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Summary

! Allocation of leaf phosphorus (P) among different functional fractions represents a crucial
adaptive strategy for optimizing P use. However, it remains challenging to monitor the varia-
bility in leaf P fractions and, ultimately, to understand P-use strategies across diverse plant
communities.
! We explored relationships between five leaf P fractions (orthophosphate P, Pi; lipid P, PL;
nucleic acid P, PN; metabolite P, PM; and residual P, PR) and 11 leaf economic traits of 58
woody species from three biomes in China, including temperate, subtropical and tropical for-
ests. Then, we developed trait-based models and spectral models for leaf P fractions and com-
pared their predictive abilities.
! We found that plants exhibiting conservative strategies increased the proportions of PN and
PM, but decreased the proportions of Pi and PL, thus enhancing photosynthetic P-use effi-
ciency, especially under P limitation. Spectral models outperformed trait-based models in pre-
dicting cross-site leaf P fractions, regardless of concentrations (R2 = 0.50–0.88 vs 0.34–0.74)
or proportions (R2 = 0.43–0.70 vs 0.06–0.45).
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! These findings enhance our understanding of leaf P-allocation strategies and highlight
reflectance spectroscopy as a promising alternative for characterizing large-scale leaf P frac-
tions and plant P-use strategies, which could ultimately improve the physiological representa-
tion of the plant P cycle in land surface models.

Introduction

Phosphorus (P) is an essential element for plant growth (Sterner
& Elser, 2002; White & Hammond, 2008; Hawkesford
et al., 2022), often constraining plant productivity in many ter-
restrial ecosystems (Elser et al., 2007; Vitousek et al., 2010; Du
et al., 2020). Understanding how plants adapt to varying envir-
onmental conditions is a central theme in plant ecology and bio-
geochemistry (Vitousek et al., 2010). A key aspect of this is to
decipher how leaf P is allocated among different functional frac-
tions. Typically, leaf P exists as free inorganic orthophosphate
(Pi) and organic phosphate esters (Po). A minimal quantity of
metabolically active Pi is distributed in the cytoplasm (Bieleski,
1968; Mimura et al., 1996), while excess Pi is stored in vacuoles
as a buffer to regulate Pi levels in the cytoplasm (Hooda & Wes-
ton, 1999; Ostertag, 2010). Po can be further divided into four
major fractions: lipid P (PL), nucleic acid P (PN), metabolite P
(PM) and residual P (PR) (Chapin & Kedrowski, 1983; Hidaka
& Kitayama, 2011; Yan et al., 2019). PL represents a significant
component of the cellular membrane system, particularly the
endoplasmic reticulum (Lagace & Ridgway, 2013; Lam-
bers, 2022). PN comprises nucleic acids (Veneklaas et al., 2012;
Suriyagoda et al., 2022), playing a role in the synthesis and turn-
over of proteins (Veneklaas et al., 2012; Lambers, 2022). PM
encompasses various low-molecular-weight metabolites, includ-
ing ribulose-1,5-bisphosphate, NADP, ATP, adenosine dipho-
sphate (ADP), sugar phosphates and storage compounds like
phytate (Yan et al., 2019; Suriyagoda et al., 2022; Tsujii
et al., 2023, 2024). By contrast, the function of major PR compo-
nents remains unclear, aside from phosphorylated proteins
(Kedrowski, 1983; Lambers et al., 2012). Collectively, exploring
the trade-off among different functional leaf P fractions is crucial
for deciphering plant P-use strategies.

The concentrations (here denoted as [Pi], [PL], [PN], [PM] and
[PR]) and relative proportions (here denoted as rPi, rPL, rPN, rPM
and rPR) of leaf P fractions vary substantially across plant species
and soil nutrient availability (Lambers, 2022; Suriyagoda
et al., 2022; Tsujii et al., 2024; Meng et al., 2025). Species in
low-P soils always have low concentrations of total leaf P, often
with low [Pi], [PN] and [PL] (Hidaka & Kitayama, 2011; Mo
et al., 2019; Yan et al., 2019; Tsujii et al., 2024). These likely
reflect the depletion of Pi storage in vacuoles (White & Ham-
mond, 2008), low levels of rRNA (Sulpice et al., 2014) and sub-
stitution of phospholipids by P-free lipids (Lambers et al., 2012),
respectively. By contrast, [PM] and [PR] are invariant or slightly
lower in lower-P soils. Considering the pattern of the proportions
of leaf P fractions, there is no definitive conclusion in Borneo
(Hidaka & Kitayama, 2011) or in Australia (Yan et al., 2019; S.
T. Liu et al., 2023; Tsujii et al., 2023, 2024). Even more,
species-dependent patterns characterized the proportions of leaf

P fractions among 18 woody species (Yan et al., 2019) and
among three woody species (S. T. Liu et al., 2023) in Western
Australia. However, it is unclear whether these findings apply to
species world-wide, as many previous studies focused on species
from P-impoverished soils and limited plant communities
(Hidaka & Kitayama, 2011; Yan et al., 2019; S. T. Liu
et al., 2023; Tsujii et al., 2023, 2024). The chemical assays for
determining leaf P fractions are time-consuming and labor-
intensive. This may lead to inadequate spatial coverage of leaf P
fractions, thus hindering the characterization of the patterns of
leaf P fractions across diverse forest communities.

Empirical leaf trait relationships are often used to indirectly
infer important but difficult-to-measure traits (e.g. leaf life span,
leaf maximum carboxylation rate of the enzyme RuBisCO (Vc,

max) and leaf dark respiration) from more easily measurable ones
(e.g. specific leaf area (SLA), leaf nitrogen (N) concentration
([N]), leaf Chl concentration ([Chl])) (Reich et al., 2007; Croft
et al., 2017; Z.B. Yan et al., 2021; Wu et al., 2025). A typical
example of this is the well-established leaf economics spectrum
(LES), which illustrates that light-saturated net photosynthetic
rate (Asat) is positively correlated with [N] and SLA. These corre-
lations represent core components of the LES, which encapsulates
plant growth and adaptive strategies ranging from conservative to
acquisitive resource use strategies (Lambers & Poorter, 1992;
Reich et al., 1997; Westoby et al., 2002; Wright et al., 2004).
Indeed, empirical studies have shown that leaf P fractions are
related to LES traits (Hidaka & Kitayama, 2011, 2013; S. T. Liu
et al., 2023; Tsujii et al., 2023, 2024). Specifically, [N] shows a
positive correlation with [PN] and [PR], while negatively correlat-
ing with rPL (Hidaka & Kitayama, 2011; Tsujii et al., 2024),
highlighting the role of P in the synthesis and turnover of pro-
teins (Thornley & Cannell, 2000; Veneklaas et al., 2012). Given
that P is crucial for photosynthetic processes, Asat is positively
correlated with the concentrations of the five P fractions (Hidaka
& Kitayama, 2013; Zhang et al., 2018; Tsujii et al., 2023). Speci-
fic leaf area also exhibits a significant positive correlation with the
concentrations of leaf P fractions (Hidaka & Kitayama, 2011,
2013; Tsujii et al., 2024). Interestingly, Tsujii et al. (2024) found
a negative correlation between SLA and rPL, suggesting that, as
SLA decreases, ecological strategies shift toward allocating more
leaf P to membrane structures. Consequently, leaf P fractions can
potentially be inferred from these leaf trait correlations. More-
over, the LES offers valuable insights into plant P-use strategies
(Hidaka & Kitayama, 2013; Lambers, 2022). Although the asso-
ciations between leaf economic traits and P fractions are appar-
ent, standard models have yet to be developed to predict the
variability in leaf P fractions across forest communities from
diverse climate zones.

