and thus to derive empirical coefficients 191 

for use in Equation (2). However, the range of closing velocities sampled and used to 192 

derive the fitting parameters m and H0 specified below Equation (2) for hydrometeor D of 193 

0.76 mm are 90 to 150 ms-1 and thus exceed many of those that will occur.  194 

Alternatively, a range of modeling techniques have been advanced to simulate the 195 

process of material stresses that lead to LEE as a function of hydrometeor size distribution 196 

and closing velocity [68,70,72]. The simplest is the Springer model [73,74] combined with 197 

Miner’s rule to integrate across all hydrometeor diameters to quantify the accumulated 198 

distance to failure (ADF) [66,75]. However, these simple engineering models of LEE 199 

include multiple coefficients/assumptions that limit the robustness of lifetime estimates 200 

and when invoking Miner’s rule, assume damage is linearly accumulated. 201 

Theme 4. Aerodynamic implications of LEE 202 

A smooth leading edge reduces turbulence and drag, optimizing the lift-to-drag ratio 203 

of a wind turbine blade. The outer part of the blade (towards the tip) produces most of 204 

the energy and experiences the highest relative wind speeds. Thus, the leading edge 205 

towards the blade tip is both the most vulnerable to roughening by material loss and is 206 

also where reducing lift/increasing drag maximizes negative impacts on AEP. Maximum 207 

lift force on blades has been modeled to be reduced for damage associated with roughness 208 

heights of 0.11 mm for a rotor with a 175 m diameter [16]. Erosion classes 3 to 5 (large 209 

patches of missing coating, erosion of laminate and complete loss of laminate, 210 

respectively), are associated with AEP reductions of 1-5% [76]. Recent reports found LEE-211 

induced AEP losses from onshore wind turbines after only 1-3 years [77] but there is a 212 

paucity of data regarding underlying blade LEE topologies. Damage location on the blade 213 

is known to play a critical role in alteration of the aerodynamic behavior and so there are 214 

clear links between themes 2 and 4 [78].  215 

The Simplified Aerodynamic Loss Tool (SALT) model [79] can be used to illustrate 216 

the predicted effect of erosion on the power coefficient (CP) and AEP loss relative to a 217 

clean or undamaged blades, while acknowledging it omits many of the details of more 218 

complex models [80]. Within SALT damage is specified in 2% increments over the outer 219 

70% of the blade (location r as a fraction of blade radius R) using a five-level 220 

categorization. Category a is undamaged, and lift-to-drag ratio (Cl/Cd) is estimated as 1. 221 

Category e represents the most severe damage deeper than 0.3% of the blade chord and 222 

Cl/Cd = 0.3. For the IEA 15 MW reference wind turbine [81] and a hub-height wind speed 223 

of 10 ms-1, CP for an entirely undamaged blade is ~ 0.4551 reducing to ~ 0.2907 for category 224 

e damage. CP correction factors (multipliers to CP) are shown as a function of r/R in Figure 225 

2a for wind speed of 10 ms-1. The impact of roughening of the leading edge on blade lift 226 

and drag and power production is a non-linear function of inflow wind speed and is 227 
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specifically important at below rated wind speeds (Figure 2b) and also depends on 228 

turbulence intensity [19]. Thus, the AEP loss is dependent on the site wind climate. 229 

Assuming a Weibull distribution of hub-height wind speeds for a typical US Central 230 

Plains site [14], AEP loss for different erosion levels along the outer 70% of the blade is 231 

shown in Figure 2c. While this analysis is useful for illustrative purposes, uniform damage 232 

is unlikely to occur across such large areas of a blade thus the AEP loss estimates greatly 233 

exceed those that are likely to be observed. Further, attribution of any loss in blade 234 

performance to any specific cause (e.g. LEE, gearbox wear-and-tear, soiling of blades) is 235 

very challenging [82,83] particularly in operating wind farms. 236 

237 

Figure 2 Results from the SALT model for (a) CP correction factors as a function of distance along the blade for a clean 238 

blade (shown by the blue line, Category a damage) and substantial damage (shown by the black line, Category e 239 

damage) along the outer two thirds of the blade for a hub-height wind speed of 10 ms-1 for the IEA 15 MW reference 240 

wind turbine. (b) Power curves (power generation as a function of hub-height wind speed) for the IEA 15 MW 241 

reference wind turbine for a clean blade (Category a damage) and a damaged blade (Category e damage). (c) AEP loss 242 

for damage categories a to e and o3e (level 3 damage only for the outer 1/3 of the blade) for the IEA 15 MW reference 243 

wind turbine and the Weibull distributed wind speeds from a US Southern Great Plains site [14]. 244 

Optimizing O&M as LEE progresses for cost-effectiveness requires not only accurate 245 

damage assessment but also robust, quantitative understanding of the effect of LEE on 246 

blade aerodynamics. For example, if the damage is minor pitting without material losses, 247 

the aerodynamic efficiency may only be slightly lower than its design, and potentially 248 

even only impacting the aerodynamics at some tip speed ratios. In this case, unless the 249 

damage is likely to propagate it may be more cost effective to wait rather than to order 250 

repairs. On the other hand, if material damage has penetrated beyond the blade coating, 251 

even a small gouge may potentially leave open the possibility of further material loss and 252 

extensive delamination impacting not only the aerodynamics but necessitating costly on-253 

site repairs. 254 

1.3 Possible Solutions for Leading Edge Erosion 255 

Fundamentally, efforts to reduce LEE can be placed into two classes: 256 

• Enhanced blade resilience. This may be achieved by blade redesign and/or use of 257 

improved materials (e.g. more energy consuming coatings) [84,85], improved 258 

manufacture and/or use of leading edge protection (LEP) products. A range of LEP 259 

products are available including: (1) In-mould application of a gelcoat (e.g. epoxy) 260 

during blade manufacture or co-bonding to an erosion shield (rigid/semi rigid 261 

covers). (2) Post-mould application of flexible coatings (e.g. polyurethane [86]) 262 

using sprayers/rollers or flexible tapes [87] or thermoplastic erosion shields [88]. 263 

Details of the relative merits of these solutions, including their durability have 264 

been previously reviewed [20,89,90]. Best practice for the optimal length of LEP 265 

from the tip of the blade is being investigated [91] as is the optimal thickness of 266 
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application [92]. All protective solutions incur additional costs and reductions in 267 

aerodynamic performance and AEP. For example, some research has reported 2-268 

3% AEP losses from LEP tapes [87,93]. Further, some post-mould LEP products are 269 

challenging to apply (see below, section 3.4) and/or lack durability [94].  270 

• Operation of wind turbines in a manner to reduce materials stresses. Specifically, 271 

use of erosion safe mode [11] wherein wind turbine operation is modified during 272 

highly erosive periods to reduce blade rotational speed, thus sacrificing AEP to 273 

elongate blade lifetime [95]. 274 

Both classes of solution require detailed assessment of site conditions regarding likely 275 

severity of LEE since the incubation, transition and steady-state progression of damage 276 

on the leading edge differs as a function of precipitation climate and possibly other 277 

operating conditions [16]. Quantitative comparison of overall cost effectiveness requires 278 

detailed information regarding (i) AEP loss from LEE, LEP application (including down-279 

time if LEP is applied post commissioning) and/or adoption of erosion safe mode. (ii)  Cost 280 

of LEP measures and expense of deployment [96] and robust economic/financial 281 

information such as the spot market price for electricity [97]. Ultimately an optimal 282 

solution is likely to be one which  maximize revenues over a specific period of time for a 283 

given wind farm [98]. Consideration of either solution type for a given situation demands 284 

robust knowledge of processes/phenomena in each of the four themes described above. 285 

