Automatic Continuity of Pure Mapping
Class Groups

Ryan Dickmann

ABSTRACT. We completely classify the orientable infinite-type surfaces
S such that PMap(S), the pure mapping class group, has automatic
continuity. This classification includes surfaces with noncompact bound-
ary. In the case of surfaces with finitely many ends and no noncompact
boundary components, we prove the mapping class group Map(S) does
not have automatic continuity. We also completely classify the surfaces
such that PMap,(S), the subgroup of the pure mapping class group
composed of elements with representatives that can be approximated
by compactly supported homeomorphisms, has automatic continuity.
In some cases when PMap,(S) has automatic continuity, we show any
homomorphism from PMap,(S) to a countable group is trivial.

1. Introduction

A surface will refer to a second-countable, connected, orientable, 2-manifold,
possibly with boundary. Let Homeoy(S) be the group of (orientation-
preserving) homeomorphisms of S that fix the boundary pointwise. The
mapping class group Map(S) is defined to be

Map(S) = Homeoy(S)/ ~

where two homeomorphisms are equivalent if they are isotopic relative to the
boundary of S. A degenerate end will refer to an end with a closed neighbor-
hood homeomorphic to a disk with boundary points removed. Throughout
the paper, we assume surfaces do not have degenerate ends, since filling in
degenerate ends does not change the underlying mapping class group.

A surface is said to be of infinite type when m; is infinitely generated,
otherwise, it is of finite type. A Polish group is a topological group that is
separable and completely metrizable. In the finite-type case, mapping class
groups of surfaces are finitely generated and are therefore countable with no
interesting Polish group structure. Mapping class groups for infinite-type
surfaces, however, are uncountable and are Polish groups when given the
quotient topology inherited from the compact-open topology on Homeog(.S).
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Mann [7] proved that certain mapping class groups of infinite-type sur-
faces without boundary have automatic continuity; i.e., every homomor-
phism from these groups to a separable group is continuous. Mann also
found examples of mapping class groups that admit discontinuous homo-
morphisms to a finite group and asked which mapping class groups have
automatic continuity. Towards this question, we fully classify the pure map-
ping class groups that have automatic continuity.

Pure mapping class groups. The pure mapping class group of a surface,
denoted PMap(S), is the subgroup of the mapping class group consisting
of elements that fix the ends of the surface. A disk with handles will refer
to any surface that can be constructed by taking a disk, removing a closed,
totally disconnected set from the boundary (whose points become the ends
of the surface), and then attaching infinitely many handles accumulating to
some subset of the ends. See Figure 1 for an example. The assumption of
infinitely many handles is simply to rule out finite-type cases.

Theorem A. Let S be an infinite-type surface. Then PMap(S) has auto-
matic continuity if and only if

(i) S is a connected sum of finitely many disks with handles with any
finite-type surface, and
(ii) S has finitely many ends accumulated by genus.

The finite-type surface is necessary in the first condition to capture addi-
tional cases with finitely many compact boundary components and finitely
many punctures. The final condition is required since, for surfaces with
infinitely many ends accumulated by genus, we show there is a discontinu-
ous homomorphism PMap(S) — Zy which factors through Z*, the infinite
countable product. If we equip Z with the discrete topology, then Z% is a
Polish group with the product topology. The map to Z% is given by the work
of Aramayona—Patel-Vlamis in the compact boundary case [1], and this was
extended by the author to the noncompact boundary case [5]. More pre-
cisely, their works show PMap(S) = PMap,(S) when S has at most one end
accumulated by genus, and otherwise PMap(S) factors into a semidirect
product of a special subgroup with Z™ where n is finite if and only if there
are finitely many ends accumulated by genus. We now discuss PMap,(5)
further.

Closure of the subgroup of compactly supported maps. We say f € Map(5)
is compactly supported if f has a representative that is the identity outside
of a compact subset of S. The subgroup consisting of compactly supported
mapping classes is denoted PMap,.(.5) since every compactly supported map-
ping class is pure. The closure of this subgroup, denoted PMap_(.S), can be
described as the subgroup composed of elements with representatives that
can be approximated by compactly supported homeomorphisms. We also
fully classify the PMap.(S) that have automatic continuity.
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F1GURE 1. A visualization of a disk with handles with two
ends. The handle attaching procedure in this case joins to-
gether the bottom two ends of the disk into a single end.
By Theorem A, PMap(S) has automatic continuity for this
surface. Note Map(S) = PMap(.S) for any disk with handles
since fixing the boundary forces the ends to be fixed.

Theorem B. Let S be an infinite-type surface. Then PMap.(S) has auto-
matic continuity if and only if S is a connected sum of finitely many disks
with handles with any finite-type surface.

As a consequence of Mann’s result [7] of automatic continuity for the
mapping class groups of the sphere minus the Cantor set and the plane
minus the Cantor set, Vlamis [12] showed that any homomorphism from
these groups to a countable group is trivial. Using a similar but independent
proof, we show the following.

Corollary 1.1. Let S be a disk with handles. Then every homomorphism
from PMap,(S) to a countable group is trivial. Therefore, PMap,(S) con-
tains no proper normal subgroups of countable index and no proper subgroups
of finite index.

