
Edge-Centric Real-Time Segmentation for

Autonomous Underwater Cave Exploration

Mohammadreza Mohammadi

CSE, University of South Carolina

Columbia, SC 29208, USA

mohammm@email.sc.edu

Adnan Abdullah

ECE, University of Florida

Gainesville, FL 32611, USA

adnanabdullah@ufl.edu

Aishneet Juneja

CSE, University of South Carolina

Columbia, SC 29208, USA

junejaa@email.sc.edu

Ioannis Rekleitis

CSE, University of South Carolina

Columbia, SC 29208, USA

yiannisr@cse.sc.edu

Md Jahidul Islam

ECE, University of Florida

Gainesville, FL 32611, USA

jahid@ece.ufl.edu

Ramtin Zand

CSE, University of South Carolina

Columbia, SC 29208, USA

ramtin@cse.sc.edu

Abstract—This paper addresses the challenge of deploying
machine learning (ML)-based segmentation models on edge plat-
forms to facilitate real-time scene segmentation for Autonomous
Underwater Vehicles (AUVs) in underwater cave exploration
and mapping scenarios. We focus on three ML models—U-
Net, CaveSeg, and YOLOv8n—deployed on four edge platforms:
Raspberry Pi-4, Intel Neural Compute Stick 2 (NCS2), Google
Edge TPU, and NVIDIA Jetson Nano. Experimental results
reveal that mobile models with modern architectures, such as
YOLOv8n, and specialized models for semantic segmentation,
like U-Net, offer higher accuracy with lower latency. YOLOv8n
emerged as the most accurate model, achieving a 72.5 Intersection
Over Union (IoU) score. Meanwhile, the U-Net model deployed
on the Coral Dev board delivered the highest speed at 79.24
FPS and the lowest energy consumption at 6.23 mJ. The detailed
quantitative analyses and comparative results presented in this
paper offer critical insights for deploying cave segmentation
systems on underwater robots, ensuring safe and reliable AUV
navigation during cave exploration and mapping missions.

Index Terms—Edge Computing, Segmentation, Underwater
Robots, Visual Servoing.

I. INTRODUCTION & BACKGROUND

Underwater cave exploration is a challenging frontier in

robotics, offering significant potential for advancing our un-

derstanding of archaeology, hydrology, geology, and marine

biology [1]. Cave formations, sediments, and water chemistry

provide critical insights into historic climate conditions and

geological events. They also play a crucial role in monitoring

and tracking groundwater flows in Karst topographies, which

supply freshwater to nearly a quarter of the global popula-

tion [2]. However, these environments are often inaccessible

and hazardous to human divers due to their complex, confined

spaces and the absence of natural light [3], [4]. Hence, there

is a growing emphasis on using Autonomous Underwater

Vehicles (AUVs) and Remotely Operated Vehicles (ROVs)

for safe and efficient exploration of underwater caves [5]–[7].

Fig. 1 shows a cave expedition scenario with an ROV inside

an underwater cave system in Orange Grove, Florida.

The underwater caves explored by human scuba divers are

marked with a single and continuous line termed caveline [8]

Fig. 1: A BlueROV2 is operating inside an underwater cave

system by following its caveline in Orange Grove, FL.

that goes from open water (no overhead) to all the major

parts of the cave. Along with other navigation markers such

as arrows and cookies, the caveline provides the skeleton of

the cave i.e., a one-dimensional retraction of the 3D space [9]

marking the depth and orientation of the main passages. Thus,

detecting and following the caveline as navigation guidance

is paramount for robots in autonomous cave exploration and

mapping missions. Recently, Yu et al. [10] developed a robust

Vision Transformer (ViT)-based learning pipeline named CL-

ViT to detect and track cavelines by underwater robots for

vision-based navigation. CL-ViT learning pipeline has two

important features: (i) robustness to noise and image dis-

tortions [11]; and (ii) generalized model adaptation to data

from new locations. Furthermore, identifying the ground plane,

nearby obstacles, and navigational aids as well as human

divers is critical for safe robotic operations inside underwater

caves. Despite state-of-the-art (SOTA) detection performance,

the proposed models are computationally demanding and do

not run real-time on edge devices available onboard AUVs.

