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Re-analysis of mobile mRNA datasets raises 
questions about the extent of long-distance 
mRNA communication
 

Pirita Paajanen    1,7  , Melissa Tomkins    1,7, Franziska Hoerbst    1,7, 
Ruth Veevers    1, Michelle Heeney    2, Hannah Rae Thomas    3, 
Federico Apelt    4, Eleftheria Saplaoura    4, Saurabh Gupta    4,6, 
Margaret Frank    2, Dirk Walther    4, Christine Faulkner    3, Julia Kehr    5, 
Friedrich Kragler    4 & Richard J. Morris    1 

Short-read RNA-seq studies of grafted plants have led to the proposal that 
thousands of messenger RNAs (mRNAs) move over long distances between 
plant tissues1–7, potentially acting as signals8–12. Transport of mRNAs between 
cells and tissues has been shown to play a role in several physiological 
and developmental processes in plants, such as tuberization13, leaf 
development14 and meristem maintenance15; yet for most mobile mRNAs, 
the biological relevance of transport remains to be determined16–19. Here we 
perform a meta-analysis of existing mobile mRNA datasets and examine the 
associated bioinformatic pipelines. Taking technological noise, biological 
variation, potential contamination and incomplete genome assemblies into 
account, we find that a high percentage of currently annotated graft-mobile 
transcripts are left without statistical support from available RNA-seq data. 
This meta-analysis challenges the findings of previous studies and current 
views on mRNA communication.

A key step in mobile mRNA studies is the assignment of RNA-seq reads 
to different genotypes. One way of identifying the genotype is based on 
single nucleotide polymorphisms (SNPs) (Fig. 1). Typically, a require-
ment is made for a defined number of RNA-seq reads to have a SNP that 
corresponds to the alternative allele for a transcript to be assigned to a 
foreign genotype. Published criteria are: ≥1 RNA-seq read covering at 
least two SNPs3, ≥2 reads3, ≥3 reads20 or >3 reads2 covering a single SNP. 
When these criteria are met, the corresponding transcript is defined 
as mobile.

As previously reported21, criteria based on absolute numbers of 
reads, such as those above, exhibit a read-depth dependency (Extended 
Data Fig. 1). This is a consequence of sequencing noise.

Illumina sequencing machines produce base-calling errors at 
a rate of ~0.1–1% per base22,23. Sequencing providers often provide 
a quality assurance, for instance, that 85% of the reads have a Phred 
quality score of at least Q30 (that is, a base-calling error of less than 
10−3 = 0.1%). However, base-calling inaccuracies are not the only source 
of error. Before sequencing, reverse transcriptases can introduce base 
changes with an error rate of ~0.001–0.01%; the reverse transcription 
reaction error may exhibit a nucleotide bias, for instance, ‘G’ to ‘A’24,25, 
and a range of other artefacts26. On average, 6.4 ± 1.24% of sequences 
are mutated22. The average error rate of next-generation sequencing 
technologies has been estimated as 0.24 ± 0.06% per base22,27, with 
RNA-seq errors tending to be higher27.
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being from a foreign genotype. We therefore examined reads over 
co-occurring SNPs (Extended Data Fig. 3 and Supplementary Table 1). 
In the Arabidopsis homograft datasets2, we found a total of 1,753,179 
reads covering more than 1 SNP in the root and 1,977,539 in the shoot 
of Col-0; of these 1,675 (0.10%) and 1,797 (0.091%), respectively, had 
reads supporting the alternative allele for at least 1 but not all SNPs. 
These inconsistent calls are in line with the notion that sequencing 
noise may confound the identification of mobile mRNAs. We found 
29 reads (1.6 × 10−3%) in the root and 2 reads (1.0 × 10−4%) in the shoot 
for which all SNPs supported the alternative allele. Interestingly in 
Ped-0 homograft data, the proportion of reads with full support for 
the alternative allele was significantly higher (0.038% in the root, 
0.12% in the shoot). Investigating these co-occurring SNPs revealed 
another confounding factor in the identification of mobile mRNA; 
several loci showed apparent heterozygosity in the Ped-0 ecotype 
(Extended Data Fig. 4).