This is in stark contrast to the mapping class groups of finite-type surfaces
which are residually finite. One natural approach to studying infinite groups
is to investigate their finite quotients, but for the PMap_(S) of disks with
handles, we do not even have countable quotients to work with. Note that
PMap(S) always has a proper normal subgroup of countable index when S
has at least two ends accumulated by genus. In particular, when there are
finitely many ends accumulated by genus, PMap,(.S) is the desired subgroup,
and when there are infinitely many ends accumulated by genus, the kernel
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of the discontinuous homomorphism to Z, discussed above is the desired
subgroup.

Mapping class groups. Using the same techniques in the proofs of the above
theorems, we are also able to comment on the automatic continuity of the
full mapping class groups.

Theorem 1.2. Suppose S is an infinite-type surface with finitely many ends
and no noncompact boundary components. Then Map(S) does not have
automatic continuity.

For example, the mapping class group of the ladder surface, the unique
surface with no boundary and exactly two ends each accumulated by genus,
does not have automatic continuity. We also extend the reverse direction of
Theorem A to the full mapping class group.

Theorem 1.3. Suppose S is an infinite-type surface satisfying the condi-
tions of Theorem A. Then Map(S) has automatic continuity.

Outline. In Section 2, we discuss some background on surfaces with non-
compact boundary, and in Section 3, we discuss the tools needed to prove
the reverse directions of Theorems A and B. In Section 4.1, we prove the re-
verse directions as well as Theorem 1.3 using adaptations Mann’s techniques
[7] and tools from the author for working with surfaces with noncompact
boundary [5]. We also use a new extension to a classical lemma of Sierpiriski;
see Section 3.2. In Section 4.2, we prove the forward directions of Theorems
A and B, and in Section 4.3, we prove Corollary 1.1 and Theorem 1.2.

Automatic continuity proofs largely rely on some form of self-similarity
in a given group, and in particular, we take advantage of the self-similarity
of the mapping class groups of the sliced Loch Ness monsters. A sliced
Loch Ness monster is any surface with nonempty boundary, no compact
boundary components, infinite genus, and one end. See Figure 3. The key
idea is that any sliced Loch Ness monster contains closed proper copies of
itself, and therefore, the mapping class group does as well; see Section 2.1.
On the other hand, the Loch Ness monster, the unique surface with one end,
infinite genus, and empty boundary, does not contain a closed proper copy
of itself,! and Domat and the author showed its mapping class group does
not have automatic continuity [6].

Once we have found examples of surfaces such that PMap(S) and PMap,.(5)
have automatic continuity, the main difficulty in proving Theorems A and B
is ruling out the zoo of remaining surfaces. Note these theorems consider all

1t is unknown whether the mapping class group of the Loch Ness monster contains a
proper copy of itself. A group that does not contain a proper copy of itself is known as
co-Hopfian. Aramayona-Leininger-McLeay [2] have studied the co-Hopfian property for
mapping class groups of infinite-type surfaces, and in particular they found uncountably
many examples of pure mapping class groups that are not co-Hopfian.



AUTOMATIC CONTINUITY OF PURE MAPPING CLASS GROUPS 5

surfaces including those with complicated end spaces such as large count-
able ordinals. Using the tools developed by the author for decomposing
surfaces into simpler pieces, we can reduce the complexity of the problem
significantly.

FIGURE 2. Two subsurfaces K and K’ in the same PMap,(S) orbit.

To find discontinuous homomorphisms in the remaining cases, we use the
work of Domat [6] who showed PMap,(S) admits uncountably many discon-
tinuous homomorphisms to Q with the discrete topology when S contains a
certain infinite sequence of nondisplaceable subsurfaces. A nondisplaceable
subsurface in this case refers to a surface that cannot be mapped off of itself
by any map in PMap_(S). Domat’s proof relies on subsurface projections of
Masur—Minksy [8] to construct projection complexes of Bestvina—Bromberg—
Fujiwara [3]. For a given finite-type nondisplaceable subsurface K, a pro-
jection complex is built using subsurface projections between subsurfaces
in the orbit of K under the action of PMap,(S) on the isotopy classes of
subsurfaces in S. The subsurface projection to K is a map that takes a
subsurface K’ (distinct from K) in the orbit of K and outputs an element of
the power set of the vertex set of the curve graph of K. The vertex set of the
curve graph is defined as the set of isotopy classes of essential simple closed
curves. Recall a curve is trivial when it bounds a disk, peripheral when it
bounds an annulus, and essential when it is neither trivial nor peripheral.
The subsurface projection to K is defined using the fact that 0K’ N K is a
collection of curves and arcs in K. The arcs are turned into curves by surg-
ering on intervals in 0K . The issue for surfaces with noncompact boundary
is that there can exist nondisplaceable subsurfaces K and K’ in the same
PMap,(S) orbit such that 9K’ N K is the union of trivial arcs in K (a trivial
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arc is one that bounds a disk). Trivial arcs yield trivial or peripheral curves
after surgery using the boundary of K, so the subsurface projection is not
well-defined. See Figure 2 for an example. We will see that the surfaces
from Theorem B are exactly those that do not have the special sequences of
nondisplaceable subsurfaces needed by Domat.

Acknowledgments. The author would like to thank Kathryn Mann for
introducing him to automatic continuity and the many techniques used in
Section 3. Thank you to the organizers of the 2019 AIM workshop for
surfaces of infinite type. Thank you to Dan Margalit, Roberta Shapiro,
and Sanghoon Kwak for comments on an earlier draft. Thank you to an
anonymous referee for carefully reading this paper.

