

Tansley review

C₄ photosynthesis, trait spectra, and the fast-efficient phenotype

Author for correspondence:

Russell K. Monson

Email: russell.monson@colorado.edu

Received: 15 October 2024

Accepted: 30 January 2025

Russell K. Monson^{1*} , Shuai Li^{2,3*} , Elizabeth A. Ainsworth⁴ , Yuzhen Fan⁵ , John G. Hodge⁶ , Alan K. Knapp⁷ , Andrew D. B. Leakey⁸ , Danica Lombardozzi⁹ , Sasha C. Reed¹⁰ , Rowan F. Sage¹¹ , Melinda D. Smith⁷ , Nicholas G. Smith¹² , Christopher J. Still¹³ , and Danielle A. Way^{5,14,15}

¹Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309 CO, USA; ²Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China; ³Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana 61801 IL, USA; ⁴Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, Urbana 61801 IL, USA; ⁵Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia; ⁶Center for Advanced Bioenergy and Bioproducts Innovation, Urbana 61801 IL, USA; ⁷Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins 80523 CO, USA; ⁸Department of Plant Biology, Department of Crop Sciences, Institute for Genomic Biology, Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana 61801 IL, USA; ⁹Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins 80521 CO, USA; ¹⁰U.S. Geological Survey, Southwest Biological Science Center, Moab 84532 UT, USA; ¹¹Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, M5R 3C6, ON, Canada; ¹²Department of Biological Sciences, Texas Tech University, Lubbock 79409 TX, USA; ¹³Department of Forest Ecosystems and Society, Oregon State University, Corvallis 97331 OR, USA; ¹⁴Department of Biology, University of Western Ontario, London, N6A 3K7, ON, Canada; ¹⁵Nicholas School of the Environment, Duke University, Durham 27708 NC, USA

Contents

Summary	880	VI. Experimental tests of the adaptive nature of opportunity traits	888
I. Introduction	880	VII. The fast-efficient C ₄ phenotype and global change	889
II. The C ₄ CCM influences plant traits by altering the dependence of photosynthesis on light, nitrogen, and water	881	VIII. C ₄ traits and global change models	889
III. Trait spectra and C ₄ photosynthesis	883	IX. Conclusions	890
IV. A new case study of C ₃ and C ₄ grasses within the context of the WLES	884	Acknowledgements	890
V. The fast-efficient phenotype of C ₄ plants and the existence of a C ₄ trait spectrum	887	References	890

*These authors contributed equally to this work.

Key words: ecology, fitness, grasses, optimization, phylogenetic, productivity, Rubisco, trait based.

Summary

It has been 60 years since the discovery of C₄ photosynthesis, an event that rewrote our understanding of plant adaptation, ecosystem responses to global change, and global food security. Despite six decades of research, one aspect of C₄ photosynthesis that remains poorly understood is how the pathway fits into the broader context of adaptive trait spectra, which form our modern view of functional trait ecology. The C₄ CO₂-concentrating mechanism supports a general C₄ plant phenotype capable of fast growth and high resource-use efficiencies. The fast-efficient C₄ phenotype has the potential to operate at high productivity rates, while allowing for less biomass allocation to root production and nutrient acquisition, thereby providing opportunities for the evolution of novel trait covariances and the exploitation of new ecological niches. We propose the placement of the C₄ fast-efficient phenotype near the acquisitive pole of the world-wide leaf economic spectrum, but with a pathway-specific span of trait space, wherein selection shapes both acquisitive and conservative adaptive strategies. A trait-based perspective of C₄ photosynthesis will open new paths to crop improvement, global biogeochemical modeling, the management of invasive species, and the restoration of disturbed ecosystems, particularly in grasslands.

I. Introduction

The C₃ photosynthetic pathway is the ancestral means by which all autotrophic terrestrial plants capture solar energy, drive oxidation–reduction reactions, and synthesize sugars from assimilated atmospheric CO₂ (Sharkey *et al.*, 2012). In C₃ plants, the biochemical rate constants and physiological constraints associated with photosynthesis are highly dependent on atmospheric composition, especially CO₂ and O₂ partial pressures, as well as leaf temperature (Dusenge *et al.*, 2019). As CO₂ and O₂ partial pressures changed during past geological periods, limitations appeared in the carboxylation efficiency of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme catalyzing the first reaction of C₃ photosynthesis (Andersson, 2008; Erb & Zarzycki, 2018). The evolution of Rubisco isoforms that are able to completely overcome these limitations has not occurred. Rather, natural selection has more often favored changes in the cellular systems that deliver CO₂ to Rubisco. One of the most well-studied systems of this type is the C₄ CO₂-concentrating mechanism (CCM) – a metabolic accessory to C₃ photosynthesis (Ehleringer & Monson, 1993; Christin & Osborne, 2014; Schlüter & Weber, 2020). Major abbreviations used in this paper are defined in Box 1.

Although C₄ plants are only a small fraction (< 5%) of terrestrial species, they contribute up to 25% to global gross primary productivity (GPP; Still *et al.*, 2003; Yan *et al.*, 2015; Luo *et al.*, 2024), rendering them highly relevant to economic and ecological sustainability (Furbank, 1998). For example, most C₄ plants are grasses and sedges native to tropical and subtropical savannas and semi-arid steppes (Kellogg & Campbell, 1987; Sage *et al.*, 1999; Edwards *et al.*, 2010), giving them an important role in the productivity of grazed rangelands (Bodner & Robles, 2017; Uddin & Kebreab, 2020). Furthermore, species with the C₄ pathway include some of the world's most productive crops (e.g. maize, sorghum, and sugarcane), as well as some of the most pernicious weeds in both managed and natural ecosystems (Rolim *et al.*, 2015; Korres *et al.*, 2016; Catford *et al.*, 2020). All of the

Box 1. Abbreviations used in the text and boxes

A	leaf net photosynthesis rate ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
A _{area}	net photosynthesis rate specified per unit leaf area ($\mu\text{mol m}^{-2} \text{s}^{-1}$)
A _{mass}	net photosynthesis rate specified per unit leaf mass ($\mu\text{mol g}^{-1} \text{s}^{-1}$)
BSC	bundle sheath cell
CCM	CO ₂ -concentrating mechanism
C _i	intercellular CO ₂ concentration ($\mu\text{mol mol}^{-1}$)
E	leaf transpiration rate ($\text{mmol m}^{-2} \text{s}^{-1}$)
g _s	stomatal conductance ($\text{mol m}^{-2} \text{s}^{-1}$)
G3P	glyceraldehyde 3-P
iWUE	intrinsic water use efficiency (A_{area}/g_s)
IVD	leaf interveinal distance (mm)
LFT	lineage functional type
LLS	leaf life span (months)
LMA	leaf mass per unit area (g m^{-2})
MC	mesophyll cell
N _{mass}	nitrogen concentration per unit leaf mass (g g^{-1})
PEPc	phosphoenolpyruvate carboxylase
PFT	plant functional type
PLUE	photosynthetic light-use efficiency ($\text{mol CO}_2 \text{ mol}^{-1} \text{ photons absorbed}$)
P _{mass}	phosphorus concentration per unit leaf mass (g g^{-1})
PNUE	photosynthetic nitrogen-use efficiency ($\text{mol CO}_2 \text{ mol}^{-1} \text{ leaf N}$)
PWUE	photosynthetic water-use efficiency ($\text{mol CO}_2 \text{ assimilated mol}^{-1} \text{ H}_2\text{O transpired}$)
RGR	relative growth rate ($\text{g biomass g}^{-1} \text{ d}^{-1}$)
R _{mass}	respiration rate per unit leaf mass ($\mu\text{mol g}^{-1} \text{ s}^{-1}$)
Rubisco	ribulose 1,5-bisphosphate carboxylase/oxygenase
RuBP	ribulose 1,5-bisphosphate
TRY	trait database
WLES	world-wide leaf economic spectrum

services and challenges provided by C₄ species are susceptible to future shifts in the Earth system, including changes in climate, land use, and the influences of invasive species. Being able to understand how these changes affect the function of global photosynthesis and vegetation productivity will greatly assist

people in their efforts to manage and conserve Earth's natural capital for the benefit of future generations.

Our ability to predict patterns of C₄ plant productivity and responses to future environmental change is limited by a lack of theory, data, and models that link the C₄ CCM to a broader set of plant traits, especially those that determine whole-plant growth rates, lifetime resource-use efficiencies, and ultimately fitness. Shortly after the discovery of the C₄ pathway, the potential adaptive advantages of the CCM regarding higher leaf CO₂ assimilation rates (A) and photosynthetic water-use efficiencies (PWUE; A/E , where E is leaf transpiration rate), were recognized (Björkman, 1971; Downton, 1971). Since that time, our understanding of C₄ biochemistry has progressed and the C₄ CCM has been incorporated into leaf-scale models providing a detailed understanding and predictive capability of the C₄ CO₂ assimilation rate and its limitations due to light, temperature, and CO₂ concentrations (Edwards *et al.*, 1985; von Caemmerer & Furbank, 2003; von Caemmerer, 2021). However, we still do not fully understand how the evolution of the C₄ pathway has shaped the synergies and trade-offs among other plant traits, many of which have come under recent scrutiny within the context of world-wide trait economic spectra (Wright *et al.*, 2004; Reich, 2014; Díaz *et al.*, 2016; Liu *et al.*, 2019). This deficiency has not only narrowed our perspectives on the adaptive advantages of C₄ photosynthesis, but it has also prevented us from improving models for predicting how the distribution of C₄ plants will respond to future climate change (Sage & Kubien, 2003; Monson & Collatz, 2012; Fox *et al.*, 2018; Still *et al.*, 2019). Furthermore, it has hampered our ability to design new strategies for improving the performance of C₄ crops (Gong *et al.*, 2015; Leakey *et al.*, 2019; Jobe *et al.*, 2020) or engineering the C₄ pathway into C₃ crops (Mitchell & Sheehy, 2006; Ermakova *et al.*, 2019).

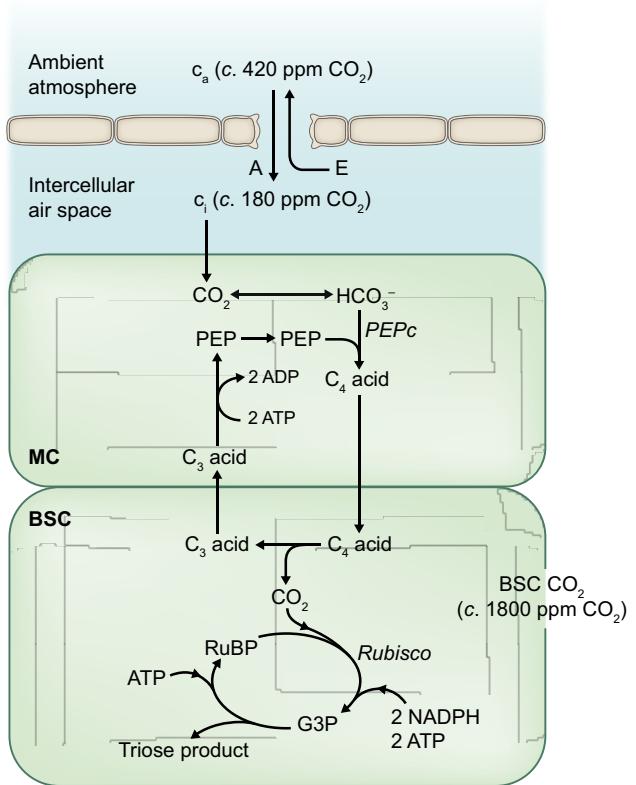
Our aims in writing this synthesis were to place C₄ photosynthesis more directly within the scope of past leaf economic spectra and to explore the potential for the C₄ CCM to produce novel forms of trait covariances. We have addressed three primary questions: (1) What are the principal trait correlations in C₄ species and how do they differ from C₃ species? (2) How do C₄ leaf trait covariances shape the adaptive strategies of fast or slow growth and high or low resource-use efficiency? (3) Where are C₄ trait combinations best placed within the C₃-dominated perspectives of the world-wide leaf economic spectrum (WLES)?