We therefore investigated whether noise in RNA-seq may influ-
ence the identification of mobile mRNAs. Figure 2a lists how many 
reported mobile mRNAs have numbers of reads with SNP occurrences 
that are consistent with an assumed error rate21,28. As an example, for 
an accuracy of SNP calling of 99.97% (that is, 0.03% sequencing noise, 
Phred score Q35, and an error probability for the alternative allele of 
~0.01%), the evidence for 1,086 out of 2,006 (54%) and 384 out of 1,130 
(34%) previously identified mobile mRNAs2,3 is in line with what would 
be expected from sequencing noise (Fig. 2a).

One way to increase the accuracy of detecting foreign transcripts is 
to consider multiple SNPs per read. If SNPs are located closely together, 
then a single RNA-seq read may cover more than one SNP. Accounting 
for co-occurring SNPs on the same read leads to the multiplication of 
their probabilities, resulting in higher accuracy (less likely to occur 
by chance), less pronounced read-depth dependence than single SNP 
criteria (Extended Data Fig. 1) and greater confidence in these reads 
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Fig. 1 | Grafting coupled with RNA-seq to identify transcripts that move from 
tissue of one genotype/species/ecotype/cultivar into tissue of another across 
the graft junction. Grafting-based strategy for identification of mRNAs that 
move from shoot (scion) to root (stock), from genotype 2 to genotype 1, using 
a scion:stock = genotype 2:genotype 1 heterograft. The same strategy can be 
used to identify transcripts that move from shoot to root from genotype 1 to 
genotype 2 using a genotype 1:genotype 2 graft. Transcripts that move root to 
shoot can be identified by analysing mRNAs in shoot tissue. Natural grafts, such 
as those established between the parasitic dodder plant and its host plants, 

can be used in place of artificial grafts. A key challenge in all such approaches is 
how to assign transcripts to each genotype; methods for doing so are based on 
(1) SNP identification or on (2) the alignment to different reference genomes. 
For grafts from the same species, or similar genotypes, SNPs can be used to 
distinguish between genotypes and thus identify the source genotype of each 
transcript (1). For grafts between different species, mapping (2) each RNA-seq 
read to the genome assemblies can be an effective method for determining which 
transcripts are specific to one species.
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Such apparent heterozygosity could be caused by a lack of intro-
gression or gene copy-number variation; it has been estimated that 10% 
of the annotated genes in Arabidopsis have copy-number variation29,30. 
Differences in gene copy numbers can lead to reads not mapping cor-
rectly, which gives rise to pseudo-SNPs and pseudo-heterozygosity29,30. 
Of the 2,570 genes assigned as pseudo-heterozygous30, we found 188 
mobile transcripts2 (Extended Data Figs. 2 and 4). We identified 19 
transcripts in the Ped-0 samples that are likely caused by mismapping; 
interestingly, these include transcripts that frequently fulfill the criteria 
for being classified as mobile (Supplementary Table 3). Thus, in addi-
tion to technological noise, there are also biological causes that could 
be falsely interpreted as SNPs of an alternative allele. As a consequence, 
it becomes important to not rely solely on Phred scores for estimating 
errors in SNP assignments. We next sought to estimate this background 
noise level, that is, the frequency for finding the alternative allele 
when the alternative allele is not actually present. This value can be 
estimated from available Arabidopsis homograft data2. We counted the 
number of RNA-seq reads in the homograft with a SNP that matched the 

foreign genotype. For Arabidopsis homograft datasets (ecotypes Col-0 
and Ped-0), these background noise levels were 0.084% (Col-0:Col-0 
root), 0.082% (Col-0:Col-0 shoot), 0.68% (Ped-0:Ped-0 root) and 0.51% 
(Ped-0:Ped-0 shoot). The higher background error rate in Ped-0 is 
consistent with more Col-0 transcripts being identified as mobile in 
sampled Ped-0 tissue2. For an average background error rate of 0.34%, 
we find that over 1,455 out of 2,006 (>73%) and over 945 out of 1,130 
(>84%) of annotated mobile mRNAs would not be distinguishable from 
expected errors (Fig. 2a). Consistent with this, poor overlap between 
experiments has been noted18,31, orthologues in closely related spe-
cies exhibit conflicting mobility, and reported low ratios of mobile to 
endogenous mRNAs3,5,7 are in line with the level of noise.