Thus, the issue confronting the wind energy industry is how to prioritize research to 286 

reduce uncertainty and increase confidence for wind farm owners/operators and enhance 287 

the TRL for LEE mitigation. 288 

1.4 Objectives of this Work 289 

Our goal is to map priorities for LEE research that can enhance the technology 290 

readiness levels for LEE solutions such as those described in section 1.3, and thus aid in 291 

reducing the LCoE from wind turbines. To achieve this goal we undertook, and herein 292 

present, the first Phenomena Identification and Ranking Tables (PIRT) assessment for 293 

wind turbine blade LEE (section 2). Following presentation of the PIRT analysis, we 294 

discuss research required and/or being conducted to address the highest priority research 295 

needs identified during the PIRT process and that is necessary to enhanced TRL of LEE 296 

solutions (section 3). We conclude in section 4 by describing next steps.  297 

2. PIRT 298 

The PIRT process is a systematic way of gathering information regarding processes 299 

on a specific concept and ranking their importance to meet some decision-making 300 

objective such as prioritization of research activities to enhance the TRL. PIRT has been 301 

widely applied within, for example, nuclear safety [96,99,100], but is gaining traction in 302 

other disciplines [101].   303 

A schematic workflow of the PIRT process as applied in this research is given in 304 

Figure 3. Steps 1 and 2 require identification of a topic of interest and then articulation of 305 

the PIRT objective(s). To aid in structuring the PIRT by thematically clustering of 306 

processes/phenomena, in Step 3 four LEE themes were articulated (section 1).  The PIRT 307 

analysis then proceeded by polling experts to identify key phenomena in each of those 308 

LEE themes, acknowledging that some phenomena cross the thematic boundaries. 309 

Following best practice in prior PIRT analyses [96], once each of the processes/phenomena 310 

were identified then domain experts were asked to provide for each a ranking of ‘High’, 311 

‘Medium’ or ‘Low’ priority. To derive a mean ranking and the standard deviation (SD) 312 

across respondents, rankings of ‘high’ were allocated 1 point, medium as 0.5 and low as 313 

0. As an example, the need for hydrometeor size distributions (HSD) (jointly with wind 314 

speeds) to inform LEE assessment was given a mean ranking of 0.86 and the standard 315 

deviation is 0.32 (Table 1). These rankings are because > 80% of respondents gave a 316 
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ranking of high, and approximately 10% gave a ranking of either medium or low.  317 

 318 

Figure 3 Workflow of the PIRT process. Steps in red indicate solicitation of expert judgements. 319 

Table 1. PIRT analysis results. Column 1: Processes/phenomena of interest. Columns 2 and 3: Mean (Mean) ranking and the 320 

standard deviation (SD) of the rankings across respondents. Expert judgement evaluation of the knowledge regarding each 321 

process/phenomenon as translated into state-of-the-art measurements (columns 4 and 5) and modeling (columns 6 and 7). Items in 322 

black have high importance (mean > 0.8) and process-level understanding has been well-translated to measurement technologies 323 

and/or modeling (mean > 0.5). Process/phenomena in red have high-importance (mean > 0.8) but process-level knowledge is 324 

lacking and/or translation of that knowledge to measurement and modeling capabilities is poor (mean < 0.5) and thus are defined 325 

as Tier 1 for research. Items in blue are Tier-2 priorities for research; moderate importance (0.5 < mean < 0.8) and process-level 326 

knowledge and translation to models and measurements incomplete (mean < 0.6). Items in green have importance level scores 327 

(mean < 0.5). Note: Process/phenomena are listed in the order in which they were presented to the respondents to avoid confusion 328 

that the rank order of importance is systematically a function of the row number in the PIRT.  329 

 Process/Phenomena 
Importance Level 

Measurement  Modeling 

 Theme 1: Atmospheric drivers  Mean SD  Mean SD  Mean SD 
Hub-height wind speeds: existing wind farms 0.92 0.19 1 0 0.73 0.26 

Hub-height wind speeds: prospective wind farms 0.91 0.2 0.82 0.25 0.68 0.25 
Hydrometeor size distribution 0.86 0.32 0.27 0.41 0.2 0.26 

Hydrometeor phase (rain/hail/other) 0.91 0.3 0.36 0.39 0.14 0.23 
Hydrometeor fall velocities 0.58 0.36 0.41 0.38 0.32 0.34 

Impinged water (blade capture efficiency as a function of droplet 
diameter) 

0.55 0.44 0.15 0.34 0.1 0.21 

Real-time data for 'erosion safe mode' 0.68 0.25 0.18 0.34 0.46 0.33 
Space/time variability in hydroclimate conditions  0.64 0.23 0.59 0.2 0.59 0.2 

Non-hydrometeor weathering stressors (e.g. UV radiation, icing, 
thermal expansion, aerosols (incl. dust & pollution)) 0.55 0.27 0.18 0.25 0.27 0.34 

Reanalysis/gridded product data quality 0.44 0.17 0.67 0.25 0.81 0.26 
Theme 2: Damage detection and quantification  Mean SD  Mean SD  Mean SD 

Availability of blade images & methods to quantify damage 0.83 0.25 0.54 0.33 0.5 0.33 
Damage characterization from varying image types & methods to 

translate to damage classification 
0.88 0.23 0.58 0.29 0.44 0.3 

Methods for 3-D characterization of damage morphology & rate of 
progression 0.71 0.26 0.25 0.26 0.18 0.25 

Translating water impingement to materials loss/stress (e.g. 
metrics: Kinetic Energy, Springer-ADF, VN curves) 0.86 0.23 0.27 0.26 0.36 0.23 
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Quantification of materials loss 0.71 0.26 0.5 0.39 0.27 0.26 
Quantification of equivalent surface roughness for aerodynamic 

loss 0.75 0.26 0.41 0.3 0.45 0.27 

Microplastic loss for environmental impacts 0.5 0.21 0.21 0.26 0.27 0.26 
Theme 3: Materials response  Mean SD  Mean SD  Mean SD 

Rain erosion tester reliability & reproducibility 0.92 0.19 0.59 0.3 0.4 0.21 
Rain erosion tester representation of atmospheric conditions: 
hydrometeors: phase (e.g. rain and hail), size distributions & 

collision velocities 
0.83 0.25 0.5 0.33 0.28 0.26 

Rain erosion tester representation of atmospheric conditions: flow 
field (e.g. impact velocities) 

0.71 0.33 0.45 0.28 0.28 0.36 

Methodologies to translate lab experimental data (incl. rain 
erosion tester) to field conditions & failure modes 

0.88 0.23 0.35 0.24 0.3 0.26 

Damping and energy dissipation properties of LEPs/coatings 
(single/multilayer) 

0.67 0.25 0.32 0.25 0.45 0.16 

Linking mechanical and viscoelastic properties to failure 
mechanisms/modes 0.73 0.26 0.32 0.25 0.4 0.32 

Coating adhesion & mechanics of multi-layer materials 0.75 0.26 0.45 0.44 0.55 0.28 
Material response to non-hydrometeor weathering stressors (e.g. 