II. The C₄ CCM influences plant traits by altering the dependence of photosynthesis on light, nitrogen, and water

Evolution of the CCM in C₄ lineages has fundamentally altered photosynthetic nitrogen-use efficiency (PNUE), PWUE, and photosynthetic light-use efficiency (PLUE), relative to the C₃ ancestral state, providing adaptive advantages under specific environmental conditions (Ehleringer & Monson, 1993; Ehleringer *et al.*, 1997; Christin & Osborne, 2014). The C₄ advantage is a consequence of the CCM and its capacity to enhance the catalytic efficiency of Rubisco. The C₄ CCM works as a biochemical pump that actively transports CO₂ against a diffusive gradient (from low

to high CO₂ concentration) and thereby concentrating it at the active sites of Rubisco. This allows C₄ leaves to achieve higher CO₂ assimilation rates (A) at lower intercellular CO₂ concentrations (c_i). A brief description of the biochemical features of the C₄ CCM is provided in Box 2. For a more complete recent review of the biochemistry and anatomy of C₄ photosynthesis, see Schlüter & Weber (2020).

Operation of the CCM in C₄ leaves requires energy beyond that utilized by the photosynthetic and photorespiratory pathways in C₃ leaves. This is observed as a lower PLUE in C₄ leaves at leaf temperatures below 20–25°C and high CO₂ concentrations, wherein C₃ photorespiration rates are relatively low. At low light, PLUE is quantified as the net CO₂ assimilation rate per mole of photons absorbed and is equivalent to the photosynthetic quantum yield (Ehleringer *et al.*, 1997). The principal limitations to CO₂ assimilation in C₃ leaves at low light intensities are the rate at which ribulose 1,5-bisphosphate (RuBP) can be regenerated by the thylakoid electron transport processes, and the rate at which photorespiratory metabolites are recycled. In C₄ leaves at low light, A is determined by the rates at which both RuBP and phosphoenolpyruvate (PEP) are regenerated. At leaf temperatures above 20–25°C and lower CO₂ concentrations, the higher energetic cost of the C₄ CCM is more than offset by the even higher energetic cost of recycling photorespiratory intermediates in C₃ leaves, leading to a C₄ advantage (Ehleringer *et al.*, 1997).


At high light intensities, limitations to A due to thylakoid electron transport processes are relaxed in both C₃ and C₄ leaves. In this case, A is most limited by the catalytic activity of Rubisco in C₃ leaves, and the catalytic activities of phosphoenolpyruvate carboxylase (PEPc) and Rubisco in C₄ leaves. In C₄ leaves at high light intensities, higher CO₂ concentrations at the active sites of Rubisco drive higher RuBP utilization rates, leading to higher A per unit of Rubisco protein than that in C₃ leaves. In the absence of a CCM, the only way for a C₃ species to achieve CO₂ assimilation rates that would approach those of a C₄ species would be for the C₃ species to allocate a higher fraction of its available nitrogen (N) to the photosynthetic apparatus, thereby increasing the leaf's carboxylation capacity (Sage *et al.*, 1987; Masle *et al.*, 1993; Sharkey *et al.*, 2012). However, in the absence of a CCM, and assuming no increase in g_s , each mole of N devoted to photosynthetic proteins in a C₃ leaf would operate at a lower c_i , thereby decreasing leaf PNUE. The decrease in PNUE could be mitigated by an increase in g_s , and therefore c_i , but only at the cost of a lower PWUE. In essence, in C₃ species, an increase in carboxylation capacity to achieve a higher value of A requires a trade-off to a lower PNUE or a lower PWUE, compared with C₄ species. The trade-offs affecting A , PNUE, and PWUE are weakened in C₄ leaves because of the presence of the CCM, allowing C₄ species to achieve higher A at lower leaf N concentrations and without increasing g_s .

In one comparative analysis, Sage *et al.* (1987) observed that 25% of the leaf N was allocated to Rubisco in the C₃ dicot species, *Chenopodium album*, compared with 9% in the C₄ dicot species, *Amaranthus retroflexus*, despite similar photosynthetic capacities. It was estimated that if Rubisco in the C₃ species were able to operate

Box 2. Rubisco and the C₄ CO₂-concentrating mechanism (CCM)

A key evolutionary innovation in C₄ photosynthesis is the substitution of Rubisco for the enzyme phosphoenolpyruvate carboxylase (PEPc) to catalyze the fixation of atmospheric CO₂ in leaf mesophyll cells (MCs). In the MCs of C₄ leaves, the assimilation of atmospheric CO₂ occurs as HCO₃⁻, which allows PEPc to operate catalytically within an inorganic carbon pool that is c. 100 times larger than the enzyme's *K_m* affinity for that carbon. This is different from Rubisco in C₃ leaves, which in today's atmosphere operates at CO₂ concentrations near its *K_m* for CO₂, which consequently imposes greater affinity limitations on its catalytic activity. Furthermore, under normal conditions, the turnover number for each active site of PEPc is c. 10 times higher than that for Rubisco, providing a considerable advantage in the velocity at which CO₂ is moved from the gas phase of leaf intercellular air spaces to the pool of organic compounds used in photosynthesis.

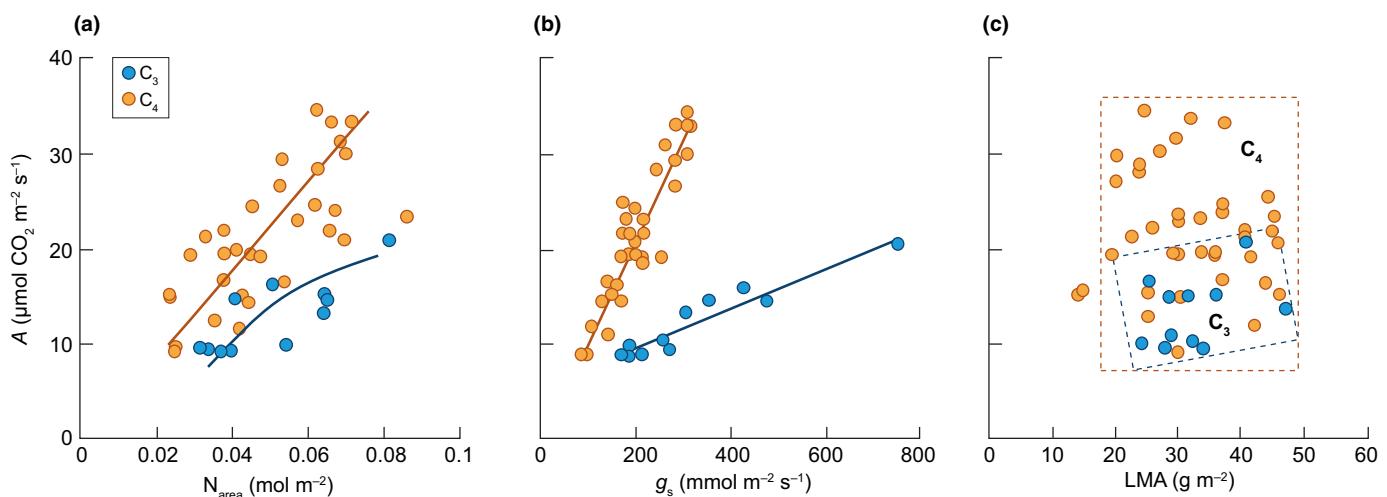

In C₄ plants, Rubisco is isolated to bundle sheath cells (BSCs), which are located at the interior of the leaf and have low exposure to the leaf's intercellular air spaces. In C₄ leaves, carbon fixed by PEPc is transferred from MCs to BSCs. The serial rates of PEPc and Rubisco carboxylation reach a steady state only when the CO₂ concentration of the BSCs is c. 10 times higher than ambient. This system of CO₂ transfer and accumulation in BSCs provides the opportunity to isolate Rubisco and creates a cellular microenvironment that better resembles the high-CO₂ atmosphere of past geological periods, during which Rubisco evolved. The principal advantages of C₄ photosynthesis are twofold, including high rates of carboxylation and low rates of competitive oxygenation at the active site of Rubisco. Higher rates of leaf CO₂ assimilation in C₄ species influence patterns of trait selection, including those controlling whole-plant growth rate and resource use efficiency (Fig. B2).

Fig. B2 C₄ CO₂-concentrating mechanism (CCM). Diffusion of CO₂ from the ambient atmosphere through stomatal pores determines the intercellular CO₂ concentration of the leaf (c_i). The catalytic equilibrium between CO₂ and HCO₃⁻ in the mesophyll cell (MC) cytosol determines the HCO₃⁻ concentration available for fixation by phosphoenolpyruvate carboxylase (PEPc). The diffusive transfer of fixed carbon from MCs to bundle sheath cells (BSCs) occurs in the form of C₄ organic acids through plasmodesmata connections. Decarboxylation of the acids releases CO₂ within BSCs, which accumulates to a steady-state concentration c. 10 times higher than that of c_i. C₃ acids produced by the decarboxylation reactions diffuse back to the MC where they are converted to phosphoenolpyruvate (PEP), the organic substrate for PEPc, and the cycle begins again. Variants on this general scheme, known as C₄ subtypes, have evolved among C₄ taxa.

at the same high CO₂ concentration as found in C₄ bundle sheath cells (BSCs), it could increase its PNUE by 23%. The amount of N required to produce the proteins that drive the C₄ CCM will increase in a C₄ leaf and thus offset in part the overall PNUE

advantage; however, the cost of C₄ cycle proteins like PEPc is modest, being estimated at 3–5% of the total leaf N content. Furthermore, C₄ species are likely to reduce their metabolic N costs even further by investing less in photorespiratory enzymes (Ueno

Fig. 1 Relationships between CO_2 assimilation rate (A) and changes in nitrogen content per unit leaf area (N_{area} , a), stomatal conductance (g_s , b), and leaf mass to area ratio (LMA, c) from experiments with C_3 and C_4 grass species. The slope of the A vs g_s response reflects intrinsic water use efficiency (iWUE), and the slope of the A vs N_{area} response reflects photosynthetic nitrogen-use efficiency (PNUE). The rectangular domains shown in (c) represent the respective ranges for C_3 and C_4 species in the relationships between A and LMA (except for two outlier C_4 species), showing the much larger range of photosynthetic trait space allowed by the evolution of the C_4 pathway. Adapted from Togawa-Urakoshi & Ueno (2021).

et al., 2005), which can be substantial in warm climates. The higher PNUE of C_4 leaves has been observed as a steeper slope and lower x -intercept in plots of A vs N per unit of leaf area (A_{area} and N_{area} , respectively; Fig. 1a).