While empirical relationships among leaf traits hold great
potential for predicting leaf P fractions across diverse forest
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communities, there are sampling difficulties associated with
accessing the canopy to collect species representative of the entire
community. Leaf reflectance spectroscopy may provide a fast and
efficient means for monitoring leaf traits based on optical proper-
ties, thus reducing the burden of in situ leaf sampling and tradi-
tional chemical assays (Serbin & Townsend, 2020; Kothari
et al., 2023b). The underlying biophysical principle is that var-
ious leaf compounds, including pigments, proteins, lignin and
cellulose, exhibit light absorption features at specific wavelengths
(Curran, 1989; Elvidge, 1990; Kokaly et al., 2009). The tight
connections of leaf reflectance spectra to morphological, bio-
chemical and physiological properties (Curran, 1989; Ollin-
ger, 2011; F!eret et al., 2017, 2019; Serbin & Townsend, 2020),
combined with the high resolution of spectroradiometers
(400–2500 nm, < 10 nm spectral resolution), enable estimating
plant traits at a geographic scale that is difficult to achieve for tra-
ditional chemical assays (Wang et al., 2022). Indeed, spectro-
scopy has proven effective in estimating a broad suite of leaf
morphological and biochemical traits related to leaf P fractions,
including SLA (Serbin et al., 2019; Kothari et al., 2023a), leaf
water content (LWC; Z.B. Yan et al., 2021), [Chl] (Asner
et al., 2014; Wijewardane et al., 2023) and [N] (Chen
et al., 2022; S. W. Liu et al., 2023). Furthermore, although no

major spectral absorption features are associated with P chemical
bonds in the 400–2500 nm range, leaf total P concentration
([P]) has been accurately predicted by leaf reflectance (Asner
et al., 2014; Chen et al., 2022; Wijewardane et al., 2023; Kothari
et al., 2023a; Gill et al., 2024), based on P-related traits detect-
able via spectroscopy. These results suggest that spectroscopy can
provide an alternative approach to characterize the variability in
leaf P fractions. As data volumes increase, leaf-level spectral-trait
models demonstrate broad spatial generalizability, enabling a sin-
gle spectra-trait model to be applied over large spatial scales
(Martin et al., 2008; Asner et al., 2014; Serbin et al., 2019; Z.B.
Yan et al., 2021), which provides the potential to expand the spa-
tial coverage of leaf P fractions. There is a knowledge gap con-
cerning whether leaf reflectance spectra can accurately predict leaf
P fractions across diverse forest communities, highlighting the
need for further investigation.

This study aimed to elucidate plant P-use strategies across
diverse forest communities, as well as to explore whether leaf
reflectance spectroscopy can address data gaps of leaf P fractions
(Fig. 1). Specifically, we addressed three questions:
(1) How do leaf P fractions vary across diverse forest types?
(2) What are the relationships between leaf P fractions and eco-
nomic traits?

Fig. 1 Conceptual diagram illustrating the goals of this study. This study was conducted at three sites in China, including a temperate forest at Changbai
Mountain (CB), a subtropical forest at Gutian Mountain (GT) and a tropical forest at Xishuangbanna (XSBN). At each forest site, the Chinese Academy of
Sciences maintains a canopy crane, shown in the three pictures in panels on the right. This study aimed to address three questions: (1) Question 1 (Q1):
how do leaf phosphorus (P) fractions vary across diverse forest types? (2) Q2: what are the relationships between leaf P fractions and economic traits? (3)
Q3: can leaf reflectance spectroscopy provide an efficient alternative to predict leaf P fractions compared with empirical leaf trait correlations? [Chl], leaf
Chl concentration; [N], leaf N concentration; [P], leaf P concentration; Asat25, light-saturated net photosynthetic rate standardized to 25°C; Jmax25, the
maximum electron transport rate standardized to 25°C; LWC, leaf water content; N : P, N to P ratio; Pi, orthophosphate P; PL, lipid P; PM, metabolite P;
PN, nucleic acid P; PNUE, photosynthetic N-use efficiency; PPUE, photosynthetic P-use efficiency; PR, residual P; SLA, specific leaf area; Vc,max25, the
maximum carboxylation rate of the enzyme RuBisCO standardized to 25°C.
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(3) Can leaf reflectance spectroscopy provide an efficient alterna-
tive to predict leaf P fractions compared with empirical leaf trait
correlations?

To address these questions, we collected leaf samples of canopy
trees from three diverse forest types, including a temperate
needle-and-broad-leaved mixed forest, a subtropical evergreen
broad-leaved forest and a tropical evergreen broad-leaved forest.
Using these samples, we measured the concentrations and pro-
portions of leaf P fractions, 11 leaf traits (i.e. SLA, LWC, [Chl],
[N], [P], leaf N to P ratio (N : P), Vc,max, the maximum electron
transport rate (Jmax), Asat, photosynthetic P-use efficiency (PPUE)
and photosynthetic N-use efficiency (PNUE)) and leaf reflec-
tance spectra. By answering these questions, we hope to provide a
practical approach for capturing the variability in leaf P fractions,
thereby deepening our understanding of plant P-use strategies
across plant species and growth conditions.

Materials and Methods

Study sites and plant sampling

This study was conducted at three forests in China, including a
temperate needle-and-broad-leaved mixed forest at Changbai
Mountain (temperate mixed forest CB; 42°23 0N, 128°05 0E), a
subtropical evergreen broad-leaved forest at Gutian Mountain
(subtropical evergreen forest GT; 29°15 0N, 118°07 0E) and a
tropical evergreen broad-leaved forest at Xishuangbanna (tropical
evergreen forest XSBN; 21°37 0N, 101°34 0E). These sites were
selected for two main reasons. First, each forest is equipped with
a canopy crane operated by the Chinese Academy of Sciences,
allowing easy access to the upper canopy tree species representa-
tive of each forest community. Second, these sites represent typi-
cal forest types in China (i.e. temperate, subtropical and tropical
forests) and span large environmental gradients, therefore ensur-
ing a sufficient breadth of leaf P fractions, leaf traits and reflec-
tance spectra. Specially, the mean annual temperature (MAT)
and mean annual precipitation (MAP) vary significantly across
the sites (2.8°C and 691 mm at temperate mixed forest CB,
15.3°C and 1963.7 mm at subtropical evergreen forest GT, and
21.8°C and 1493 mm at tropical evergreen forest XSBN). Soil
types differ as well, with dark-brown earth at temperate mixed
forest CB, yellow-red earth at subtropical evergreen forest GT
and laterite earth at tropical evergreen forest XSBN. Additionally,
the soil total P concentration also varies largely, with the lowest
value (0.16 g kg"1) at subtropical evergreen forest GT, followed
by tropical evergreen forest XSBN (0.80 g kg"1) and temperate
mixed forest CB (1.67 g kg"1; Supporting Information
Table S1).

