2024 International Conference on Machine Learning and Applications (ICMLA) | 979-8-3503-7488-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICMLA61862.2024.00218

2024 International Conference on Machine Learning and Applications (ICMLA)

Edge-Centric Real-Time Segmentation for
Autonomous Underwater Cave Exploration

Mohammadreza Mohammadi
CSE, University of South Carolina
Columbia, SC 29208, USA

mohammm@email.sc.edu

Ioannis Rekleitis
CSE, University of South Carolina
Columbia, SC 29208, USA

yiannisr@cse.sc.edu

Abstract—This paper addresses the challenge of deploying
machine learning (ML)-based segmentation models on edge plat-
forms to facilitate real-time scene segmentation for Autonomous
Underwater Vehicles (AUVs) in underwater cave exploration
and mapping scenarios. We focus on three ML models—U-
Net, CaveSeg, and YOLOv8n—deployed on four edge platforms:
Raspberry Pi-4, Intel Neural Compute Stick 2 (NCS2), Google
Edge TPU, and NVIDIA Jetson Nano. Experimental results
reveal that mobile models with modern architectures, such as
YOLOVS8n, and specialized models for semantic segmentation,
like U-Net, offer higher accuracy with lower latency. YOLOv8n
emerged as the most accurate model, achieving a 72.5 Intersection
Over Union (IoU) score. Meanwhile, the U-Net model deployed
on the Coral Dev board delivered the highest speed at 79.24
FPS and the lowest energy consumption at 6.23 mJ. The detailed
quantitative analyses and comparative results presented in this
paper offer critical insights for deploying cave segmentation
systems on underwater robots, ensuring safe and reliable AUV
navigation during cave exploration and mapping missions.

Index Terms—Edge Computing, Segmentation, Underwater
Robots, Visual Servoing.

I. INTRODUCTION & BACKGROUND

Underwater cave exploration is a challenging frontier in
robotics, offering significant potential for advancing our un-
derstanding of archaeology, hydrology, geology, and marine
biology [1]. Cave formations, sediments, and water chemistry
provide critical insights into historic climate conditions and
geological events. They also play a crucial role in monitoring
and tracking groundwater flows in Karst topographies, which
supply freshwater to nearly a quarter of the global popula-
tion [2]. However, these environments are often inaccessible
and hazardous to human divers due to their complex, confined
spaces and the absence of natural light [3], [4]. Hence, there
is a growing emphasis on using Autonomous Underwater
Vehicles (AUVs) and Remotely Operated Vehicles (ROVs)
for safe and efficient exploration of underwater caves [5]-[7].
Fig. 1 shows a cave expedition scenario with an ROV inside
an underwater cave system in Orange Grove, Florida.

The underwater caves explored by human scuba divers are
marked with a single and continuous line termed caveline [8]

Adnan Abdullah
ECE, University of Florida
Gainesville, FL 32611, USA
adnanabdullah@ufl.edu

Md Jahidul Islam
ECE, University of Florida
Gainesville, FL 32611, USA

jahid@ece.ufl.edu

Aishneet Juneja
CSE, University of South Carolina
Columbia, SC 29208, USA

junejaa@email.sc.edu

Ramtin Zand
CSE, University of South Carolina
Columbia, SC 29208, USA

ramtin@cse.sc.edu

Fig. 1: A BlueROV?2 is operating inside an underwater cave
system by following its caveline in Orange Grove, FL.

that goes from open water (no overhead) to all the major
parts of the cave. Along with other navigation markers such
as arrows and cookies, the caveline provides the skeleton of
the cave i.e., a one-dimensional retraction of the 3D space [9]
marking the depth and orientation of the main passages. Thus,
detecting and following the caveline as navigation guidance
is paramount for robots in autonomous cave exploration and
mapping missions. Recently, Yu et al. [10] developed a robust
Vision Transformer (ViT)-based learning pipeline named CL-
VIiT to detect and track cavelines by underwater robots for
vision-based navigation. CL-ViT learning pipeline has two
important features: (i) robustness to noise and image dis-
tortions [11]; and (ii) generalized model adaptation to data
from new locations. Furthermore, identifying the ground plane,
nearby obstacles, and navigational aids as well as human
divers is critical for safe robotic operations inside underwater
caves. Despite state-of-the-art (SOTA) detection performance,
the proposed models are computationally demanding and do
not run real-time on edge devices available onboard AUVs.
In this paper, we analyze several distinct models, deploy
mobile models on various edge Al accelerators, and compare
their computational performance. Specifically, we focus on
three models: (i) U-Net [12], a classic model for image
segmentation, (ii) CaveSeg [13], a SOTA model developed for

1946-0759/24/$31.00 ©2024 IEEE
DOI 10.1109/ICMLA61862.2024.00218
Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

1404

underwater cave segmentation, and (iii) YOLOv8 [14], one of
the latest models from the YOLO family. We fine-tune these
models for an underwater cave exploration application and
deploy them on four edge platforms — Raspberry Pi-4, Inte]™
Neural Compute Stick, Google Edge TPU, and Nvidia™
Jetson Nano — each with unique hardware characteristics that
require different deployment strategies.

