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A B S T R A C T

Theories of quantitative reasoning have taken precedence as an analytical tool to interpret and
describe students’ mathematical reasonings, especially as students engage in mathematical
modeling tasks. These theories are particularly useful to describe how students construct new
quantities as they model. However, while using this lens to analyze Differential Equations stu-
dents’ construction of mathematical models of dynamic situations, we found cases of quantity
construction that were not fully characterized by extant concepts. In this theory-building paper,
we present five examples of such cases. Additionally, we introduce a new construct—quantitative
operators—as an extended analytical tool to characterize those cases. Our findings suggest that
quantitative operators may be viewed as an extension for theories of quantity construction and
complementary to symbolic forms, when localizing theories of quantity construction for mathe-
matical modeling, especially at the undergraduate differential equation level.

1. Introduction

Mathematical modeling is important globally for STEM majors (OECD, 2016). However, across grade bands, mathematical
modeling (hereafter: modeling) presents many challenges to learners (e.g., Jankvist& Niss, 2020; Lyon&Magana, 2020). At the same
time, cultivating students’ modeling skills presents challenges to educators (Blum& Borromeo-Ferri, 2009; Manouchehri, 2017). At its
core, modeling is a representational activity—a mathematical model represents a real-world scenario mathematically to the modeler.
For these reasons, the prevailing approach to studying mathematical modeling has been the cognitive perspective due to its focus on
the cognitive processes involved in model construction and its promise of intervening in students’ model construction (Kaiser, 2017;
Kaiser & Sriraman, 2006). However, as it stands, the cognitive perspective on modeling does not afford the detailed analysis of the
operations involved in constructing quantitative relationships, which we believe is central to model construction.

Existing research suggests that operationalizing modeling through theories of quantitative reasoning (Thompson, 2011) has pro-
ductive implications for research (e.g., Czocher et al., 2022) and education (e.g., Carlson et al., 2015). Several studies have illustrated
that students’ construction of robust quantitative relationships supports the construction of meaningful mathematical expressions,
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with deep mathematical understandings rooted to real-world scenarios (e.g., Castillo-Garsow, 2010; Ellis, 2007,2011; Kafetzopoulos&
Psycharis, 2022; Moore, 2014; Moore & Carlson, 2012). Conceiving modeling as constructing a network of quantitative relationships
(Thompson, 2011) has the power to keep the students on track through goal setting and encourages them to reason about how the
quantities vary (or not) with each other in order to determine mathematical structures for real world situations (e.g., Basu& Panorkou,
2019; Castillo-Garsow, 2010).

Following this trend, as part of a larger project, our research team studied scaffolding moves that could successfully guide Dif-
ferential Equations (DE) students toward constructing models of dynamical systems. To accomplish this major research goal, we
needed to catalog the scaffolds that supported the modelers to make progress in their model construction process, which we oper-
ationalized in terms of constructing and manipulating quantities. Thus, we set a sub-goal to analyze and document the ways in which
DE students constructed new quantities and quantitative relationships as they worked on modeling tasks. During our analysis, we
found that there were cases where participants constructed quantities for which we were not able to use existing theories on quantity
construction for characterizing them. As a tool, the theories on quantity construction we referenced above were limited in accounting
for the observations we made, in a new setting with a new purpose. In such cases, it is recommended to take theory as an object of
inquiry with the intention of adapting it and expanding its domain of validity to new contexts (Assude et al., 2008; Cobb, 2007; Lester,
2005).

With these considerations in mind, in this theory-building paper, we showcase our extension of existing theories on quantity
construction to examine a novel phenomenon, distinct from the context (setting, participants, and mathematical concepts) and focus
(research goal and phenomenon of study) in which those theories of quantity construction were developed. We present a set of cases of
modelers’ construction of quantities for which existing theories on quantity construction were limited in their capacity to analyze.
When we say existing theories were limited, we mean we encountered instances of modelers’ construction of quantities where there
was no clear evidence that modelers’ activities were compatible with the already established theories or that the theoretical lens was
limited in describing modelers’ mathematizing activities. We propose a new construct—quantitative operators—as an analytical tool to
explain DE students’ construction of new quantities during modeling.Wemake the argument that quantitative operators can be viewed
as an extension to existing theories on quantity construction for analyzing the mathematics of modeler. In particular, to explain cases of
DE students’ construction of new quantities by operating on existing quantities, during modeling. In light of this argument, we first
summarize the existing theories on quantity construction. Next, we explain our perspective on modeling. Next, we discuss our reasons
for adopting a quantitative reasoning perspective to study modeling and its prospective limitations. Then, we discuss how our
approach overcame those limitations in the methods section. Next, we present our findings as results of the methods we undertook to
overcome the theoretical limitations. Finally, we end with connections to other parallel theories and implications of our findings.

2. Theories on the construction of quantities

Quantitative reasoning entails the mental operations involved in conceiving a real-world situation consisting of quantities and
relationships among conceived quantities (Thompson, 2011). Within this perspective, quantities are mental constructs of measurable
attributes that consists of three inter dependent entities: object, attribute, and a conceived measurement process (Thompson, 2011).
Hence, quantification of a measurable attribute entails “the process of conceptualizing an object and an attribute of it so that the
attribute has a unit of measure, and the attribute’s measure entails a proportional relationship (linear, bi-linear, or multi-linear) with
its unit” (Thompson, 2011, p.37). For example, consider the quantity the number of distinct birds that visited the backyard on a Saturday
morning, from 9am to 1pm. Here, the object is the backyard habitat, and the attribute is the number of birds during the given time. We
propose two measurement processes to highlight the distinctions in the ways in which this quantity may be conceived. First, a modeler
may stay out in the backyard and count the distinct number of birds, one-by-one, that visited the backyard. Second, a modeler may
count the number of birds that visited the backyard during the first hour, and then instantiate a rate between the number of birds that
visited the backyard during an hour and the total time period (e.g., 7 birds an hour for 4 hours). In the first method we proposed, the
quantification was directly measurable; in the second method quantification required operation on existing quantities, which this study
focuses on.

Thompson (1994) defined quantitative operation as the “mental operation by which one conceives a new quantity in relation to one
or more already-conceived quantities” (p.9). Other examples of quantitative operations include: combining quantities additively,
combining quantities multiplicatively, comparing quantities additively, comparing quantities multiplicatively, and generalizing a
ratio (see Table 1). As a result of a quantitative operation a quantitative relationship is created among the quantities operated, the
quantitative operation, and the result of operating—the new quantity (Thompson, 1990). In other words, a quantitative relationship is

Table 1
Quantitative structures and their arithmetic operations (Thompson, 1990, p.26).