Another way to distinguish noise from potential evidence for 
the alternative allele is to investigate the differences in nucleotide 
distributions at SNP positions compared to other positions in the 
sequence (non-SNP positions). If a second genotype were present, 
we would expect the distribution of nucleotides at any SNP posi-
tion to be enriched in the nucleotide that supports the alternative 
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Fig. 2 | Alternative interpretations for the evidence for mobile mRNAs.  
a, Total numbers of reported mobile mRNAs in Arabidopsis thaliana2 and Vitis 
girdiana3 that can be explained by expected sequencing noise. Two values for the 
probability of the sequenced nucleotide at a SNP position being assigned to an 
alternative allele are given: 0.01% and 0.1%. b,c, The distributions of nucleotides 
at SNP and other positions (‘non-SNP’) can be informative for evaluating the 
evidence for the alternative allele. b, Histograms of the ratio of the number 
reads that match the alternative allele, n, over the number of reads of local and 
foreign reads, N, for each SNP position in the mobile population on examples 
from Arabidopsis2. Several SNPs have reads that match the alternative allele 
(n/N > 0). c, Histograms of the ratio of the number reads that match the second 
most frequent nucleotide, m, over the sum of the number of reads over the most 
frequent and second most frequent nucleotide, M, for neighbouring positions to 
SNPs. An exact two-sample Kolmogorov–Smirnov test does not find significant 
differences in the distributions over SNPs and other positions (D = 0.089302, 
P = 0.3575). A Welch two-sample t-test (P = 0.6421), Wilcox rank sum test 

(P = 0.6388) or an exact two-sample Kolmogorov–Smirnov test (P = 0.4065) does 
not support the values for SNPs being higher than other positions. d,e, Of the 
2,006 previously identified mobile mRNAs2, 953 unique mobile mRNAs were 
found in only 1 replicate in different organs of an adult Ped-0:Col-0 (root:shoot) 
graft. Such high numbers are not consistent with our hypothesis of sequencing 
noise and biological variation. Investigating the reciprocal relationship between 
root alleles that were detected in the rosette (d) and vice versa (e), in the root 
(1,373 mRNAs/867 unique) and rosette (577 mRNAs/151 unique) samples, 
identifies a strong linear correlation (P = 2 × 10−16) between expression in the 
source tissue and potential mobility. Interestingly, those SNPs that lie towards 
the lower read depth in each plot deviate the most from the linear relationship. 
However, these transcripts have low read numbers only in the ‘source’ tissue, 
whereas they have high read numbers in the sampled tissue and reads over 
SNPs that are consistent with sequencing errors. These plots thus show two 
effects: sequencing noise + either non-selective transport across the whole 
transcriptome or contamination.
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allele. Furthermore, mRNAs that are transported to cells with low  
endogenous level (potential signals) would have a value of n/N close 
to 1, where n is the number of reads that match the alternative allele 
and N the total number of reads (endogenous + foreign). We investi-
gated the distribution of n/N for each SNP in the mobile population 
of Arabidopsis2. While we do not find evidence for n/N values close to 
1, there are non-zero values of n/N that seem to support the presence 
of the alternative allele (Fig. 2b). However, looking at all neighbour-
ing positions of SNPs and computing the number of reads with the  
second most frequent nucleotide, m, over the sum of the most fre-
quent and second most frequent nucleotides, M, we find no sup-
port for the SNP positions being different (P = 0.3575) (Fig. 2c). Thus,  
the expected shift in the distribution towards higher n/N values,  

that is n/N > m/M, is not observed. Given the low prevalence, it is 
important to note that this analysis does not exclude there being 
instances, potentially even thousands, of reads with SNPs associated 
with mobile mRNAs in the data, but if so we cannot distinguish them 
from noise.