Application Scenario. Robotic exploration of underwater
caves presents unique challenges, including navigating through
narrow passages, avoiding obstacles, and making real-time
operational decisions based on the surroundings objects and
scene geometry. The lightweight cave segmentation models
explored in this paper will enable AUVs to parse semantic in-
formation for detecting caveline and other navigation markers,
avoiding obstacles, and maintaining interaction with compan-
ion divers if necessary. We will deploy our developed models
onboard AUVs and investigate their utility in autonomous
underwater cave exploration and mapping applications.

II. RELATED WORK
A. Object Detection & Segmentation in Underwater Imagery

The scientific literature on subsea visual servoing explore
the challenges and capabilities of underwater robots for scene
understanding and safe navigation [7]. The fundamental task
for visually-guided AUVs is to perceive the environment via
cameras and other optical sensors, and then identify region-
of-interests in the scene to plan effective navigational deci-
sions [15]. Various data-driven models have been developed
for vision tasks such as fast visual search [16], [17], visual
enhancement [18], salient object localization [9], and oceanic
resource monitoring [20], [21]. For instance, Koreitem et
al. [16] developed an informed visual navigation system that
first learns a similarity operator between the scene and a
given exemplar image, and plans the visual searching path
accordingly in an unconstrained environment. In contrast,
model-free approaches are often better suited for autonomous
exploratory applications [22]. Girdhar et al. [23] designed a
low-dimensional semantic descriptor that encodes the environ-
mental observations, referred to as topics, for safe autonomous
control of AUVs. More recently, Modasshir et al. combined a
deep learning-based classifier with Visual Inertial Odometry
(VIO) to classify and count coral population density, via
generating semantic maps [24] and volumetric models [25].
Additionally, Mohammadi et al. [26] developed three models
for caveline detection: Vision Transformer, YOLOv8n, and U-
Net; the models were deployed on edge devices and optimized
for resource-constrained underwater robots in terms of energy
efficiency and low latency.

B. Object Detection & Tracking on Edge Devices

In recent years, machine learning techniques for segmen-
tation and object detection have been applied across various
fields, including healthcare [27], [28], autonomous vehicles
[29], space exploration [30], and manufacturing [31]. However,
real-time systems, particularly those deployed on edge devices,

1405

face challenges such as latency, power dissipation, and en-
ergy consumption. Consequently, there has been a significant
focus on developing tiny machine learning systems that are
optimized for use on edge devices. In recent years, various
TinyML techniques [32] and lightweight deep visual mod-
els [33] have been introduced such as SqueezeNet [34], Mo-
bileNet [35]-[37], ShuffleNet [38], [39], PeleeNet [40], Mnas-
Net [41], Once-for-All (OFA) [42], GhostNet [43], Mobile-
Vit [44], and more. landola et al. [34] proposed a lightweight
model called SqueezeNet, reaching AlexNet-level accuracy on
ImageNet with 50x fewer parameters and less than 0.5 MB
memory requirement. By employing streamlined architecture
with depth-wise separable convolutions, Howard et al. [35]
introduced the family of MobileNet models that are ideal
for single-board embedded platforms. The successor Mo-
bileNetv2 [36] uses inverted residual structures to reduce
computations, while MobileNetv3 [37] adopts a platform-
aware automated neural architecture search in hierarchical
search space along with NetAdapt [45], which further reduces
the components of the network.

On the other hand, Zhang et al. [38] used the ResNet
block coupling with innovations to devise ShuffleNet, which
is compatible with mobile devices. ShuffleNetv2 [39] further
improves the speed and accuracy by adopting a direct metric
(speed) rather than indirect metrics like FLOPs. Moreover,
Wang et al. [40] proposed a PeleeNet model by adopting
an assortment of computation-conserving methods, making a
compelling lightweight network. Tan et al. [41] presented a
novel mobile CNN-based model using an automated neural ar-
chitecture search approach. Besides, Cai et al. [42] introduced
OFA, a lightweight network that can meet different hardware
requirements. Furthermore, by merging the features of CNN
and ViT, Mehta et al. [44] presented a lightweight and versatile
vision transformer called MobileVit for edge devices. Previous
works have also explored the deployment of these models on
edge Al accelerators [46]-[49].

III. METHODOLOGY
A. Dataset Preparation

For data-driven training and evaluation on edge devices, we
utilize visual data curated from three geographically diverse
underwater cave systems: Devil’s system in Florida, US; Dos
Ojos Cenote in Quintana Roo, Mexico; and Cueva del Agua
in Murcia, Spain [10]. The dataset introduced in [13] contains
3350 images with pixel-level annotations for the following
13 semantic objects: caveline, first/immediate obstacle layer,
second/successive obstacle layer, obstacle-free open space,
ground plane, scuba divers, caveline-attached rocks, navigation
aids (arrows, reels, and cookies), and cave ornaments (stalac-
tites, stalagmites, and columns). Figure 2 shows three sample
images and corresponding labels from the dataset.

Among these categories, the caveline serves as the primary
navigation guide, marking a continuous route toward the
entrance/exit of a cave segment. Other navigation tools such as
arrows and cookies are attached to the caveline to indicate the

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

e

l !
(a) ()

Fig. 2: Sample images and corresponding labels collected from
three underwater cave systems in (a) Devil’s Spring system,
FL, USA; (b) Cueva del Agua, Murcia, Spain; and (c) Dos
Ojos Cenote, QR, Mexico — are shown in each column.

nearest exit and the presence of other human divers, respec-
tively. The caveline is securely fastened on rocks, referred to as
attachment rocks, particularly found at corners and junctions
where the caveline changes direction. The caveline and other
navigation markers are annotated in yellow-red color tones to
maximize visual contrast against the obstacles in background.