Quantitative Structure Arithmetic operation to evaluate the resultant quantity

A quantity is the result of an additive combination of two quantities Addition
A quantity is the result of an additive comparison of two quantities Subtraction
A quantity is the result of a multiplicative combination of two quantities Multiplication
A quantity is the result of a multiplicative comparison of two quantities Division
A quantity is the result of an instantiation of a rate Multiplication
A quantity is the result of a composition of ratios Multiplication
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the “conception of three quantities, two of which determine the third by a quantitative operation (Thompson, 1990, p. 12).” A network
of such quantitative relationships is known as a quantitative structure (Thompson, 1990).

New quantities may also be constructed through reasoning about how existing quantities vary in relation to each other, known as
covariational reasoning. Covariational reasoning (Carlson et al., 2002) means “coordinating two varying quantities while attending to
the ways in which they change in relation to each other” (p. 354). For example, a modeler who is modeling a backyard habitat where
cats prey on birds, might reason that “as the cat population increases, the bird population decreases.” This kind of reasoning is an
example of gross coordination of values (Thompson& Carlson, 2017). In contrast, if a modeler coordinates values of the cat population
with values of bird population (for example, evidenced through drawing a graph, making a table), she is engaging in the coordination
of values. Thompson and Carlson (2017) and Carlson et al. (2002) have proposed frameworks for the different mental operations
involved in covariational reasoning. Scholars have built on frameworks of covariational reasoning to describe how students construct
new quantities. For example, Johnson (2015) investigated how students quantified rate through unifying theories from quantitative
reasoning (Thompson, 2011) and covariational reasoning (Carlson et al., 2002).

According to Thompson (1990), quantitative operations and arithmetic operations are distinct in the following way: while
quantitative operations are the mental operations involved in constructing quantitative relationships, an arithmetic operation is a
numerical operation that is used to determine the value of the quantity. Table 1 illustrates the distinct quantitative structures and the
canonical arithmetic operations that are used to evaluate the resultant quantity. In our study, we used the quantitative structures
illustrated in Table 1 as an analytical tool to make sense of modelers’ construction of quantitative structures during modeling. We refer
to this table again in the discussion section.

In some theories of quantitative reasoning, importance is placed on values of quantities and arithmetic operations for combining
them (e.g., Schwartz, 1996). In contrast, Thompson (2011) proposes quantity as an object that is constructed by an individual and
emphasizes the amount-ness (Moore et al., 2022)of the quantities and the mental operations that are involved in their construction.
This view on quantities enables us to explain the evolution of a modeler’s model in terms of the quantities the modeler conceived and
the mental operations she performed. Therefore, in our study, we adopted Thompson’s (2011) and his predecessors’ view on quantity
construction for modeling. We refer to Thompson’s notion of constructing quantities through operating on existing quantities as
Theories of Quantity Construction (TQC) through the rest of this paper. Additionally, we provide our perspective on modeling through a
cognitive constructivist lens and further justification for adopting theories of quantitative reasoning (referred to as QRT), the umbrella
of TQC, to analyze modelers’ mathematics1 in the sections that follow.

3. Our perspective on modeling

Within modeling research, our work lies within the context of the cognitive perspective of modeling (Kaiser, 2017), which entails
the analysis and understanding of the cognitive processes involved in model construction (Kaiser & Sriraman, 2006). Within this
perspective, modeling is typically seen as a non-linear process consisting of a set of competencies (and sub-competencies) that are
unique to organizing a real-world situation into a mathematical representation and are depicted using mathematical modeling cycles
(MMC). While pluralities in theMMCs adopted by scholars exist (e.g., Blomhoj&Hojgaard-Jensen, 2003; Blum& Leiss, 2007), many of
them share the following modeling competencies: understanding of the messy real-world situation, simplifying the messy real-world
situation into a problem that can be solved using mathematics, mathematizing the problematized situation, performing mathematical
analysis to obtain mathematical results, interpreting the mathematical results, and validating the results against real-world constraints.

Within the cognitive perspective of modeling, the primary aim of research has been to provide description of students’ cognitive
processes involved in developing mathematical models of real-world situations and to document the challenges modelers experience
(from a researcher’s perspective) while working on modeling tasks. For example, researchers have re-constructed students’ individual
modeling routes through examining modeling sub-competencies (e.g., Borromeo-Ferri, 2007), examined howmodelers simplify messy
real-world situations (e.g., Jablonski, 2023), examined how learners organize these parameters and variables into mathematical
representations (e.g., Murata & Kattubadi, 2012; Stillman & Brown, 2014), reported the ways in which students validate their models
(e.g., Czocher, 2018), and catalogued the cognitive blockages students experience during modeling (e.g., Jankvist & Niss, 2020;
Stillman et al., 2010;).

The cognitive perspective of modeling, with its focus on competencies that contribute to (or hinder) students’ progress in a
modeling task, has been effective in describing and interpreting modelers’ engagement with modeling tasks, while also framing the
learning outcomes educators can expect from that engagement. For example, scholars have proffered ways for improving the learning
of modeling through supporting modeling competencies directly and designing the appropriate learning environments to deliver that
support (e.g., Anhalt, et al., 2018; Lesh et al., 2003; Stillman, 2011; Stillman et al., 2010). However, challenges in cultivating students’
modeling skills stem from that same focus on describing macroscopic phases2 of modeling, which do not provide fine grained analysis
(microscopic view) of how the models themselves evolve as modelers construct them. Without an understanding of how modelers’
models evolve, educators are constrained in articulating interventions to modelers’ model construction in ways that uphold modelers’

2 Following Steffe & Thompson (2000), we use the term modelers’ mathematics to refer to modelers’ mathematical realities, which are distinct
from the modeling-educators’ mathematics.
3 We refer to macroscopic phases of modeling to mean the phases included in a typical MMC, such as mathematizing or interpreting, and micro-

scopic view as the immediate next step a modeler makes in her model construction process, such as coordinating change in a population with change
in time.
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autonomy while generating meaningful (to modelers) representations. Therefore, bringing in novel theoretical approaches to viewing
cognitive modeling may benefit the field (Cevikbas et al., 2021).

As a result, we synthesize a cognitive constructivist view on modeling by integrating constructivist TQC to analyze DE students’
mathematical model construction. From our perspective, modeling (and in particularmathematizing) can be viewed as analyzing a real-
world situation into a quantitative structure (Thomson, 1990). Our view of modeling also goes beyond the mental operations involved
with quantities to also include other mathematical operations that aid in representing a real-world situation as a mathematical object.
From this perspective, a mathematical model can be viewed as a quantitative structure that represents how the quantities of a
real-world situation are related to each other, where the quantities act as the building blocks that make up the model (Larson, 2013).

4. Prospective benefits and existing limitations of adopting and integrating QRT to strengthen the cognitive perspective of
model construction

There is value to theorizing mathematical model construction through the lens of quantitative reasoning (Czocher et al., 2022;
Moore & Carlson, 2012; Thompson, 2011). First, many studies investigate students’ quantitative reasoning while treating mathe-
matical modeling as ameans to learning mathematical concepts. Curricular materials developed in this way have proven successful for
the teaching and learning of mathematical concepts such as algebra (e.g., Smith & Thompson, 2007), calculus (e.g., Carlson et al.,
2015), and functions (e.g., Ellis, 2011). Elaborating points of contact between QRTs and the cognitive perspectives on modeling would
enable researchers in both traditions to design curricular materials that have the potential to advance students’ modeling skills as an
end to learning.