Interestingly, two samples from Arabidopsis2 do contain num-
bers of foreign reads that exceed expected noise levels. Investigating 
further, we find that these samples exhibit a strong linear correlation 
between the read counts of the grafted tissues (Fig. 2d,e). Similarly, 
Arabidopsis transcripts found in Cuscuta pentagona correlate with the 
expression levels in the host genotype1. Finding constant proportions 
of a whole transcriptome is indicative of contamination. Another expla-
nation is that the whole transcriptome is transported, with detection 
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Fig. 3 | Mobile mRNA identification is not without challenges. (1) Technological 
noise can lead to challenges in the assignment of RNA-seq reads. In SNP-based 
methods of mobile mRNA detection, it is important to be able to differentiate 
between sequencing-associated errors and genuine SNPs. In the above case, 
an RNA-seq read with a ‘T’ at the SNP position would be indicative of the read 
having come from the alternative allele, genotype 2. However, every position 
has an error rate and the higher the read depth, the more incorrect base calls 
are to be expected. Base changes could arise for reverse transcriptase or 
amplification steps, although their error rate is typically orders of magnitude 
lower than sequencing errors. Conserved regions in gene families can give rise 
to similar challenges in distinguishing mapping ambiguities from genuine 
SNPs. Defining an mRNA as being mobile based on thresholds of RNA-seq reads 

that contain a SNP can result in base-calling errors and mapping ambiguities 
biasing the interpretation. To reduce the risk of such events occurring, further 
stringent filters can be applied (for instance, using only SNPs that are bi-allelic2) 
or applying rigorous statistical comparisons (for instance, estimating the allele 
calling frequencies and comparing them between homograft and heterograft21). 
(2) Genome complexity and genome quality can lead to mapping challenges. 
Orthologous sequences (light green) can result in some RNA-seq reads aligning 
to a different gene and different genotype. Genome assemblies that are not 
complete (telomere to telomere) from exactly the same genotype as used for 
grafting can result in potential mismappings. The shaded blue gene in genotype 1 
is missing in the reference genome assembly, resulting in RNA-seq reads from this 
transcript being mapped to genotype 2.
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being proportional to read depth. Given the available data, we cannot 
distinguish between these possibilities.

Approaches that do not rely on SNPs, such as for cross-species 
studies, might avoid some of the above issues. A typical pipeline for 
analysing between-species grafts first maps reads to the reference 
genome of the sampled tissue (genotype 1 in Fig. 1). Unmapped reads 
are then compared to the reference genome of the potential source 
tissue (genotype 2 in Fig. 1). The success of this approach depends 
on the quality of the genome assembly. Supplementary Table 2 lists 
some genome completeness estimates for assemblies that were  
used in previous mobile mRNA studies. For instance, at the time of the 
study that investigated the movement of transcripts from a Nicotiana 
benthamiana scion to a Solanum lycopersicum (tomato) rootstock6, 
~15% of the genome was not yet assembled (Extended Data Fig. 6). 
The authors therefore collected RNA-seq data and applied stringent 
mapping criteria to mitigate effects of using an incomplete assem-
bly. However, repeating their procedure, we found that many reads 
that did not map to the tomato genome all aligned to small regions 
of the N. benthamiana genome, and that coverage was highly uneven 
over exons (Extended Data Figs. 5 and 6). Furthermore, blasting the 
reads identified as being from N. benthamiana against the whole NCBI 
nucleotide database resulted in 100% matches to highly conserved 
sequences contained within many genomes, including N. benthamiana 
and other Solanaceae species, in particular to 18S ribosomal RNA genes,  
which accounted for 97.7% of the blast hits to N. benthamiana  
(Extended Data Fig. 8). To test for false negatives, we mapped the 
heterograft reads directly to the N. benthamiana genome and found 
16 short transcripts that could not be distinguished between genomes 
(Supplementary Table 4).