Open passages, obstacles, and the ground plane are crucial
for path planning and autonomous navigation. The dataset
categorizes the obstacles into first layer (green) and second
layer (cyan) so that an AUV can anticipate its path and
efficiently maneuver toward safe, open areas.

Human scuba divers are a critical consideration for safe cave
exploration. Standard cave diving practices require the divers’
route to the surface to remain unobstructed. Hence, an AUV
would learn to detect scuba divers present in the scene and act
accordingly, such as dimming the lights and yielding to other
divers to ensure a clear path for their exit.

B. Targeted ML Models

1) YOLOv8: YOLOVS [14] is a prominent model from the
YOLO family, known for its impressive performance across
various machine learning tasks, including object detection,
image classification, and instance segmentation. Developed by
Ultralytics, YOLOVS is available in five different sizes, ranging
from nano to x-large. The nano size is optimized for edge and
mobile devices, while the x-large size is designed for high
accuracy on large servers. Given the constraints of underwater
robots, we selected YOLOvS8n, which has only 3.4M parame-
ters and is suitable for resource-constrained edge devices. For
our application, we employed transfer learning, starting with
a YOLOv8n model pre-trained on the COCO dataset and fine-
tuning it for cave exploration using the targeted dataset.

2) U-Net: U-Net [12] is a convolutional neural network
(CNN) architecture designed for semantic segmentation tasks.
It comprises three main parts: a contracting path (encoder),
a bottleneck layer, and an expansive path (decoder). The
contracting path is similar to that of a typical CNN. It
includes blocks with two 3 x 3 convolutions (unpadded), each
followed by a rectified linear unit (ReLU) and a 2 x 2 max
pooling operation with stride 2 for downsampling. With each
downsampling step, the number of feature channels doubles.
At the center of U-Net, the bottleneck layer captures the most

1406

critical features while preserving spatial information, as it
lacks pooling layers. The expansive path involves upsampling
the feature map at each step, followed by a 2 x 2 convolution
("’up-convolution”) that halves the number of feature channels.
This is concatenated with the cropped feature map from the
contracting path, followed by two 3 x 3 convolutions, each with
a ReLLU. Cropping is necessary due to the loss of border pixels
during convolution. The final layer uses a 1 X 1 convolution
to map each feature vector to the desired number of classes.
U-Net has 23 conv layers, resulting in over 31M parameters.

Due to the resource and power constraints of both robots
and edge devices, we optimized the network by replacing
the encoder with MobileNetV2. Additionally, we reduced the
number of kernels per layer in the bottleneck and decoder
sections. These modifications significantly decreased the net-
work’s parameters and MAC operations, resulting in a model
with only 4.33 M parameters.

3) CaveSeg: The CaveSeg model used in this paper is in-
spired by the model developed in [13]. This model uses a light
transformer backbone and a multi-level pyramid head module
for feature extraction. Each RGB image is pre-processed into
4 x 4 patches, arranged into a linear representation of tokens,
and then fed into the transformer network. The four-stage
backbone applies multi-head self-attention [50] on the feature
tokens using a windowed and shifted windowed module [51].
Each stage combines the patches with 2 x 2 neighboring pixels
and doubles the linear representation to maintain the number
of tokens. The window shifting technique is applied after each
transformation to improve feature extraction. The pyramid
head, inspired by [52], enhances higher-level features using
multi-scale convolution blocks [53]. The features extracted
by the backbone and the head module are upsampled and
aggregated into a hierarchical map representation [54]. These
features propagate into a dense convolution module that esti-
mates the semantic class for each pixel. The hyperparameters
are empirically tuned to achieve the best trade-off between ac-
curacy and computational cost. This model is larger compared
to the other two, with 35M parameters.

IV. EXPERIMENTAL SETUP

In this study, we deploy and evaluate our ML models on
a range of edge devices, including the Raspberry Pi, Intel
Movidius Neural Compute Stick 2 (NCS2), Nvidia Jetson
Nano, and Google Coral TPU, as shown in Figure 3. These
devices are widely used for various ML tasks, such as image
classification [48], semantic segmentation [26], and natural
language processing [47].

1) Raspberry Pi-4: The Raspberry Pi-4 board features a
Broadcom BCM2711 quad-core ARM Cortex-A72 CPU, with
operating frequencies that vary by model: 1.5GHz for the
2 GB and 4 GB RAM versions, and 1.8 GHz for the 8 GB RAM
version. Available in multiple configurations, the Raspberry Pi-
4 offers 2 GB, 4GB, and 8 GB of LPDDR4 RAM. The device
requires a 5V USB-C power supply, with the necessary current
rating depending on the intended use and peripherals.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

Coral USB

(b)

Fig. 3: Experimental setup. (a) Pi + NCS2 (b) Pi + Coral TPU
Coral Dev board (d) Jetson Nano.