The capacity to reach higher values of A at lower g_s because of the CCM also allows C_4 leaves to operate at higher PWUEs (Taylor et al., 2010; Cano et al., 2019). By facilitating high rates of CO_2 transfer from intercellular air spaces to BSCs, the CCM permits relaxation of the diffusive demand placed on stomata to supply atmospheric CO_2 to Rubisco. This advantage is observed as higher A at any given g_s (Fig. 1b). The higher PWUE of C_4 plants provides them with an advantage under water-limited conditions, in that the amount of photosynthate available for growth is increased per unit of H_2O transpired (E). Thus, the CCM allows C_4 leaves to weaken an important trait trade-off that is strong in C_3 leaves, in this case between CO_2 acquisition and H_2O utilization.

One of the leaf traits that has proven most useful in predicting adaptive strategies in C_3 species, particularly within the context of the WLES, is leaf mass per unit area (LMA; Wright et al., 2004; Poorter et al., 2009). Among C_3 species, when assessed across diverse phylogenetic groups, those with high LMA tend to exhibit a longer leaf lifespan (LLS), a greater allocation of resources to defense against herbivores, and a slower relative growth rate (RGR; Reich et al., 2003). These same correlations with LMA do not always hold up in direct comparisons between C_3 and C_4 species within a common growth form. As shown in the example of Fig. 1(c), significant correlations have not been observed between A and LMA across 22 C_3 and C_4 grass species. This is consistent with past analyses showing that area-based correlations between maximum observed A and LMA are weak within species and growth forms, but strong across broader taxonomic comparisons (Osnas et al., 2018). In the study portrayed in Fig. 1(c), we see a similar range of LMA values for C_3 and C_4 species, although the C_4 species are able to

express higher A at any given LMA. The multivariate complexities of interpreting correlations between an area-based measure, such as A , and mass-normalized measures, such as LMA, have been discussed previously (Field & Mooney, 1983; Osnas et al., 2013, 2018), showing that as we expand the view of trait correlations beyond those directly involving A , nuanced studies of C_3 and C_4 trait interactions are required.

III. Trait spectra and C_4 photosynthesis

Trait-based ecological theory has focused on ‘functional traits’, which are considered ‘any attributes that have the potential to influence establishment, survival, and fitness’ (Reich et al., 2003), and ‘which impact fitness indirectly via their effects on growth, reproduction and survival’ (Violle et al., 2007). Although studies throughout the 1970s, 1980s, and 1990s laid the groundwork for understanding functional traits and their mutual covariances (Lerdau et al., 2023), the global significance of the functional-trait concept was not fully developed until 2004 with the first publication describing the WLES (Wright et al., 2004; see Box 3).

The original description of the WLES by Wright et al. (2004) was based on the Glopnet global trait dataset, which at that time only included 22 C_4 trait records out of a total of 2559 trait records. There was no effort to explicitly study differences in trait covariance between C_3 and C_4 species. However, the same three traits, photosynthesis rate per unit mass (A_{mass}), LMA, and nitrogen concentration per unit mass (N_{mass}), that individually explained 84–90% of the trait variation in all plants, were also observed to explain 71–87% of the variation in C_4 species that were included in the database. What is largely missing from the studies to date is an understanding of how and to what degree C_4 species have diverged from their C_3 ancestors in patterns of trait trade-offs and the quantitative details of trait correlations (although see Simpson

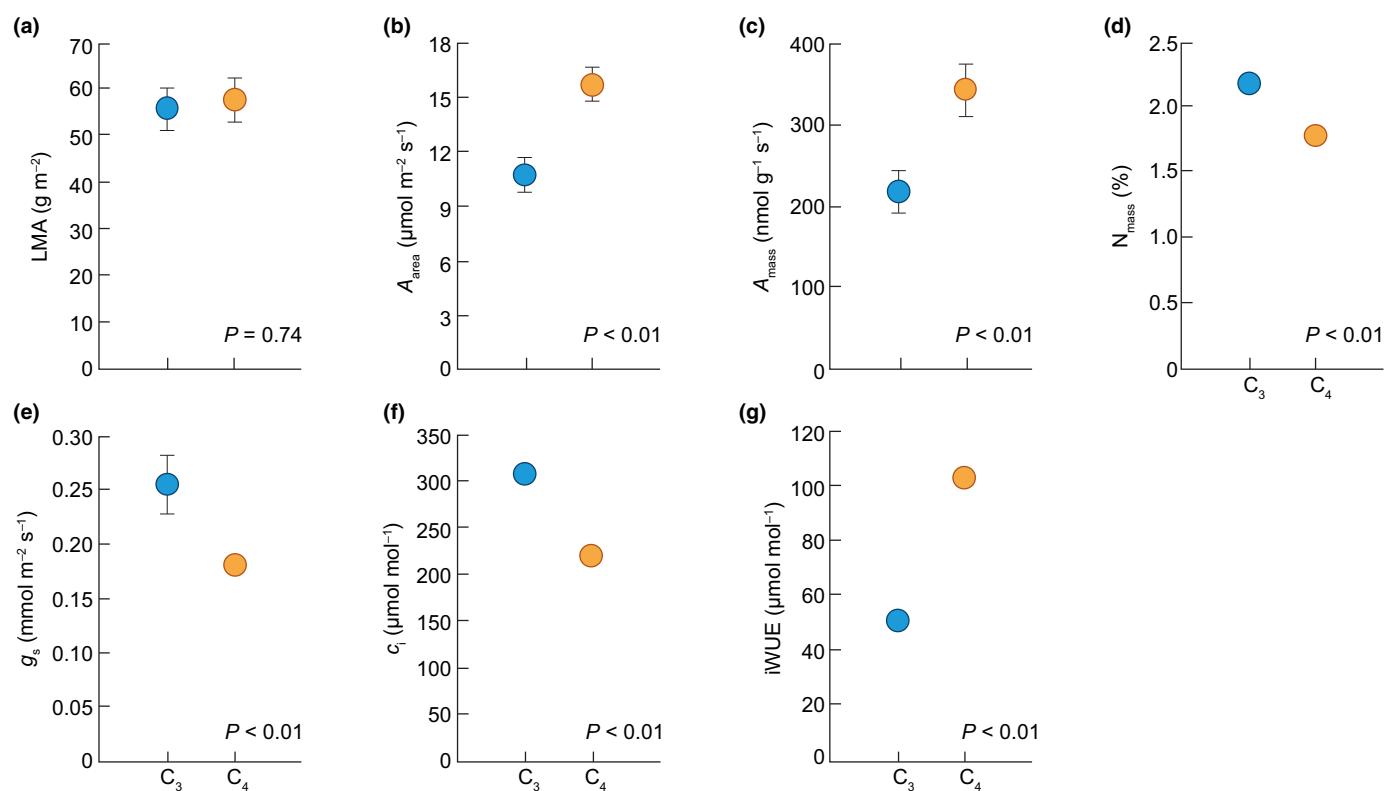
Box 3. The world-wide leaf economic spectrum

Within the world-wide leaf economic spectrum (WLES), leaf traits are assumed to follow whole-plant growth patterns according to a spectrum bounded by two contrasting growth strategies (Wright *et al.*, 2004; Reich, 2014). The fast-growth strategy is described as exploitative, with leaf traits specialized for rapid resource acquisition, including high photosynthesis rates and rapid leaf turnover. By nature, many exploitative leaf traits in C_3 species are inconsistent with high resource-use efficiencies, for example, the inherent inefficiencies associated with rapid leaf turnover and short mean residence times for leaf nitrogen (N) reduce plant N use efficiencies (Hirose, 2012). The slow-growth strategy includes positive covariances among low metabolic rates, slow leaf turnover, long leaf residence times for N, and high resource-use efficiencies. Leaves produced by plants at the fast-inefficient pole of the WLES are constructed at lower carbon and energy costs compared with plants at the slow-efficient pole. Most support for the existence of the WLES has been derived from trait databases focused on C_3 species.

The higher rates of carbon assimilation facilitated by the C_4 CO_2 -concentrating mechanism (CCM; see Box 1) provide a means for C_4 species to grow faster per unit of N allocated to Rubisco and per unit of stomatal conductance. These advantages result in high whole-plant relative growth rates (Supporting Information Notes S2) at lower N_{mass} and P_{mass} values, as well as lower leaf transpiration rates. This provides the basis for the fast growth, high resource-use efficiency phenotype in C_4 species when compared to C_3 species. Whereas the C_4 CCM is most easily understood within species exhibiting acquisitive growth strategies, adaptive radiation within C_4 taxa has resulted in some species specialized in resource-poor habitats, including those with saline or infertile soils and frequent droughts. This has resulted in a C_4 -specific plant economic spectrum with trait covariances like those at the slow-growth pole of the WLES, which have been sparsely studied.

et al., 2020). The same traits appear to be important in species with both photosynthetic pathways, but the ways by which those traits are related to one another, particularly within the scope of the WLES, remain largely unknown, particularly among plants grown in their natural field settings.

Two past analyses have addressed aspects of C_3 vs C_4 trait syndromes. In an analysis focused on leaf photosynthetic traits, Ghannoum *et al.* (2011) examined 41 C_4 grass species, including the C_4 species listed in the original Glopnet database from Wright *et al.* (2004) and some additional species from Australia. The results revealed higher A on both leaf area and leaf mass bases, as well as higher PNUE and PWUE in C_4 species, than in C_3 species. The C_4 advantages occurred despite similar leaf N concentrations. From this, it was concluded that the higher PNUEs in the Australian C_4 grasses were indeed directly due to the higher catalytic activity of Rubisco carboxylase, which in turn was due to the presence of the C_4 CCM. A recent analysis by Li *et al.* (2022) showed that trait correlations for a C_4 grass (*Miscanthus × giganteus*) exist at the upper boundary for photosynthetic rates reported in the Glopnet trait database. The largest boundary effects were seen for correlations involving A_{mass} as the dependent trait variable, especially when assessed against N_{mass} , phosphorus concentration per unit mass (P_{mass}), and LMA as independent trait variables.