UV radiation, icing, thermal expansion, aerosols (incl. dust)) 0.64 0.23 0.36 0.32 0.35 0.24 

Theme 4: Aerodynamic implications of LEE  Mean SD  Mean SD  Mean SD 
Quantification of damage and surface roughness progression 

through time 0.95 0.16 0.4 0.32 0.45 0.28 

Attribution of AEP loss to LEE (via effective surface roughness) 0.88 0.23 0.35 0.34 0.5 0.24 
Attribution of AEP loss to application of LEP measures 0.75 0.26 0.4 0.39 0.55 0.28 

Quantifying evolution of power curve through time (incl. post 
deployment) 

0.75 0.26 0.3 0.42 0.3 0.42 

Optimization of damage repair solution/timing 0.9 0.21 0.35 0.34 0.5 0.33 
 330 

The second component of PIRT analyses (Step 6) is to evaluate the state of knowledge 331 

with respect to each process/phenomenon. Here we broke this down into two aspects: 332 

1. What is the state of knowledge regarding this phenomenon/process and how 333 

well has knowledge regarding this process/phenomenon been translated into 334 

measurement technologies and data analysis procedures? 335 

2. What is the state of knowledge regarding this phenomenon/process and how 336 

well has knowledge regarding this process/phenomenon been translated into 337 

state-of-the-art modeling tools? 338 

Conceptually, the goal of this combined rating system is to identify 339 

phenomena/processes that have high importance and where critical knowledge gaps 340 

preclude full treatment of those phenomena/processes in numerical models or current 341 

measurement technologies and data analysis tools. Such phenomena/processes will have 342 

high importance ratings but low measurement/modeling ratings. Advancing knowledge 343 

for these topics is most likely to enhance TRL for LEE solutions. In this preliminary PIRT 344 

analysis respondents were also encouraged to supply narratives explaining their 345 

rankings.  346 

Based on PIRT tables one can identify key processes and phenomena that are of high 347 

importance but where the state-of-the-art ability to measure or simulate them is deemed 348 

good. An example is hub-height wind speeds at operating wind farms. These wind speeds 349 

are critical to power production and blade tip speed predictions. The mean ranking for 350 

phenomena importance was > 0.9 with small standard deviation (≤ 0.2) indicating 351 

consensus of this ranking. But the ratings for translation of knowledge to measurements 352 

and/or models is also rated as high. Nacelle mounted anemometers and/or remote sensing 353 

technologies such as lidars have been demonstrated to have relatively high fidelity with 354 
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respect to wind speeds within the rotor plane even in complex terrain [102] and offshore 355 

[103]. Multiple modeling exercises have also demonstrated that numerical weather 356 

prediction (NWP) models such as the Weather Research and Forecasting (WRF) model, 357 

particularly when coupled to micro-scale flow models, also exhibit relatively high fidelity 358 

[104]. This does not imply there is not a need for continuing to improve measurement and 359 

modeling capabilities but that, in the context of LEE, other research activities should be 360 

prioritized.  361 

Equally, there are processes/phenomena where understanding is lacking but 362 

uncertainty in a process/phenomenon is not deemed to be a current primary limitation on 363 

TRL for LEE solutions. Such a process/phenomenon might be deemed tier-2 for research 364 

effort. An example drawn from Theme 1 Atmospheric drivers is non-hydrometeor 365 

stressors, which received a mean process/phenomena importance level rating of 0.55 and 366 

both measurement and modeling require improvement.  367 

High SD of rankings also conveys information about the divergence of opinions 368 

across the experts. An example from theme 1 is the estimation of impingement efficiency 369 

as a function of hydrometeor diameter [105]. The mean rating for importance is 0.55 but 370 

the variability around that is large (SD = 0.44). Thus, there is substantial variability in the 371 

opinions regarding whether ‘capture’ of hydrometeors of different sizes by the blade 372 

leading edge is < 1 for hydrometeors of greatest importance to damage, and whether there 373 

is uncertainty in the D and vc dependence of impingement efficiency.  374 

3. Discussion of exemplar research activities designed to address critical research needs 375 

identified in the PIRT process and thus to improve TRL of LEE solutions 376 

3.1 Phenomena/processes given Tier 1 priority within the atmospheric drivers theme  377 

Two processes/phenomena within Theme 1 were identified as tier 1 priority: 378 

Hydrometeor size distribution (HSD) and phase. The narratives supplied within the PIRT 379 

framework and past research suggest that although these are phenomena of importance, 380 

knowledge or translation of knowledge to improved measurement/data analysis 381 

procedures or to modeling tools is insufficient. Materials stresses are demonstrably a 382 

function of the number and diameter of impinging hydrometeors. The HSD (and 383 

hydrometeor phase) is also a reciprocal function of precipitation intensity and of temporal 384 

and spatial scale [106]. For example, analyses of data from the US Southern Great Plains 385 

showed that 10% of 1-minute precipitation rates exceed 4.5 mmhr-1, while this 90th 386 

percentile value for 10-minute precipitation rates are < 2.3 mmhr-1 [14]. A study in 387 

Switzerland using automated hail sensors found that ‘75 % of local hailfalls last just a few 388 

minutes (from less than 4.4 min to less than 7.7 min, depending on a parameter to 389 

delineate the events) and that 75 % of the impacts occur in less than 3.3 min to less than 390 

4.7 min.’ [107] These findings imply not only a need for robust assessments of 391 

precipitation rate, HSD and phase but also that such data, whether from measurements 392 

or models, need to be available at high spatiotemporal resolution. 393 

A range of technologies exist to measure the precipitation intensity (collectively 394 

referred to as rain gauges (RG)) [108] and HSD (i.e. instruments that measure 395 

hydrometeor number concentrations in size classes and are referred to as disdrometers) 396 

[14]. Some disdrometers also measure the fall velocity, phase and sphericity (which is 397 

required to compute the hydrometeor mass and kinetic energy transfer) [14]. In the case 398 

of optical (or laser) disdrometers the hydrometeor D is measured by the number of 399 

horizontal laser beams broken by the hydrometeor and the vf is derived from the duration 400 

of time the beams are interrupted. 401 

Assuming spherical droplets, the precipitation rate (RR in mmhr-1) from a 402 

disdrometer is proportional to the sum of the number of size-distributed (n in diameter 403 