2. Surfaces with Noncompact Boundary

Here we discuss some background on surfaces with noncompact boundary
needed for the proofs of Theorems A and B. We will assume the reader is
familiar with the Richards classification of infinite-type surfaces without
boundary [9] as well as the definition of the ends space of a surface, planar
ends, and ends accumulated by genus. These definitions apply without
adaptation to surfaces with noncompact boundary. The first adaptation
needed for noncompact boundary is that we must consider ends accumulated
by compact boundary, ends for which every closed neighborhood contains
infinitely many compact boundary components, then we must consider the
noncompact boundary components.

Boundary chains. Deleting the noncompact boundary components of a sur-
face induces a map 7 from the ends space of the surface to the ends space
of the interior surface (for more details see [5], Section 4.2). For example,
in Figure 3 deleting the noncompact boundary components induces a map
sending the two ends to the single end of the interior. Suppose e is an end
of the surface that a noncompact boundary component points to, and let
e® = 7(e) be the corresponding end of the interior surface. Then we refer to
77 1(e°) as a boundary chain, and we refer to any end in 7~ !(e°) as a bound-
ary end. Note any disk with handles has a single boundary chain, and every
end is a boundary end. Other examples of surfaces with a single boundary
chain can be constructed by taking a disk, deleting a set from the bound-
ary, and then attaching surfaces without noncompact boundary components
where these attached surfaces may be infinite-type and may accumulate to
the set of deleted points. An end that is not a boundary end will be called
an interior end. Though the boundary chain is formally defined as a set of
ends, we can also think of a boundary chain as the corresponding union of
noncompact boundary components.

Brown—Messer classification of surfaces. The classification of infinite-type
surfaces with boundary is due to Brown and Messer [4]. Roughly speak-
ing, their theorem states that surfaces with boundary are classified up to
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homeomorphism by the Richards classification data, the ends accumulated
by compact boundary, and additional data describing the boundary chains.
The major achievement of Brown and Messer was finding a way to repre-
sent this boundary chain data, though it is fairly technical. Thus we will
not state the actual classification theorem, and instead, we will use tools of
the author developed for working with surfaces with boundary [5]. More ex-
amples of surfaces with boundary can be found in Section 3 of the previous
paper of the author.

Recall a sliced Loch Ness monster is any surface with nonempty bound-
ary, no compact boundary components, infinite genus, and one end. One
immediate application of the classification of surfaces is that a sliced Loch
Ness monster is determined by the number of boundary components. We
will refer to an n-sliced Loch Ness monster to emphasize the number of
boundary components. Note that n may be infinite.

Recall a disk with handles is a surface that can be constructed by taking
a disk, removing a closed, totally disconnected set from the boundary, and
then attaching infinitely many handles accumulating to some subset of the
ends. Sliced Loch Ness monsters are examples of disks with handles since
we can construct any sliced Loch Ness monster by attaching handles to a
disk with points removed from the boundary in a way that joins every end
to a single end.

Remark 2.1. We could have equivalently defined a sliced Loch Ness mon-
ster as a disk with handles with exactly one end. There are other construc-
tions of sliced Loch Ness monsters that do not start with a single disk which
will be useful for the proof of Theorem A. We will discuss these in Section

2.1. See Figure 3 for some examples.

F1GURE 3. A 1-sliced, a 2-sliced, and an co-sliced Loch Ness
monster with the noncompact boundary components repre-
sented by the bold lines. The blue shading represents a given
compact exhaustion {K;} for each surface.

—

-

=

S

Cutting up a surface with boundary. The following result of the author
[5] shows that any surface with only ends accumulated by genus can be
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decomposed in some sense into sliced Loch Ness monsters and Loch Ness
monsters.

Lemma 2.2. Every disk with handles with every end accumulated by genus
can be cut along a collection of disjoint essential arcs into sliced Loch Ness
monsters.

Furthermore, any infinite-type surface with every end accumulated by
genus can be cut along disjoint separating curves into components that are
either

(i) Loch Ness monsters with compact boundary components added, or
(ii) disks with handles with compact boundary components added.

Cutting a surface S along a curve or arc « yields a possibly disconnected
surface with an identification map between subsets of the boundary such that
the quotient is S and the image of the identified subsets under the quotient
is . When we say compact boundary components are added, we mean open
balls with disjoint closures are removed. These components may have any
number of compact boundary components added, and if we add infinitely
many we assume they accumulate to some end of the original surface.

Recall a planar end is simply one that is not accumulated by genus. Due to
the assumption on degenerate ends in the introduction, a disk with handles
automatically has no planar ends, so we can apply the first part of Lemma
2.2 to any disk with handles. Note the second part of Lemma 2.2 does not
immediately extend to surfaces with planar ends since filling in a planar
boundary end may not be possible; for example, if it is accumulated by
compact boundary components or accumulated by boundary chains. For
other decomposition results concerning general surfaces, see Section 4 of the
work of the author [5].

We will need the following result to justify the forward directions of The-
orems A and B.

Lemma 2.3. An infinite-type surface with nonempty boundary, finitely many
boundary chains, no compact boundary components, and no interior ends s
a connected sum of disks with handles.