Second, and more importantly to our argument, there is a natural connection between modeling (creating a mathematical model)
and quantitative reasoning (constructing a quantitative structure). We can understand mathematical modeling as the organization of
real-world situations using mathematical representations that illustrate how quantities within the real-world situation are in relation
to each other. Using QRT as an analytic tool is a powerful way to analyze students’ model construction process in terms of the
quantities they impute to the situation, the reasonings they make on how the values of the quantities vary in relation to each other, the
new quantities they construct through operating on existing quantities, and the relationships they form between the quantities. In this
way, QRT can be used to describe students’ construction of new quantities, hence the evolution of their models (Czocher & Hardison,
2021). This approach to analyzing modelers’ modeling activities formulates the immediate next step in the modelers’ model con-
struction process. It thus organizes students’ modeling activity, at a fine-grained level, from the perspective of an observer and
therefore sheds light on developing instructional moves that meet the students where they are.

Amending the cognitive perspective on modeling with QRTs suggests that construction of new quantities by operating on existing
quantities is responsible for the evolution of a mathematical model. For research programs whose focus is not on leveraging students’
quantitative reasoning to promote mathematical conceptual development—but instead on development of a mathematical model—
we found an opportunity to extend and complement TQC through examining instances of modelers’ mathematics that (a) were
contributing to model evolution and (b) were borderline cases within TQC. These borderline instances may be easily discounted as a
construction of a new quantity through operating on existing quantity(s) but could provide valuable insights to modelers’ model
construction process. We motivate our work by presenting a simple example of this case.

One of our participants, Pai (a senior, Economics major), was working on constructing a model for the rate of growth of a simple
interest bank account. Pai first constructed an expression for the amount of money present in the bank account in terms of time, t. He
next took the derivative with respect to time to construct the rate at which the account grows. While Pai’s activities may signal typical
computations that use calculus-based operations, we provide an alternative interpretation in terms of quantity construction. Pai’s
construction of the bank account’s rate of growth followed the following order of operations: (a) Pai first constructed a quantity that
measured an amount in relation to other quantities (i.e., time and initial deposit) and (b) Pai operated on the quantity that measured an
amount by formulating a derivative to construct a quantity that measured a rate. In essence, Pai transformed an amount into a rate
through a derivative. We found that we were not able to use TQC to describe Pai’ modeling activities. However, we observed from our
data that taking the derivative to construct a rate of change is an operation that is common among STEM majors and often is a fruitful
endeavor in modeling canonical scenarios from across DE curricula.

Cases like Pai’s may pose challenges for analyzing modelers’ mathematics through TQCs for the following reasons. First, TQC is
concerned with the mental operations involved in organizing the world around us into a quantitative structure. The focus is primarily
onmental operations and amount-ness of the quantities. Within modeling, representing the quantitative relationships into mathematical
representations that incorporate mathematical symbols and testing the model against real-world conditions are processes that are
indispensable. This disparity between the two theoretical perspectives may pose limitations in using TQC to explain modelers’
mathematics (Czocher et al., 2022). Second, TQC were developed through investigating students’ thinking up to the calculus level.
Therefore, using TQC for analyzing students’ construction of new quantities with students who have already taken differential
equations, may pose limitations. Third, existing TQCwere developed to meet students’ intellectual need (Harel, 2013) for constructing
quantitative relationships (Johnson, 2023). Students’ intellectual need for quantitative relationships entails the students’ need to
mathematize a problematized situation through constructing quantitative relationships through operating among constituent quantities
(Johnson, 2023). However, we hypothesize that existing TQC may not attend to students’ intellectual need to construct quantitative
relationships through transforming a single quantity using mathematical operators that enable that transformation, like Pai did. We
address such cases in this paper.

Finally, although Thompson (1994) defined quantitative operations as the mental operations on “one or more already-conceived
quantities” to construct a new quantity, the definition of a quantitative relationship (Thompson, 1990) and the examples given for
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quantitative operations (Thompson, 1994) emphasize operations on two quantities to conceive a third new quantity. Therefore, it is
not clear whether operations performed on one quantity to construct a new quantity fall within the scope of quantitative operations (or
what they would even look like). In addition, through our analysis, we observed that students may engage in operations on quantities
without clear evidence of the operations having a situationally relevant quantitative meaning, but the resultant quantity has a
quantitative meaning for the student. For example, in Pai’s construction of rate of growth of the bank account, there was no discernible
evidence that taking the derivative of the amount constituted the multiplicative comparison of change in amount and change in time.
However, the result of the operation carried situationally relevant meaning—a measurable attribute of the bank account.

To address these nuanced challenges—where a modelers’ operations might appear simplistic at first glance but are crucial for
advancing their model construction process—we introduce a tool that captures the borderline cases. We define quantitative operators as
machines that take in a singular quantity and output a new quantity, depicted in Fig. 1. We see the purpose of a quantitative operator as
transforming an existing quantity into a new quantity, using mathematical operators that enable the modeler’s intended trans-
formation. We distinguish quantitative operators from Thompson’s quantitative operations as follows: Thomspon’s quantitative op-
erations emphasize that both the operation (enactment) and the resultant quantities (product) have situationally relevant quantitative
meanings. In contrast, quantitative operators do not require this situational relevance during modelers’ enactment of them, but the
resultant quantity still holds situationally relevant quantitative meaning to the modeler. Additionally, quantitative operators diverge
from TQC by emphasizing the transformation of a singular quantity rather than operation among multiple quantities. In the study we
describe below, we address the following questions:What are some cases of modelers’ construction of new quantities, through operating on
existing quantities, that cannot be characterized by extant TQC? How can quantitative operators be used as an analytical tool to describe such
cases?

5. Methods

5.1. Setting and events

The data reported in this paper were drawn from a larger project that studied how to effectively scaffold DE students to construct
mathematical models for dynamic situations. In the larger study, data was collected through a combination of teaching experiments
(Steffe & Thompson, 2000) and clinical interviews (Goldin, 1997) from 30 STEM undergraduates at a large public university in the
southwestern United States. In this paper, we focus on a subset of the data we identify as events, arising from five participants’ work on
modeling tasks from the larger project. These events were purposefully streamlined from the larger data set due to the presence of
quantity construction through transforming existing quantities, that existing TQC were limited in characterizing. The five participants
considered here were undergraduate STEM majors (economics, computer science, physics, civil engineering, and mathematics), who
were either in their 3rd or 4th year of college. All five participants had already taken a course in differential equations prior to the
interviews.