In addition to genome assembly quality, read depth can also bias 
the interpretation of RNA-seq data from grafts between different spe-
cies (Extended Data Fig. 7). For instance, ~30% of the Arabidopsis thali-
ana transcriptome was reported to move into Cuscuta pentagona, while 
only 9% of the tomato transcriptome moves to Cuscuta1. However, there 
is a large discrepancy in the amount of RNA-seq data between tomato 
(6 Mb) and Arabidopsis experiments (2 Gb). Greater coverage would be 
expected to lead to more transcripts being detected32–34, thus explain-
ing the reported bias in mobility between species.

Overall, our study raises questions about published numbers of 
mobile mRNAs. The experimental evidence for movement of a small 
number of mRNAs over long distances in plants is compelling5,6,11,15,17,35,36. 
However, on the basis of RNA-seq studies, several thousand mobile 
transcripts have been reported1–4,6,7. Here we question this extrapola-
tion from tens of validated cases to the published vast numbers of 
potential long-distance signalling agents.

Recommendations
We described several challenges in identifying mobile mRNAs from 
short-read RNA-seq data (Fig. 3). While we do not present solutions, 
we suggest checks that can be performed to reduce the risk of false 
positives. We thus end with a list of recommendations. We assume 
that experimental issues have been taken care of, such as checking the 
samples for cross-contamination, verifying that graft junctions form 
functional vascular connections, and every effort has been made to 
use high-quality genome assemblies.

	1.	 SNP reliability. A genome mapping visualization tool such as 
IGV37 can be used to check for pseudo-heterozygosity and con-
tamination in the samples. Observing the distribution of nucleo-
tides at potential SNP positions and comparing to other positions 
can provide confidence in the SNPs and the alternative allele calls. 
These distributions should be compared to those from homo-
graft data.

	2.	 Co-occurring SNPs. RNA-seq reads that cover multiple SNPs 
can be used to check whether the SNPs that are associated  

with a certain genotype co-occur in such reads. Long-read 
and direct RNA sequencing have higher error rates but would  
allow the full transcript with all SNPs to be assessed. Sequenc-
ing protocols that barcode individual molecules by using 
adapters with unique molecular identifiers (UMIs) can be  
used to determine the error rates and check whether all 
reads from the same molecule are consistent in terms of their  
genotype assignment.

	3.	 Accuracy of experimental and computational procedures for 
identifying foreign RNA-seq reads. Calculating the ratio of the 
number of RNA-seq reads assigned to an alternative allele (for-
eign reads) over the total number of mapped RNA-seq reads for 
an experiment (foreign + endogenous reads) is a useful metric. 
This value should be computed for homografts and compared 
to the value calculated from heterograft data.

	4.	 Reproducibility and consistency of putative mobile transcripts. 
Independent biological replicates should be used to character-
ize the inherent variability in the identification of candidate 
mobile transcripts. Reciprocal grafting is recommended to eval-
uate whether mobile mRNA and their orthologues are consist-
ently mobile (if mobility motifs are inherent to transcripts, then 
near-identical sequences would be expected to also be mobile) 
and, if not, potentially pinpoint determinants of mobility.

	5.	 Alternative hypotheses. Definitions for mobile mRNAs using 
non-validated criteria are best avoided. It is important to test 
different hypotheses (for example, SNP vs sequencing noise; 
read from a foreign genotype vs mapping error; transport vs 
contamination; signalling molecules vs leftovers from differen-
tiating cells) to explain the data. The plausibility of associated 
mechanisms can lend weight to different hypotheses.

Methods
All code and scripts are freely available from our GitHub repository 
at https://github.com/mtomtom/reanalysis-mobile-mrna/tree/main 
(ref. 38).