Proof. By the assumption on interior ends, the only planar ends must be
boundary ends. Since there are no compact boundary components and
finitely many boundary chains, these planar ends must be degenerate. Since
we assumed in the introduction that surfaces do not have degenerate ends,
every end must be accumulated by genus and we can apply the second part
of Lemma 2.2 to cut the surface along curves into disks with handles with
compact boundary components added and Loch Ness monsters with com-
pact boundary added. Note none of the components can be the second type
since then there would be interior ends, so we are done. O

2.1. Standard pieces of sliced Loch Ness monsters. Now we discuss
certain models of the sliced Loch Ness monsters and a standard way to break
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them into self-similar pieces. We represent the 1-sliced Loch Ness monster
as a closed upper half-plane with a handle attached in a small ball about
each integer point. Let M; be the subsurface bounded by the lines x =i — %
and x = i + % for i € Z. We refer to each M; as a standard piece of the

0N ‘ RN
)2 (%) (%)

FiGURE 4. Shown in the shaded regions are disjoint repre-
sentatives of the standard pieces for the 2-sliced Loch Ness
monster.

Let K, denote a compact surface with zero genus and n boundary com-
ponents when n is finite. Let K, denote the surface with 0 genus, no
noncompact boundary components, and exactly two ends that are accumu-
lated by compact boundary components. To construct an n-sliced Loch Ness
monster with n > 2 and possibly infinite, first start with a disjoint union of
n copies of the closed upper half-plane. Now for each interior integer point
in the closed upper half-plane apply the following construction: first, remove
a small open ball about the integer point in each of the n copies, then take
a copy of K, and attach 0K, to the resulting boundary components. When
n is infinite, we arrange the closed upper half-planes according to a Z-index.
We then equip the components of K, with the natural Z-index and apply
the attaching procedure respecting the two indexes.

To construct the standard pieces in these cases let M; be the subsurface
bounded by the n copies of the lines x =i — 5 and z =i+ 5 L forieZ. See
Figure 4 for an example where a small open neighborhood of the boundary
has been removed from each M; to emphasize the standard pieces.
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3. Tools

We now discuss the various tools needed in Section 4.1 to show that
PMap(S) and PMap,_(S) have automatic continuity for certain surfaces with
noncompact boundary. These groups are related by the work of Aramayona—
Patel-Vlamis in the compact boundary case [1], and this was extended by
the author to the noncompact boundary case [5]:

Lemma 3.1. Let S be an infinite-type surface.
PMap(S) = PMap.(S) x H

where H =2 71 when there is a finite number n > 1 of ends of S accumu-
lated by genus, H = 7% when there are infinitely many ends accumulated by
genus, and H trivial otherwise.

Note this implies PMap.(S) = PMap(S) for a one-ended surface such as
a sliced Loch Ness monster. Since PMap(S) = Map(S) in this case as well,
we will always use the latter notation for one-ended surfaces or subsurfaces.

3.1. Automatic Continuity. The standard approach to proving auto-
matic continuity is to prove a stronger but more tractable condition due
to Rosendal—-Solecki [11]. We say a subset of a group is countably syndetic if
countably many left translates cover the entire group. A topological group
is Steinhaus if there exists an integer k such that, for every countably syn-
detic symmetric subset W of G, W* contains an open neighborhood of the
identity.

Proposition 3.2 (Rosendal-Solecki). A Steinhaus Polish group has auto-
matic continuity.

We will also need a common fact used in automatic continuity proofs.
This result, as well as the result of Rosendal and Solecki, follows from the
Baire category theorem.

Proposition 3.3. Let G be a Polish group and W C G a countably syndetic
symmetric set. Then there exists a neighborhood U of the identity in G such
that W2 is dense in U.

In some cases, we will rule out automatic continuity by ruling out a weaker
property. A topological group is said to have the small index property when
any countable index subgroup is open. The following is well-known.

Proposition 3.4. A Polish group that has automatic continuity has the
small index property.

Proof. Let S, denote the symmetric group on a countably infinite set. This
is a Polish group with the compact-open topology. Any countable index
subgroup H determines a homomorphism ¢ to S, by the left multiplication
action on left cosets. The subset of S, corresponding to permutations that
fix H is open. The pullback of this subset via ¢ is H, which is open by
automatic continuity. ([
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3.2. Sierpinski lemmas. To apply the same techniques used by Mann [7],
we need the following result of Sierpinski.

Lemma 3.5 (Sierpiniski). For an infinite countable set A, there is an un-
countable collection of infinite subsets {Qq}aer of A such that any Q. N Qg

is finite for o # .

Proof. Identify A with Q via a bijection, and let I' = R\ Q. For any given
a €T, let ©, be any sequence of rational numbers converging to «. ([

We also need an extension that allows us to apply the techniques to infinite
unions.

Lemma 3.6. For any product of infinite countable sets A x A’, there is an
uncountable collection of infinite subsets {Qa}acr of A X A’ such that

(i) Qo N Qg is finite for all o # .

(ii) Qo N ({A} x A) is infinite for all X € A.