Each participant engaged in modeling tasks3 during interview sessions that lasted for around 60–90 minutes. No constraints were
imposed onto the participants in conceiving the situation given to model. Each interview session was accompanied by a lead-
interviewer and a witness-interviewer. The lead interviewer’s primary goal was to unpack how the participants conceived the real-
world scenario and provide support through questioning, rather than delivering information, to help the students advance in their
modeling process.

Our five events consisted of (1) Pai’s work on the Cats and Birds task, (2) Winnow’s work on the Tuberculosis task, (3) Ivory’s work
on the Tropical Fish task, (4) Pattern’s work on the Cats and Birds task, and (5) Szeth’s work on the Pruning task (see Table 2 for task
statements).

5.2. Data analysis and constitution of cases

We adopt Ragin’s (1992) view of cases as empirically observable phenomena. Constitution of cases emerged through analysis, as
we encountered instances of participants constructing new quantities through operating on existing quantities, that TQC were limited
in accounting for. Once these instances were identified, we developed rich, interpretive accounts of the cases (see Geertz, 1973). The
identification and development of the cases comprised of the following steps: First, we watched the videos and identified instances
where participants constructed new quantities by operating on existing quantities. Next, we summarized what the participants did in
each of those instances. Next, we leveraged criteria for quantification (Czocher & Hardison, 2021), constructs from quantitative op-
erations (Thompson, 1990; 2011), and the mental operations involved in covariational reasoning (Thompson & Carlson, 2017) to
interpret how the participants constructed new quantities by fine-tuning our summaries from the previous step. At this level, we also
carefully sorted borderline instances where the participants did not show clear evidence of having situationally relevant quantitative
meanings for the operations they performed on existing quantities to construct new quantities or instances where the existing TQC
were limited for describing what the participants did in order to construct new quantities. Once we had a catalogue of the cases where
participants’ construction of new quantities could not be explained by existing TQC, we asked: how did the participant transform an
existing quantity (or quantities) to conceive a new quantity? Answering this question engendered the analytical tool quantitative

4 We take an expansive view on modeling tasks in the sense that the characteristics of a modeling task are considered from the perspective of the
modeler actively working on them (rather than relying solely on the information provided in the task).
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operators and nominalized the five cases, reported as findings. We nominalized each case to exhibit the modeler’s intended quantitative
structures, despite the canonical meanings each nominalization may carry. Participants’ intended quantitative structures were inferred
through localized goals participants’ set to resolve a problematized situation (Simon et al., 2004; Johnson, 2023). A sample analytical
process, using Pai’s construction of the rate of growth of a simple interest bank account, is illustrated in Table 3.

6. Results

We report five cases of participants’ construction of new quantities that extant TQC were limited in characterizing, but the
analytical tool quantitative operators could. For each case, we situate the participant’s work within the task setting, describe how each
case is difficult to characterize using TQC, and the theoretical need for placing the participant’s work under the new con-
struct—quantitative operators.

6.1. The derivative operator: transforming an amount to a rate

The derivative operator arises from transforming a quantity that measures the amount of an object to a quantity that measures the
rate at which the amount changes. To illustrate this case, we present Pai’s work from The Cats and Birds Task. Pai constructed
Expression 1 to represent “the number of bird-cat interactions that resulted in a kill” (which for Pai, was also the “number of birds dead
at time t”).

fk(t) = [α ·B(t) ·C(t)]β (Expression 1)

Above, B(t) and C(t) represented the bird and cat population at time t and α was given as the percentage of potential cat-bird
interactions that was realized. Pai defined β as the percentage of the realized cat-bird interactions that resulted in a bird’s deaths.
The interviewer asked Pai to construct an expression for the rate of decrease of the bird population due to cat predation with respect to
time. Pai’s initial conception of this prompt was to draw a graph of bird population vs time, where he coordinated the values of the bird
population and time (Fig. 2(a)).

After drawing the graph in Fig. 2(a), Pai explained that the slope of the tangent gives the rate of decrease of bird population:
Pai: I think this question is trying to plot the function for the derivative of my model, because it wants the rate of decrease. I think

we’re asking for decrease in bird pop would be the y axis. Over time t [draws the x axis in Fig. 2(b)]. The rate would be whatever this
slope is [pointing at A in Fig. 2(a)], called, I don’t know. Negative three. It would be like that [draws the graph in Fig. 2(b)]

Fig. 1. Quantitative operators as a machine.

Table 2
Tasks (abridged versions) giving rise to the events.

Pruning Imagine you have a hedge in your garden of some size, S, and you want it to increase its size even more. Your gardener advises you that the overall
rate of growth of a plant will depend both on the extent of pruning and on the regrowth rate, which is particular to the plant species and
environmental conditions. Both rates can be measured as a percentage of the size of the plant. The pruning rate can be adjusted to result in a target
overall growth rate. Can you derive a model for the rate of change of the size of the plant?

Cats and Birds Consider a backyard habitat, where cats are the natural predators of birds. Model the rate of decrease of the population of birds due to predation
by cats.

Tropical Fish The strength of a buffering solution entering the tank varies according to 1 − e−t/20 grams per liter. The buffering solution enters the tank at a
rate of 5 liters per minute. Create an expression that models how quickly the amount of buffering agent in the tank is changing at any moment in
time

Tuberculosis Tuberculosis (TB) is a serious infectious disease that can cause death. Imagine a community where sick and well members move about freely
among one another. Create a mathematical model for the rate that the disease will spread through the community (Boyce & DiPrima, 2012).

Table 3
Sample analytical process.

Resultant Quantity Quantity(ies)
Operated Upon

Description of Construction Process Can TQC be used to explain the
quantification process?

Amount of money in
the bank after t
years

Initial deposit amount,
interest gained during t
years

Amount of money in the bank after t years was constructed
through additively combining two quantities: initial deposit
amount, interest gained during t years.

Yes, additive combination is a quantitative
operation that combines two existing quantities
to construct a new quantity.

Rate of growth of
the bank account

Amount of money in
the bank after t years

To construct rate of growth, Pai set a subgoal to construct
the amount of money in the account. He then took the
derivative of the Amount of money in the bank after t years

It is unclear if taking the derivative qualifies as
a quantitative operation without additional
evidence.
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We interpret that Pai constructed an image of the slope of the tangent line to the curve in his graph in Fig. 2(a), at different points in
time, in order to derive a model for the rate of change of the bird population due to cat predation with respect to time. Pai stopped
drawing the graph he initiated in Fig. 2(b) and decided to take the derivative both sides of Expression 1 with respect to time. Pai
justified his decision as below.

Pai: We’re plotting the derivative, the rate of decrease at these times [referring to Fig. 2(a)]. I need a model for the derivative. I think
it would be fḱ (t)…If we do the product rule, fḱ (t) we get something like that [Referring to the result of applying the product rule], where
B́ and Ć (t) respectively are the change in the bird [and cat] population.