In this paper, we analyze several distinct models, deploy

mobile models on various edge AI accelerators, and compare

their computational performance. Specifically, we focus on

three models: (i) U-Net [12], a classic model for image

segmentation, (ii) CaveSeg [13], a SOTA model developed for

1404

2024 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/24/$31.00 ©2024 IEEE
DOI 10.1109/ICMLA61862.2024.00218

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ac
hi

ne
 Le

ar
ni

ng
 a

nd
 A

pp
lic

at
io

ns
 (I

CM
LA

) |
 9

79
-8

-3
50

3-
74

88
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

M
LA

61
86

2.
20

24
.0

02
18

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

underwater cave segmentation, and (iii) YOLOv8 [14], one of

the latest models from the YOLO family. We fine-tune these

models for an underwater cave exploration application and

deploy them on four edge platforms – Raspberry Pi-4, Intel™

Neural Compute Stick, Google Edge TPU, and Nvidia™

Jetson Nano – each with unique hardware characteristics that

require different deployment strategies.

Application Scenario. Robotic exploration of underwater

caves presents unique challenges, including navigating through

narrow passages, avoiding obstacles, and making real-time

operational decisions based on the surroundings objects and

scene geometry. The lightweight cave segmentation models

explored in this paper will enable AUVs to parse semantic in-

formation for detecting caveline and other navigation markers,

avoiding obstacles, and maintaining interaction with compan-

ion divers if necessary. We will deploy our developed models

onboard AUVs and investigate their utility in autonomous

underwater cave exploration and mapping applications.

II. RELATED WORK

A. Object Detection & Segmentation in Underwater Imagery

The scientific literature on subsea visual servoing explore

the challenges and capabilities of underwater robots for scene

understanding and safe navigation [7]. The fundamental task

for visually-guided AUVs is to perceive the environment via

cameras and other optical sensors, and then identify region-

of-interests in the scene to plan effective navigational deci-

sions [15]. Various data-driven models have been developed

for vision tasks such as fast visual search [16], [17], visual

enhancement [18], salient object localization [19], and oceanic

resource monitoring [20], [21]. For instance, Koreitem et

al. [16] developed an informed visual navigation system that

first learns a similarity operator between the scene and a

given exemplar image, and plans the visual searching path

accordingly in an unconstrained environment. In contrast,

model-free approaches are often better suited for autonomous

exploratory applications [22]. Girdhar et al. [23] designed a

low-dimensional semantic descriptor that encodes the environ-

mental observations, referred to as topics, for safe autonomous

control of AUVs. More recently, Modasshir et al. combined a

deep learning-based classifier with Visual Inertial Odometry

(VIO) to classify and count coral population density, via

generating semantic maps [24] and volumetric models [25].

Additionally, Mohammadi et al. [26] developed three models

for caveline detection: Vision Transformer, YOLOv8n, and U-

Net; the models were deployed on edge devices and optimized

for resource-constrained underwater robots in terms of energy

efficiency and low latency.

B. Object Detection & Tracking on Edge Devices

In recent years, machine learning techniques for segmen-

tation and object detection have been applied across various

fields, including healthcare [27], [28], autonomous vehicles

[29], space exploration [30], and manufacturing [31]. However,

real-time systems, particularly those deployed on edge devices,

face challenges such as latency, power dissipation, and en-

ergy consumption. Consequently, there has been a significant

focus on developing tiny machine learning systems that are

optimized for use on edge devices. In recent years, various

TinyML techniques [32] and lightweight deep visual mod-

els [33] have been introduced such as SqueezeNet [34], Mo-

bileNet [35]–[37], ShuffleNet [38], [39], PeleeNet [40], Mnas-

Net [41], Once-for-All (OFA) [42], GhostNet [43], Mobile-

Vit [44], and more. Iandola et al. [34] proposed a lightweight

model called SqueezeNet, reaching AlexNet-level accuracy on

ImageNet with 50× fewer parameters and less than 0.5MB

memory requirement. By employing streamlined architecture

with depth-wise separable convolutions, Howard et al. [35]

introduced the family of MobileNet models that are ideal

for single-board embedded platforms. The successor Mo-

bileNetv2 [36] uses inverted residual structures to reduce

computations, while MobileNetv3 [37] adopts a platform-

aware automated neural architecture search in hierarchical

search space along with NetAdapt [45], which further reduces

the components of the network.