(D) class i=1 to j): 404 
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𝑅𝑅 ∝ ∑ 𝑛𝑖𝐷𝑖
3𝑗

𝑖=1         (3a) 405 

Or more explicitly for the OTT Parsivel2 disdrometer (which has 32 diameter classes): 406 

𝑅𝑅 =
𝜋

6

3.6

103

1

𝐹𝑡
∑ 𝑛𝑖𝐷𝑖

332
𝑖=1        (3b) 407 

Where F is the instrument ‘field of view’ and t is the duration of time during which the 408 

hydrometeor counts are made. 409 

The implication of Equation (3a,b) is that small errors in hydrometeor diameter can yield 410 

large errors in RR. Hence, if the precipitation rate is to be derived from disdrometers 411 

accurate assessment of the hydrometer diameter is a necessary pre-requisite, but the axis 412 

ratio (the ratio of the vertical dimension of the hydrometeor to the horizontal dimension) 413 

for liquid hydrometeors is generally < 1, and scales with the horizontal dimension [95,109]. 414 

Most disdrometers report RR computed by integrating over all hydrometeor diameters 415 

and fall velocities using proprietary software which includes correction factors e.g. for the 416 

axis ratio of hydrometeors that are not fully specified.  417 

When the accumulated depth of precipitation (or precipitation intensity) from 418 

disdrometers is compared with tipping or weighing rain gauges that measure only the 419 

mass or depth of water accumulated over a time interval, incomplete closure is achieved 420 

[110]. Thus, even if using first-order models of nominal erosion rates (such as those 421 

described above) are employed, the source of the precipitation data is a major source of 422 

uncertainty in lifetime estimates. For example, data are being collected at the Wind Energy 423 

Institute of Canada (WEICan) wind farm on Prince Edward Island Canada, using an OTT 424 

Parsivel2 optical disdrometer and an unheated Campbell Scientific TE525 Tipping Bucket 425 

Rain Gauge (RG) (Figure 4a). Because the RG is unheated, in the following we select only 426 

data collected during the summer months to avoid periods with snowfall. Hourly 427 

summertime accumulated precipitation from the disdrometer is consistently lower than 428 

those from a RG across a wide range of precipitation rates and wind regimes (Figure 4b,c). 429 

Although the disdrometer is more likely to report non-zero precipitation (even when the 430 

threshold to detect precipitation is set to that determined by the tip-volume of the rain 431 

gauge, Figure 4d), of particular importance to LEE, the RG at WEICan exhibits twice the 432 

frequency of occurrence of precipitation rates > 10 mm/hr. When conditionally sampled 433 

to select periods when both sensors exhibited non-zero precipitation, the probability of 434 

extreme precipitation being reported by the RG is also higher than that from the 435 

disdrometer (Figure 4c).  436 
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 437 

Figure 4 (a) Precipitation sensors deployed at WEICan. (b) Scatterplot of hourly precipitation (PPT) from the rain 438 

gauge (RG) and OTT disdrometer (Dis) for data collected during; May-October of 2002 and 2023. Symbols scale with 439 

prevailing wind speed at wind turbine hub-height (HH). (c) Histograms of hourly precipitation for all hours when 440 

both sensors report non-zero precipitation. (d) Heatmap of the joint probability of no precipitation (defined using a 441 

threshold of 0.126 mm, i.e. minimum reported by the RG) from RG and Dis. As shown, 7% of hours exhibited 442 

precipitation of > 0.126 mm from both sensors. (e) Example photograph of leading edge erosion on one of the wind 443 

turbines operating at WEICan.  444 

More mechanistic models of material stress and erosion include information 445 

regarding HSD (i.e. the number concentration of hydrometeors of given diameters, Di) 446 

which can be derived from disdrometer measurements of the number counts (n(i,v)) in 447 

diameter (i) and fall velocity (vf) classes: 448 

𝑁(𝐷𝑖) = ∑
𝑛(𝑖,𝑣)

𝐹𝑡𝑣𝑓(i,𝑣)∆𝐷𝑖

𝑥
𝑣=1       (4) 449 

Where x is the number of fall velocity classes and Di is the width of each diameter class, 450 

i. The implication of Equation (4) is that small errors in either hydrometer D or fall velocity 451 

can yield substantial errors in the derived HSD (i.e. expression of number concentrations 452 

as a function of hydrometeor diameter). However, measured HSD also differ across 453 

different disdrometers and standardized data processing procedures are lacking 454 

[14,95,111]. Further, there is evidence that the relative performance of different 455 

disdrometers is a function of the prevailing climate [14]. Accordingly, when 456 

measurements from the three most commonly used disdrometers types (optical, impact 457 

and video) are used to compute accumulated kinetic energy of transfer from hydrometeor 458 
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impacts to wind turbine blades at an example site in the US Southern Great Plains, the 459 

results differ by 38% [95]. The results differ by 100% when different data analysis 460 

protocols that vary in terms of the permitted range of fall velocities regarding 461 

hydrometeor asymmetry are applied to a single disdrometer [95]. Also, even excluding 462 

effects from hydrometeor hardness, hail may be substantially more erosive than rain due 463 

to the higher diameters of these hydrometeors. Many disdrometers use proprietary 464 

empirical functions to indicate possible presence of hail based on hydrometeor diameter 465 

and/or fall velocity rather than directly detecting it.  466 

Research to reduce uncertainty in HSD/vf/sphericity (axis ratio)/phase and ultimately 467 

to provide best practice for measurements at prospective or operating wind farms is 468 

ongoing. This includes an experiment performed at an airport in upstate New York in 469 

which two identical OTT Parsivel2 optical disdrometers have been deployed close to a 470 

highly maintained Mesotech heated tipping bucket RG (part number 29000503) deployed 471 

as part of the Automated Weather Observing System operated by the US Federal Aviation 472 

Administration. The experiment ran from June to September 2024, inclusive (154 days of 473 

1-minute observations), and focused on summer months to avoid snowfall periods. It is 474 

designed to test whether the presence of large diameter hydrometeors reported at vf < vt  475 

(where vt is the terminal fall velocity) for that D [112] is due to horizontal advection of the 476 

droplets during high wind events. Accordingly, one of the disdrometers was deployed 477 

with a windshield and the other without as typifies current deployments at operating 478 

wind farms (Figure 5a). In contrast to the data being collected at WEICan (Figure 4) good 479 

achievement is found between hourly precipitation intensity from the RG and 480 

disdrometers across the entire dynamic range of the precipitation intensities (Figure 5b). 481 

Across the range of observed wind speeds (0-12 ms-1) and wind gusts (0-18 ms-1) measured 482 

using a sonic anemometer deployed at 10-m AGL, the two disdrometers exhibit a high 483 

degree of agreement in terms of detection of precipitation (Figure 5d) and amount of 484 

precipitation (Figure 5b), and there is no evidence that the degree of agreement between 485 

the disdrometers and with the RG scales with wind intensity (Figure 5b). This experiment 486 

does not suggest that wind shielding of disdrometers greatly reduces the frequency of 487 

occurrence of hydrometeors falling with vf < vt (Figure 5c), or greatly improves agreement 488 

with precipitation rates sampled with a RG (Figure 5b).  489 

There remains an urgent need for a comprehensive instrument inter-comparison 490 

experiment, openness from instrument manufacturers regarding hardware settings and 491 

for development of best practice for instrument deployment and data processing to 492 

enhance the TRL for prediction of long-term LEE and nowcasting of erosive events for 493 

erosion-safe mode implementation.  494 
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 495 