Pai used the product rule to obtain Expression 2 as the rate at which the bird population decreases due to predation by cats with
respect to time. Upon constructing Expression 2 and reasoning through Expression 2, Pai clarified that fʹk(t) represented the rate of
decrease of bird population due to cat predation with respect to time and B’(t) represented the rate of change in bird population due to
all causes with respect to time.

fḱ (t) = β · α[B́ (t) ·C(t) −B(t) · Ć (t)] (Expression 2)

In this example, we described how Pai operated on existing quantities to derive an expression for the rate of decrease of bird
population due to predation by cats with respect to time. First, Pai constructed the slope of the tangent line at different points on the
curve for the graph he drew for how the bird population varies with time. Soon after, Pai took the derivative of Expression 1 (to Pai
Exepression 1 represented the “the number of bird-cat interactions that resulted in a kill”) with respect to time. These modeling ac-
tivities, especially Pai’s construction of the tangent line, may be seen as Pai enacting some sort of coordination between two quantities.
In particular, the multiplicative comparison between change in bird population and change in time. However, there was not enough
evidence to support this claim. We infer Pai’s actions of drawing the tangent lines to find the slope was largely in service of finding the
derivative in order to construct the rate of change. This is because (a) Pai did not complete the graph he initiated in Fig. 2(b) and (b)
decided to take the derivative of fk(t) to construct the rate of decrease of the bird population due to cat predation with respect to time.
We conjecture that, for Pai, the phrase “rate of change” acted as a cue to take the derivative of a function (e.g., Jones, 2017), dropping
the situational attribute that function was measuring. Regardless, through taking the derivative, Pai constructed a quantity that was
meaningful for him. If Pai had explicitly indicated that through constructing the tangent line he was intending to multiplicatively
compare the change in bird population due to cat predation with change in time, we may have credited Pai as having engaged in
quantitative operations as described in TQC. In turn, Pai proceeded with taking the derivative of “the number of birds dead at time t”
with respect to time. In both these operations on quantities, Pai’s goal was to transform an existing quantity that measured an amount,
through formulating a derivative, into a quantity that measured the rate of change.

6.2. The negation operator: transforming an inflow to an outflow

The negation operator arises from transforming a quantity to a new quantity that measures the opposite flow of the extant quantity.
To illustrate this case, we present Winnow’s work from The Tuberculosis Task. Winnow constructed Expression 3 as a model for the
rate of change of the sick people with respect to time.

dS
dt

=
m

S(t) × H(t)
·H(t) · r (Expression 3)

In Expression 3, Winnow definedH(t) as the number of healthy people at time t, S(t) as the number of sick people at time t,m as the
number of contacts between healthy and sick people that actually occur, and r as the transmission rate. For Winnow, m

S(t)×H(t) repre-
sented the percentage of the healthy people encountering sick people per unit time. Through interviewer support, Winnow agreed that,

m
S(t)×H(t) represented the exposure rate. He then multiplied

m
S(t)×H(t), H(t), and r to model the number of healthy people that get sick per

unit time. When the interviewer asked for a model for the rate of change of the healthy people with respect to time, Winnow con-
structed Expression 4 as an initial model for the rate of change of healthy people with respect to time.

Fig. 2. Pai’s graph for (a) the bird population varying with time (b) the rate of decrease of bird population with respect to time varying with time.
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dH
dt

= −
m

S(t) × H(t)
· S(t) · r (Expression 4)

Winnow validated his model by checking against specific conditions, S(t) = 10 andH(t) = 10. He was satisfied that substituting for
S(t) = 10 and H(t) = 10 in Expression 3 and Expression 4 yielded the same value, but opposite in signs. He asserted that the rate of
change with respect to time for sick people would have the same value as the rate of change with respect to time for healthy people. To
perturb Winnow, the Interviewer asked him to validate his model against the values S(t) = 2 and H(t) = 10. Realizing that the output
values from his expressions for dS

dt and
dH
dt would not be equal, Winnowmodified his model for the rate of change of healthy people with

respect to time to be dH
dt = − dS

dt. Winnow justified his model, asserting that “the number of new sick people and the decrease in healthy
people should be the same.”We takeWinnow’s actions as evidence that he had conceived that the rate of change of healthy people with
respect to time should have the same value, but opposite in flow, as the rate of change of sick people with respect to time.

For Winnow, the “ − ” in dH
dt = −dS

dt represented only a gross covariation between the number of healthy people and number of sick
people. We make this inference due to the justification he gave to his model as: “[the rate of change of healthy people with respect to
time] would be a negative number because…the number of healthy people would be decreasing [as the number of sick people in-
crease].” However, there was no clear evidence if the −was measuring a situational attribute. If Winnow had indicated that the − in dH

dt

= −dS
dt represented

−1 healthy person
1 sick person (the number of healthy people decrease by one for each person that gets sick)—a measurable

attribute of the system of healthy and sick people—then we would have credited Winnow to have engaged in the multiplicative
combination of two quantities (number of people removed from the healthy population for each person getting sick and the rate of
change of the sick people with respect to time), making it a quantitative operation as defined in TQC. However, there was no clear
evidence whether the “ − ” in dH

dt = −dS
dt represented a quantity, let alone − 1, for Winnow. Through Winnow’s modeling actions we

infer that Winnow negated the rate of change of sick people with respect to time to construct the rate of change of healthy people with
respect to time, because for Winnow, the number of new sick people, directly corresponded to the decrease in the number of healthy
people. Therefore, the “ − ” in dH

dt = −dS
dt acted as a quantitative operator to transform a quantity that measured a flow into a quantity

that measured the opposing flow, that was afforded through allowing gross variation of those quantities.

6.3. The anti-derivative operator: transforming a rate into an amount

The anti-derivative operator arises from transforming a quantity that measures a rate at which the amount of a quantity changes to a
quantity that measures the amount of the quantity. To illustrate this case, we present Ivory’s work from The Tropical Fish Task. Ivory
was working towards constructing a model for the amount of buffering agent in the tank at time t. To accomplish this goal, Ivory first
constructed Expression 5 to represent the rate at which the amount of buffering agent enters the tank.

mE(t) = 5 ·

⎛

⎝1− e
−t
20

⎞

⎠ (Expression 5)

Ivory definedmE(t) as the rate at which the amount of buffering agent enters the tank at time t. After constructing Expression 5, she
stated that she would take the integral ofmE(t) in order to construct an expression for the total amount of buffering agent in the tank at
time t. Following this reasoning, Ivory constructed expression 6 to represent the amount of buffering agent inside the tank at time t.

M(t) =

∫

mE(t) (Expression 6)

After the interviewer reflected that Expression 6, as written, does not take into account the amount of buffering agent that leaves
the tank, Ivory modified expression 6 to the one shown in Fig. 3 to account for the amount of buffering agent that had also exited the
tank. She confidently voiced that the expression in Fig. 3 “would work,” because she justified “the total things that have entered minus
the total things that have left.” In Fig. 3, Ivory definedmL(t) as the rate at which the amount of buffering agent leaves the tank at time t.