RNA-seq data processing
The raw reads were mapped to the references using hisat2 (v.2.1.0)39,

hisat2 -x genome -1 read1 -2 read2 > mapping.sam

and processed using samtools (v1.9)40,

samtools sort -o mapping.bam mapping.sam
samtools index mapping.bam

Expression level quantification
The expression levels were quantified with Stringtie (v.1.3.5)41 using

stringtie mapping.bam -e -G genes.gff -o output.gtf 
-A output.abundance.txt

Quantification of raw counts of all nucleotides
The raw counts were quantified with bcftools (v.1.10.2)40 using

bcftools mpileup -A -q 0 -Q 0 -B -d 500000
--annotate FORMAT/AD, FORMAT/ADF, FORMAT/ADR,  
FORMAT/DP, FORMAT/SP, INFO/AD,
INFO/ADF, INFO/ADR

These flags were chosen to compare the raw error rates between 
the homograft and heterograft to catch all nucleotides. Note that the 
bcftools mpileup default sequencing depth is 8,000, but the most 
highly expressed genes have up to 200,000 reads covering a locus 
within the datasets we considered.

http://www.nature.com/natureplants
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Blast search
The NCBI nucleotide database was downloaded on 21 October 2022 
and blast+ (v.2.9.0)42 was utilized for alignments using

blastn -db nt -query unmapped.fasta -max_target_seqs 10 
-max_hsps 1-evalue 1e-25
-outfmt '6 qseqid sseqid pident evalue staxids sscinames 
scomnames sskingdoms stitle'

Estimating the accuracy of mobile mRNA detection
If we are only interested in the number of reads that contain a SNP that 
corresponds to the alternative allele, we can use a binomial distribu-
tion (q is the probability the SNP matches the alternative allele, 1 − q 
is the probability that it does not) to evaluate the probability of this 
event occurring by chance21. The probabilities of errors occurring by 
chance were calculated from a standard cumulative binomial distribu-
tion, P(k ≥ m|N) = 1 − P(k < m∣N), which accounts for the requirement 
of having k reads, where k is at least m, out of N. Considering repli-
cates can be handled in the same way (the probability of each SNP is  
computed from the cumulative binomial function and the require-
ment for a defined number of replicates can likewise be computed 
from a cumulative binomial function). Multiple SNPs per read results 
in a multiplication of probabilities. Cumulative binomial function 
values were computed using standard available functions in Python 
and R.

Assessing how many SNPs can be explained by 
sequencing-associated errors
Rather than ‘defining’ a transcript as mobile, we evaluated the prob-
ability of the data being consistent with expected noise against 
the probability of the data being best explained by the presence 
of two genotypes (and therefore potential candidates for mobile  
transcripts)21. Essentially, this means that if we find 10 out of 100 
reads that match the alternative allele, we compute how likely this 
would occur by chance for a defined error rate. The implicit but  
rarely checked assumption in all SNP-based mobile mRNA detec-
tion pipelines is that the occurrence of reads that support the  
alternative allele in the heterograft data is larger than in homograft 
data. The uncertainty in the inferred error rate depends on the  
amount of data. We capture this uncertainty through probabil-
ity distributions to inform inferences drawn from the data21. This  
ratio of the statistical evidence of one hypothesis over another is 
known as the Bayes factor43. The classifications in Fig. 2a are based 
on the commonly used value of log Bayes factor greater than 1  
(refs. 21,43). The statistical comparison of error rates was performed 
using baymobil28.

Statistics for comparing nucleotide distribution as SNP 
positions vs other positions
To compare the full distributions of n/N and m/M values for different 
positions of RNA-seq reads, we used an exact two-sample Kolmogo-
rov–Smirnov test, ks.test, available in R44. To evaluate whether the data 
supported the SNP distributions having higher values of n/N than other 
positions (m/M), we used an asymptotic two-sample Kolmogorov–
Smirnov test. These tests were carried out for histograms with 100 bins.

Pseudo-heterozygosity
We downloaded the pseudo-heterozygous data from https://zenodo.
org/records/6025134 (ref. 30). From the vcf-file we extracted 
all heterozygous calls for accession 9947 (Ped-0) and obtained 
6,303 heterozygous SNPs. We compared these SNPs against the 
MATRIX_GWAS_raw_position.txt (from https://doi.org/10.5281/
zenodo.5702395). We intersected these potential duplicate genes 
with the list of mobile genes2 and found 19 duplicate genes. These are 
given in Supplementary Table 3.