Proof. Let 71,72, ... be an infinite sequence of irrationals independent over
Q. Now {7,Q}5, is a collection of pairwise disjoint dense subsets of the
reals. Identify A via a bijection with N, and then identify each {n} x A’
by a bijection with 7,Q. Let I' = R\ (U;2; 7.Q). For any given a € T,
choose any sequence of numbers in (J;~ ; 7,Q converging to « that includes
infinitely many entries of ~,,Q for all n, and then let ), be the corresponding
set of tuples (n,y,q,) where g, € Q. O

3.3. Tools of Mann. Using the previously discussed tools, we will now
introduce the main lemmas for our automatic continuity proofs, Lemmas
3.9 and 3.10. The proofs of these lemmas follow an argument from Section 4
of the paper of Mann [7], and rely on a modified version of Lemma 3.2 from
the same paper. The original lemma was applied to the homeomorphism
group of a manifold, but the proof can be adapted to work in the mapping
class group setting.

We say a collection of disjoint subsurfaces {S;} of S is admissible when
any product [[, f; is a well-defined homeomorphism of S for f; supported in
S;. This condition is required in the statement of the following lemma since
Mann’s proof uses infinite products of homeomorphisms, and these may not
always be well-defined. For example, consider a sequence of disjoint essential
annuli which all essentially intersect some compact subsurface. An infinite
product of Dehn twists about these annuli is not a well-defined mapping
class of the surface since, even after isotopy, the annuli accumulate at some
point of the compact subsurface, and there is no continuous extension of the
infinite twist to this point.

Lemma 3.7 (Mann). Let S be an infinite-type surface, and W C PMap,(S5)
a countably syndetic symmetric set. Let A be an infinite admissible collection
of disjoint closed subsurfaces of S satisfying:
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(1) There exists an infinite admissible collection of disjoint subsurfaces
U; of S such that each U; contains an infinite family of disjoint
subsurfaces belonging to A.

(2) There exists p € N such that, for each A € A, the subgroup of
PMap,(S) consisting of maps with support in A, denoted PMap(A),
has commutator length bounded by p.

Then there exists A € A such that PMap(A) is contained in W®P.
We will also use the following result of the author [5].

Lemma 3.8. Let S be a disk with handles. Then every element in PMap,(5)
can be written as the product of two commutators.

Lemma 3.9. Let S be a surface containing a subsurface M homeomorphic
to any sliced Loch Ness monster, {My,} the standard pieces of this sliced
Loch Ness monster, and W C PMap,.(S) a countably syndetic symmetric
set. Then there is a finite set F' such that

H Map(M,) c W
n¢F

Proof. Apply Lemma 3.7 with A consisting of subsurfaces of the form Ay =
Unea M, for some infinite set A C Z. Any collection of the M; is admissible
since we can extend a homeomorphism on the collection via the identity
map to S. Note A satisfies the hypotheses of the lemma, since

(i) We can write Z as a countable disjoint union of infinite sets A;, and
define U; to be Une A Ms,,. Each such set contains a countable union
of disjoint elements of A.

(ii) Lemma 3.8 implies the same statement for the mapping class group
of a disjoint union of sliced Loch Ness monsters. Thus, any element
supported in Ay may be written as the product of two commutators.

We conclude that for some such subsurface Ay € A, we have Map(Ap) C
W1, Now we apply Lemma 3.5. Let {Q,} be an uncountable collection
of infinite subsets of A such that 2, N Qg is finite for all o # 5. Note we
may assume A and each (), contain infinitely many negative and positive
integers.

Since all homeomorphisms are assumed to fix the boundary pointwise, we
first modify each M; by deleting a small regular open neighborhood of the x-
axis so that we can move them into one another with an appropriate homeo-
morphism. For each a, let f, be a homeomorphism supported in M with the
following property. For each n € Q,, let f,(Ma,) be the smallest connected
subsurface containing the union of Mo, 41, Mapt2, ..., Mok_1 where k € Q,, is
the smallest element in €2, larger than n, so that f, maps Aq, into the com-
plementary region. Also let f, map the union of Moy, 11, Moy, ..., Mog_1
into Msi. Note this homeomorphism exists by the change of coordinates
principle. Since {Q,} is uncountable, there are some « and J such that f,
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and fg are in the same left translate gWW for some g € PMap,.(S). Therefore,
fo'fp and f5! fo are both in W2,

If n ¢ Qq, then fo(Ma,) € My, for some m € Q4. If m ¢ Qg, then
fﬂ_lfa(MQn) is contained in some My, where k € Qg. Since 2, M€ is finite,
we conclude that, with the exception of finitely many values of n ¢ Q,, the
map f/glfa takes My, into Ag, C Ax.

Reversing the role of a and §, the same argument shows that with only
finitely many exceptions of n ¢ Qg, fi 1 fs takes every My, into Ax. Let F’
be the union of these two exceptional sets of integers. Now write J,,c;, Man
as the union of X; = Une,é(QauF') Ms,, Xo = Ung(QﬁuF') Ms,,, and X3 =

UneF’ MQ”‘
fglfa Map(X1)(fﬁ_lfa)_1 C Map(Ap) € W, and similarly

fot fs Map(Xo)(fo ' f5) ™' € Map(Ap) € WO

It follows that Map(X1), Map(X3) C W20, so Map(X; U X5) € W4, Now
we can complete the proof by repeating the above argument to the union of
the odd M,,. O

We can strengthen Lemma 3.9 using the upgraded Sierpinski lemma.