To ensure the comparability among different forest sites, only
broad-leaved tree species were sampled for the consequent mea-
surements of leaf reflectance spectra and multiple traits. Within
the footprint of the crane towers, 77 trees from 9 dominant spe-
cies at temperate mixed forest CB, 92 trees from 16 dominant
species at subtropical evergreen forest GT and 88 trees from 33
dominant species at tropical evergreen forest XSBN were selected
for subsequent measurements of leaf gas exchange, leaf reflectance

spectra, leaf P fractions and other leaf morphological and bio-
chemical traits (i.e. SLA, LWC, [Chl], [N], [P] and N : P) dur-
ing the peak growing season (July–August) of 2023. Only sunlit
mature leaves from the upper canopy were sampled for further
measurements. The detailed protocols for these measurements
are provided below, and the summary of the statistical character-
istics of these measurements is presented in Tables S2–S5.

Field measurements

Leaf gas exchange Two branches, each 50–80 cm in length,
were sampled from each tree before dawn and recut under water
to avoid xylem embolism (Sperry, 2013; Wu et al., 2019). From
each branch, two sunlit mature leaves with similar growth status
(i.e. similar coloration, size and rigidity) were then selected for
gas exchange measurements. The excised branches were placed in
individual buckets filled with water and kept in the shade. We
used six portable Li-COR gas exchange systems (two LI-6400
XTs and four LI-6800s; Li-COR Inc., Lincoln, NE, USA) to
measure the response of net assimilation rate (A) to intercellular
CO2 concentration (Ci) (commonly known as the A–Ci curve),
following the protocols of Rogers et al. (2017) and Z.B. Yan
et al. (2021), with details shown in Methods S1. Our previous
study demonstrated that the results are not influenced by these
two types of Li-COR gas exchange system (S.T. Liu et al., 2023;
Wu et al., 2025). After measurements, we fitted A–Ci curves to a
biochemical photosynthesis model (Farquhar et al., 1980) using
the code developed in MATLAB (Mathworks, Natick, MA,
USA) by Wu et al. (2019) and Z.B. Yan et al. (2021). Vc,max, Jmax

and Asat were then derived from these fitted A–Ci curves and stan-
dardized to a reference temperature of 25°C (Vc,max25, Jmax25 and
Asat25). Vc,max25 and Jmax25 were estimated using kinetic constants
and temperature response functions as Bernacchi et al. (2013),
while Asat was standardized to Asat25 following Rowland
et al. (2016). The three gas exchange parameters were trans-
formed into the mass-based metrics with SLA for comparable
analyses with the mass-based elemental concentrations.

Leaf reflectance spectra We measured leaf reflectance spectra
immediately after conducting leaf gas exchange measurements
with a portable handheld contact-type spectroradiometer (Qual-
itySpec TREK; PANalytical, Boulder, USA; spectral full-range:
400–2500 nm; spectral resolution: ≤ 3 nm at 700 nm;
≤ 9.8 nm at 1400 nm; ≤ 8.1 nm at 2100 nm; sampling interval:
linearly interpolated to 1 nm). Notably, the leaf reflectance spec-
tra were measured on the same branches used for gas exchange
measurements. During leaf reflectance spectra measurements, an
internal quartz tungsten halogen bulb in the probe was used to
illuminate the leaf samples upon a black background, with a 99%
reflective Spectralon white panel (Labsphere Inc., North Dutton,
NH, USA) serving as the reference standard (Wu et al., 2019;
Z.B. Yan et al., 2021; S.W. Liu et al., 2023). For each branch, we
selected 6–10 mature and healthy leaves, measured the reflectance
spectra at three to six positions on the adaxial side (avoiding the
main veins) of each leaf and averaged the spectra to represent
the spectral properties of the branch.
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Leaf P fractions After leaf spectral measurements, we sampled
mature leaves with similar growth status from the same branches
used for gas exchange measurements. A portion of these leaves
was used to assess the five fractions of leaf P (i.e. [Pi], [PL], [PN],
[PM] and [PR]; in milligrams per gram). Leaf P fractions were
sequentially extracted from freeze-dried leaves following the
methodology adapted from Chapin & Kedrowski (1983) and
Kedrowski (1983), with modifications as described by Hidaka &
Kitayama (2011) and Yan et al. (2019). The data with greater
than 90% recovery rates (i.e. the sum of the concentrations of leaf
P fractions as a proportion of [P]) were accepted in this study. As
a detailed description of P-fractionation analysis has been pre-
sented in Yan et al. (2019) and Tsujii et al. (2024), we briefly
summarized the major steps of this approach in Methods S2.

Leaf biochemical and morphological traits The remaining
sampled sunlit mature leaves with similar growth status were used
to determine the six other morphological and biochemical traits,
including SLA (cm2 g"1), LWC (g g"1), [Chl] (mg g"1), [N]
(mg g"1), [P] (mg g"1) and N : P (g g"1). The details of mea-
surements taken are shown in Methods S3. Then, PNUE and
PPUE were calculated using Asat25 divided by [N] and [P],
respectively.

Data analysis

In this study, we focused on exploring the variability in leaf P
fractions using leaf traits and leaf reflectance spectra. A Shapiro–
Wilk test was used to assess the normality of distributions for leaf
P fractions and leaf traits across three forest sites. All the concen-
trations (i.e. [Pi], [PL], [PN], [PR] and [PM]) and proportions (i.e.
rPi, rPL, rPN, rPR and rPM) of leaf P fractions were deemed nor-
mal and untransformed in the subsequent analyses. The other leaf
economic traits showed approximately log-normal distributions
and were log10-transformed. The data used for all analyses were
based on individual tree level.