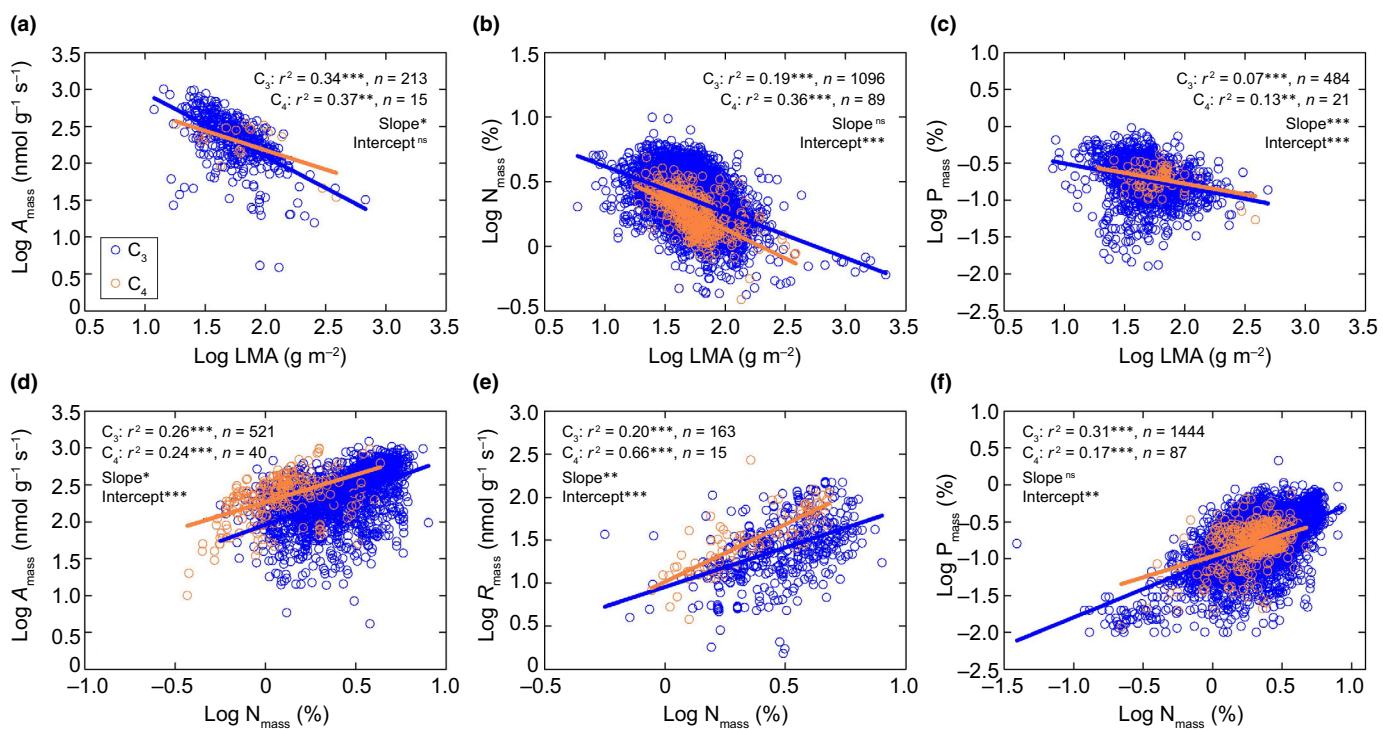

IV. A new case study of C_3 and C_4 grasses within the context of the WLES

To take the studies of C_4 trait correlations further, we analyzed data from two sources that focused on field-grown plants, like those used in the original WLES analysis. We narrowed our analysis to grasses to provide consistency in growth form. The first data source included 77 grass species, including 47 C_4 species and 30 C_3 species, growing at the Konza Prairie Biological Station located in northeastern Kansas (see Donnelly *et al.*, 2023). Within this dataset, we focused on LMA, N_{mass} , and leaf gas exchange data. The second data source included 150 C_4 grass species and 2160 C_3 grass species contained within a sub-database (no. 45; see Garnier *et al.*, 2007) of the much larger TRY trait database (Kattge *et al.*, 2020). We filtered the analysis to include species that allowed two-way correlations of at least two of the following traits: LMA, LLS, N_{mass} , P_{mass} , A_{mass} , and respiration rate per unit mass (R_{mass}). This left us with between 15 and 89 C_4 species and between 163 and 1444 C_3 species, depending on each specific trait correlation.

Using the data of all 77 species from the Konza Prairie experiments, we examined trait contrasts from C_4 and C_3 leaves. As shown in Fig. 2(a), C_4 species share a similar mean value of LMA with C_3 species (57.3 vs 55.2 $g\ m^{-2}$). The values of A_{area} and A_{mass} were higher for C_4 species (Fig. 2b,c), which were attained with lower N_{mass} values (Fig. 2d), revealing a higher C_4 PNUE. Observed gas exchange values for g_s and c_i were lower in C_4 grasses than in their C_3 counterparts (Fig. 2e,f). As a result, C_4 grasses showed a higher intrinsic water use efficiency ($iWUE = A_{area}/g_s$) than C_3 species (Fig. 2g). These results collectively demonstrate that with a similar structural investment in LMA, the C_4 CCM enables faster A_{mass} and A_{area} , as well as higher PWUE and PNUE, than C_3 leaves.

The pairwise correlations that showed significant differences between C_3 and C_4 species for the TRY database are shown in Fig. 3. The trend equations are presented in Supporting Information Table S1 for all correlations. In Fig. 3(a), a clear downward trend in A_{mass} as a function of increasing LMA is observed for the leaves of C_3 grasses. A downward trend in the A_{mass} vs LMA correlation might be expected from statistical effects alone (Lloyd *et al.*, 2013). This is because the conversion of A_{area} to A_{mass} (whereby $A_{area}/LMA = A_{mass}$) in large datasets with randomly distributed variance in LMA has the effect of enhancing a positive covariance between A_{area} and A_{mass} and a negative covariance between A_{mass} and LMA (Osnas *et al.*, 2013). However, it is also possible that LMA is not randomly distributed with respect to A_{mass} , but rather that their covariance has been shaped directly or indirectly by natural selection (Field & Mooney, 1983; Poorter *et al.*, 2013).

We tested one possible cause of a nonrandom correlation between A_{mass} and LMA. We hypothesized that associations between the two traits are the result of lineage-specific modifications to leaf anatomy. To test this hypothesis, we partitioned the correlations of Fig. 3 according to C_3 BOP, C_3 PACMAD, and C_4 PACMAD clades in the TRY trait database (Notes S1). The BOP clade (Bambusoideae, Oryzoideae, and Pooideae subfamilies) consists entirely of C_3 species, whereas the PACMAD clade


Fig. 2 Gas exchange traits for C₃ (blue) and C₄ (orange) grasses measured in the field at the Konza Prairie, Kansas, USA. For (a, c), the sample sizes were 47 C₄ species and 30 C₃ species; for all other panels, the sample sizes were 46 C₄ species and 29 C₃ species. Where shown, vertical bars represent \pm SE; otherwise, the calculated SEs were smaller than the symbol size, from data presented in Donnelly *et al.* (2023). LMA, leaf mass per unit area (a); A_{area}, net photosynthesis per unit leaf area (b); A_{mass}, net photosynthesis per unit leaf mass (c); N_{mass}, nitrogen per unit leaf mass (d); g_s, stomatal conductance (e); c_i, intercellular CO₂ concentration (f); IWUE, intrinsic water use efficiency (g).

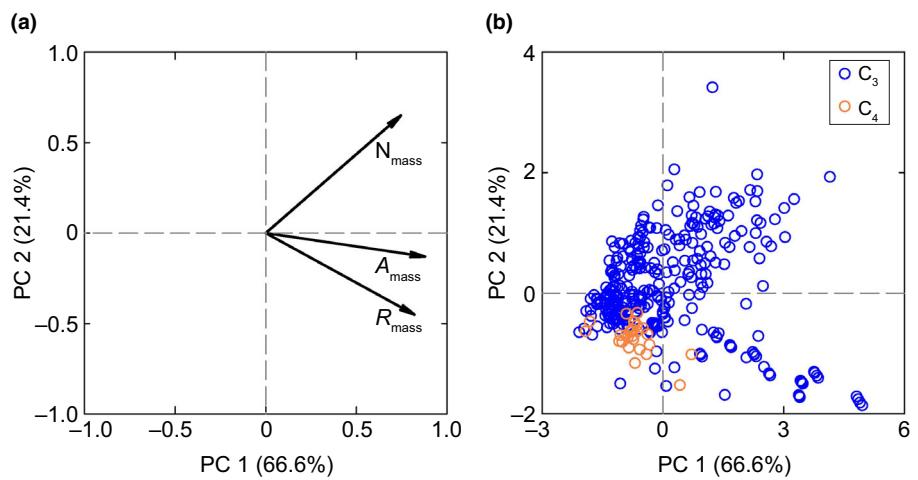
(Panicoideae, Aristidoideae, Chloridoideae, Micraioideae, Arundinoideae, Danthonioideae subfamilies) includes both C₃ and C₄ species. In the C₃ BOP clade, BSC sizes have been reduced during past selection, compared with both C₃ and C₄ species in the PACMAD clade (Ueno *et al.*, 2006; Christin *et al.*, 2013; Griffiths *et al.*, 2013). According to our hypothesis, the smaller BSCs of the C₃ BOP species, compared with C₃ PACMAD species, would translate to A_{mass} values distributed within a range of lower LMAs (anchoring the left side of the correlation in Fig. 3a). The larger BSCs observed for C₃ PACMAD species would likely translate to A_{mass} values that are distributed within a range of higher LMAs (anchoring the right side of the correlation in Fig. 3a). Support for the hypothesis would mean that the correlations should disappear or at least become muted when constructed separately within each clade. However, when the correlations were partitioned according to clade, significant downward trends remained, causing us to reject the hypothesis (Notes S1: Figs A, B). There is clearly a need for further phylogenetically guided data collection on the A_{mass} vs LMA relationship within grasses.

Fig. 3(b) shows the correlations between N_{mass} and LMA. In both C₃ and C₄ grasses, the negative correlations indicate that grasses with higher LMA have higher C : N ratios and likely contain more sclerenchyma tissue and cellulose fibers, which enhance leaf durability and defense against herbivores. In this case,

the negative correlations between N_{mass} and LMA would be due to greater or lesser C dilution of leaf N. Fig. 3 also shows that N_{mass} in C₄ leaves occurs within a narrower range of LMAs than C₃ N_{mass}. This could be due to evolutionary canalization, in which selection has favored specific anatomical forms in C₄ leaves that are required for the efficient function of the CCM. This hypothesis is supported by two lines of evidence – one associated with studies on the evolutionary path of C₂ phenotypes (sometimes called C₃–C₄ intermediates) to C₄ phenotypes in a single species (Alenazi *et al.*, 2023) and another associated with comparative studies of anatomical traits across a broad range of C₃ and C₄ species (Griffiths *et al.*, 2013).