Figure 5. (a) Instruments deployed in upstate New York. (b) Scatterplot of hourly precipitation (PPT) from the 496 

disdrometer operated without the wind shield (Dis wo/shield) versus the disdrometer with the wind shield (Dis 497 

w/shield) (filled symbols) and the rain gauge (RG) (open symbols) on logarithmic and linear axes. Symbols are scaled 498 

with, and colored by, the prevailing wind speed at 10 m AGL (left-hand panel) and by the fastest wind gust (right 499 

panel). (c) Joint probability of hydrometeor diameter (D) and fall velocity (vf) from Dis w/shield. White line indicates 500 

terminal fall velocity (vt) as a function of D from Gunn and Kinser [112]. Yellow lines show the 50% bounds on vt 501 

that may indicate erroneous observations [113]. (d) Heatmap of the joint probability of no precipitation or 502 

precipitation from the two disdrometers.  503 

NWP models are sophisticated and skillful tools for weather forecasting and climate 504 

projections. However, simulated precipitation occurrence and intensity remain less 505 

skillful than other atmospheric properties and are highly dependent on model grid [114]. 506 

The PIRT analysis also identified the need for improvements in the numerical simulation 507 

of precipitation and HSD. These issues have long been recognized within the atmospheric 508 

science modeling community [115] and there are many parameterizations available to 509 

represent cloud, precipitation, and convection processes from scales of millimeters to 510 

kilometers, which can yield very different precipitation rates (see example in Figure 6). 511 

Most NWP models use bulk microphysics schemes and employ gamma distributions for 512 

cloud and hydrometeor distributions [116-120]. Binned (or classed) microphysics schemes 513 

resolve the HSD at higher computational cost and improved flexibility [121], but different 514 

schemes yield widely varying hydrometeor characteristics [122] and they do not always 515 

out-perform bulk schemes in terms of the fidelity of RR [123]. Most modeling studies post-516 

process simulated RR using empirical relationships between near-surface HSD and 517 
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simulated RR [124]. Simulated hail production is also very sensitive to the pre-existing 518 

aerosol, frozen hydrometer density and other factors influencing hydrometer diameters 519 

and fall velocities [125]. The land surface scheme employed and soil moisture used to 520 

initialize numerical simulations also influence precipitation simulation fidelity [126].   521 

It has been previously shown that WRF exhibits some skill for forecasting heavy 522 

precipitation and hail and the occurrence of high wind speeds, but the joint occurrence of 523 

heavy precipitation and high wind speeds and the simulation of hail diameter continue 524 

to lack the fidelity necessary to make integrative robust assessments of erosion potential 525 

or short-term forecasts of highly erosive events for erosion safe-mode operation [75, 76].  526 

 527 

Figure 6 Spatial average; (a) Precipitation rate and (b) accumulated precipitation from WRF simulations (dx = 1 km) of 528 

an intense precipitation event during March 2017 over a region with many wind turbine assets [127]. The simulation 529 

[128] is performed in a short-term forecasting mode as would be used for predicting the need for erosion safe-mode 530 

operation of wind turbines. Time series denote simulations with five different microphysics schemes; Milbrandt-Yau 531 

(MILB), Morrison (MORR), Thompson aerosol aware (THOMA), WRF double moment seven category (WDM7), and 532 

NSSL, plus RADAR (NEXRAD) observations. (c) The domain over which the spatial averaging is performed. Black 533 

triangle indicates Dallas Fort Worth, black lines denote the state boundaries of Texas, Oklahoma and Arkansas.  534 

Improved representation of hydroclimatic conditions with numerical models, 535 

scoping of uncertainty and fundamental model improvements are a focus of multiple 536 

initiatives within the atmospheric science community including the World Climate 537 

Research Programme Global Precipitation Experiment lighthouse activity [129]. Machine 538 

learning climate emulators are also being developed that seek to bridge the gap between 539 

the scales resolved by NWP models and precipitation at the local-level [130]. Leveraging 540 

such initiatives can, and will, benefit the wind energy industry and enhance TRL of LEE 541 

mitigation options. However, the specific need for model and measurement fidelity for 542 

precipitation rates and HSD particularly at high wind speeds is, to some degree, specific 543 

to the wind energy community. Effort should be invested in a detailed NWP verification 544 

and validation (V&V) framework that is specifically focused on the requirements of the 545 

wind energy community to advance the TRL for model-based prediction of LEE 546 

meteorological drivers. This is a focus of the Understanding atmospheric impacts on wind 547 

turbines for better efficiency (AIRE) project (https://aire-project.eu).  548 

3.2 Phenomena/processes given Tier 1 priority within the damage detection and quantification 549 

theme  550 

This PIRT process resulted in one phenomenon/process being given Tier 1 priority 551 

within the damage detection and quantification theme: Translating water impingement to 552 

materials loss/stress (e.g. metrics: Kinetic Energy, Springer-ADF, VN curves). Although 553 

this topic could legitimately be included under theme 3 – materials response, the specific 554 

theme under which it was listed is likely not a critical determinant of the PIRT rating. As 555 

described above, computing the accumulated kinetic energy (AKE) of collisions between 556 

https://aire-project.eu/
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falling hydrometeors and rotating blades through time is trivial presuming adequate data 557 

regarding the hydrometeors and hub-height wind speed are available at high time 558 

resolution. However, AKE does not directly translate to material damage.  559 

Springer’s model uses material properties of the blade and coating and the 560 

hydrometeor impact number, diameter, velocity and impact angle to estimate a distance 561 

to failure or the end of the incubation period for coating wear for each hydrometeor 562 

diameter that combined with Miner’s rule is used to estimate ADF [95]. However, 563 

Springer’s model is not very mechanistically defined and the parameter estimates are 564 

highly uncertain [66]. 565 

As described above many RET experiments are confined to a fairly narrow range of 566 

droplet sizes and can generate only liquid droplets. However, actual precipitation is 567 

comprised of an ensemble of multiple hydrometeor diameters. A recommended practice 568 

from DNV [131] considers only one droplet diameter (D = 2.38 mm) that naturally will not 569 

reflect the range of observed hydrometeors. Indeed, based on data from the US Southern 570 