Variability in leaf P fractions and economic traits across
forest types We used a one-way analysis of variance (ANOVA)
with post hoc Tukey’s HSD test to explore the changes in leaf P
fractions and associated traits across forest types. Furthermore, to
characterize the phylogenetic structure of leaf P fractions, we con-
structed a phylogenetic tree using the R package V.PHYLOMAKER

(Jin & Qian, 2019) and then calculated the phylogenetic signal
(i.e. Pagel’s k) using the phylosignal function from the R package
PICANTE (Kembel et al., 2010). Pagel’s k quantifies whether the
distribution of a trait on a given phylogeny approximates that
expected from a Brownian motion model of trait evolution
(k = 1) or is more labile than expected from such a model
(k < 1) (Pagel, 1999). A permutation test can be used to quantify
whether the observed k value deviates from that expected by a
purely random (i.e. white noise) model of trait evolution. This
test is performed by permuting trait values across the tips of the
phylogeny 999 times to generate a null distribution. The rank of
the observed k in the null distribution can then be used to esti-
mate a P-value (Swenson, 2014, 2019).

Relationships between leaf P fractions and economic traits To
investigate the relationships between leaf P fractions and leaf
traits, we conducted three analyses. First, a Pearson’s correlation
analysis, accompanied by heatmaps, was performed to evaluate
correlations between leaf P fractions and leaf traits across forest
types. Second, we used a principal component analysis (PCA) on
leaf P fractions and leaf traits to explore multidimensional rela-
tionships among these traits across forest types. All traits were
standardized by z-score method before PCA. The first two PCA
axes were then delineated to visualize the trait space. Third, to
explore the predictive power of easier-to-measure traits on leaf P
fractions, we conducted multiple linear regressions as follows: lm
(Leaf P fractions ~ trait variables + (1|site)) using the lmer func-
tion from the R package LME4 (Bates et al., 2015). The variables
included six easily measurable traits, including LWC, SLA,
[Chl], [N], [P] and N : P. Models were selected based on the fol-
lowing criteria: (1) the model with the lowest Akaike information
criterion value (Akaike, 1974); and (2) the variance inflation fac-
tor for each variable being less than 5 to avoid multicollinearity
(Dobson, 2001; Hovenden et al., 2019). Following these two cri-
teria, we predicted the variability in leaf P fractions through the
final optimal model below: lm (Leaf P fractions ~ LWC + SLA +
[Chl] + [N]). To assess the performance of trait-based models,
we calculated the average coefficient of determination (R2) and
the relative root means square error (%RMSE). Fourth, to parti-
tion the inter- and intraspecific variation of leaf P fractions within
each site, we employed a general linear model based on ANOVA,
following the method proposed by Guill!en-Escrib"a et al. (2021).
The model was specified as follows: lm (Leaf P fractions ~ spe-
cies). Through this model, we partitioned the total variance into
two components. The interspecific variance was represented by
the percentage of variance explained by the ‘species’ term in the
ANOVA-based general linear model, while the intraspecific var-
iance was represented by the residuals.

Exploring the accuracy of spectral models in predicting leaf P
fractions across forest types To assess the feasibility of leaf
reflectance spectroscopy on predicting leaf P fractions, we devel-
oped spectral models and compared their performance with that
of previously mentioned trait-based models. We integrated the
partial least-squares regression (PLSR) method with the repeated
double cross-validation (rdCV) method to develop cross-site
spectral models of leaf P fractions using the Python library
scikit-learn (Pedregosa et al., 2011). The PLSR approach, which
effectively handles high covariance among predictor variables and
allows the number of explanatory variables to exceed the number
of observations, has been widely used in spectral modeling of
plant functional traits (Serbin et al., 2019; Burnett et al., 2021;
Z.B. Yan et al., 2021; Kothari et al., 2023b). The rdCV method
divided the whole dataset into calibration and independent vali-
dation subsets repeatedly using a cross-validation (outer CV
loop), with the calibration subset further divided into training
and testing components using a second cross-validation (inner
CV loop; Filzmoser et al., 2009). Specifically, 90% of the data
were used as the calibration subset and 10% as the independent
validation subset. Given that spectral model details have been
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elaborated in Dechant et al. (2017), Z.B. Yan et al. (2021) and
Wu et al. (2025), we briefly summarized four main procedures in
Methods S4. To assess the performance of spectral models, we
calculated R2 and %RMSE using the independent validation
dataset for each of the 200 repetitions in the outer loop, thereby
circumventing stochastic results disrupted by unrepresentative
samples. To identify the significant spectral domains for predict-
ing leaf P fractions, we calculated the mean Variable Importance
in Projection (VIP) metrics across the 200 repetitions in the
outer loop.

Results

Variability in leaf P fractions across diverse forest types

To address our first question regarding the variability in leaf P
fractions, we cross-compared the mean and coefficient of varia-
tion (CV) of the concentrations and proportions of leaf P frac-
tions across forest types, partitioned the total variance of leaf P
fractions into intraspecific and interspecific components, and
subsequently explored their phylogenetic structures. The concen-
trations of leaf P fractions were the lowest at the subtropical GT,
which had the lowest soil P availability among the three studied
sites (Fig. 2a–e; Table S1). Species at the tropical XSBN exhib-
ited significantly higher [Pi] and [PR] than [PL] and [PM], and
significantly lower [PN] than those at the temperate mixed forest
CB (Fig. 2a–e). The concentrations of leaf P fractions from three
forest sites exhibited remarkable variability, with [Pi] showing the
highest CV (62%), followed by [PR] (56%), [PL] (52%), [PN]
(46%) and [PM] (35%). The variability in the concentrations of
leaf P fractions was mainly attributed to interspecific variance
across three forest types (Fig. S1d). However, the relative contri-
butions of intra- and interspecific variances diverged among for-
est types. Specifically, the temperate mixed forest CB and
subtropical evergreen forest GT exhibited relatively higher intras-
pecific variance, whereas the tropical evergreen forest XSBN
showed relatively higher interspecific variance (Fig. S1a–c).
Moreover, the concentrations of these five P fractions demon-
strated different phylogenetic signals across species from the three

forest sites, with significant phylogenetic signals observed in [PL]
and [PN], and no significant phylogenetic signals in [Pi], [PR]
and [PM] (Fig. S2).

Regarding the proportions of P fractions, species at the subtro-
pical evergreen forest GT with the lowest soil P availability had
significantly higher rPN and rPM, and significantly lower rPi and
rPL than at the temperate mixed forest CB and tropical evergreen
forest XSBN (Fig. 2f–j). Compared with the temperate mixed
forest CB, the tropical evergreen forest XSBN showed signifi-
cantly higher rPi, lower rPN and comparable rPL, rPM and rPR
(Fig. 2f–j). Furthermore, the proportions of leaf P fractions
across three forest sites exhibited remarkable variability, with rPM
showing the highest CV (54%), followed by rPR (32%), rPi
(24%), rPN (14%) and rPL (13%). Interestingly, for each leaf P
fraction, the variability in concentration was greater than that of
proportion. The variability in the proportions of leaf P fractions
was also primarily driven by interspecific variance across three
forest types (Fig. S1h). Consistent with the concentrations of leaf
P fraction, the proportions of leaf P fractions also exhibited
higher intraspecific variance at the temperate mixed forest CB
and subtropical evergreen forest GT, whereas the tropical ever-
green forest XSBN displayed greater interspecific variance
(Fig. S1e–g). In addition, compared with [PM], rPM exhibited a
higher interspecific variance. Conversely, the interspecific var-
iance of rPi, rPL, rPN and rPR was lower than that of their con-
centrations (Fig. S1d,h). Additionally, the proportions of leaf P
fractions exhibited no significant phylogenetic signals across spe-
cies from the three forest sites (Fig. S1).