In the first line of studies, the evolution of fully expressed C₄ phenotypes (sometimes called ‘strong C₄’ phenotypes) in the grass species *Alloteropsis semialata* has been linked to a progressive shift in Rubisco expression from principally mesophyll cells (MCs) in C₃ and C₂ phenotypes to principally BSCs in C₄ phenotypes (Alenazi *et al.*, 2023). The increased investment in BSC Rubisco in C₄ phenotypes appears to have been preceded by anatomical modifications to leaf anatomy that likely affected LMA. In *A. semialata* phenotypes, these changes include an increase in BSC size and a decrease in leaf interveinal distance (IVD) between the bundle sheath strands. Both of these modifications are required for an efficient operation of the C₄ CCM and include a means for the

Fig. 3 Log–log plots of significant trait relationships within C_4 (in orange) and C_3 (in blue) grass species. (a) Net CO_2 assimilation rate per unit of leaf mass (A_{mass}) vs leaf mass per unit area (LMA). (b) Leaf nitrogen concentration per unit leaf mass (N_{mass}) vs LMA. (c) Leaf phosphorus concentrations per unit leaf mass (P_{mass}) vs LMA. (d) A_{mass} vs N_{mass} . (e) Leaf respiration rate per unit leaf mass (R_{mass}) vs N_{mass} . (f) P_{mass} vs N_{mass} . Differences in slopes and intercepts were compared for all trait values reported between C_3 and C_4 species by standardized major axis (SMA) using an R script from the smatr package (Warton *et al.*, 2011; <https://cran.r-project.org/web/packages/smartr/index.html>). A summary of the results of SMA analyses is given in Supporting Information Table S1. The sample numbers (n) refer to the total number of species used in each correlation. In all cases: * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$.


effective exchange of photorespiratory metabolites between MCs and BSCs and metabolic partitioning of the activities of PEP carboxylation and C_4 -acid decarboxylation in the early stages of C_4 evolution (Blätke & Bräutigam, 2019; Alenazi *et al.*, 2023). Furthermore, both modifications are likely to have required specific C_3 leaf phenotypes as precursors to C_4 evolution (Christin *et al.*, 2013) and to have narrowed the scope of possible LMAs capable of supporting efficient C_4 metabolism, contributing to evolutionary canalization in the N_{mass} vs LMA relationship.

In the second set of studies on numerous C_3 and C_4 species, it was shown that even more generally, past selection has resulted in decreases in both the MC : BSC (cross-sectional) area ratio and the IVD in C_4 species (Hattersley, 1984; Griffiths *et al.*, 2013). The MC : BSC ratio and IVD average 9 : 1 and 200–300 μm , respectively, in C_3 grasses, and 2 : 1 and 100 μm , respectively, in C_4 grasses. There is an important distinction here in that the increase in MC : BSC ratio in C_4 species is not due to larger BSC volumes, but rather a wider, but shorter, BSC shape (Danila *et al.*, 2018; Khoshravesh *et al.*, 2020). The significance of the change in BSC shape to CCM function has not yet been established, but here again, it might be associated with an advantage to the diffusive transfer of photorespiratory metabolites between MCs and BSCs in the early stages of C_4 evolution (Khoshravesh *et al.*, 2020). There are two additional modifications that were noted in earlier studies of a broad range of C_3 and C_4 grasses. First, C_4 grasses are known to have higher

frequencies of plasmodesmatal connections between MCs and BSCs which, along with fewer MCs between veins, facilitates increases in the rates of C_4 metabolite diffusion (Danila *et al.*, 2018; Khoshravesh *et al.*, 2020). Second, C_4 grasses tend to have thinner leaves with a denser system of small longitudinal and transverse veins (Dengler *et al.*, 1994; Ueno *et al.*, 2006). Taken together, this collection of studies supports a role for anatomical modifications within clades of C_4 species that might have resulted in a narrower, yet canalized, range of LMA values capable of supporting the effective function of the CCM.

In Fig. 3(c), the dependence of P_{mass} on LMA provides evidence of a slightly higher P_{mass} in C_4 species at any given LMA, but like N_{mass} , within a narrower set of LMA values. The C_3 vs C_4 difference in P_{mass} at the y -intercept is small (1.32 and 1.42% dry mass for C_3 and C_4 species, respectively), but it is statistically significant. The reason for a slightly higher P_{mass} in C_4 leaves is currently unknown. It is possible that this trend relates to thinner leaves in C_4 grasses, meaning that per unit mass there is less C dilution of P. As in the case of the N_{mass} vs LMA relationship, there is also evidence of convergence in P_{mass} and LMA values toward a narrower set of C_4 phenotypes. Once again, this could reflect directional selection favoring anatomical traits that improve CCM efficiency in C_4 species.

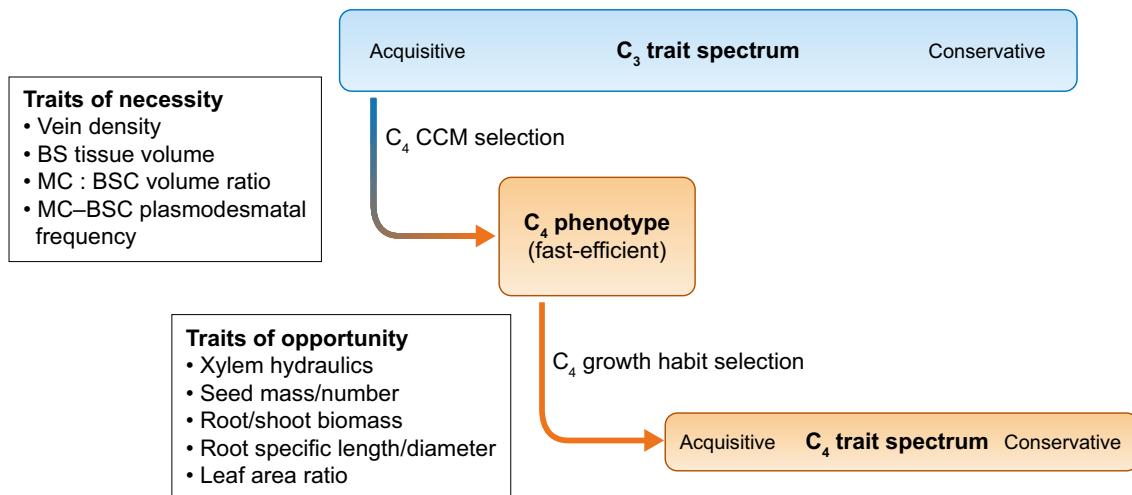
In Fig. 3(d,e), the dependencies of A_{mass} and R_{mass} on N_{mass} are distinctly separated for C_3 and C_4 species. In these two cases, we can

Fig. 4 Principal components analysis of leaf traits using the dataset extracted from the TRY database. (a) Trait loading plot showing individual traits of mass-based leaf net CO_2 assimilation rate (A_{mass}), nitrogen concentration (N_{mass}), and respiration rate (R_{mass}). Arrow tips indicate the loading direction of the traits. (b) Species are grouped based on photosynthetic pathway. In all cases, 148 C_3 species with 355 measurements (in blue) and 11 C_4 species with 33 measurements (in orange) were included. The TRY trait database can be requested at <https://www.try-db.org/>.

clearly observe the role of the C_4 CCM in enhancing PNUE, and this explains the upward shift in the A_{mass} intercept. The cause of higher R_{mass} at a given N_{mass} in C_4 leaves is consistent with past studies (Fan *et al.*, 2024) and might be due to selection for higher maintenance respiration rates and protein turnover rates in support of the higher metabolic capacities of C_4 leaves (de Penning Vries, 1975; Reich *et al.*, 2008). In Fig. 3(f), we observed evidence of a combined narrowing in the covariance of P_{mass} and N_{mass} in C_4 species, compared with C_3 species. Once again, this could reflect requirements for specific anatomical modifications during C_4 evolution that improve the efficiency of C_4 metabolism and metabolite exchange between MCs and BSCs.

We examined the potential for traits to covary in a way that explains total trait variance using principal components analysis (PCA; Table S2). We were able to obtain sufficient trait data for only three traits, A_{mass} , R_{mass} , and N_{mass} , across a spectrum of C_3 and C_4 species, but with limited data for the C_4 species. The first two principal components together explained 88% of total trait variance (Fig. 4; Table S2). Together, the two principal axes distinguished C_4 species as occupying space toward the extreme of higher A_{mass} and R_{mass} at lower N_{mass} , whereas C_3 species occupied a much broader space but with a main trend toward lower A_{mass} and R_{mass} at higher N_{mass} . This pattern is consistent with the role of the CCM in promoting C_4 phenotypes with the combination of fast leaf metabolic rates and higher PNUE.

V. The fast-efficient phenotype of C_4 plants and the existence of a C_4 trait spectrum


The trends revealed in Fig. 4 support the role of traits, such as A_{mass} , R_{mass} , and N_{mass} , as unique co-varying determinants of the C_4 phenotype with the potential to support fast-growth rates and high resource use efficiencies. With this combination of traits, the C_4 phenotype is at odds with the fast-growth, low-efficiency *vs* slow-growth, high-efficiency strategies defined in the C_3 -dominated schemes of the WLES (Box 3). Here, we see that attributes from both poles of the C_3 WLES have been coopted during the evolution of C_4 photosynthesis. In essence, the C_4 CCM provides a means of uncoupling the trade-off between fast,

acquisitive growth and high resource-use efficiency that has been observed in C_3 species.

How do we explain this conclusion? The fast growth and high PNUE of the C_4 photosynthetic phenotype are due to a fundamentally different form of selection than that shaping the growth and resource-use traits of C_3 phenotypes. In C_3 plants, one of the ways to achieve a higher RGR is through the investment of resources in root N acquisition, which has the potential to increase leaf Rubisco concentration. However, this strategy contains an internal constraint that, in turn, imposes a cost on RGR. That is, increases in plant biomass are driven by autotrophic shoot production, which must be opposed by increases in heterotrophic root production. Assuming that root specific activity for N uptake (N uptake per unit of root biomass) remains constant, as selection favors higher RGR, it must balance the cost of producing more roots to obtain more N. We refer to this as the growth-N uptake conundrum.

In C_4 species, the CCM and higher PNUE allow for higher N productivity (g biomass produced g^{-1} N acquired d^{-1}) without an increased demand to acquire soil N. Because C_4 leaves can operate at lower N_{mass} , greater amounts of leaf biomass can be produced and operated at a higher specific activity for carbon uptake (rate of carbon uptake per unit of shoot biomass) at any given amount of acquired N (Sage *et al.*, 1987; Taylor *et al.*, 2010; Simpson *et al.*, 2020). In essence, the higher PNUE of leaves enables the plant to achieve a higher RGR at any given root : shoot biomass fraction, while minimizing the need for fast leaf turnover times and concomitantly fast N turnover times. This enables the fast-growth, resource-efficient phenotype of C_4 species. These relationships are developed mathematically within the context of an N *vs* growth optimization model in Notes S2: Fig. A.

The fast-efficient C_4 phenotype provides advantages in both high-N and low-N habitats. In high-N habitats, the CCM enables a higher shoot fraction in C_4 species and therefore enhances their competitiveness as they shade neighbors and capture aboveground space (Long, 1999). Once again, this is possible because the CCM allows C_4 plants to grow faster while relying less on the root biomass fraction to acquire N. Yet, because the C : N acquisition rates are potentially higher in C_4 phenotypes, an opportunity exists to

Fig. 5 Relationships between proposed C_3 and C_4 trait spectra. Starting from the top, ancestral C_3 taxa provide the trait source for the evolution of the C_4 CO_2 -concentrating mechanism (CCM), which provides the basis for the fast-efficient C_4 phenotype. During the evolution of the C_4 CCM, certain traits of necessity will be favored to facilitate mechanistic efficiency within the CCM. These include leaf anatomical traits, such as bundle sheath cell (BSC) shape, interveinal density, and plasmodesmata frequency between mesophyll cells (MCs) and BSCs. Proceeding down the figure, selection involving C_4 plants results in trait sorting along the C_4 trait spectrum. This selection is conditioned by niche conservatism, life history, and plant growth habit and is enabled by the opportunities to utilize the increased availability of resources, such as carbon (C), nitrogen (N), and water (H_2O), to enhance the expression of non-photosynthetic traits, such as xylem hydraulic efficiency, reproductive output, and plant growth allocation patterns.

allocate more biomass to roots when needed, to competitively coopt N from fertile nutrient patches belowground (Simpson *et al.*, 2020). This latter advantage would also provide expanded opportunities for C_4 species in low-N habitats, by promoting opportunities for high biomass allocation to root growth, thereby enhancing their competitiveness as they forage for limited sources of soil nutrients (Ripley *et al.*, 2008). In both cases, the C_4 advantage occurs because the CCM allows C_4 plants to rely more on shoot-specific activity and less on shoot biomass fraction to sustain RGR.