Lemma 3.10. Let S be any surface containing a countable admissible fam-
ily of disjoint subsurfaces {S,} each homeomorphic to a sliced Loch Ness
monster, and W C PMap.(S) a countably syndetic symmetric set. Let
{Mym}mez be the collection of standard pieces for S,. Then there is a
finite set F' such that

I Map(Mym) c W
(n,m)¢F

Proof. We show the case where {S),},en is infinite since the finite case is
similar. Apply Lemma 3.7 with A4 consisting of subsurfaces of the form
Ap = UneN,meA My, 9 to show Map(Ax) € W16 for some infinite A C Z.
Apply Lemma 3.6 to N x A, so that {Q,}qcr are infinite subsets of N x A
with the properties listed in the lemma. Note we may assume N x A and
each . contain infinitely many positive and negative integers in the second
coordinate.

Modify all of the standard pieces slightly as before, then for each «, let
fa be a map supported in J;cyS; with the following property. For all
(n,m) € Qq, let fo(Mp2m) be the smallest connected subsurface containing
the union of My, 241, My 2m+2,..., My 2r—1 Where k is the smallest second
component among the elements of Q, N ({n} x A) larger than m. Now the
proof is completed as before. O

3.4. Fragmentation. To work with the subgroup PMap_(5), we will use
results of the author [5] for decomposing an element of PMap,(S) into sim-
pler pieces.
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Lemma 3.11. Let S be any infinite-type surface and f € PMap,.(S). There
exist two sequences of compact subsurfaces {K;} and {C;}, with each se-
quence consisting of disjoint surfaces, and g, h € PMap,(S) such that

(i) supp(g) C |, Ci and supp(h) C |J,; K,
(ii) f = hg.
Furthermore, if S is a disk with handles we can assume the following:
(i) FEach OK; and OC; is a single essential simple closed curve.
(1) S\ U;K; and S\, U;C; are homeomorphic to S with compact bound-
ary components added accumulating to some subset of the ends.

We use S N\, K or Sk to denote the surface obtained from cutting S
along K. Similar to the definition of cutting along a curve or arc, Sk is a
surface with boundary with an identification map from some subset of 9Sk
to some subset of 0K such that the quotient on Sk U K is homeomorphic
to S. Note we can realize Sk as a subsurface of S, in particular the closure
of the complement of K.

4. Proof of Main Results

Now we are ready to prove the results from the introduction. First, we
prove the reverse directions of the main theorems as well as Theorem 1.3
using the tools from the previous sections. Then we prove the forward
directions using the work Domat [6] and Lemma 2.3. We prove Corollary
1.1 and Theorem 1.2 afterward.

4.1. Reverse Directions of Theorems A and B. First, we will prove
the reverse direction of Theorem B, and then we will prove the reverse
direction of Theorem A and Theorem 1.3 with a similar method. Recall
the Steinhaus property implies automatic continuity by Proposition 3.2.
Let Stab(K) denote the subgroup consisting of maps that pointwise fix a
subsurface K. When K is finite-type, Stab(K') is an open neighborhood of
the identity, and the collection of all such stabilizers is a neighborhood basis
of the identity.

Proposition 4.1. Let S be a connected sum of a finite-type surface with
finitely many disks with handles. Then PMap,(S) is Steinhaus with constant
328.

Proof. First, we explain the details for the sliced Loch Ness monster and
then discuss how to extend the argument to the other cases.

Case 1: sliced Loch Ness monsters. Suppose S is any sliced Loch Ness
monster. Let W be any countably syndetic symmetric subset of Map(.S).
By Proposition 3.3, let U be an open neighborhood of the identity such
that W?2 is dense in U, and find some compact subsurface K such that
Stab(K) C U. Note that any sliced Loch Ness monster S has a compact
exhaustion {K;} where each S N\, K; is homeomorphic to S (see Figure
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3). Thus we can assume that Sx = S \, K is homeomorphic to S by
replacing K with a large enough K; if needed. Now we want to show that
Map(Sk) = Stab(K) C W* for some k.

Let f € Map(Sk) be any element. Let g be one of the maps produced by
applying Lemma 3.11 to f, and assume the conditions of the second part of
Lemma 3.11 hold for g. Note here we are using Lemma 3.1 which implies
Map(Sk) = PMap,(Sk). Let {K;} be the sequence of compact subsurfaces
containing the support of g. Let {M;} be the collection of standard pieces
for Sg. We can assume by applying change of coordinates that each M;
contains exactly one of the K;, and each K; appears in some M;. By Lemma
3.9, we have some cofinite union 7" = ;7\ p Mi with Map(T) C w0,
Therefore, we can find some ¢’ € Map(T) such that ¢'¢ € PMap.(Sk).
Now let K’ C Sk be a compact subsurface bounded by a single curve that
contains the support of ¢'g. Now using the density of W? in Map(Sk), find
some element ¢ € W2 such that ¢(K') C T. It follows that ¢g’gp— € W80,
and therefore ¢'g € W8, Finally, this gives g € W16, and since the above
argument also applies to the other element from fragmentation, f € W328,