Relationships between leaf P fractions and economic traits
across forest types

To explore the relationships between leaf P fractions and eco-
nomics traits across forest types, we performed Pearson’s correla-
tion analysis and PCA. Initially, we found that plants at the
subtropical GT, compared with the other two forests, exhibited
conservative strategies, characterized by lower SLA, LWC, [Chl],
nutrient concentrations and photosynthetic capacity (indicated
by Vcmax25, Jmax25 and Asat25), but higher N : P ratio and

Fig. 2 Mass-based concentrations (a–e) and
relative proportions (f–j) of leaf phosphorus (P)
fractions across forest types. The central boxes
within each violin plot show the interquartile
range and median, and the whiskers extending
1.5 times the interquartile range or to the most
extreme value. Significant differences among
sites are shown as different lowercase letters for
leaf P fractions based on one-way ANOVA with
post hoc Tukey’s HSD test. CB, Changbai
Mountain; GT, Gutian Mountain; XSBN,
Xishuangbanna.
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PPUE (Figs S3, S4). Furthermore, we found that the concentra-
tions of leaf P fractions were positively associated with LWC,
SLA, [Chl], [N], [P], Vcmax25, Jmax25 and Asat25, but negatively
correlated with N : P ratio and PPUE (Fig. 3a,b; Table S6).
Regarding PCA, the first two principal components (PCs)
accounted for 58% (PC1) and 21% (PC2) of the total variation
in the concentrations of leaf P fractions and associated leaf traits
(Fig. 3b). The PC1 axis predominantly represents a continuum
from acquisitive to conservative strategy, associated with the
decreasing LWC, SLA, [Chl], nutrient concentrations (i.e. [N],
[P], [Pi], [PL], [PN], [PM] and [PR]) and photosynthetic capacity
(indicated by Vcmax25, Jmax25 and Asat25), and with increasing P
limitation indicated by higher N : P ratio (Fig. 3b).

The relationships between the proportions of leaf P fractions
and economic traits are more complex. Our results indicate that
rPM, rPN and rPR were negatively correlated with LWC, SLA,
[Chl], nutrient concentrations and photosynthetic capacities, but
positively correlated with N : P ratio (Fig. 3c,d; Table S7). By
contrast, rPL and rPi showed opposite correlations with those leaf

traits (Fig. 3c,d; Table S7). Photosynthetic P-use efficiency was
significantly positively correlated with rPN and rPM, but signifi-
cantly negatively correlated with rPi (Fig. 3c,d; Table S7). Addi-
tionally, PCA indicated that the first two PCs accounted for 46%
(PC1) and 21% (PC2) of the total variation in the proportions of
leaf P fractions and associated leaf traits (Fig. 3d). Among these
PCs, the PC1 axis predominately reflected the continuum from
acquisitive to conservative strategy and the increasing P limitation
and was negatively associated with rPL and rPi, but positively
associated with rPN and rPM (Fig. 3d).

Prediction of leaf P fractions based on trait correlations and
reflectance spectroscopy

Due to the challenges in measuring leaf P fractions, we further
examined how to reliably estimate leaf P fractions using a trait-
based approach and leaf reflectance spectroscopy. We cross-
compared the performance of trait-based models with that of
hyperspectral-based models. Our results demonstrate that the

Fig. 3 Exploring cross-site relationships between leaf phosphorus (P) fractions and leaf traits using Pearson’s correlation analyses (a, c) and principal
component analysis (PCA) (b, d). Pearson’s correlations among traits are presented in heat maps, with the intensity of color indicating the absolute value of
Pearson’s r. Significance is shown only if P < 0.05, with * indicating significance at 0.01 < P < 0.05 and ** indicating significance at P ≤ 0.01. The trait
loadings on the right panels are delineated by principal component 1 (PC1) and principal component 2 (PC2), with the color gradient of the arrows
indicating their contribution to the principal components. [Chl], leaf Chl concentration; [N], leaf N concentration; [P], leaf P concentration; [PL], [PM], [PN],
[PR], [Pi], the concentrations of lipid P, metabolite P, nucleic acid P, residual P and orthophosphate P, respectively; Asat25, light-saturated net
photosynthetic rate standardized to 25°C; Jmax25, the maximum electron transport rate standardized to 25°C; LWC, leaf water content; N, nitrogen; N : P,
N to P ratio; PNUE, photosynthetic N-use efficiency; PPUE, photosynthetic P-use efficiency; rPL, rPM, rPN, rPR, rPi, the relative proportions of lipid P,
metabolite P, nucleic acid P, residual P and orthophosphate P per total leaf P concentration, respectively; SLA, specific leaf area; Vc,max25, the maximum
carboxylation rate of the enzyme RuBisCO standardized to 25°C.
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hyperspectral-based models outperformed the trait-based models
in predicting the concentrations of leaf P fractions
(R2 = 0.50–0.88 vs 0.34–0.74, %RMSE = 16–28% vs
24–40%; Fig. 4). A similar pattern was observed when predicting
the proportions of leaf P fractions, with hyperspectral models
again showing superior performance: R2 = 0.43–0.70 vs
0.06–0.45, %RMSE = 8–30% vs 12–40% (Fig. 5). Further-
more, both model types exhibited greater predictive power for
the concentrations than for the proportions of leaf P fractions
(Figs 4, 5). These findings verified that leaf reflectance

spectroscopy provides a reliable and efficient alternative approach
for estimating leaf P fractions, particularly for determining their
concentrations.

To elucidate the intrinsic mechanisms underlying the spec-
tral models of leaf P fractions, we used the VIP metrics from
PLSR models to identify the significant spectral domains for
predicting leaf P fractions (Fig. 6b,c). The overall trend in
VIP variation in the concentrations and proportions of leaf P
fractions resembles that of [P], demonstrating peaks in the
visible range (VIR, 400–700 nm) and near-infrared range