Genome assembly completeness estimation
We downloaded all the assemblies mentioned in the original papers 
and estimated their completeness with Abyss (v.1.9.0) using the com-
mand ‘abyss-fac’.

Contamination analysis
We analysed the samples of the root (1,373 mRNAs/867 unique) and 
rosette (577 mRNAs/151 unique), and reciprocally inspected the rela-
tionship between root alleles that were detected in the rosette and vice 
versa. We took the raw sequencing depth for 48,934 previously identi-
fied SNPs. For each SNP, we plotted the number of reads with a rosette 
allele (Col-0) found in the root sample (Ped-0) against the number of 
reads with the same SNP in the rosette sample. Similarly, we plotted the 
number of reads with the root allele (Ped-0) found in the rosette sample 
(Col) against the number of reads with the endogenous SNP (Ped-0) in 
the root sample. The linear fit was performed within gnuplot45.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We used the following published datasets and the archived reads from 
NCBI: Cuscuta pentagona1 (PRJNA257158; this dataset was incomplete 
and partly corrupt); Vitis vinifera3 (SRP058158 and SRP058157); Sola-
num lycopersicum, Nicotiana benthamiana6 (SRP111187); Arabidopsis 
thaliana2 (PRJNA271927). We used deposited supplementary datasets 
of the associated publications to obtain the numbers of identified 
mRNAs. For each of the graft studies, we downloaded the reference 
genome sequence that matched the one that was used in the origi-
nal paper with the same annotations; most are publicly available in 
Ensembl plants46.

Code availability
We used largely available software packages as stated in the Methods. 
All code and scripts are freely available on GitHub at https://github.
com/mtomtom/reanalysis-mobile-mrna/tree/main (ref. 38).
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Extended Data Fig. 1 | Published criteria for defining mobile mRNAs based 
on absolute read counts suffer from read-depth dependencies. These plots 
show the probabilities of transcripts being defined as mobile by chance. Three 
different mobile mRNA definitions (a, b, c) and their dependence on read-depth 
(N) and on the rate of a SNP matching to the alternate allele (q) are depicted. The 
number of read counts over one SNP that correspond to the alternate allele is 
denoted by n1SNP, over two SNPs by n2SNPs. The probabilities were calculated 

using a cumulative binomial distribution, that is we account only for the 
nucleotides that correspond to the two alleles of interest. Note that both axes 
are on a log-scale. The requirement for co-occurring SNPs on one read (c) is more 
stringent and less likely to occur by chance at higher read-depths. For low values 
of q, these criteria are robust up to moderately high (several hundred) read-
depths and would be unlikely to occur by chance.
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Extended Data Fig. 2 | Allelic differences in multiple SNPs per read and the 
appearance of heterozygosity (in homozygous species) can be used to check 
the viability of SNPs and exclude potentially problematic transcripts from 
the analysis. a, SNPs can be in close proximity, and therefore it can happen that 
several SNPs are recorded in the same RNA-Seq read. In this example, genotype 
1 has three SNPs very close to each other: A, G and A (yellow bar). In genotype 
2, we find G, T, A (magenta bar) in those positions. In this schematic example, 
reads from the shoot of Genotype 1 are mapped to Genotype 2. If all covered loci 
carry the allele of Genotype 2, we are observing evidence for the read being from 