Through Ivory’s modeling activities, we infer that Ivory conceptualized that the integral of the rates at which the amount of
buffering agent enters and leaves the tank would yield the total amount of buffering agent that enters the tank and the total amount of
buffering agent that leaves the tank, respectively. Even though Ivory constructed a quantity that had situationally relevant meaning to
her (amount of buffering agent that enters (leaves) the tank at time t), we were not able to infer if the operation (taking the anti-
derivative) on the singular quantity (rate at which the amount of buffering agent enters (leaves) the tank) had clear evidence of a

Fig. 3. Ivory’s model for the amount of buffering agent in the tank at time t.
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situationally relevant quantitative meaning. That is, it was not clear to us, through taking the integral, if Ivory was envisioning
additively combining all the little changes in amount of buffering agent (i.e.,mE(t) · Δt) that had entered (left) the tank since the time of
interest to the present time, while also simultaneously coordinating the values of t, mE(t), and

∫ t
0mE(t) · dt (Thompson & Silverman,

2008). However, we wanted to document Ivory’s construction of the amount of buffering agent in the tank at time t, through her
transformation of the quantities mE(t) and mL(t). In this particular instance, we infer that for Ivory, the anti-derivative acted as an
operator to transform a quantity that measured a rate to quantity that measured amount.

6.4. The sub-setting operator: transforming an amount to a smaller amount

The sub-setting operator arises from transforming a quantity that measures an amount to a quantity that measures a part of the whole
amount. We present Pattern’s work from The Cats and Birds Task to illustrate the sub-setting operator. Pattern was working towards
constructing a model for the number of cat-bird encounters that result in a bird’s death. To accomplish this goal, Pattern first con-
structed an expression to calculate the potential number of cat-bird encounters at time t (Fig. 4(a)). Pattern was then asked to consider
how he might modify his expression to account for the fact that only some percentage, α, of the potential encounters are realized. In
response to this, Pattern elected to multiply the potential number of cat-bird encounters at time t by α as shown in Fig. 4(b). Pattern
explained his reasoning for multiplying by α as follows.

Pattern: So, this [referring to the expression in Fig. 4(a)] is the total possible encounters that could possibly happen if perfect
conditions are met for each cat to meet each bird, and then you’re going to take a percentage of that total, and that would be your total
here [referring to Fig. 4(b)].

Later, Pattern was asked to adapt his previous equations to model the number of birds that died due to a cat encounter accounting
for the fact that sometimes a bird might escape. In response, Pattern decided to multiply the potential number of cat-bird encounters at
time t by β as shown in Fig. 4(c). Pattern verbally expressed that β is “some kind of rate that gives me the percentage of bird died.”
When the interviewer asked how he was distinguishing between α and β, Pattern gave the reasoning below.

Pattern: They [α and β] basically function the same way it’s just they are solving for different things. Because what I did here was I
made it really easy for myself by creating this baseline [referring to Fig. 4(a)] And from here, you can… I can add whatever I want. So
that gives me the freedom of being like, well, since you want to know how many birds die, we can just create this percentage [referring
to (C(t) ·B(t)) · β, Fig. 4(c)].

In the first instance, Pattern constructed the number of encounters that actually happened by envisioning a proportion of the
potential number of cat-bird encounters at time t. For Pattern, α acted as a multiplicative scaling factor to quantify the proportion of
cat-bird interaction that were realized. Next, Pattern constructed the number of encounters that result in a bird’s death by taking a
different proportion of the potential number of cat-bird encounters at time t. There was no clear evidence that α or β had a situationally
relevant quantitative meaning for Pattern. That is, we were not able to infer a situational referent (an object) that the attribute rep-
resented by, say for example β, was measuring. We would have credited Pattern to have engaged in a quantitative operation
—instantiating a rate—between β and C(t) ·B(t), if he had shown clear evidence that β measured the number of cat-bird interactions that
resulted in a bird death for every 100 potential cat-bird interactions, an attribute of the system of cats and birds. This way β would have
been credited as a scalar quantity (Thompson, 1990). However, for Pattern, β acted as an operator that shrank the size the total number
of potential cat-bird interaction to represent a subset of that amount. This interpretation was evidenced when Pattern stated that “α and
β basically function the same way” and that C(t) ·B(t) acted as a “baseline” to consider different proportions of the number of potential
cat-bird interactions—number of cat-bird interactions that realized and number of cat-bird interactions that resulted in a dead bird.
Pattern accomplished this by using multiplicative scaling factors (α% and β%, respectively) that transformed the size of the whole-
—potential number of cat-bird interactions—through reducing it. In both of these instances, Pattern constructed new quantities by
considering a proportion of the “baseline” via using multiplicative scaling factors. However, it was difficult to determine the situational
referent that Pattern was associating α% and β% with.

6.5. The percent-taking operator: transforming an amount to a percentage of the amount

To illustrate this operator, we present Szeth’s work from The Pruning Task. Szeth first constructed Expression 7 where Szeth
defined R’ as the rate at which the plant would be growing, P as the “pruning,” Gʹ as the “regrowth rate,” and E as “environmental
conditions.”

Ŕ = P+ Ǵ + E (Expression 7)

After Szeth constructed Expression 7, he mathematized Ŕ and Ǵ as Ŕ = S
100 and Ǵ = S

100 because “both rates can be measured as a
percentage of the size of the plant.” We interpret that when Szeth read the task “the overall rate of growth [of the plant] will depend

Fig. 4. Pattern’s mathematical models for the Cats and Birds task.
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both on the extent of pruning and on the regrowth rate…Both rates can be measured as a percentage of the size of the plant,” he
interpreted “both rates” to be the rate at which the plant is growing (Ŕ ) and the regrowth rate (Ǵ ), as oppose to regrowth rate and the
pruning rate. Nevertheless, Szeth constructed Ŕ and Ǵ as a percentage of the size of the plant, S, through considering 1

100
th of the size of

the whole plant S. In this instance, we were not able to discern a situational object or attribute that 1
100 was measuring.

Szeth said that he would substitute Ŕ = S
100 and Gʹ = S

100 in Expression 7. Following this, the conversation below was exchanged
among us.

Interviewer: You have Ŕ = S
100 and Ǵ = S

100. So, does that say that Ŕ and Ǵ are both equal to each other, or can they be different
percentages?

Szeth: I guess it does say they’re equal. I wouldn’t take them to be equal. In real life perspective, they are supposed to be different
things.