Great Plains, where deep convection and intense precipitation is relatively common [14], 571 

the mass-weight hydrometeor mean diameter is  2.38 mm during only 6% of 1-minute 572 

precipitation periods. Further, to achieve damage results in a reasonable time (i.e. to 573 

accelerate erosion), RETs are operated at higher closing velocities than represent real 574 

operating conditions. The resulting VN-curves are then extrapolated to derive estimates 575 

at lower vc of the number of impacts at a given diameter that would yield damage. Testing 576 

viscoelastic coatings at very high closing velocities may result in rain erosion testers 577 

underestimating coating or LEP durability because wind turbines frequently operate at 578 

lower tip-speeds. A comprehensive rain erosion test with multiple droplet sizes 579 

underlines the need for further research on the derivation of the VN-curves from RETs 580 

[132]. More detail is given in section 3.3. 581 

Other phenomena/processes in the damage detection theme that are characterized as 582 

tier 2 priority for research relate to the accuracy of damage estimates. The use of drones 583 

and robots for blade inspection is becoming more routine particularly for larger wind 584 

turbines and offshore wind farms and potentially decreases costs/time/risk of injury to 585 

technicians [133]. Full automation of damage detection data derived using such tools is 586 

leveraging advanced Machine Learning (ML) image processing tools [62,134]. Further 587 

innovations in this field include construction of digital twins using high-resolution 588 

topographic leading edge roughness (LER) data from operating/decommissioned blades 589 

that can be analyzed aerodynamically using 3-D computational fluid dynamics (CFD) or 590 

wind tunnels [135].  591 

Efforts to commercialize damage detection solutions are ongoing (e.g. using thermal 592 

imaging [136], laser profilometry [137] or gloss measurement [138]) implying relative high 593 

TRL, even as research is being conducted to evaluate efficacy as a function of damage 594 

severity and extent [139].  595 

3.3 Phenomena/processes given Tier 1 priority within the materials response theme  596 

This PIRT analysis identified two phenomena within Theme 3: Materials response as 597 

Tier 1 priority for research that links to the usefulness of RETs and specifically their 598 

representation of atmospheric conditions including hydrometeors phase (e.g. rain and 599 

hail), size distributions & collision velocities [12], and whether accelerated lab-tests 600 

represent pre-stressing of blade materials that enhances hydrometeor erosion of the 601 

leading edge [140]. These concerns also link to the second Tier-1 research priority: 602 

Methodologies to translate lab experimental data (incl. rain erosion testers) to field 603 

conditions & failure modes (see section 3.2).  604 

Important new research is testing multiple key aspects of translation of RET to real-605 

world conditions. For example, RET tend to operate with continuous bombardment with 606 

droplets, while in the real-world precipitation is discontinuous. Experiments with a 607 
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pulsating jet erosion tester has evolved evidence that duration of time between 608 

precipitation events may play a role in the dictating the number of droplet impacts 609 

required to reach the end of the incubation time [141]. Recent RET tests performed with 610 

and without UV exposure have found that UV weathering reduced the LEE coating life 611 

by about 30%, which greatly influenced resulting VN curve parameters [142].  612 

Experimental technologies clearly have an important role in projecting damage 613 

emergence and progression, but mechanistically-sound numerical models can permit 614 

more diagnostic analyses and sampling across a broader spectrum of conditions. An 615 

important source of uncertainty in such numerical models is that the precise composition 616 

of LEPs and/or coating is proprietary. In addition, the temperature and strain rate 617 

sensitivity of the flow stress are either ignored in modeling or at best implemented with 618 

empirical constitutive equations. This may lead to significant deviations from reality 619 

considering the adiabatic nature of hydrometeor impacts deforming surface layers at 620 

relatively high strain rates [143].  621 

More sophisticated and explicit models such as Finite Element (FE) models of 622 

multiple liquid impact on multilayered viscoelastic materials take into account microscale 623 

materials structure and porosity [84,144] and thus are preferable to empirical or semi-624 

empirical models. However, they are relatively computationally demanding and require 625 

information regarding a range of material properties and behaviors that can be difficult 626 

to acquire. The computational cost is amplified if all possible combinations of 627 

hydrometeor diameter and closing velocity are to be included in coating lifetime 628 

estimations. Thus, an emerging area of research is construction of ML emulators 629 

conditioned using output from numerically sophisticated models but taking the form of 630 

considerably faster closed-form architectures [145]. Such emulators can be used to more 631 

rapidly and efficiently evaluate uncertainty space. An example is the incorporation of a 632 

ML model trained by the output of FE simulations of the spatial and temporal evolution 633 

of the stress field in the coating for various impact speeds and hydrometeor diameters 634 

(see schematic in Figure 7). To illustrate this potential a surrogate model based on a neural 635 

network was trained to make predictions for the peak stresses in the coating layer. A 636 

relatively small number of FE simulations was used to generate training data for droplet 637 

diameters (D) of 0.5 to 4 mm and impact speeds (vc) between 80 and 90 ms-1. A neural 638 

network surrogate model was trained to predict peak von Mises stresses at each point in 639 

the coating as a function of D and vc. An independent set of FE simulations was used to 640 

evaluate the surrogate model predictions (Figure 8). The ML predictions capture the 641 

topology of the peak stress contour, but the peak values show an error ~ 10% relative to 642 

independent FE simulations. Building a larger suite of training simulations would likely 643 

aid in building a more robust surrogate model.  644 

In principle, the workflow shown in Figure 7 could be expanded such that wind 645 

speed, rain intensity and HSDs measured or modeled for any location can be combined 646 

with the surrogate model to obtain coating stresses for all possible combinations of impact 647 

parameters in an analogous manner to their use with the Springer model. The properties 648 

of the coating material could also be used as input to the machine learning model, and in 649 

principle this workflow can be extended to estimate not only to lifetimes of coatings, but 650 

also to levels of surface damage for estimating AEP losses.  651 
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 652 

Figure 7 Schematic of a proposed combination of material testing and modeling, atmospheric measurements and 653 

lifetime modeling through the use of a machine learning surrogate model. 654 

 655 

Figure 8 Comparison of peak von Mises stress ( in MPa) contours over a cross section of the coating 656 

layer that spans from the top surface (z=0) to the full layer thickness (z=0.2 mm) and from the impact 657 

axis (x/r=0) to a distance equal to the droplet radius r (x/r=1) based on the finite element (FE) 658 

simulations (left) and the predictions of the neural network surrogate model (NN) (right) for two 659 

different hydrometeor diameters (d) and closing velocities (u).  660 
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While use of ML-based surrogate models shows great promise, the response of 661 

viscoelastic polyurethane-based coatings depends on the loading rate, temperature and 662 

the level of experienced strain. A more thorough experimental characterization of these 663 

materials is required, which includes high and low-rate uniaxial data for wide strain 664 

ranges, dynamic mechanical analysis, cyclic loading-reloading and volumetric strain 665 

measurements. Data from RET experiments can aid in determining parameters related to 666 

the fatigue behavior of coatings and to enhance the accuracy of predictions. Improvements 667 

in experimental procedures related to RET are therefore also highly valuable.  668 

3.4 Phenomena/processes given Tier 1 priority within the aerodynamics theme  669 

Finally, three phenomena/processes were identified as Tier 1 priority in the 670 

aerodynamic implications theme: (a) Quantification of damage and surface roughness 671 

progression through time. This links strongly to theme 2 – damage detection. (b) 672 