Genotype 2 and the associated transcript being potentially mobile. On the other 
hand, if only one loci carries the allele of Genotype 2, the outcome is inconclusive, 
as it may indicate sequencing errors. b, A. thaliana is a selfing species, so we 
expect homozygocity at all positions for all reads mapping to the genome at all 
positions. However, for duplicated genes (magenta) in Genotype 1, which may 
be single copy genes in Genotype 2 (yellow), short read sequencing and mapping 
to Genotype 2, can give rise to what appears to be heterozygocity. When there 
are two alleles present in the homograft data (magenta and yellow), we may be 
observing pseudo-heterozygocity. See also Extended Data Figure 3.
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Extended Data Fig. 3 | Examples of co-occurring SNPs. a, There are two SNPs, 
G and C in Genotype 1 (Col) and A and T in Genotype 2 (Ped). These are likely two 
sequencing errors in the root sample, a C at a non-SNP position and an A at a SNP 
position (both highlighted in blue circles). In the shoot sample we see potential 
evidence for mobility at the SNP level but in one case the second SNP is not 
present and in the other case another sequencing error has occurred (G). Three 
further sequencing errors (two As on the top left, one A on the right) are also 

present in the shoot. b, This example shows two positions, A and T in Genotype 1 
(Col) and G and G in Genotype 2 (Ped), for which some reads support the alternate 
allele (green tick), whereas others are likely sequencing errors (red cross). In the 
latter case, one G is in the correct position but the other G is not present and a 
further mismatch (T) has occurred. See Figure 2 for further explanations. The 
images are annotated screenshots taken in IGV37. Data taken from2.
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Extended Data Fig. 4 | A number of genes in Ped-0 show apparent heterozygosity, both in the homograft (2) and heterograft (3) datasets. At the highlighted 
positions there are distinct populations of alleles (depicted as red/blue and red/green bars). This is possibly due to the gene being duplicated in Ped, resulting in 
pseudoheterozygocity.
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Extended Data Fig. 5 | Full-length transcript coverage and differences in 
the distribution of nucleotides between SNPs and other positions enhance 
the evidence for the presence of a foreign transcript in the sampled tissue. 
a, Sequenced transcripts would ideally have RNA-Seq reads covering most 
of the sequence, that is that all exons of the mRNA are approximately equally 
covered by sequenc- ing reads (top left). Reads covering all exons in the sample 
from Genotype 2 provide support for the whole transcript having moved from 
Genotype 1 to Genotype 2 across the graft junction. Transcripts with coverage 
only for a subsequence (bottom left) do not support full-length presence of 
the for- eign transcript. b, Neighbouring positions to SNPs can be used as a 

negative control to evaluate the strength of the signal at SNP positions. Shown 
here are neighbouring positions of the identified SNPs at the next nucleotide 
(SNP position +1). If the neighbouring position shows similar levels of alter- 
native nucleotides as the SNP position, the these are likely sequencing errors, 
rather than evidence for the alternate allele. If the SNP positions have a different 
frequency of Genotype 2 allele than the neighbouring position has errors, 
then there is evidence for the alternate allele. Analysing the fre- quencies 
of nucleotides at known SNP positions and their neighbours can aid data 
interpretation.
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Extended Data Fig. 6 | An example of poor coverage for a candidate mobile 
mRNA. In the Nico- tiana benthamiana annotation of the depicted gene 
(Niben101Scf11383g00015.1) we find 5 annotated exons of which all are 
populated with reads at different levels (grey histograms). In the samples from 
tomato, non-grafted or grafted we see that not all annotated exons are populated 

with reads and that the exons with coverage are populated in both grafted and 
non-grafted samples. Coverage over the full length of the mRNA may help reduce 
the risk of reads mapping to isolated regions being potentially misinterpreted, 
Extended Data Figure 5. This is a screenshot taken in IGV37.
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Extended Data Fig. 7 | Challenges in identifying non-selective mobility versus 
contamination in high-throughput mobile mRNA detection using RNA-seq 
data in within-species grafts and cross-species grafts. (a) The presence of 
Genotype 1 reads in Genotype 2 samples and vice versa, across the whole of 

genome, especially in genes expressed in both tissues is consistent both with 
non- selective transport and contamination. (b) The two genes presented in this 
schematic figure have different relative expression levels. In Experiment 2 the 
sequencing depth is insufficient to detect lowly expressed genes.
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Extended Data Fig. 8 | A bar plot of the blast results of unmapped reads against the NCBI database that matched Nicotiana benthamiana.
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