2) Intel Neural Compute Stick: The Intel Neural Compute
Stick 2 (NCS2) is powered by the Intel Movidius-X Vision
Processing Unit (VPU), which is featured by 16 programmable
cores and a dedicated neural compute engine. The NCS2
operates at a base frequency of 700 MHz and includes 4 GB of
RAM. Intel provides the OpenVINO library, available in both
Python3 and C, to streamline the deployment of ML models
on the NCS2. This library includes a model optimizer that
converts models into a format suitable for NCS2 deployment.
Following this, the OpenVINO inference engine API can be
used to evaluate latency and power efficiency during inference.

3) Google Coral TPU: The Edge TPU serves as a co-
processor on Coral’s Dev Board, working alongside the
NXP i.MX 8M system-on-chip (SoC) within their system-
on-module (SoM) architecture. To run on the Coral Edge
TPU, models must be converted to TensorFlow Lite format
and quantized to 8-bit integer types. Coral also offers a
USB accelerator that can be integrated with a CPU as a co-
processor. With a power consumption of around two watts,
this accelerator is well-suited for low-power environments.

4) Nvidia Jetson Nano: The Jetson Nano is a modular
computer built around the Tegra X1 SoC, featuring a quad-
core ARM A57 processor and four 32-CUDA core processing
units. It comes with 4 GB of memory. Nvidia™ provides two
operating modes for the Jetson Nano: in the low power mode
(Jetson-L), only two cores of the ARM A57 are active, with a
clock frequency of 0.9 GHz, and the GPU runs at 0.64 GHz. In
the high power mode (Jetson-H), all four cores of the ARM
ABT processor are active at a 1.5 GHz frequency, while the
GPU operates at 0.92 GHz. The Jetson Nano utilizes NVIDIA
TensorRT as its primary tool for ML model optimization.

V. PERFORMANCE EVALUATION

A. Deployment Considerations

After training and fine-tuning the ML models for the
underwater cave segmentation application, as outlined in the
previous section, we focus on deploying them across various

1407

edge platforms. Using PyTorch for training, we exported the
models in ONNX format as an intermediary step. We then
evaluated the performance of these models on well-known
edge Al accelerators available in the market. Specifically, we
investigated two experimental setups: (/) USB accelerators,
where we compared the Intel NCS2 (Fig. 3a) with the Coral
TPU USB accelerator (Fig. 3b), and (2) Development Boards,
where we evaluated the Coral Edge TPU Dev Board (Fig. 3c)
against the Nvidia Jetson Nano (Fig. 3d). The USB accelera-
tors were integrated as co-processors with the Raspberry Pi.

Different configurations are required to run the models on
each of these edge devices. The Raspberry Pi-4 and Coral
TPU utilize TFLite models, with 32-bit floating-point (FP32)
precision for the Raspberry Pi-4 and 8-bit integer precision for
the Coral TPU. The Jetson platform uses TensorRT models
with FP16 precision. Additionally, we integrated the NCS2
accelerator as a co-processor with the Raspberry Pi-4, using
OpenVINO 2021 to convert the ONNX models into the
required format, employing FP16 operations.

As mentioned in Section III, the CaveSeg model is larger
than the other models and includes layers that are not sup-
ported by edge devices. Consequently, we deployed this model
exclusively on the Raspberry Pi as the baseline edge device.
Additionally, For the other models, due to the Edge TPU’s
inability to fully accommodate the entire architecture with
larger inputs, we resized the input dimensions for the Yolo and
U-Net models to 192 x 192 and 128 x 128, respectively. It is
important to note that with larger input sizes, some operations
are offloaded from the TPU to the CPU, which significantly
impacts system performance. This modification affects the
models’ accuracy, which is discussed in the following section.

B. Performance Metrics

Here, we evaluate the performance of the ML models using
a commonly used metric: Intersection Over Union (IOU). IOU
assesses the accuracy of object localization by calculating the
proportion of overlapping area between predicted and actual
labels. It is defined as:

Area of Overlap TP

IoU = =
TP+FP+FN

ey

Area of Union

where, T'P and F' P represent true positives and false positives,
indicating the correct and incorrect selection of the class of
interest pixels, resepectively. F'N represents false negatives,
indicating the pixels that are part of the target class in the
ground truth but are missed by the prediction.

We compared the results and sizes of our proposed models
with previous work, as shown in Table I. The YoLo outper-
forms other models with an IoU of 72.5%. The proposed U-
Net model follows closely, achieving an IoU of 65.55%. Ad-
ditionally, as illustrated in Table I, previous models, including
CaveSeg, are significantly larger than Yolo and the proposed
U-Net model, making them impractical for deployment on
edge devices. When comparing the sizes of Yolo and U-Net to
the CaveSeg model—which is already smaller than previous
studies—they are 10.29x and 8.08x smaller, respectively.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Quantitative performance comparisons of all models
in terms of IoU metrics and number of parameters.

Model # of Parameters | IoU (%)
FastFCN 66 M 38.86
DeepLabV3+ 42 M 38.46
Segmenter 98 M 30.81
Segformer 82 M 35.36
Swin Transformer 120 M 48.11
CaveSeg 35 M 40.22
U-Net 433 M 65.55
Yolo 34 72.5
104 |-« & Model
©
~ 0 [Unet
78 .
o a © [YOLOv8n
Ew 85 8,
>] ~ o
2 R ®e Ko
I "5 Om
810 o B 7 e
N o
Qe © o
il il
D N 4% N 3
< K & & S &
N . ><é N \590 'Z}
] N \Qz \Q, (Jok

Fig. 4: Inference latency for all models and devices.