Attribution of AEP loss to LEE (via effective surface roughness). (c) Optimization of 673 

damage repair solution/timing. 674 

Quantification of wind turbine power and AEP losses due to LEE typically relies on 675 

blade force coefficient data obtained with wind tunnel testing or simulations with 676 

computational fluid dynamics (CFD) models [146,147]. In both cases, the geometry of 677 

damage and corresponding surface roughness at any time between installation and 678 

leading edge resurfacing are key to achieving reliable estimates of the blade performance 679 

degradation. For moderate to intermediate LEE, which typically corresponds to damage 680 

of the thin external protection system of the leading edge (e.g. coating), the effects of 681 

roughness can be modeled by means of the equivalent sand grain roughness [148]. The 682 

equivalent roughness height, yielding the same wall shear stress as that achieved with the 683 

observed roughness, can be obtained by using geometry-, experimental data or very high-684 

fidelity CFD [149]. Their use for LEE applications, however, is associated with uncertainty, 685 

in part due to the difficulty of measuring blade roughness with sufficient resolution. One 686 

of the aims of the Leading Edge Roughness categorization (LERcat) efforts is to reduce 687 

this uncertainty [76]. When LEE becomes severe, with damage also to the leading edge 688 

composite material, the sand grain model is no longer applicable, and the erosion 689 

geometry needs to be resolved [150]. The above highlights the importance of acquiring, 690 

with sufficient resolution, the depth and surface map of LEE and thus links to new 691 

innovations in damage characterization mentioned under Theme 2.  692 

Once erosion topographies are acquired with adequate geometric resolution, ML can 693 

also play a key role in developing blade predictive maintenance frameworks by providing 694 

erosion aerodynamics and resulting AEP losses, as demonstrated with the AEP loss 695 

prediction system (ALPS) [146]. Determining the LEE-induced blade performance 696 

degradation for each erosion topography encountered in operation would require 697 

numerous lengthy CFD analyses and specialized expertise for each wind turbine 698 

assessment, a cost increased by the large number of turbines in a wind farm and the 699 

potentially high temporal frequency of these assessments in the wind farm lifetime. An 700 

initial (one-off) execution of many CFD simulations corresponding to many diverse 701 

erosion topographies can be used to train the fast ML metamodels that be used to quickly 702 

determine blade force coefficients for AEP loss assessment. Preliminary work, shown in 703 

Figure 9 [146], has demonstrated the high reliability of fast ML metamodels for predicting 704 

lift coefficient (cl) and drag coefficient (cd) of eroded blade sections, allowing the ML 705 

models to be used for AEP loss assessment [150,151]. More development work is needed 706 

in this area to; generalize these ML approaches, enable them to consider even wider LEE 707 

patterns observed in operation, and consider the variability of the nominal blade 708 

geometry among different wind turbine classes. 709 
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 710 

Figure 9 Top: Eroded blade section force coefficients (lift (Cl) and drag (Cd)) for varying angles of 711 

attack (bottom axis) from geometry-resolving CFD (‘CFD’) and ML models (‘ML’) trained using 712 

metadata of the erosion topography (curve labelled ‘nom.’ denotes nominal section performance 713 

curves) [128]. Bottom: offshore (left) and onshore (right) AEP losses for a multi-MW wind turbine 714 

derived using blade section force coefficients from ML models of type displayed in top plots for 715 

broad patterns and extent of erosion topographies; ‘Ks’ = equivalent sand grain roughness, ‘nom/ 716 

ft.’ & ‘scan mean’ denote moderate to intermediate LEE severity, and ‘grv. dmean’ & ‘grv. dmax’ denote 717 

severe LEE stages [150].    718 

Optimizing the timing of blade leading edge repair was identified as an important 719 

phenomena/process in the PIRT. Optimization of repair at any operating wind farm 720 

depends on factors such as wind turbine age, damage severity, cost of electricity and 721 

accessibility. Considerations used by commercial wind farm owner/operators regarding 722 

repair decisions are usually considered proprietary and thus are held in confidence. Thus, 723 

information from WEICan is briefly presented below to illustrate the process by which 724 

repair decisions and LEP application were made and the results of those actions. WEICan 725 

owns and operates five 2 MW turbines on a coastal, high wind site with turbines 1-4 being 726 

locations on an escarpment and experiencing a very similar wind climate [152]. All wind 727 

turbines at WEICan have exhibited advanced levels of LEE since commissioning in 2013. 728 

WEICan have chosen to initiate repair measures prior to “moderate” or “severe” levels of 729 

erosion, and indeed before there was significant mass loss or clear detection via power 730 

curve degradation or acoustic tracking [153], due to factors such as the severity of the 731 

winter climate that means the O&M window is relatively short and the remote location 732 

that means access for more extensive O&M is challenging. The two main indications that 733 

trigger WEICan’s decision to carry out a blade repair are: 734 

1. Rapid degradation of LEP. If a LEP product experiences significant peeling and 735 

bubbling within a year, it saves on repair expenses to replace it before the blade is 736 

completely exposed.  737 

2. First sign of visible fiberglass. The more fiberglass is eroded away, the more blade 738 

preparation work is required before repairs. With light erosion, only sanding and 739 

buffing of the surface is required before reapplying the LEP, which takes about half a 740 

day per blade. With moderate to heavy erosion, the blade must be sanded, built back 741 

into shape with additional fillers and fiberglass before reapplying the LEP product, 742 
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which can take 1.5 days to 2 days per blade. Therefore, repairing blades at the first 743 

sign of visible fiberglass saves time and cost. 744 

Initially, the blades on the wind turbines deployed at WEICan had no LEP, only standard 745 

polyurethane paint. In 2014, after LEE was observed visually, the blades 746 

were repaired, and standard polyurethane paint was re-applied. LEE was observed again 747 

in 2015. Since 2016, WEICan has engaged in testing of five different LEPs, including paints, 748 

tapes, and shells. The first four LEPs were applied from 30 m to 45 m, while the fifth LEP 749 

was applied from 35 m to 45 m, measuring from the root of the blade. Each type of LEP 750 

has specific application instructions which typically require filling, sanding, and cleaning 751 

to achieve a smooth surface; and specify maximum and minimum temperatures and 752 

relative humidities for curing and drying. Most of the wind turbine blade LEP materials 753 

have failed in one year to two years (Table 2, see example in Figure 4e), which LEP 754 

manufacturers generally have attributed to improper or inadequate surface preparation 755 

and installation. For example, epoxies or adhesives were not appropriately activated, 756 

surface was not adequately cleaned, blade repairs with fillers or coatings ahead of 757 

installation were still curing, conditions may have been appropriate at the start but were 758 

not sustained, or the skills of technicians was not adequate. The original blade quality has 759 

also been identified as an important factor impacting LEP failure.  760 

 761 

Table 2. Leading edge protections used, dates applied and damage and failures observed at WEICan. 762 