Case 2: disks with handles. Now assume S is a disk with handles, and let
W be a countably syndetic symmetric subset of PMap,(S). Let U be an
open neighborhood of the identity such that W? is dense in U, and find
some compact subsurface K such that Stab(K) C U. We now claim we can
enlarge K so that each component of S = 5 \, K has exactly one boundary
chain and no compact boundary components. First note that there exists
a compact exhaustion {K;} of S such that each 0K is a single component
that intersects 0.5 in a union of closed intervals, and the components of
S \( K; are infinite-type without compact boundary components. To build
such an exhaustion, start with the disk with boundary points removed used
to construct S, call it D, and find a compact exhaustion {C;} of D such that
each Cj is a disk and each D \, C; is a union of disks with boundary points
removed. Then we get the desired exhaustion on S by attaching handles to
D and modifying the C; accordingly. During this last step, we must require
the attaching regions for any handle to be disjoint from each 0C; and that
whenever one attaching region of some handle is contained in the interior of
C;, then then other attaching region is also contained in the interior. Now
note each S N\, K; has a single boundary chain since S has one boundary
chain and all of the boundary components of S \, K; point to boundary
ends of S. The claim follows by replacing K with a large enough K; if
needed. Now since S is also infinite-type and has no interior ends, Lemma
2.3 implies Sk is a disjoint union of disks with handles. The complement of
any compact subsurface necessarily has a finite number of components, so
Sk is a finite disjoint union.

Let f € Map(Sk) be any element. Let g be one of the maps produced by
applying fragmentation to f, and assume the conditions of the second part
of Lemma 3.11 hold for g when restricted to each component of Sk. In this
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case, we need to apply Lemma 3.11 to each component separately and then
combine. Let {K;} be the collection of compact subsurfaces containing the
support of g. Using Lemma 2.2, we can cut Sk along a collection of disjoint
arcs into sliced Loch Ness monsters {5, }. We can also assume these arcs
are chosen to miss the K.

Let {M,,n} be the collection of standard pieces for S,. By change of
coordinates, we can assume each M, ,, contains exactly one K;, and each
K; appears in some M,, ,,,. By Lemma 3.10, there is a finite set F' such that
T = Unmygr Mnm and Map(T') C W38 Proceed as before.

Case 3: connected sums. We now need to consider the general case when
S is a connected sum of a finite-type surface with finitely many disks with
handles. Let W be a countably syndetic symmetric subset of PMap,.(5).
Let U be an open neighborhood of the identity such that WW? is dense in
U, and find some finite-type subsurface K such that Stab(K) C U. By
choosing K large enough to contain all the punctures and compact boundary
components, we can ensure each component of S \, K has one boundary
chain, no interior ends, and no compact boundary components. By applying
Lemma 2.3, we have that S \, K is homeomorphic to a disjoint union
of finitely many disks with handles. Proceed as in the disk with handles
case. U

Now we show the reverse direction of Theorem A using similar techniques.
This will also prove Theorem 1.3, the extension to the full mapping class

group.

Proposition 4.2. Let S be a surface satisfying the conditions of Proposition
4.1 and with finitely many ends accumulated by genus. Then PMap(S) and
Map(S) are Steinhaus with constant 328.

Proof. Let W be a countably syndetic symmetric subset of PMap(.5). Let
U be an open neighborhood of the identity such that W?2 is dense in U,
and find some compact subsurface K such that Stab(K) C U. As before
we can enlarge K if needed so that S N\, K is homeomorphic to a disjoint
union of finitely many disks with handles. Since there are finitely many
ends accumulated by genus, we can further assume that each component
of § \( K is a sliced Loch Ness monster. This ensures that Stab(K) C
PMap,(S) so we can use fragmentation as in the proof of Proposition 4.1
to show Stab(K) C W32, The proof for Map(S) is identical. Note that
we must also use a minor adaptation of Lemma 3.7 where W is a countably
syndetic symmetric subset of PMap(S) or Map(.S) instead of PMap_(S). O

4.2. Forward Directions of Theorems A and B. Now we finish the
proofs of Theorems A and B using the work of Domat [6]. A nondisplace-
able surface in S will refer to a subsurface K disjoint from the noncompact
boundary components of S such that f(K) N K # @ for all representatives
of f € PMap,(S). Note a subsurface K is nondisplaceable if it separates
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ends; i.e., if S\, K is disconnected and induces a partition of E(S) into two
or more sets. A subsurface is also nondisplaceable if it separates the ends of
the interior surface, so a subsurface that separates boundary components or
separates a boundary component from an end is also nondisplaceable. The
following result is implicit from Sections 6,7,8, and 10 of Domat’s paper.

Lemma 4.3 (Domat). Let S be an infinite-type surface such that either

(i) S has genus at least 3 and there exists an infinite sequence of disjoint
nondisplaceable essential annuli that eventually leaves every compact
subsurface.

(ii) S has any genus and there exists an infinite sequence of disjoint nondis-
placeable essential spheres with n punctures and b boundary components
for n+b > 8, and the sequence eventually leaves every compact sub-
surface.

Then there exists a discontinuous homomorphism ¢ : PMap.(S) — Q.

Although Domat’s work focused on surfaces with compact boundary, the
conditions in Lemma 4.3 hold for some surfaces with noncompact boundary,
and the proof goes through without adaptation. For surfaces with only com-
pact boundary components, Domat showed the first condition holds when
the interior of S has at least two ends and at least one end accumulated by
genus and the second condition holds when the interior has infinitely many
ends. In the case of the Loch Ness monster, there are no finite-type nondis-
placeable subsurfaces, so this case had to be handled separately. Domat and
the author showed in the appendix of Domat’s paper that Map(S) does not
have automatic continuity when S is a Loch Ness monster.