We propose that C_4 plant traits are best described through a trait spectrum that is aligned with, but separate from, that reflected in the acquisitive pole of the WLES (Fig. 5). Within this view, trait sorting within the C_4 spectrum is constrained by both *necessity* and *opportunity*. Necessity would be driven by selection favoring the mechanistic requirements of a fully functioning CCM, potentially including decreased IVD, modifications to the shape and biochemical constituency of leaf BSCs, and increased plasmodesmata frequencies between MCs and BSCs. Opportunity would be due to selection favoring alternative resource allocation opportunities, such as increased fractional allocation to seed production, alterations in root : shoot biomass ratios, and alterations in the efficiency and capacity of whole-plant hydraulic traits. Opportunity selection would be influenced by habitat resource availabilities and would occur independently of C_4 CCM selection (see Simpson *et al.*, 2020).

VI. Experimental tests of the adaptive nature of opportunity traits

The fast-efficient C_4 phenotype provides opportunities for trait syndromes to form novel adaptive strategies and for C_4 taxa to expand their ranges as they radiate into new habitat niches

(Lundgren *et al.*, 2015). To date, the C_4 strategies of faster growth with higher resource-use efficiencies have been most often inferred from leaf gas exchange observations. A few studies have assessed C_4 trait syndromes in controlled experiments with whole plants. In one study, Simpson *et al.* (2020) observed seedling growth patterns in over 100 C_3 and C_4 grass species under controlled growth conditions. They were able to confirm higher RGRs for the C_4 species. Furthermore, they showed that the C_4 CCM provided an opportunity to devote less N_{mass} to support photosynthesis, permitting a greater allocation of N to new biomass growth. In the C_4 species, lower N_{mass} was also observed for roots, which would further contribute to the opportunity for higher shoot growth rates in acquisitive species and higher root growth rates in conservative species (also see Atkinson *et al.*, 2016). Overall, the C_4 CCM operated independently of leaf and root traits in their effects on RGR. This means that opportunities exist in C_4 species for selection to further amplify RGR through the modification of non-photosynthetic traits.

In growth chamber studies using low ambient CO_2 concentrations (i.e. at interglacial levels of *c.* 180 ppm) and comparing C_3 and C_4 subspecies of the grass *A. semialata*, Ripley *et al.* (2008, 2013) observed that when grown with ample N, C_4 plants exhibited higher PNUE and growth rates than C_3 plants. The higher growth rates were achieved with a reduced allocation of C to leaves and roots. This growth advantage provided the opportunity to allocate more carbon to the production of inflorescences and carbohydrate storage pools in corms despite limited atmospheric CO_2 availability. When grown with limited access to N, C_3 plants allocated more carbon to roots, at the expense of leaves, while C_4 plants reduced inflorescence production. Here, we see that the C_4 advantage in PNUE does indeed translate to selection opportunities at the scale of whole-plant resource allocation.

However, rather than channeling the higher PNUE toward enhanced shoot growth and a higher RGR, the C₄ sub-species of this grass channeled the advantage toward greater reproduction at high N.

Together, the studies to date have provided evidence that selection favoring the C₄ pathway, particularly in grasses, has indeed resulted in higher potential RGRs, while simultaneously providing opportunities for novel C and N allocation patterns. In addition to enhancing reproductive fitness, the assembly of novel trait combinations during C₄ evolution likely created new opportunities for C₄ radiations into novel niches (Lundgren *et al.*, 2015). Such radiations, in turn, would have facilitated further trait sorting through directional selection or stabilizing selection as determined by local ecological constraints and selection pressures.

VII. The fast-efficient C₄ phenotype and global change

Recognizing that C₄ species follow fundamentally different relationships in their mandated trade-off between growth rate and resource-use efficiency, compared with their C₃ ancestors, how might species in C₄ lineages respond to the global change drivers involving temperature, N, precipitation, and disturbance that are impacting life on Earth today? The responses of C₄ photosynthesis to global change have broad ecological ramifications, including the spread of invasive C₄ species and the degradation of C₄ grassland ecosystems during C₃ shrub encroachment. The conventional wisdom is that C₄ species have their greatest competitive advantages over C₃ species when the atmospheric CO₂ concentration is low, and that recent increases in CO₂ emissions are likely to reverse those advantages (Ehleringer & Monson, 1993; Ehleringer *et al.*, 1997; Kgope *et al.*, 2010; Monson & Collatz, 2012). That prediction is largely based on the responses of Rubisco to CO₂ and O₂ and the relative influences of temperature on those responses. However, there is evidence that a broader context for C₄ traits, including aspects of plant hydraulics and whole-plant N allocation, can better explain certain aspects of C₃ and C₄ adaptive strategies and their competitive interactions in the face of global change (Kocacinar & Sage, 2003; Osborne & Sack, 2012; Taylor *et al.*, 2014; Zhou *et al.*, 2018; Baird *et al.*, 2025). Accordingly, several authors have noted a need for caution and caveats in predictions about future changes in C₄ vs C₃ plant abundance (Sage & Kubien, 2003; Monson & Collatz, 2012; Reich *et al.*, 2018; Luo *et al.*, 2024).

Nonetheless, some recent evidence suggests that indeed global C₃ abundance has been increasing over the past two decades, and at the expense of C₄ abundance. Using a combination of remote sensing, optimality theory, and recorded distributions of C₃ and C₄ species, Luo *et al.* (2024) showed that the global extent of natural C₄ grassland area has decreased slightly from 15.0% to 14.2% between 2001 and 2019. They attributed this decrease to increasing atmospheric CO₂ levels and the encroachment of C₃ woody species. The observed decreases in C₄ coverage are small, which is not surprising given the limited time span considered. But the decreases occur in the direction expected if the competitive advantages of C₄ species have been weakened by recent CO₂ fertilization. Notably, the optimization model used in this study

included consideration of traits beyond the traditional photosynthetic 'temperature cross-over models' of past global analyses (Collatz *et al.*, 1998; Still *et al.*, 2003).

However, even with this recent evidence of global advancement in C₃ abundance, Luo *et al.* (2024) observed that in regions where the climate has become warmer and wetter, such as in Western Eurasia and Eastern Africa, C₄ species have increased at the expense of C₃ species. The more relevant perspective, therefore, might not be where C₄ species are ceding dominance to C₃ species, but where they are not. Numerous regional and experimental studies have shown the nuances of the C₄ advantage. While wetter, warm growing seasons may favor some C₄ grass species (Taylor *et al.*, 2011; Jung *et al.*, 2022; Luo *et al.*, 2024), increasing aridity favors others (Edwards & Still, 2008; Taylor *et al.*, 2014; Havrilla *et al.*, 2023). There is also growing evidence that shifts in the seasonality of precipitation, without increases or decreases in total precipitation, can be important in determining C₄ species success. Across Australia, the C₄ : C₃ grass coverage ratio increases rapidly in response to interannual variability in rainfall seasonality (Xie *et al.*, 2022) and this observation has been replicated experimentally in North America (Hajek *et al.*, 2024). There are multiple mechanisms, whereby the seasonal availability of water may be altered by climate change (Hajek & Knapp, 2022), including influences on precipitation or changes in evapotranspiration, and these types of alterations may become more widespread in the future.

Even for increases in atmospheric CO₂ concentrations, we find the potential for nuanced C₄ responses. For example, in temperate grasslands, where seasonal droughts are frequent, C₄ abundance has not always declined as expected with increased CO₂ (Owensby *et al.*, 1993; Morgan *et al.*, 2011). Moreover, in a longer-term CO₂ experiment where C₄ biomass did initially decline, it subsequently increased after 12 yr, due to slow changes in soil N cycling (Reich *et al.*, 2018). These studies underscore the complexity of predicting net outcomes for future C₄ success based on their traits, even when relatively straightforward manipulations of individual global change drivers are assessed.

VIII. C₄ traits and global change models

Global-scale biosphere models cannot easily represent the trait diversity present in plant species, and therefore, researchers have most frequently simplified the models by grouping terrestrial plants with similar traits into categories called plant functional types (PFTs; Harrison *et al.*, 2021). Each model varies in the number and category of PFTs, and typically models will represent global vegetation as < 20 categories of natural vegetation. Through this simplification, C₄ photosynthesis is represented in most global models as a single C₄ phenotype (typically represented as a generic C₄ grass species). Thus, there is little to no variation in C₄ traits represented in the current generation of terrestrial biosphere models.

This current situation likely results in several modeling uncertainties (Griffith *et al.*, 2020). Recent evidence suggests that evolutionary history is particularly important for explaining trait variation across a wide range of grasses at the well-studied Konza tallgrass prairie site in

Kansas (Donnelly *et al.*, 2023). Recognition of this pattern presents an opportunity to more accurately represent C₄ traits in global models by replacing the standard C₄ grass PFT with new lineage-based functional types (LFTs; Griffith *et al.*, 2020). Other studies have shown that broad trait categories, such as life history, can influence the evolution of physiological traits, including hydraulic conductance and stomatal density (Liu *et al.*, 2019; Baird *et al.*, 2025).

IX. Conclusions

We, as a global change research community, have largely generated predictions about the future of C₃ and C₄ species on the basis of photosynthetic and photorespiratory traits. Early in our comparative research of C₃ and C₄ species, we focused on leaf gas exchange processes and have continued in that mode to the present day. However, there is evidence that this approach can only take us so far (Still *et al.*, 2019; Griffith *et al.*, 2020). There is a need to broaden that context to include additional traits associated with other plant attributes, including aspects of plant water use, life history, and evolutionary lineage. We are in an era of rapid global change and unknown biospheric responses. The climate and atmospheric CO₂ conditions that originally led to the evolution of the C₄ fast-efficient phenotype are changing quickly under the pressures of anthropogenic forcing, with implications for the activity, extent, and success of C₄ plants. Broader development of a trait-based approach would help construct hypotheses and studies that could provide insight into regional and global C₄ productivity and C₄-associated ecological interactions. It would also provide a larger and deeper world-wide database of C₄ traits for use in agriculture, including strategies to introduce C₄ traits into C₃ crop lineages. In light of C₄ plants' important role in regulating terrestrial carbon cycling, food production, and the economic and ecological consequences of invasive plants, the building of these questions and frameworks is warranted.