As mentioned in Section IV.A, deploying the Yolo and U-
Net models on the Edge TPU requires reducing their input
sizes to 192x192 and 128128, respectively. This reduction
impacts the models’ accuracy. According to the results, the
Yolo model running on the Edge TPU achieves an IoU of
69.01%, while the U-Net model on the same device reaches
62.76%. Compared to the original models, this represents a
reduction in IoU of 3.49% for Yolo and 2.72% for U-Net.
Despite this decrease, these models still offer significantly
better accuracy than previous works. Table III provides the
U-Net and YOLOvS8n segmentation outputs for three sample
images from the dataset.

C. Inference Latency Measurement

To evaluate inference latency, we first conducted one hun-
dred inference operations for each model on each edge plat-
form and measured the total latency. We then calculated
the average inference time per image. Given the size and
complexity of the CaveSeg model, we only ran it on the
Raspberry Pi. The latency for processing a single input with
the CaveSeg model is 35 seconds, which is significantly longer
than the latency of the other two models on the same device.

Figure 4 displays the inference latency results for all plat-
forms running YOLOv8n and U-Net. The results show that
all edge accelerators offer significant speedup compared to
the baseline Raspberry Pi 4 CPU for both models. The Coral
Dev Board achieved the fastest inference times, with 12.62
ms per inference for U-Net and 13.59 ms for Yolo. Compared
to the baseline Raspberry Pi, this represents a 144 x speedup
for Yolo and a 121.84x speedup for U-Net, highlighting the
effectiveness of the Coral Dev Board for this application. For

1408

TABLE II: FPS rates for models running on Nvidia™ A100
GPU, Coral Devboard, and Coral USB as a co-processor.

Model Device FPS
FastFCN Nvidia™ A100 GPU | 16.89
DeepLabV3+ Nvidia™ A100 GPU | 15.04
Segmenter Nvidia™ A100 GPU | 13.73
Segformer Nvidia™ A100 GPU | 10.92
Swin Transformer | Nvidia™ A100 GPU | 12.39
CaveSeg Nvidia™ A100 GPU | 19.78
U-Net Coral Dev 79.24

Pi + Coral USB 42.95

Coral Dev 73.58

YOLOvSn Pi + Coral USB | 31.64

both Yolo and U-Net, the order of inference latency from
shortest to longest is as follows: Coral Dev Board, Raspberry
Pi + Coral USB, Jetson high power mode, Jetson low power
mode, Raspberry Pi + NCS2, and Raspberry Pi.

1) USB Accelerators: For the USB accelerators, both the
NCS2 and Coral USB accelerators demonstrated improve-
ments over the baseline Raspberry Pi 4 for both the Yolo
and U-Net models. Specifically, running Yolo on the Coral
USB resulted in a 61.91x speedup, while the NCS2 showed
an 8.81x improvement. For the U-Net model, the Coral
USB and NCS2 achieved a 66.05x and 2.93x improvement,
respectively. These results indicate that integrating compact
USB accelerators into the robot can significantly enhance
system performance.

2) Development Boards: Both development boards provide
significant speedups compared to the Raspberry Pi. For the
Yolo model, we observe a 20.52x improvement in the Jetson
low power mode and a 28.21 x improvement in the Jetson high
power mode over the baseline device. The Coral Dev Board
offers an even greater improvement, with a 144.02x increase
in performance. For the U-Net model, the Jetson board shows
an 8.19x improvement in low power mode and an 11.22x
improvement in high power mode, while the Coral Dev Board
achieves a 121.84x improvement over the baseline device.

Table II presents a comparison between our proposed mod-
els and other studies in terms of frame per second (FPS)
ratio. Except for Yolo and the proposed U-Net model, none of
the models can be deployed on edge devices due to resource
limitations. Therefore, we deployed the larger models on a
Nvidia™ A100 GPU, while Yolo and U-Net were deployed
on the Coral Dev Board, which demonstrated superior perfor-
mance in terms of latency compared to other edge devices.

As listed in Table II, U-Net running on the Coral Dev Board
achieves the highest frame rate at 79.24 FPS, followed closely
by Yolo on the same device with 73.58 FPS. We also include
the FPS ratio for running mobile models on the Coral USB as
a co-processor, achieving 42.95 FPS for YOLOv8n and 31.64
FPS for U-Net. These results demonstrate that both models
are well-suited for real-time underwater cave segmentation
applications. Particularly, since many robots are equipped with
their own processors, integrating a co-processor like the Coral
USB makes real-time applications feasible. Among the larger
models running on the Nvidia™ A100 GPU, CaveSeg achieves
the highest FPS of 19.78.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Qualitative analysis indicates that YOLOv8n outperforms the U-Net model in pixel accuracy and localization. The
results for CaveSeg are not shown, as our focus is on mobile models that are suitable for deployment on edge devices.