In the above excerpt, when the interviewer asked Szeth if Ŕ and Ǵ were equal, Szeth responded that “in real life…they are supposed
to be different things.” By that, we interpret that he meant Ŕ and Ǵ measure different qualities of the plant, that may (or may not) have
different values. We take this as evidence that for Szeth considering a fraction of the size of the plant—in particular considering 1

100
th of

S—was merely an operation to transform the size of the plant to a percentage of the size of the plant.
In this case, we illustrated how Szeth constructed the quantity G’ — “regrowth rate”—through operating on the quantity S—“the

size of the plant”—by considering 1
100

th of S. If Szeth had shown evidence that 1
100 to him represented the ratio between the size of the

plant that grew due to pruning and the size of the plant that was pruned, we would have described his construction of quantity through
TQC. However, for Szeth, multiplying by 1

100 acted as an operator to transform a quantity that measured amount to a percentage of that
amount.

7. Discussion

The purpose of this paper was to demonstrate our adaptation of existing TQC to a modeling context at the undergraduate, dif-
ferential equations level. We presented five cases of DE students’ construction of new quantities where we were not able to characterize
them use existing TQC. We argued how each case fits the definition of our new construct—quantitative operators. In particular, we
presented cases of constructing quantities through transforming (1) an amount to a rate, (2) an inflow to an outflow, (3) a rate to an
amount, (4) an amount to a smaller amount, and (5) an amount to a percentage of the amount. To characterize these cases, we
introduced the derivative operator, negation operator, anti-derivative operator, sub-setting operator, and the percent-taking operator,
respectively. In this section, we discuss its contribution to theory, implications for research and teaching, and limitations.

7.1. Contribution to theory

7.1.1. An extended framework of TQC for modeling at the DE level
A significant implication of the findings reported in this paper is an extension of TQC for modeling. Thompson (2011) proposed a

list of distinct structures involved in the construction of new quantities, through quantitative operations, and their respective arith-
metic operations to evaluate the resultant quantity (See Table 1). Thompson acknowledged that the list he proposed “[while] sufficient
for middle school mathematics, andmost of high school, it can easily be extended” (p. 43). We view our findings as expanding the list of
quantitative structures to accommodate the construction of new quantities that may arise while modeling dynamic systems in un-
dergraduate STEM education. Table 4 presents the quantitative relationships and the canonical arithmetic/calculus operations, that
were used by our participants, to evaluate the quantity that results from using a quantitative operator to transform a quantity.

Following Thompson, we distinguish between arithmetic/calculus-based operators and quantitative operators in the following
way. An arithmetic/calculus-based operator is used when an individual is attempting to evaluate the measure of a quantity. While
arithmetic operators are sufficient at the K-8 educational setting, calculus-based operators appear in secondary and tertiary educa-
tional levels, especially with students’ who have experience with DE. In contrast, a quantitative operator is used when a modeler
constructs a new quantity through transforming an existing quantity, using a mathematical operator that affords such transformation.
For example, consider a modeler who quantifies rate by applying the derivative operator to transform an amount, like Pai did. This
process leads to the construction of a new quantity. In contrast, the modeler may evaluate themeasure of the quantity using the rules of
derivatives. The use of such mathematical operators as transformational tools to construct new quantities (rather than for symbolic
manipulations and calculating values) signal amark of sophistication inmodelers’ conceptualization and the purposes of mathematical
operators.

7.1.2. Quantitative operators and symbolic forms are complementary views on model construction
In this section, we discuss connections between quantitative operators and symbolic forms (Sherin, 2001). Symbolic forms encap-

sulate the different meanings students ascribe to equations (Sherin, 2001). Symbolic forms consist of a symbol template and a con-
ceptual schema associated with that symbol template. The symbol template refers to the arrangements of symbols in an expression or
equation and the conceptual schema refers to the semantics underlying the arrangement (Jones, 2013, p. 124). The findings presented
in this paper can be examined through the lens of symbolic forms. Consider Pattern’s model for the number of cat-bird encounters that
are realized—α ·C(t) ·B(t). Pattern created a “baseline” for the potential number of cat-bird encounters at time t—C(t) ·B(t)—and
multiplied this “baseline” by α to account for the fact that only a proportion of the potential number of cat-bird encounters are realized.
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In α ·[C(t) ·B(t)], Pattern used α as a scalar to control the size of the effect on C(t) ·B(t)—the maximum number of cat-bird encounters.
This scenario can be interpreted as a case where the scaling form is activated during Pattern’s modeling activity. The symbol template
associated with this form is α · ∎ and the conceptual schema involved is the “production of an entity of the same sort that is larger or
smaller than the original” (Sherin, 2001, p.536).

On the surface, symbolic forms seem conceptually similar to quantitative operators, but our empirical work suggests that using
quantitative operators to examine students’ mathematical modeling may have distinct theoretical advantages. The mechanisms
involved in the activation of the symbolic forms scheme is the mapping of the conceptual schemes to symbolic templates. In contrast,
the activation of quantitative operator schemes is the transformation of an existing quantity into a new quantity. A modeler who is
trying to construct an equation for an established quantitative relationship may be engaging with the symbolic forms scheme. In
contrast, a modeler who is trying to construct a new quantity through transforming an existing quantity is engaging with the quan-
titative operators scheme. Symbolic forms and quantitative operators may also diverge methodologically in terms of the researchers’
use of them as an analytical tool to interpret modelers’ construction of two distinct mathematical objects—mathematical expressions
and new quantities—principal to model construction. That is, while symbolic forms can be used to analyze how modelers construct
mathematical expressions, quantitative operators can be used to analyze how modelers construct new quantities.

In this light, we discuss an alternative interpretation of our findings from the perspective of symbolic forms. While the function that
quantitative operators serve is to transform a quantity into a new quantity, this function is achieved by operators that may be expressed
by symbolic forms. For example, in order to construct the rate of change, for Pai, d∎dt acted as an operator to transform Q into the rate at
which the amount of Q is changing with respect to time. At the same time, for Pattern, α ·∎ acted as an operator to shrink the potential
number of cat-bird encounters to a proportion of it. Through our findings we speculate five such operators that take the following
symbolic forms: d∎dt , − ∎,

∫
∎, α ·∎, and 1

100 × ∎,. In Table 5, we present the symbolic forms that are associated with each quantitative
operator presented in our findings.

7.2. Implications to research and teaching

We view the notion of quantitative operators to also play the role of a placeholder to capture the genesis of quantities that (a) do not
fit the theoretical definitions of quantitative operations or (b) not evidenced, thereof. Documenting these borderline instances has
implications for research: it opens avenues for inquiry in terms of exploring the quantitative meanings behind each of these operations.
For example, the field can make progress addressing questions such as what kinds of analytical indicators serve as evidence of a quan-
titative operation when a student takes the derivative of a function? or what quantitative meanings does taking the anti-derivative bear for an
individual? These revelations will help in building theories of student cognition surrounding calculus concepts that foreground
quantitative reasoning. This endeavor is especially important to study DE students’ thinking about dynamic situations. In addition,
quantitative operators can be used as an analytical tool by researchers to describe modelers’ mathematics that otherwise cannot be
described using theories of quantitative reasoning (and therefore missed or discarded), giving credence to modeler’s mathematics.
Documenting these instances and being able to interpret modelers’ mathematics during these instances is critical to constructing
exhaustive accounts of how modelers’ models evolve.