Acknowledgements

We are grateful for the constructive comments provided during the preparation of this manuscript by Gordon Bonan, Asaph Cousins, Jennifer Johnson, and Colin Osborne, and two anonymous reviewers. This work was conducted as part of the C₄ Photosynthesis Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the US Geological Survey Award No.: 20-07-0232. Additional support was received from the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US Department of Energy, Office of Science, Biological and Environmental Research Program under Award No.: DE-SC0018420) and DOE Office of Science, Office of Biological and Environmental Research (BER), grant no.: DE-SC0023160. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government.

Competing interests

None declared.

Author contributions

RKM conceived the concept for the paper within the discussions provided by the John Wesley Powell Center C₄ Working Group. SL conducted the quantitative trait analysis and led its interpretation. All authors developed the perspectives presented in the paper during several plenary discussion sessions. All authors contributed to writing the text. RKM and SL contributed equally to the leadership within this work.

ORCID

Elizabeth A. Ainsworth <https://orcid.org/0000-0002-3199-8999>

Yuzhen Fan <https://orcid.org/0000-0003-1857-9244>

John G. Hodge <https://orcid.org/0000-0003-0793-1871>

Alan K. Knapp <https://orcid.org/0000-0003-1695-4696>

Andrew D. B. Leakey <https://orcid.org/0000-0001-6251-024X>

Shuai Li <https://orcid.org/0000-0003-2545-7763>

Danica Lombardozzi <https://orcid.org/0000-0003-3557-7929>

Russell K. Monson <https://orcid.org/0000-0002-7671-4371>

Sasha C. Reed <https://orcid.org/0000-0002-8597-8619>

Rowan F. Sage <https://orcid.org/0000-0001-6183-9246>

Melinda D. Smith <https://orcid.org/0000-0003-4920-6985>

Nicholas G. Smith <https://orcid.org/0000-0001-7048-4387>

Christopher J. Still <https://orcid.org/0000-0002-8295-4494>

Danielle A. Way <https://orcid.org/0000-0003-4801-5319>

Data availability

The original data for Figs 3 and 4 have been deposited in Figshare (<https://figshare.com>) with doi: [10.6084/m9.figshare.28321865](https://doi.org/10.6084/m9.figshare.28321865).

References

Alenazi AS, Bianconi ME, Middlemiss E, Milenkovic V, Curran EV, Sotelo G, Lundgren MR, Nyirenda F, Pereira L, Christin P-A *et al.* 2023. Leaf anatomy explains the strength of C₄ activity within the grass species *Alloteropsis semialata*. *Plant, Cell & Environment* 46: 2310–2322.

Andersson I. 2008. Catalysis and regulation in Rubisco. *Journal of Experimental Botany* 59: 1555–1568.

Atkinson RRL, Mockford EJ, Bennett C, Christin PA, Spriggs EL, Freckleton RP, Thompson K, Rees M, Osborne CP. 2016. C₄ photosynthesis boosts growth by altering physiology, allocation and size. *Nature Plants* 2: 16038.

Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, Cochard H, Scoffoni C, Edwards EJ, Osborne CP *et al.* 2025. Resolving the contrasting leaf hydraulic adaptation of C₃ and C₄ grasses. *New Phytologist* 245: 1924–1939.

Björkman O. 1971. Comparative photosynthetic CO₂ exchange in higher plants. In: Hatch MD, Osmond CB, Slatyer RO, eds. *Photosynthesis and photorespiration*. New York, NY, USA: Wiley-Interscience, 18–32.

Blätke M-A, Bräutigam A. 2019. Evolution of C₄ photosynthesis predicted by constraint-based modelling. *eLife* 8: e49305.

Bodner GS, Robles MD. 2017. Enduring a decade of drought: patterns and drivers of vegetation change in a semi-arid grassland. *Journal of Arid Environments* 136: 1–14.

von Caemmerer S. 2021. Updating the steady-state model of C₄ photosynthesis. *Journal of Experimental Botany* 72: 6003–6017.

von Caemmerer S, Furbank RT. 2003. The C₄ pathway: an efficient CO₂ pump. *Photosynthesis Research* 77: 191–207.

Cano FJ, Sharwood RE, Cousins AB, Ghannoum O. 2019. The role of leaf width and conductances to CO_2 in determining water use efficiency in C_4 grasses. *New Phytologist* 223: 1280–1295.

Catford JA, Dwyer JM, Palma E, Cowles JM, Tilman D. 2020. Community diversity outweighs effect of warming on plant colonization. *Global Change Biology* 26: 3079–3090.

Christin P-A, Osborne CP. 2014. The evolutionary ecology of C_4 plants. *New Phytologist* 204: 765–781.

Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodgkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical enablers and the evolution of C_4 photosynthesis in grasses. *Proceedings of the National Academy of Sciences, USA* 110: 1381–1386.

Collatz GJ, Berry JA, Clark JS. 1998. Effects of climate and atmospheric CO_2 partial pressure on the global distribution of C_4 grasses: present, past, and future. *Oecologia* 114: 441–454.

Danila FR, Quick WP, White RG, Kelly S, von Caemmerer S, Furbank RT. 2018. Multiple mechanisms for enhanced plasmodesmata density in disparate subtypes of C_4 grasses. *Journal of Experimental Botany* 69: 1135–1145.

Dengler NG, Dengler RE, Donnelly PM, Hattersley PW. 1994. Quantitative leaf anatomy of C_3 and C_4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. *Annals of Botany* 73: 241–255.

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC et al. 2016. The global spectrum of plant form and function: enhanced species-level trait dataset. *Scientific Data* 9: 167–171.

Donnelly RC, Wedel ER, Taylor JH, Nippert JB, Helliker BR, Riley WJ, Still CJ, Griffith DM. 2023. Evolutionary lineage explains trait variation among 75 coexisting grass species. *New Phytologist* 239: 875–887.

Downton WJS. 1971. Adaptive and evolutionary aspects of C_4 photosynthesis. In: Hatch MD, Osmond CB, Slatyer RO, eds. *Photosynthesis and photorespiration*. New York, NY, USA: Wiley Interscience, 3–17.

Dusenge ME, Duarte AG, Way DA. 2019. Plant carbon metabolism and climate change: elevated CO_2 and temperature impacts on photosynthesis, photorespiration and respiration. *New Phytologist* 221: 32–49.

Edwards EJ, Osborne CP, Strömberg CA, Smith SA, C_4 Grasses Consortium, Strömberg CAE, Bond WJ, Christin P-A, Cousins AB, Duvall MR et al. 2010. The origins of C_4 grasslands: integrating evolutionary and ecosystem science. *Science* 328: 587–591.

Edwards EJ, Still CJ. 2008. Climate, phylogeny and the ecological distribution of C_4 grasses. *Ecology Letters* 11: 266–276.

Edwards GE, Ku MSB, Monson RK. 1985. C_4 photosynthesis and its regulation. In: Barber J, Baker NR, eds. *Topics in photosynthesis, Volume 6. Photosynthetic mechanisms and the environment*. Amsterdam, the Netherlands: Elsevier Press, 287–327.

Ehleringer JR, Cerling TE, Helliker BR. 1997. C_4 photosynthesis, atmospheric CO_2 , and climate. *Oecologia* 112: 285–299.

Ehleringer JR, Monson RK. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. *Annual Review of Ecology and Systematics* 24: 411–439.

Erb TJ, Zarzycki J. 2018. A short history of RUBISCO: the rise and fall (?) of Nature's predominant CO_2 fixing enzyme. *Current Opinion in Biotechnology* 49: 100–107.

Ermakova M, Danila FR, Furbank RT, von Caemmerer S. 2019. On the road to C_4 rice: advances and perspectives. *The Plant Journal* 101: 940–950.

Fan Y, Tcherkez G, Scafaro AP, Taylor NL, Furbank RT, von Caemmerer S, Atkin OK. 2024. Variation in leaf dark respiration among C_3 and C_4 grasses is associated with use of different substrates. *Plant Physiology* 195: 1475–1490.

Field C, Mooney HA. 1983. Leaf age and seasonal effects on light, water, and nitrogen-use efficiency in a California shrub. *Oecologia* 56: 348–355.

Fox DL, Pau S, Taylor L, Strömberg CAE, Osborne CP, Bradshaw C, Conn S, Beerling DJ, Still CJ. 2018. Climatic controls on C_4 grassland distributions during the Neogene: a model-data comparison. *Frontiers in Ecology and Evolution* 6: 147.

Furbank RT. 1998. C_4 pathway. In: Raghavendra AS, ed. *Photosynthesis: a comprehensive treatise*. Cambridge, UK: Cambridge University Press, 123–135.

Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C et al. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. *Annals of Botany* 99: 967–985.

Ghannoum O, Evans JR, von Caemmerer S. 2011. Nitrogen and water use efficiency of C_4 plants. In: Raghavendra AS, Sage RF, eds. *C_4 photosynthesis and related CO_2 concentrating mechanisms*. Heidelberg, Germany: Springer Science + Business Media, 129–146.

Gong FP, Wu XL, Zhang HY, Chen YH, Wang W. 2015. Making better maize plants for sustainable grain production in a changing climate. *Frontiers in Plant Science* 6: 835.

Griffith DM, Osborne CP, Edwards EJ, Bachle S, Beerling DJ, Bond WJ, Gallaher TJ, Helliker BR, Lehmann CER, Leatherman L et al. 2020. Lineage-based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. *New Phytologist* 228: 15–23.

Griffiths H, Weller G, Toy LFM, Dennis RJ. 2013. You're so vein: bundle sheath physiology, phylogeny and evolution in C_3 and C_4 plants. *Plant, Cell & Environment* 36: 249–261.

Hajek OL, Knapp AK. 2022. Shifting seasonal patterns of water availability: ecosystem responses to an unappreciated dimension of climate change. *New Phytologist* 233: 119–125.

Hajek OL, Sturchio MA, Knapp AK. 2024. Experimental evidence supporting the seasonal availability of water hypothesis in a mixed C_3/C_4 grassland. *Ecosystems* 27: 1–14.

Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brannstrom A, de Boer H, Dieckmann U, Joshi J, Keenan TF et al. 2021. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. *New Phytologist* 231: 2125–2141.

Hattersley PW. 1984. Characterization of C_4 type leaf anatomy in grasses (Poaceae): mesophyll:bundle sheath area ratios. *Annals of Botany* 53: 163–180.

Havrilla CA, Bradford JB, Yackulic CB, Munson SM. 2023. Divergent climate impacts on C_3 versus C_4 grasses imply widespread 21st century shifts in grassland functional composition. *Diversity and Distributions* 29: 379–394.

Hirose T. 2012. Leaf-level nitrogen use efficiency: definition and importance. *Oecologia* 169: 591–597.

Jobe TO, Karvansara PR, Zenzen I, Kopriva S. 2020. Ensuring nutritious food under elevated CO_2 conditions: a case for improved C_4 crops. *Frontiers in Plant Science* 11: 1267.

Jung CG, Xu X, Shi Z, Niu S, Xia J, Sherry R, Jiang L, Zhu K, Hou E, Luo Y. 2022. Warmer and wetter climate promotes net primary production in C_4 grassland with additional enhancement by hay harvesting. *Ecosphere* 13: e3899.

Kattge J, Bonisch G, Díaz S, Lavorel S, Prentice I, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M et al. 2020. TRY plant trait database - enhanced coverage and open access. *Global Change Biology* 26: 119–188.