Original Image Label

Model Outputs

U-Net YOLOvV8n

D. Inference Power Measurement

To assess power dissipation during inference for the various
models deployed on Raspberry Pi-4, NCS2, and Edge TPU
devices, we used the MakerHawk UM34C USB multimeter,
as depicted in Figure 3a. For the Jetson Nano, we utilized its
internal sensors to monitor CPU and GPU power dissipation.
We ran each model for five minutes, with power dissipation
measured at a rate of one sample per second. Figure 5 shows
the dynamic power measurements for both models across all
platforms. The Coral Dev Board exhibits the lowest power
dissipation compared to the other devices. Additionally, the
figure indicates that power dissipation is comparable for both
models on all platforms except for Pi+Coral TPU.

1) USB Accelerators: For the USB accelerators, both the
NCS2 and Coral USB accelerator generally exhibit higher
power dissipation compared to the baseline Raspberry Pi, with
the exception of the Coral USB when running YOLOvS8n. In
this case, there is a 1.53x reduction in power dissipation.
Additionally, when comparing the two USB accelerators, the
Coral USB dissipates 2.52x less power for running Yolo and
1.43x less power for U-Net.

2) Development Boards: Compared to the Raspberry Pi, the
Coral Dev Board offers a 2.67x reduction in power dissipation
for the Yolo model and a 2.71 x reduction for the U-Net model.
In contrast, the Jetson Nano shows higher power dissipation
compared to the Raspberry Pi. Specifically, in low power
mode, the Jetson Nano’s power dissipation increases by 1.32x
for the Yolo model and 1.39x for the U-Net model. In high
power mode, the increases are 2.77x for the Yolo model and
2.5x for the U-Net model.

1409

Model
[Unet
[YOLOv8n

10t

3
=
[
2
o
o

10°

1.33
1.36

o~
<

o o

i

N N
Q /\Qo &’1« 0(\,\/ {\:2* &
R Y AN C

< N @

Fig. 5: Dynamic power comparison for all models and devices.

E. Inference Energy Measurement

Figure 6 provides a comparative analysis of inference
energy results. All edge Al accelerators offer a significant
improvement in inference energy efficiency compared to the
baseline Raspberry Pi. For instance, the Coral Dev board
outperforms other edge devices by consuming only 6.23 m.J
for running the U-Net model and 6.96 m.J for the Yolo model.

1) USB Accelerators: The results show that the Coral USB
consumes 95.14 x less energy for running the Yolo model and
55.71x less for the U-Net model compared to the baseline
Raspberry Pi. For the NCS2, the energy reduction is 5.36x
for the Yolo model and 1.73x for the U-Net model when
compared to the Raspberry Pi. Additionally, the Coral USB
consumes 32.15x and 17.76x less energy than the NCS2 for
running U-Net and Yolo models, respectively.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

o~
0t~ & = Model
o8 @ 3 Unet
I S ©
~ = e a 1 YOLOv8n
€ 103 =% 2 ~ n &
£ d 5z g4
Q o
C d
w 1ot g
o~
28
10t H T
S
™ N 42 " X A
R @ &P
2 S X9 & ’Z}
< WX e 4 £
R N N ®

Fig. 6: Dynamic energy comparison for all models and devices.

2) Development Boards: Compared to the Raspberry Pi, the
Coral Dev board achieves a 338.29x reduction in inference
energy for the Yolo model and a 329.49 reduction for the
U-Net model. When comparing the Jetson-low and Jetson-
high modes to the Raspberry Pi, the Jetson provides a 15.61 x
and 10.19x improvement in energy efficiency for the Yolo
model, respectively. For the U-Net model, there is a 5.91x
improvement in energy efficiency with Jetson-low and a 4.5x
improvement with Jetson-high.

VI. CONCLUSION AND FUTURE WORK

This paper addresses the challenge of real-time underwater
cave segmentation, a critical task for autonomous underwater
robots engaged in cave exploration and mapping. Given the
limited connectivity of AUVs to the surface and the con-
straints of space, relying on cloud services or powerful GPUs
for running deep learning-based segmentation models is not
practical. Therefore, our study explores the trade-offs involved
in deploying two different mobile segmentation models on
various edge platforms, with a focus on evaluating accuracy,
latency, power, and energy consumption.

Our experimental results reveal that the anticipated trade-
offs are not always accurate. Contrary to expectations, larger
models did not consistently deliver higher accuracy at the
expense of increased inference times and energy consumption.
Modern architectures like YOLOv8n, as well as special-
ized models such as U-Net for semantic segmentation, per-
formed better than much larger models like encoder-decoder
transformers. Our analysis uncovered several key insights:
(i) YOLOvV8n achieved notably high IoU values (72.5%), sur-
passing models that are 10 times larger, (ii) the FPS rate,
crucial for real-time operation, is significantly influenced by
the choice of edge platform. For example, running the U-
Net model on the Coral Dev Board achieved an underwater
cave segmentation speed of 79.24 FPS, meeting real-time
criteria. Similarly, the YOLOv8n model, which demonstrated
the highest accuracy, achieved 73.58 FPS on the same device.
It is important to consider that many robots use their own
processors and boards. In such cases, incorporating USB accel-
erators as co-processors can enhance real-time performance for
computation-intensive tasks like semantic segmentation. Our
findings indicate that a USB accelerator like the Coral USB

1410

also meets real-time requirements, delivering speeds of 42.95
FPS and 31.64 FPS for U-Net and YOLOvVS8n, respectively.
The comprehensive quantitative analyses presented in this
paper serve as a valuable guide for making informed design
decisions and managing trade-offs when integrating our cave
segmentation systems with underwater robots for cave explo-
ration and mapping missions. In future research, we plan to
explore the practical implications of these trade-offs, including
considerations like battery life, real-world accuracy, and the
thermal effects resulting from computing power dissipation.