The findings reported here have implications for the teaching and learning of modeling through quantitative reasoning. First, the
findings suggest that attending to students’ quantitative meanings behind certain mathematical operations, such as taking the de-
rivative or integral, may be a fertile avenue to help modelers progress in their model construction process. At the same time, we also
think that educators should not get too caught up comprehending modelers’ quantitative meanings in the event that the modeler
successfully4 progresses in their modeling process (e.g., Pattern’s use of the sub-setting operator). Second, we view the discourse
between a modeling-educator and a modeler, during mathematical modeling instruction, to be turn-taking. Consequently, a modeling-
educator’s move has the potential to influence the modeler’s next course of action, and thus the evolution of the modelers’ models. We
view our findings to be contributing towards a repertoire of howmodelers think and construct new quantities. Modeling-educators and
researchers can use this information to inform their moves during in-the-moment interactions with the modelers. Despite reasoning
with quantities, constructing mathematical expressions that represent those quantitative relationships can still be challenging for
modelers (Czocher et al., 2022)—a critical component of mathematizing. Our findings emphasize the importance of paying detailed
attention to modelers’ mathematization activities (rather than overlooking them), as it may offer valuable insights into the constraints

Table 4
Construction of a quantity through quantitative operators.

Quantitative Structure Arithmetic/calculus-based operations to evaluate the resultant quantity

A quantity is the result of transforming an amount to a rate Rules of derivatives
A quantity is the result of transforming a quantity to its opposite flow Multiplying by − 1
A quantity is the result of sub-setting Multiplication
A quantity is the result of transforming a rate to an amount Rules of Anti-derivative
A quantity is a result of transforming an amount to a percentage of that amount Multiplication

5 By successful, we mean both mathematical success and the absence of any internal or external conflict that impedes the modelers’ model
construction.
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modelers may encounter during mathematization. We believe that employing a quantity-construction oriented lens to modeling
(rather than a modeling cycle-oriented lens), afforded the micro-level analysis of modelers’ models.

7.3. Limitations

We acknowledge that there exist limitations to our findings. First, we do not claim that the quantitative operators we listed are
exhaustive. Studying a set of participants at a different educational level working on a different set of modeling tasks may yield cases
absent from the list provided in this report or may yield none at all. That is, we conjecture that the quantitative operators we reported
are closely tied to the educational level of our participants and the nature of tasks given to the participants, which required first order
differential equations to model the scenarios. In that sense, the generalizability of the theory proposed in this paper may be limited to
only cases of modelers constructing quantities while modeling dynamic situations that require differential equations.

Second, the findings reported in this study emerged as a consequence of analyzing modelers’ quantitative reasoning during a
mathematical modeling instructional sequence, as part of a larger study that followed a design experiment methodology. Due to the
adaptive nature of a design experiment, the need to attend to modelers’ justifications of mathematical operations and their quanti-
tative meanings consistently and systematically emerged as we conducted our ongoing analysis. Therefore, during the interview we
may have missed some opportunities to attend to the justification students made for their mathematical operations or systematically
seek the quantitative meanings they carry. Designing a study for the purposes of determining the quantitative meaning behind the
operations modelers perform to construct new quantities may yield more complete outcomes. We see this as an avenue for future
research.

Third, while we propose quantitative operators as an extended framework for TQC for the purposes of studying modeling, the study
is not suited to answer whether modelers’ use of quantitative operators can be considered as mental operations. Mental operations are
operations of the mind that do not depend on specific sensory material and therefore are not observable (von. Glasersfeld, 1995,p. 86).
In this view, whether an operation is mental or not, depends on how the user used it. For example, Pattern’s use of the sub-setting
operator, to construct the number of realized cat-bird encounters, was motivated by his intellectual need (i.e. a goal that he estab-
lished) to construct a proportion of the “base line”—number of potential cat-bird encounters. This action may fit the definition of a
mental operation if Pattern imagined constructing a subset of the whole either by shrinking the size of the whole or extracting a portion
of the whole. On the other hand, Ivory’s use of the anti-derivative operator stemmed from her conception that the anti-derivative of Q́
would yield Q. As observers do not have direct access to modelers’ minds, we can only make inferences about modelers’ cognitive
processes through their observable activities (Ginsburg, 1997). And sometimes there is no recognizable one-to-one correspondence
between the new quantities, the equations, and other representations modelers construct. Distinguishing whether these cognitive
processes were mental operations or not was beyond the scope of this study.

7.4. Concluding remarks

We join with other mathematics education scholars arguing that theories in mathematics education should be dynamic; theories
should be applied to novel contexts, allowing for adaptation, modification, and expansion to align with the available data and the
specific requirements of the phenomenon under investigation (e.g., Cobb, 2007). At the same time, it is advised that researchers should
proceed with caution when attributing quantitative reasoning to students based on their mathematical operations (Boyce, 2024).
Therefore, in this paper, we showcased our adaptation of existing TQC for analyzing DE students’ modeling of dynamic situations. Our
intention for presenting the notion of quantitative operators is twofold. First, we wanted to document instances where students
evidently constructed quantities that could not be explained using existing TQC. Second, we intended to present an alternative way to
analyze modelers’ construction of new quantities that belong in these borderline instances. Even though taking the derivative,
anti-derivative, using a multiplicative scaling factor, and negating in and of itself may not be credited as quantitative operations, they
were operations that our participants performed on existing quantities to construct a new quantity, furthering their modeling activity.
Our findings resonate with Boyce’s (2024) statement that quantitative and operator-based reasonings “can be considered to be
co-constructed via reasoning quantitatively5” (p. 421). Adhering to the definitions of quantitative operations, as defined in TQC,

Table 5
Symbolic forms associated with each quantitative operator.

Quantitative operator Symbolic form

Conceptual schema Symbol template
The derivative operator Taking the derivative gives the rate of change d∎

dt
The negation operator Negating a magnitude gives the opposite flow − ∎
The anti-derivative operator The anti-derivative of rate of change will yield the amount.

∫
∎

The sub-setting operator Scaling to smaller than the original size α • ∎
The percent-taking operator

Scaling to
1
100

th
of the original size

1
100

× ∎

6 See Boyce (2024) for more information on how quantitative reasoning and reasoning quantitatively are distinguished.
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instances such as the ones illustrated in this paper will be missed, despite their potential centrality to constructing models. Therefore,
to investigate students’ quantitative reasoning for modeling, we propose to extend the definition of operations on quantities to include
operations on singular quantities to construct new quantities through the aid of quantitative operators. The inclusion of these quanti-
tative operators allows us to make better sense of and to engage deeply in modelers’ construction of new quantities at the undergraduate
level.
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