Fig. 4 Accuracy assessment for the predictions
of mass-based concentrations of leaf phosphorus
(P) fractions using leaf trait correlations and
reflectance spectroscopy. The cross-site trait-
based models of leaf P fractions (a–e) are
performed by multiple linear regression, with
explanatory variables as LWC (leaf water
content), SLA (specific leaf area), [Chl] (leaf Chl
concentration) and [N] (leaf N concentration).
The cross-site spectral models of leaf P fractions
(f–j) are performed by partial least-squares
regression. The gray line represents the 1 : 1
line, and the black line indicates the ordinary
least-squares regression fit. Three different-
colored circles represent three forest types, with
temperate mixed forest CB (Changbai Mountain)
in blue, subtropical evergreen forest GT (Gutian
Mountain) in orange and tropical evergreen
forest XSBN (Xishuangbanna) in green. %RMSE,
the relative root mean square of error; [PL], [PM],
[PN], [PR], [Pi], the concentrations of lipid P,
metabolite P, nucleic acid P, residual P and
orthophosphate P, respectively; LC, the optimal
number of latent components; N, nitrogen; R2,
the adjusted coefficient of determination.
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(NIR, 700–1300 nm), accompanied by a trough in the short-
wave infrared range (SWIR, 1300–2500 nm; Fig. 6). Specifi-
cally, our cross-site spectral models for leaf P fractions
identified the important bands as follows (VIP > 1; S.W. Liu
et al., 2023): (1) 400–480 nm and 510–650 nm in the VIR;
(2) 700–800 nm in the red edge band; (3) 800–900 nm in
the NIR; and (4) 1300–1900 nm and 2000–2300 nm in the
SWIR (Fig. 6b,c). Additionally, we found that the VIP spec-
tra of PM in the VIR were distinctly separated from those of
the other four P fractions, regardless of their concentrations
or proportions (Fig. 6b,c).

Discussion

Allocation of leaf P among different fractions provides insights
into P-use strategies and potential mechanisms in response to
changing environments (Yan et al., 2019; L. Yan et al., 2021;
Hawkesford et al., 2022; Lambers, 2022; Meng et al., 2025).
However, there is no coherent understanding and efficient moni-
toring of fine-scale variability in leaf P fractions across forest
types. Here, we revealed the variability in leaf P fractions asso-
ciated with leaf economic traits and reflectance spectra across for-
est types and achieved three key findings. First, we found that in

Fig. 5 Accuracy assessment for the predictions of
the relative proportions of leaf phosphorus (P)
fractions using leaf trait correlations and
reflectance spectroscopy. The cross-site trait-
based models of leaf P fractions (a–e) are
performed by multiple linear regression, with
explanatory variables as LWC (leaf water
content), SLA (specific leaf area), [Chl] (leaf Chl
concentration) and [N] (leaf N concentration).
The cross-site spectral models of leaf P fractions
(f–j) are performed by partial least-squares
regression. The gray line represents the 1 : 1 line,
and the black line indicates the ordinary least-
squares regression fit. Three different-colored
circles represent three forest types, with
temperate mixed forest CB (Changbai Mountain)
in blue, subtropical evergreen forest GT (Gutian
Mountain) in orange and tropical evergreen
forest XSBN (Xishuangbanna) in green. %RMSE,
the relative root mean square of error; LC, the
optimal number of latent components; N,
nitrogen; rPL, rPM, rPN, rPR, rPi, the relative
proportions of lipid P, metabolite P, nucleic acid
P, residual P and orthophosphate P per total leaf
P concentration, respectively; R2, the adjusted
coefficient of determination.
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forests with lower soil P availability, plants have lower concentra-
tions of all five leaf P fractions, lower rPi and rPL, but higher rPN
and rPM, demonstrating a trade-off among leaf P fractions for
increasing PPUE under P-limited conditions (Figs 2, 3c,d;
Tables S1, S7). Second, we revealed that the concentrations and
proportions of leaf P fractions varied along the LES, representing
a continuum from acquisitive to conservative trait syndromes,
together with decreasing concentrations of leaf P fractions, rPi
and rPL but increasing rPN and rPM (Fig. 3b,d). This pattern
underscores the link between leaf P allocation and plant func-
tional strategies. Third, we demonstrated that leaf reflectance
spectroscopy outperformed leaf trait correlations in predicting
both the concentrations and proportions of leaf P fractions across
forest types (Figs 4, 5). Taken together, our study expands
our mechanistic understanding of the variability in leaf P
fractions and highlights the substantial potential of leaf

reflectance spectroscopy for efficient and high-throughput moni-
toring of plant P-use strategies and P cycling across diverse
ecosystems.

Variability in leaf P fractions across diverse forest types

Our results revealed substantial variation in the concentrations of
leaf P fractions within and across forest types, which span large
environmental gradients. Generally, the mean concentrations of
leaf P fractions across forest types were the highest in PL, followed
by PN, Pi, PR and PM (Fig. 2a–e). Consistent with previous stu-
dies, we found that Pi exhibited the greatest variation among the
concentrations of leaf P fractions, likely due to its buffering role
(Veneklaas et al., 2012; Yan et al., 2019; Suriyagoda et al., 2022).
Furthermore, plants at the subtropical GT, with the lowest soil P
availability among three sites, had the lowest concentrations of
leaf P fractions (Fig. 2a–e; Table S1), suggesting that increasing P
limitation reduces the concentrations of leaf P fractions (Hayes
et al., 2014; Yan et al., 2019), as supported by the negative corre-
lations between the concentrations of leaf P fractions and the
N : P ratio (Fig. 3a,b; Table S6). This pattern of leaf P fractions
across forest types aligns with several previous field-based studies
conducted in Mediterranean shrublands, sclerophyll forests and
temperate evergreen forests in Australia (Yan et al., 2019; Tsujii
et al., 2023, 2024; Liang et al., 2024), as well as tropical montane
rain forests in Malaysian Borneo (Hidaka & Kitayama, 2011,
2013; Tsujii et al., 2017). It is primarily attributed to the con-
sumption of Pi stored in vacuoles, low levels of phospholipids,
slow protein turnover and weak metabolic activity in low-P soils
(White & Hammond, 2008; Veneklaas et al., 2012; Lam-
bers, 2022).

We also observed substantial variation in the proportions of
leaf P fractions within and across three forest types. Plants at the
subtropical GT, with the relatively lower soil P availability, had
lower rPi and rPL but higher rPN and rPM (Fig. 2f–j; Table S1).
This finding suggests that under conditions of increasing P lim-
itation, plants reduce their storage of Pi and investment in the
membrane system, while allocating more P to PN and PM, which
are critical for the photosynthetic apparatus, thus maintaining
high PPUE (Ostertag, 2010; Veneklaas et al., 2012; Lagace &
Ridgway, 2013; Yan et al., 2019). The correlations between the
proportions of leaf P fractions, N : P ratio and PPUE observed
in our study further support this finding (Fig. 3c,d; Table S7).
Besides, this finding is partly supported by previous work
reported in tropical montane rain forest, which also found that
plants reduce rPL to maintain high PPUE in low-P soils (Hidaka
& Kitayama, 2013). However, conflicting results have been
reported in some studies regarding changes in the proportions of
leaf P fractions under divergent soil P conditions with relatively
constant or species-specific allocation patterns across habitats and
seasons, primarily due to limited study sites and species (Hidaka
& Kitayama, 2011, 2013; Yan et al., 2019; S.T. Liu et al., 2023;
Tsujii et al., 2023, 2024). Therefore, larger datasets encompass-
ing more species and broader environmental gradients are needed
to better explore the pattern of leaf P fractions and, ultimately, P-
use strategies.