Proof of Theorem B. Recall the reverse direction was shown in Proposi-
tion 4.1. When S either has infinitely many interior planar ends, infinitely
many compact boundary components, infinitely many boundary chains, or
at least one interior end accumulated by genus we will show one of the con-
ditions of Lemma 4.3 is satisfied so that PMap,(S) does not have automatic
continuity. After possibly filling in the finite number of punctures and cap-
ping the finite number of compact boundary components, we apply Lemma
2.3 to conclude S is a connected sum of finitely many disks with handles.
The original S can then be obtained by connect summing with a finite-type
surface with punctures and boundary components.

Case 1: infinitely many interior planar ends. When S has infinitely many
planar interior ends, there is a closed neighborhood U of one of these ends
such that each component of OU is compact, and U has infinitely many
planar ends. Now this case reduces to the cases originally considered by
Domat, and the second condition of Lemma 4.3 holds.

Case 2: infinitely many compact boundary components. When S has infin-
itely many compact boundary components, there is some end accumulated
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by compact boundary, and every closed neighborhood of this end contains in-
finitely many compact boundary components. Let {U;} be a system of closed
neighborhoods of this end such that U;y1 C U; for all ¢, and (.2, U; = .
Now the second condition of Lemma 4.3 holds by inductively choosing an
essential punctured sphere in some sufficiently small U; that misses the pre-
viously chosen punctured spheres.

Case 8: infinitely many boundary chains. When S has infinitely many
boundary chains, there is some end such that every closed neighborhood
has infinitely many boundary chains. Let {U;} be a system of closed neigh-
borhoods of this end satisfying the two properties from the previous case.
Since the interior of each U; has infinitely many ends, we can use an inductive
procedure as before to show the second condition of Lemma 4.3 holds.

Case 4: at least one interior end accumulated by genus. When S has an
interior end accumulated by genus, there is a closed neighborhood U of this
end such that each component of U is compact, and U has infinite genus.
We can assume S is not the Loch Ness monster since this case was ruled out
by Domat and the author, so the interior of S has at least two ends. Now
this case reduces to the cases considered by Domat, and the first condition
of Lemma 4.3 holds. The interior of S having at least two ends ensures that
we can find annuli that separate ends of the interior. O

Proof of Theorem A. Recall the reverse direction was shown in Proposi-
tion 4.2. Now we consider two cases, and then we are done by using Lemma
2.3 as in Theorem B.

Case 1: infinitely many ends accumulated by genus. First, suppose S has
infinitely many ends accumulated by genus. Let ¢; : PMap(S) — Z“ be
the projection mapping given by Lemma 3.1, and let ¢g : Z¥ — (Z2)* be
the mod 2 homomorphism. Now we use the discontinuous homomorphism
Y (Z2)¥ — Zs from Example 1.4 of Rosendal [10]. Composing all of the
above homomorphisms yields a discontinuous homomorphism 1 o ¢9 o ¢7 :
PMap(S) — Zs. To show that 1) o ¢ o ¢1 is discontinuous we use the
discontinuity of ¢ and the fact that the ¢; are surjective and thus open by
the open mapping theorem for Polish groups.

Case 2: finitely many ends accumulated by genus. Now suppose S has
finitely many ends accumulated by genus and satisfies one of the conditions
for Lemma 4.3. Note PMap,(S) is a countable index subgroup of PMap(S)
by Lemma 3.1. By Lemma 4.3, there is a map ¢ : PMap_.(S) — Q such that
ker(¢) is not open. Note we also have that ker(¢) is not open in PMap(S).
Since ker(¢) is countable index in PMap.(S), it must also be countable
index in PMap(S). Now PMap(S) cannot have automatic continuity by
Proposition 3.4. (|

4.3. Consequences. Now we finish with the proofs of some additional re-
sults.
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Proof of Theorem 1.2. Recall the Loch Ness monster case was shown by
Domat and the author [6], so we can assume the interior of S has at least two
ends. By Lemma 4.3, PMap,(S) has a nonopen countable index subgroup.
Since PMap(S) is finite index in Map(.S) by the assumption of finitely many
ends, we can apply the same proof as the second case of Theorem A to show
Map(S) does not have automatic continuity. O

Proof of Corollary 1.1. Suppose S is a disk with handles. Proceeding by
contradiction, let H be the kernel of a nontrivial map from PMap_.(S) to a
countable group with the discrete topology. By automatic continuity, H is
open and closed. Since H is closed, it suffices to show that it contains every
compactly supported mapping class since then H is dense in PMap,(5),
and in fact H = PMap,(S). Since H is open, it contains Stab(K’) for some
compact subsurface K. Now let ¢ be any compactly supported mapping
class. Since ¢ fixes the boundary pointwise, we can isotope it so that it is
supported in a subsurface K’ that does not intersect the boundary. Since S is
a disk with handles, its interior is a Loch Ness monster, and there exists some
homeomorphism supported in the interior that takes K’ into the complement
of K. Therefore, a conjugate of ¢ lies in Stab(K) C H, and we are done
since H is normal. There are no proper finite index subgroups in PMap,.(.S)
since any index m subgroup determines a nontrivial homomorphism to the
symmetric group on n elements via the left multiplication action on the left
cosets. (|
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