Type of LEP Turbine Year Applied, Year 

Reapplied 

Year Damage 

Observed 

Types of Damage 

Observed 

Paint (2 component 

epoxy) 

T1, T5 2016, 2017, 2019 2017, 2019, 2021 Pitting, cracking, 

peeling, bubbling 

Paint (polyurethane) T4 2016, 2017, 2019 2017, 2019, 2021 Pitting, peeling 

Tape (2-component 

polyurethane) 

T2 2016, 2017 2017, 2021 Pitting, peeling, 

bubbling 

Tape (2-component 

polyurethane) 

T3 2016, 2019 2019, 2021 Pitting, peeling, 

bubbling 

Shell (polyurethane) T1 2021, 2023 2023 Peeling, bubbling 

T2 2022   

T3 2022   

T4 2021, 2022 2022 Peeling, bubbling 

T5 2022   

 763 

Current leading edge repair work instructions have many requirements, including 764 

filling, sanding, and cleaning with maximum and minimum temperatures and relative 765 

humidities for curing and drying, as well as wind speed restrictions, depending on the 766 

method used to access the blade. This leads to small windows of time where repair is even 767 

possible and long and expensive repair times. TRL would be enhanced by simplifying the 768 

repair process so that there are fewer restrictions, and it can be done more quickly and 769 

economically. 770 

A Tier 2 priority in theme 4 relates to the aerodynamic performance reductions due 771 

to LEP and their efficacy in slowing LEE. Data from the WEICan wind turbines was used 772 

in a decomposition analysis to remove effects due to prevailing meteorology (e.g. changes 773 

in the wind speed distribution before and after application) and isolate the impact of LEP 774 

on wind turbine performance. The results showed minimal to no improvements in 775 

performance due to LEP application and resulting smoothing of the blade [153]. This is 776 

likely due to the high proportion of time WEICan’s wind turbines spend operating at rated 777 

power when AEP loss due to LEE is minimum, as well as the fact that WEICan repairs 778 

blades before any reduction in performance is observed. 779 
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Ultimately, decision-making with regards to LEE at WEICan relies on information 780 

from many of the Tier I and Tier II themes: existing and expected progression of damage, 781 

the resulting AEP reductions, and impacts of LEP options. Uncertain durability of LEP 782 

options, perhaps resulting from unreliable LEP installation, has been the most substantial 783 

barrier to effective O&M planning for this site.   784 

4. Concluding Remarks and Next Steps 785 

The PIRT tables presented herein represent the first attempt to collate expert 786 

judgements on research priorities to enhance the TRL for solutions to reduce AEP (and 787 

revenue) losses and wind turbine operation and maintenance costs caused by wind 788 

turbine blade LEE. We used a snowball sampling technique to identify possible 789 

respondents [81] and had a relatively small sample size (n < 20). Thus, the results must be 790 

considered preliminary. Nevertheless, the PIRT presented herein yields some important 791 

insights and lays the foundation for a comprehensive PIRT survey of wind energy experts 792 

that will be conducted during 2025 via the International Energy Agency Wind Energy 793 

(IEA) Technology Collaboration Programme (TCP) Task 46: Leading Edge Erosion.   794 

PIRT analyses are valuable because they allow systematic identification of 795 

phenomena/processes of importance and that require further research to enhance TRL or 796 

reduce safety risks. However, PIRT analyses are inherently subjective, since they leverage 797 

expert knowledge and judgment [82]. While some have advocated that PIRT 798 

methodologies should be based on literature-based meta-analyses [83], these too are not 799 

fully objective due to inherent biases in publishing [84]. An important advancement of 800 

this PIRT analysis is that the standard deviation of rankings across respondents is 801 

captured and presented to provide quantitative information about the presence or absence 802 

of consensus in the rankings. Divergence of opinion may derive from knowledge gaps 803 

due to the trans-disciplinary nature of a topic or the rapidly evolving nature of a complex 804 

topic. Expert-knowledge based frameworks for research priority identification using PIRT 805 

may also not fully reflect emerging issues. An example of this that was identified in the 806 

PIRT but not given a Tier 1 ranking is possibility of micro-plastic shedding to the ocean 807 

environments. This research topic is being addressed in the Preventing MIcroplastics 808 

pollution in SEa water from offshore wind (PREMISE) project [154]. Emergence of such 809 

new topics strongly advocates for PIRT assessments to be continuously updated to ensure 810 

they evolve as knowledge is advanced. 811 

The PIRT process and discussions summarized above indicate the TRL for LEE 812 

solutions remains relatively low. However, investment in the priority areas articulated 813 

herein will enhance fundamental understanding and can be used to evolve robust 814 

framework for end-to-end LEE prediction (Figure 7). Investments should be made in 815 

building a robust model V&V framework for each component of such a model chain [155]. 816 

Successful implementation of such a framework will require sharing of a range of data 817 

from industrial partners. Needed information include LEP product material properties, 818 

greater transparency regarding hardware settings in meteorological sensors and data 819 

from operating wind farms linking LEE state and AEP. End-to-end assessment of damage 820 

as a function of operating climate would also greatly benefit from sharing of blade damage 821 

reports/images from operating wind farms for use in evaluation of location specific 822 

meteorologically-driven LEE predictions [34]. Availability of time-histories of wind 823 

turbine Supervisory Control and Data Acquisition (SCADA) data and adequately 824 

resolved LEE topographies for eroded blades will enable faster progress in blade 825 

predictive maintenance technologies.  826 

Nomenclature 827 

ADF Accumulated Distance to Failure 828 
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AEP Annual Energy (electricity) Production 829 

AKE Accumulated Kinetic Energy 830 

CAPEX CAPital EXpenditures  831 

CFD Computational Fluid Dynamics 832 

D Hydrometeor Diameter 833 

Dis Disdrometer 834 

FE Finite Element 835 

HSD Hydrometeor Size Distribution 836 

IEA International Energy Agency 837 

LCoE Levelized Cost of Energy 838 

LEE Leading Edge Erosion 839 

LEP Leading Edge Protection  840 

LER Leading Edge Roughness 841 

LERcat Leading Edge Roughness categorization 842 

ML Machine Learning 843 

NWP Numerical Weather Prediction 844 

O&M Operations and Maintenance  845 

PIRT Phenomena Identification and Ranking Tables 846 

PPT Precipitation 847 

RET Rain Erosion Tester 848 

RG Rain Gauge 849 

RR Precipitation (or Rain) Rate 850 

SALT Simplified Aerodynamic Loss Tool  851 

SCADA Supervisory Control and Data Acquisition 852 

SD Standard Deviation 853 

TRL Technology Readiness Level 854 

UAV Unmanned Aerial Vehicle  855 

USA United States of America 856 

UV-A Ultra Violet radiation at wavelengths (λ) = 320 and 400 nm 857 

VN curves Velocity-Number of impacts to failure 858 

V&V Verification and Validation 859 

WARERs Whirling-Arm Rain ERosion testers 860 

WRF Weather Research and Forecasting 861 

vc Closing velocity  862 

vf Fall velocity 863 

vt Terminal fall velocity 864 
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