ACKNOWLEDGMENT

This research has been supported in part by the NSF
grants 1943205, 2024741, 2340249, and the UF research
grant #132763. The authors also acknowledge the help of
the Woodville Karst Plain Project (WKPP), El Centro Inves-
tigador del Sistema Acuifero de Quintana Roo A.C. (CIN-
DAQ), Global Underwater Explorers (GUE), and Ricardo
Constantino, Project Baseline in collecting data, providing
access to underwater caves, and mentorship in underwater
cave exploration. Also, we thank Halcyon Dive Systems for
their equipment support, Teledyne FLIR LLC for cameras, and
KELDAN GmbH for underwater lighting solutions.

REFERENCES

[1] M. J. Lace and J. E. Mylroie, “The biological and archaeological
significance of coastal caves and karst features,” in Coastal Karst
Landforms, pp. 111-126, Springer, 2013.

D. Ford and P. Williams, Introduction to Karst, ch. 1, pp. 1-8. John
Wiley & Sons, Ltd, 2007.

L. Potts, P. Buzzacott, and P. Denoble, “Thirty years of american cave
diving fatalities,” Diving Hyperbaric Medicine, vol. 46, pp. 150-154,
2016.

P. L. Buzzacott, E. Zeigler, P. Denoble, and R. Vann, “American cave
diving fatalities 1969-2007,” International Journal of Aquatic Research
and Education, vol. 3, no. 2, p. 7, 2009.

B. Joshi, M. Xanthidis, S. Rahman, and I. Rekleitis, “High definition,
inexpensive, underwater mapping,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 1113-1121, 2022.

K. Richmond, C. Flesher, N. Tanner, V. Siegel, and W. C. Stone,
“Autonomous exploration and 3-D mapping of underwater caves with the
human-portable SUNFISH® AUV,” in Global Oceans 2020: Singapore—
US Gulf Coast, pp. 1-10, IEEE, 2020.

M. J. Islam, A. Quattrini Li, Y. A. Girdhar, and I. Rekleitis, “Computer
vision applications in underwater robotics and oceanography,” pp. 173—
204, CRC Press, 2024.

S. Exley, Basic cave diving: A blueprint for survival.
Section of the National Speleological Society, 1986.

K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, “Hamilton-
jacobi skeletons,” International Journal of Computer Vision, vol. 48,
no. 3, pp. 215-231, 2002.

B. Yu, R. Tibbetts, T. Barna, A. Morales, I. Rekleitis, and M. J. Islam,
“Weakly Supervised Caveline Detection For AUV Navigation Inside
Underwater Caves,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 9933-9940, IEEE, 2023.

M. J. Islam, Y. Xia, and J. Sattar, “Fast Underwater Image Enhancement
for Improved Visual Perception,” IEEE Robotics and Automation Letters
(RA-L), vol. 5, no. 2, pp. 3227-3234, 2020.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 234-241, Springer, 2015.
A. Abdullah, T. Barua, R. Tibbetts, Z. Chen, M. J. Islam, and I. Rek-
leitis, “Caveseg: Deep semantic segmentation and scene parsing for
autonomous underwater cave exploration,” in /EEE International Con-
ference on Robotics and Automation (ICRA), pp. 3781-3788, 2024.

(2]
[3

[t}

(41

(5

—

Cave Diving

=)
X

[10]

[11]

[12]

[13]

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

“Ultralytics: YOLOVS Docs, official
https://docs.ultralytics.com/.” Accessed: 2023-09-01.
M. J. Islam, C. Edge, Y. Xiao, P. Luo, M. Mehtaz, C. Morse, S. S. Enan,
and J. Sattar, “Semantic Segmentation of Underwater Imagery: Dataset
and Benchmark,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

K. Koreitem, F. Shkurti, T. Manderson, W.-D. Chang, J. C. G. Higuera,
and G. Dudek, “One-shot informed robotic visual search in the wild,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5800-5807, IEEE, 2020.

M. J. Islam, R. Wang, and J. Sattar, “SVAM: Saliency-guided Visual
Attention Modeling by Autonomous Underwater Robots,” in Robotics:
Science and Systems (RSS), (NY, USA), 2022.

J. Zhu, S. Yu, L. Gao, Z. Han, and Y. Tang, “Saliency-Based Diver
Target Detection and Localization Method,” Mathematical Problems in
Engineering, vol. 2020, 2020.

M. J. Islam, P. Luo, and J. Sattar, “Simultaneous Enhancement and
Super-Resolution of Underwater Imagery for Improved Visual Percep-
tion,” in Robotics: Science and Systems (RSS), 2020.

M. Modasshir, A. Quattrini Li, and I. Rekleitis, “Deep neural networks: a
comparison on different computing platforms,” in Canadian Conference
on Computer and Robot Vision (CRV), (Toronto, ON, Canada), pp. 383—
389, May 2018.

T. Manderson, J. C. G. Higuera, R. Cheng, and G. Dudek, “Vision-based
Autonomous Underwater Swimming in Dense Coral for Combined
Collision Avoidance and Target Selection,” in JEEE/RSJ Int. Conference
on Intelligent Robots and Systems (IROS), pp. 1885-1891, 2018.