Fig. 6 Assessing the reflectance contributions to the cross-site spectral
models of leaf phosphorus (P) concentration ([P]) and leaf P fractions
using the partial least-squares regression (PLSR) approach. The variable
importance in projection (VIP) spectrum of the PLSR models was used to
identify the sensitive spectral domains for the spectral models of [P] (a),
the concentrations of leaf P fractions (b), and the relative proportions of
leaf P fractions (c). The black dashed line represents VIP of 1 (Wold
et al., 2001; S. W. Liu et al., 2023), which was denoted as the threshold to
identify the important spectral regions responsible for the spectral
modeling. [PL], [PM], [PN], [PR], [Pi], the concentrations of lipid P,
metabolite P, nucleic acid P, residual P and orthophosphate P, respectively;
N, nitrogen; NIR, near-infrared range (800–1300 nm); RE, red edge range
(700–800 nm); rPL, rPM, rPN, rPR, rPi, the relative proportions of lipid P,
metabolite P, nucleic acid P, residual P and orthophosphate P per total leaf
P concentration, respectively; SWIR, shortwave infrared range
(1300–2500 nm); VIR, visible range (400–700 nm).
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Leaf trait-based understanding and prediction of leaf P
fractions

Exploring associations between leaf traits and P fractions
enhances our mechanistic understanding of how plants allocate
leaf P to adapt to varying environmental conditions (Yan et al.,
2019; L. Yan et al., 2021; Lambers, 2022; Tsujii et al., 2023,
2024). Our results indicated that leaf P fractions varied along the
LES, representing a continuum from the acquisitive to
conservative trait syndrome, characterized by decreases in the
light-capturing surfaces (indicated by SLA), LWC, investment
in carbon assimilation (indicative of [Chl], [N] and [P]) and
photosynthetic capacity (indicated by Vc,max25, Jmax25 and Asat25),
but increases in N : P ratio and PPUE (Fig. 3; Tables S6, S7).
Specifically, our findings highlighted that, as plants shift from the
acquisitive to conservative strategy, the concentrations of leaf P
fractions, rPi and rPL, decreased, while rPN and rPM increased,
particularly under P-limited conditions (Fig. 3d). This finding
suggests that under nutrient-deficient conditions, plants exhibit-
ing conservative strategies allocate more leaf P to PN and PM,
while reducing allocation to Pi and PL. This shift can be attribu-
ted to the necessity for plants to invest more P in the turnover of
core photosynthetic proteins and metabolites, thereby supporting
high PPUE (Veneklaas et al., 2012; Suriyagoda et al., 2022).
Meanwhile, the functions of Pi and PL can be partially compen-
sated by other substances, allowing for P reallocation toward
photosynthesis (Lambers et al., 2012; Poirier et al., 2022). For
instance, during periods of P starvation, enzymes that depend on
Pi may be substituted by those that depend on inorganic pyro-
phosphate (Poirier et al., 2022), and P-rich phospholipids can be
replaced by P-free lipids, such as galactolipids (Lambers
et al., 2012). Considering a more extensive species number,
diverse ecosystem types and multi-traits, our trait-based interpre-
tation of leaf P-allocation strategies is likely more representative,
general and robust than previous studies with a relatively narrow
breadth of species diversity, environmental gradients and trait
dimensions (Hidaka & Kitayama, 2011, 2013; Mo et al., 2019;
Yan et al., 2019; L. Yan et al., 2021; Tsujii et al., 2023, 2024).

Furthermore, the empirical relationships between leaf traits
and P fractions provide insights into the formulation of empirical
equations to derive the difficult-to-measure leaf P fractions from
those easier-to-measure traits (Hidaka & Kitayama, 2011, 2013;
Tsujii et al., 2023, 2024). Our results indicate that the four easily
measurable leaf traits (i.e. LWC, SLA, [Chl] and [N]) could
indirectly infer the concentrations of leaf P fractions across var-
ious scales, from individual trees to contrasting forest types
(R2 = 0.34–0.74; Fig. 4a–e). The capacity of these traits in pre-
dicting the concentrations of leaf P fractions was much greater
than that of those with each single trait, as observed in our study
(R2 = 0.08–0.69; Fig. 3a, Table S6), and in previous studies
(R2 = 0.01–0.66) (Hidaka & Kitayama, 2011, 2013; Zhang
et al., 2018; Tsujii et al., 2023, 2024), suggesting that the varia-
bility in leaf P fractions is associated with multidimensional
traits. Nevertheless, these traits were much less effective at pre-
dicting the proportions compared with the concentrations of leaf
P fractions (R2 = 0.06–0.45 vs 0.34–0.74; Fig. 4), likely due to

the relatively conservative nature of the proportions across species
and forest types (CV = 13–54% vs 35–62%). Collectively, our
results imply that, to some extent, leaf P fractions can be esti-
mated from those relatively easier-to-measure traits with extensive
spatial coverage (Wright et al., 2005; Reich et al., 2007; Berzaghi
et al., 2020). However, the generalizability of the trait-based
approach still requires larger datasets encompassing more species
and broader environmental gradients for further validation.

Moreover, while the four traits (i.e. LWC, SLA, [Chl] and
[N]) jointly explain part of the variability in cross-site leaf P frac-
tions, there still remains a substantial amount of unexplained var-
iance, particularly in [PM], rPL, rPN and rPR (Figs 4, 5). This
uncertainty may be linked to many other unconsidered factors,
such as microclimate and soil properties (Yan et al., 2019), evolu-
tionary history (Yan et al., 2023; Schweiger & Schweiger, 2024),
hydraulic traits (e.g. water potential; S.T. Liu et al., 2023;
Castillo-Argaez et al., 2024) and finer photosynthetic traits (e.g.
light energy utilization in PSII, redox state of PSI and cyclic elec-
tron flow; L. Yan et al., 2021). The current lack of direct quanti-
tative evidence supporting these potential relationships warrants
further research to elucidate the mechanisms underpinning the
variability in leaf P fractions across forest types by integrating
more relevant abiotic and biotic factors.