Kellogg EA, Campbell CS. 1987. Phylogenetic analysis of the Gramineae. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME, eds. *Grass systematics and evolution*. Washington, DC, USA: Smithsonian Institution Press, 310–322.

Kgope BS, Bond WJ, Midgley GF. 2010. Growth responses of African savanna trees implicate atmospheric $[\text{CO}_2]$ as a driver of past and current changes in savanna tree cover. *Austral Ecology* 35: 451–463.

Khoshravesh R, Stata M, Busch FA, Saladié M, Castelli JM, Dakin N, Hattersley PW, Macfarlane TD, Sage RF, Ludwig M et al. 2019. The evolutionary origin of C_4 photosynthesis in the grass subtribe neurachiniae. *Plant Physiology* 182(1): 566–583.

Kocacinar F, Sage RF. 2003. Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. *Plant, Cell & Environment* 26: 2015–2026.

Korres NE, Norsworthy JK, Tehranchian P, Gitopoulos TK, Loka DA, Oosterhuis DM, Gealy DR, Moss SR, Burgos NR, Miller MR. 2016. Cultivars to face climate change effects on crops and weeds: a review. *Agronomy for Sustainable Development* 36: 12.

Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB. 2019. Water use efficiency as a constraint and target for improving the resilience and productivity of C_3 and C_4 crops. *Annual Review of Plant Biology* 70: 781–808.

Lerdau ML, Monson RK, Ehleringer JR. 2023. The carbon balance of plants: economics, optimization, and trait spectra in a historical perspective. *Oecologia* 203: 297–310.

Li S, Moller CA, Mitchell NG, Martin DG, Sacks EJ, Saikia S, Labonte NR, Baldwin BS, Morrison JI, Ferguson JN et al. 2022. The leaf economics spectrum

of triploid and tetraploid C₄ grass *Miscanthus x giganteus*. *Plant, Cell & Environment* 45: 3462–3475.

Liu H, Taylor SH, Xu Q, Lin Y, Hou H, Wu G, Ye Q. 2019. Life history is a key factor explaining functional trait diversity among subtropical grasses, and its influence differs between C₃ and C₄ species. *Journal of Experimental Botany* 70: 1567–1580.

Lloyd J, Bloomfield K, Domingues TF, Farquhar GD. 2013. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? *New Phytologist* 199: 311–321.

Long SP. 1999. Environmental responses. In: Sage RF, Monson RK, eds. *The biology of C₄ photosynthesis*. San Diego, CA, USA: Academic Press, 215–249.

Lundgren MR, Besnard G, Ripley BS, Lehmann CER, Chatelet DS, Kynast RG, Namaganda M, Vorontsova MS, Hall RC, Elia J *et al.* 2015. Photosynthetic innovation broadens the niche within a single species. *Ecology Letters* 18: 1021–1029.

Luo X, Zhou H, Satriawan TW, Tian J, Zhao R, Keenan TF, Griffith DM, Sitch S, Smith NG, Still CJ. 2024. Mapping the global distribution of C₄ vegetation using observations and optimality theory. *Nature Communications* 15: 1219.

Masle J, Hudson GS, Badger MR. 1993. Effects of ambient CO₂ concentration on growth and nitrogen use in tobacco (*Nicotiana tabacum*) plants transformed with an antisense gene to the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. *Plant Physiology* 103: 1075–1088.

Mitchell PL, Sheehy JE. 2006. Supercharging rice photosynthesis to increase yield. *New Phytologist* 171: 688–693.

Monson RK, Collatz GJ. 2012. The ecophysiology and global biology of C₄ photosynthesis. In: Flexas J, Loreto F, Medrano H, eds. *Terrestrial photosynthesis in a changing environment*. Cambridge, UK: Cambridge University Press, 54–70.

Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M. 2011. C₄ grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. *Nature* 476: 202–205.

Osborne CP, Sack L. 2012. Evolution of C₄ plants: a new hypothesis for an interaction of CO₂ and water relations mediated by plant hydraulics. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences* 367: 583–600.

Osnas JLD, Katabuchia M, Kitajima K, Wright SJ, Reich PB, Van Baele SA, Kraft NJB, Samaniego MJ, Pacala SW, Lichstein JW. 2018. Divergent drivers of leaf trait variation within species, among species, and among functional groups. *Proceedings of the National Academy of Sciences, USA* 115: 5480–5485.

Osnas JLD, Lichstein JW, Reich PB, Pacala SW. 2013. Global leaf trait relationships: mass, area, and the leaf economics spectrum. *Science* 340: 741–744.

Owensby CE, Coyne PI, Ham JM, Auen LA, Knapp AK. 1993. Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO₂. *Ecological Applications* 3: 644–653.

de Penning Vries FWT. 1975. The cost of maintenance processes in plant cells. *Annals of Botany* 39: 77–92.

Poorter H, Lambers H, Evans JR. 2013. Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. *New Phytologist* 201: 378–382.

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. *New Phytologist* 182: 565–588.

Reich PB. 2014. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. *Journal of Ecology* 102: 275–301.

Reich PB, Hobbie SE, Lee TD, Pastore MA. 2018. Unexpected reversal of C₃ versus C₄ grass response to elevated CO₂ during a 20-year field experiment. *Science* 360: 317–320.

Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL. 2008. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. *Ecology Letters* 11: 793–801.

Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: traits, spectra, and strategies. *International Journal of Plant Sciences* 164: S143–S164.

Ripley BS, Abraham TI, Osborne CP. 2008. Consequences of C₄ photosynthesis for the partitioning of growth: a test using C₄ and C₄ subspecies of *Alloteropsis semialata* under nitrogen-limitation. *Journal of Experimental Botany* 59: 1705–1714.

Ripley BS, Cunniff J, Osborne CP. 2013. Photosynthetic acclimation and resource use by the C₃ and C₄ subspecies of *Alloteropsis semialata* in low CO₂ atmospheres. *Global Change Biology* 19: 900–910.

Rolim RG, de Ferreira PMA, Schneider AA, Overbeck GE. 2015. How much do we know about distribution and ecology of naturalized and invasive alien plant species? A case study from subtropical southern Brazil. *Biological Invasions* 17: 1497–1518.

Sage RF, Kubien DS. 2003. Quo vadis C₄: an ecophysiological perspective on global change and the future of C₄ plants. *Photosynthesis Research* 77: 209–225.

Sage RF, Li M, Monson RK. 1999. The taxonomic distribution of C₄ photosynthesis. In: Sage RF, Monson RK, eds. *C₄ plant biology*. San Diego, CA, USA: Academic Press, 551–584.

Sage RF, Pearcy RW, Seemann JR. 1987. The nitrogen use efficiency of C₃ and C₄ plants. 3. Leaf nitrogen effects on the activity of carboxylating enzymes in *Chenopodium album* (L.) and *Amaranthus retroflexus* (L.). *Plant Physiology* 85: 355–359.

Schlüter U, Weber APM. 2020. Regulation and evolution of C₄ photosynthesis. *Annual Review of Plant Biology* 71: 183–215.

Sharkey TD, Ducruet J-M, Parry MAJ. 2012. Biochemistry and photochemistry of terrestrial photosynthesis: a synopsis. In: Flexas J, Loreto F, Medrano H, eds. *Terrestrial photosynthesis in a changing world: a molecular, physiological, and ecological approach*. Cambridge, UK: Cambridge University Press, 9–19. doi: 10.1017/CBO9781139051477.004.

Simpson KJ, Bennett C, Atkinson RRL, Mockford EJ, McKenzie S, Freckleton RP, Thompson K, Rees M, Osborne CP. 2020. C₄ photosynthesis and the economic spectra of leaf and root traits independently influence growth rates in grasses. *Journal of Ecology* 108: 1899–1909.

Still CJ, Berry JA, Collatz GJ, DeFries RS. 2003. Global distribution of C₃ and C₄ vegetation: carbon cycle implications. *Global Biogeochemical Cycles* 17: 1006.

Still CJ, Cotton JM, Griffith DM. 2019. Assessing earth system model predictions of C₄ grass cover in North America: from the glacial era to the end of this century. *Global Ecology and Biogeography* 28: 145–157.

Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP. 2010. Ecophysiological traits in C₃ and C₄ grasses: a phylogenetically controlled screening experiment. *New Phytologist* 185: 780–791.

Taylor SH, Ripley BS, Martin T, De-Wet LA, Woodward FI, Osborne CP. 2014. Physiological advantages of C₄ grasses in the field: a comparative experiment demonstrating the importance of drought. *Global Change Biology* 20: 1992–2003.

Taylor SH, Ripley BS, Woodward FI, Osborne CP. 2011. Drought limitation of photosynthesis differs between C₃ and C₄ grass species in a comparative experiment. *Plant, Cell & Environment* 34: 65–75.

Togawa-Urakoshi Y, Ueno O. 2021. Photosynthetic nitrogen- and water-use efficiencies in C₃ and C₄ subtype grasses grown under two nitrogen supply levels. *Plant Production Science* 25: 183–194.

Uddin ME, Kebreab E. 2020. Review: Impact of food and climate change on pastoral industries. *Frontiers in Sustainable Food Systems* 4: 543403.

Ueno O, Kawano Y, Wakayama M, Takeda T. 2006. Leaf vascular systems in C₃ and C₄ grasses: a two-dimensional analysis. *Annals of Botany* 97: 611–621.

Ueno O, Yoshimura Y, Sentoku N. 2005. Variation in the activity of some enzymes of photorespiratory metabolism in C₄ grasses. *Annals of Botany* 96: 863–869.

Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! *Oikos* 116: 882–892.

Warton DI, Duursma RA, Falster DS, Taskinen S. 2011. smatr 3—an R package for estimation and inference about allometric lines. *Methods in Ecology and Evolution* 3: 257–259.

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M *et al.* 2004. The worldwide leaf economics spectrum. *Nature* 428: 821–827.

Xie Q, Huete A, Hall CC, Medlyn BE, Power SA, Davies JM, Medek DE, Beggs PJ. 2022. Satellite-observed shifts in C₃/C₄ abundance in Australian grasslands are associated with rainfall patterns. *Remote Sensing of Environment* 273: 112983.

Yan H, Wang SQ, Billesbach D, Oechel W, Bohrer G, Meyers T, Martin TA, Matamala R, Phillips RP, Rahman F *et al.* 2015. Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C₃ and C₄ plants. *Ecological Modelling* 297: 42–59.

Zhou HR, Helliker BR, Huber M, Dicks A, Akcay E. 2018. C₄ photosynthesis and climate through the lens of optimality. *Proceedings of the National Academy of Sciences, USA* 115: 12057–12062.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Notes S1 Testing the role of independent anatomical evolution as the cause of the A_{mass} vs LMA correlation.

Notes S2 A theoretical framework describing the advantages of C₄ photosynthesis to the N-limited condition.

Table S1 Correlation parameters for each two-way correlation shown in Fig. 3 of the main text.

Table S2 Principal components analysis (PCA) loadings for the three traits shown in Fig. 4 of the main text.

Please note: Wiley is not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.

Disclaimer: The New Phytologist Foundation remains neutral with regard to jurisdictional claims in maps and in any institutional affiliations.