Y. Girdhar and G. Dudek, “Modeling Curiosity in a Mobile Robot
for Long-term Autonomous Exploration and Monitoring,” Autonomous
Robots, vol. 40, no. 7, pp. 1267-1278, 2016.

Y. Girdhar, P. Giguere, and G. Dudek, “Autonomous Adaptive Ex-
ploration using Realtime Online Spatiotemporal Topic Modeling,” Int.
Journal of Robotics Research (IJRR), vol. 33, no. 4, pp. 645-657, 2014.
M. Modasshir, S. Rahman, O. Youngquist, and I. Rekleitis, “Coral
Identification and Counting with an Autonomous Underwater Vehicle,”
in [EEE International Conference on Robotics and Biomimetics (RO-
BIO), (Kuala Lumpur, Malaysia, (Finalist of T. J. Tarn Best Paper in
Robotics)), pp. 524-529, Dec. 2018.

M. Modasshir, S. Rahman, and I. Rekleitis, “Autonomous 3D Semantic
Mapping of Coral Reefs,” in 12th Conference on Field and Service
Robotics (FSR), (Tokyo, Japan), pp. 365-379, Aug. 2019.

M. Mohammadi, S.-E. Huang, T. Barua, I. Rekleitis, M. J. Islam, and
R. Zand, “Caveline detection at the edge for autonomous underwater
cave exploration and mapping,” in International Conference on Machine
Learning and Applications (ICMLA), pp. 1392-1398, 2023.

A. B. Rajeoni, B. Pederson, A. Firooz, H. Abdollahi, A. K. Smith,
D. G. Clair, S. M. Lessner, and H. Valafar, “Vascular system segmen-
tation using deep learning,” Artificial Intelligence: Machine Learning,
Convolutional Neural Networks and Large Language Models, vol. 1,
p- 85, 2024.

A. Bagheri Rajeoni, B. Pederson, D. G. Clair, S. M. Lessner, and
H. Valafar, “Automated measurement of vascular calcification in femoral
endarterectomy patients using deep learning,” Diagnostics, vol. 13,
no. 21, p. 3363, 2023.

M. Mohammadi, M. Morsali, S. Tabrizchi, B. C. Reidy, A. Roohi,
S. Angizi, and R. Zand, “Pixelprune: Optimizing aiot vision systems via
in-sensor segmentation and adaptive data transfer,” Authorea Preprints,
2024.

Y. Dai, T. Zheng, C. Xue, and L. Zhou, “Segmarsvit: Lightweight
mars terrain segmentation network for autonomous driving in planetary
exploration,” Remote Sensing, vol. 14, no. 24, p. 6297, 2022.

M. K. Ferguson, A. Ronay, Y.-T. T. Lee, and K. H. Law, “Detection
and segmentation of manufacturing defects with convolutional neural
networks and transfer learning,” Smart and sustainable manufacturing
systems, vol. 2, 2018.

P. P. Ray, “A review on tinyml: State-of-the-art and prospects,” Journal
of King Saud University-Computer and Information Sciences, vol. 34,
no. 4, pp. 1595-1623, 2022.

S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, vol. 126, p. 103514, 2022.

F. N. landola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer

website

1411

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

parameters andj 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510-4520, 2018.
A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,”
in IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 1314-1324, 2019.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 6848-6856, 2018.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), pp. 116-131, 2018.
R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection
system on mobile devices,” Advances in neural information processing
systems, vol. 31, 2018.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 2820-2828, 2019.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More
features from cheap operations,” in IEEE/CVF conference on computer
vision and pattern recognition, pp. 1580-1589, 2020.

S. Mehta and M. Rastegari, “Mobilevit: light-weight, general-
purpose, and mobile-friendly vision transformer,” arXiv preprint
arXiv:2110.02178, 2021.

T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam, “Netadapt: Platform-aware neural network adaptation for
mobile applications,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 285-300, 2018.

B. C. Reidy, M. Mohammadi, M. E. Elbtity, and R. Zand, “Work in
progress: Real-time transformer inference on edge ai accelerators,” in
2023 IEEE 29th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 341-344, 2023.

B. C. Reidy, M. Mohammadi, M. E. Elbtity, and R. Zand, “Efficient
deployment of transformer models on edge tpu accelerators: A real
system evaluation,” in Architecture and System Support for Transformer
Models (ASSYST ISCA), 2023.

M. Mohammadi, H. Smith, L. Khan, and R. Zand, “Facial expression
recognition at the edge: Cpu vs gpu vs vpu vs tpu,” in Proceedings of
the Great Lakes Symposium on VLSI 2023, GLSVLSI ’23, (New York,
NY, USA), p. 243-248, Association for Computing Machinery, 2023.
H. Smith, J. Seekings, M. Mohammadi, and R. Zand, “Realtime facial
expression recognition: Neuromorphic hardware vs. edge ai acceler-
ators,” in 2023 International Conference on Machine Learning and
Applications (ICMLA), pp. 1547-1552, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 10012-10022, 2021.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2881-2890, 2017.

T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Proceedings of the European
conference on computer vision (ECCV), pp. 418-434, 2018.

T.-Y. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2117—
2125, 2017.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