Spectroscopy provides a promising alternative for
monitoring and understanding the cross-site variability in
leaf P fractions

To our knowledge, this is the first study to leverage leaf reflec-
tance spectroscopy to elucidate the variability in leaf P fractions
across forest types, although previous studies have highlighted
the substantial potential of leaf reflectance spectroscopy in pre-
dicting [P] across forest types (Fig. S5; Asner et al., 2014;
Kothari et al., 2023a, 2023b; S.W. Liu et al., 2023; Wijewar-
dane et al., 2023). We observed that the spectroscopy-based
predictive capacity for the proportions of leaf P fractions is
lower than that for the concentrations of leaf P fractions
(Fig. 5), possibly due to the stability of these proportions across
species and forest types (Figs 2, S1). Furthermore, the predictive
accuracy of spectral models varied among these five P fractions,
which is higher for [Pi], [PL], [PN] and [PR] than for [PM], and
higher for rPi and rPM than for rPL, rPN and rPR (Figs 4, 5).
This result may be attributed to the narrow range of leaf traits
across forest types in the training dataset, which restricts the
development of more accurate and generalized spectral-trait
models (Wu et al., 2019; Z.B. Yan et al., 2021; Kothari
et al., 2023a). Nonetheless, our findings verify that leaf reflec-
tance spectroscopy is a promising alternative for filling observa-
tional gaps in leaf P fractions. Particularly, our study highlights
that leaf reflectance spectroscopy can decipher not only the fine-
scale leaf P nutrient status indicated by the concentrations of
leaf P fractions but also the leaf P-allocation strategies indicated
by the proportions of leaf P fractions (Mo et al., 2019; Yan
et al., 2019; Lambers, 2022; Tsujii et al., 2024).

Interestingly, our results highlighted that leaf reflectance spec-
troscopy outperformed traditional leaf trait correlations in
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predicting the cross-site variability in leaf P fractions in terms of
both the concentrations (R2 = 0.50–0.88 vs 0.34–0.74, %
RMSE = 16–28% vs 24–40%) and the relative proportions
(R2 = 0.43–0.70 vs 0.06–0.45, %RMSE = 8–30% vs 12–40%;
Figs 4, 5). The significant spectral domains for predicting leaf P
fractions, indicated by VIP, may explain the better predictive
capacity of spectral models. Given the lack of distinct spectral
absorption features for P chemical bonds, spectral models of
leaf P fractions likely depend on features linked to covarying
traits that shape spectral changes, rather than the target
traits (‘constellation effects’; Chadwick & Asner, 2016;
Nunes et al., 2017). The sensitive spectral domains of four vari-
ables in trait-based models (i.e. LWC, SLA, [Chl] and [N]; con-
centrating on 500–800 nm) partially overlap with those of leaf P
fractions (400–480 nm, 510–650 nm, 700–800 nm,
800–900 nm, 1300–1900 nm and 2000–2300 nm; Fig. 6b,c;
Ely et al., 2019; Z.B. Yan et al., 2021; Kothari et al., 2023a; Wu
et al., 2025), explaining why trait-based models capture limited
variation of leaf P fractions. The spectral domains of leaf P frac-
tions also capture signals from other P-associated but unmea-
sured traits, such as water (1450, 1650, 1940 and 2200 nm),
proteins (1980, 2130 and 2240 nm), lignin (1420 nm), sugars
(2320 nm), starch (1900 nm) and oils (2310 nm) (Cur-
ran, 1989; Ely et al., 2019; F!eret et al., 2021; N.F. Liu
et al., 2023). This likely accounts for the superior predictive accu-
racy of spectroscopy-based models compared with that of trait-
based models.

Moreover, we found that the VIP spectra of PM in the VIR
were distinctly separated from the other four P fractions, regard-
less of their concentrations or proportions (Figs 6b,c, S6). The
high VIP of [PM] in the VIR may be attributed to the tight and
direct association between PM and the light-dependent reaction.
The key metabolic P compounds, such as NADP+, NADPH,
ATP and ADP directly participate in the light reaction. Yan
et al. (2019) observed that a higher level of PM is associated with
lower photoinhibition and greater photochemical efficiency. This
indicates that an adequate supply of PM is essential for the light-
harvesting and energy-conversion processes. The optical proper-
ties of leaves in the VIR are dominated by the strong absorption
of solar energy by photosynthetic pigments (Ustin et al., 2009).
Interestingly, the absorption peaks of these pigments, as well as
the structures of Photosystem I and Photosystem II, where the
light reactions occur, correspond to the peaks in the VIP spec-
trum of [PM] (Croce & van Amerongen, 2020). This means that
the spectral information in the VIR is highly related to the photo-
synthetic processes in which PM is deeply involved. However,
direct evidence differentiating the spectral bands between rPM
and the relative proportions of the other four P fractions remains
lacking, warranting further studies to elucidate the underlying
mechanisms that produce the observed spectral responses. Over-
all, our findings suggest that other unmeasured traits or states
may also participate in the prediction of leaf P fractions in the
leaf reflectance spectra, further highlighting why the
spectroscopy-based method outperformed the trait-based method
for predicting leaf P fractions in our study.

Implications and future directions

Our findings enhance our understanding of leaf P-use strategies
and plant P cycle processes across diverse forest ecosystems.
While most previous studies have focused on the site- or species-
specific variability in leaf P fractions in a climate zone (Hidaka &
Kitayama, 2011; Yan et al., 2019; S.T. Liu et al., 2023; Tsujii
et al., 2023, 2024), our study deepens the understanding of plant
P-use strategies by linking leaf P fractions to multidimensional
leaf economic traits across different climate zones. This study
emphasizes that leaf P-allocation strategies are governed by adap-
tive strategies represented within the LES, illustrating a conti-
nuum from acquisitive to conservative trait syndromes (Reich
et al., 1997; Wright et al., 2004). Furthermore, we demonstrate
the substantial potential of leaf reflectance spectroscopy as a pro-
mising alternative for characterizing the variability in leaf P frac-
tions, directly addressing current spatial coverage gaps.

To deepen our understanding of leaf P-use strategies, we iden-
tify two critical next steps. First, additional efforts are urgently
needed to capture a wider range of leaf traits and spectral varia-
tions across representative biomes, considering vertical structural
gradients and the entire growing season (Serbin et al., 2014;
Chlus et al., 2020; Davidson et al., 2023; Lamour et al., 2023; Ji
et al., 2024). This will enable us to decipher the relative contribu-
tions of long-term evolutionary history and current environmen-
tal conditions to the observed variations in leaf P fractions
(Figs 1, S2; Yan et al., 2023; Schweiger & Schweiger, 2024). Sec-
ond, leaf-scale spectral modeling of leaf P fractions requires
expansions from leaf to ecosystem scales through imaging spec-
trometers on various platforms, including unoccupied aerial sys-
tems, piloted airborne sensors and spaceborne satellites (Serbin &
Townsend, 2020; Wang et al., 2020; S.W. Liu et al., 2023).
Then, we can elucidate intricate scale-dependent mechanisms,
monitor leaf P fractions, plant P-use strategies and refine our
understanding of biogeochemical cycling across large spatial
scales (Serbin & Townsend, 2020; S.W. Liu et al., 2023). Over-
all, our findings not only advance the understanding of plant
P-use strategies but also inform efforts to improve physiological
representations of P cycle processes in land surface models,
thereby enhancing predictions of ecosystem productivity and ter-
restrial carbon stocks (Rogers et al., 2017; Jiang et al., 2019,
2024). Emphasizing these critical pathways will be vital for better
managing forest health and biodiversity in the context of a
changing climate.
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