On the other hand, Zhang et al. [38] used the ResNet

block coupling with innovations to devise ShuffleNet, which

is compatible with mobile devices. ShuffleNetv2 [39] further

improves the speed and accuracy by adopting a direct metric

(speed) rather than indirect metrics like FLOPs. Moreover,

Wang et al. [40] proposed a PeleeNet model by adopting

an assortment of computation-conserving methods, making a

compelling lightweight network. Tan et al. [41] presented a

novel mobile CNN-based model using an automated neural ar-

chitecture search approach. Besides, Cai et al. [42] introduced

OFA, a lightweight network that can meet different hardware

requirements. Furthermore, by merging the features of CNN

and ViT, Mehta et al. [44] presented a lightweight and versatile

vision transformer called MobileVit for edge devices. Previous

works have also explored the deployment of these models on

edge AI accelerators [46]–[49].

III. METHODOLOGY

A. Dataset Preparation

For data-driven training and evaluation on edge devices, we

utilize visual data curated from three geographically diverse

underwater cave systems: Devil’s system in Florida, US; Dos

Ojos Cenote in Quintana Roo, Mexico; and Cueva del Agua

in Murcia, Spain [10]. The dataset introduced in [13] contains

3350 images with pixel-level annotations for the following

13 semantic objects: caveline, first/immediate obstacle layer,

second/successive obstacle layer, obstacle-free open space,

ground plane, scuba divers, caveline-attached rocks, navigation

aids (arrows, reels, and cookies), and cave ornaments (stalac-

tites, stalagmites, and columns). Figure 2 shows three sample

images and corresponding labels from the dataset.

Among these categories, the caveline serves as the primary

navigation guide, marking a continuous route toward the

entrance/exit of a cave segment. Other navigation tools such as

arrows and cookies are attached to the caveline to indicate the

1405

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 2: Sample images and corresponding labels collected from

three underwater cave systems in (a) Devil’s Spring system,

FL, USA; (b) Cueva del Agua, Murcia, Spain; and (c) Dos

Ojos Cenote, QR, Mexico – are shown in each column.

nearest exit and the presence of other human divers, respec-

tively. The caveline is securely fastened on rocks, referred to as

attachment rocks, particularly found at corners and junctions

where the caveline changes direction. The caveline and other

navigation markers are annotated in yellow-red color tones to

maximize visual contrast against the obstacles in background.

Open passages, obstacles, and the ground plane are crucial

for path planning and autonomous navigation. The dataset

categorizes the obstacles into first layer (green) and second

layer (cyan) so that an AUV can anticipate its path and

efficiently maneuver toward safe, open areas.

Human scuba divers are a critical consideration for safe cave

exploration. Standard cave diving practices require the divers’

route to the surface to remain unobstructed. Hence, an AUV

would learn to detect scuba divers present in the scene and act

accordingly, such as dimming the lights and yielding to other

divers to ensure a clear path for their exit.

B. Targeted ML Models

1) YOLOv8: YOLOv8 [14] is a prominent model from the

YOLO family, known for its impressive performance across

various machine learning tasks, including object detection,

image classification, and instance segmentation. Developed by

Ultralytics, YOLOv8 is available in five different sizes, ranging

from nano to x-large. The nano size is optimized for edge and

mobile devices, while the x-large size is designed for high

accuracy on large servers. Given the constraints of underwater

robots, we selected YOLOv8n, which has only 3.4M parame-

ters and is suitable for resource-constrained edge devices. For

our application, we employed transfer learning, starting with

a YOLOv8n model pre-trained on the COCO dataset and fine-

tuning it for cave exploration using the targeted dataset.

2) U-Net: U-Net [12] is a convolutional neural network

(CNN) architecture designed for semantic segmentation tasks.

It comprises three main parts: a contracting path (encoder),

a bottleneck layer, and an expansive path (decoder). The

contracting path is similar to that of a typical CNN. It

includes blocks with two 3×3 convolutions (unpadded), each

followed by a rectified linear unit (ReLU) and a 2 × 2 max

pooling operation with stride 2 for downsampling. With each

downsampling step, the number of feature channels doubles.

At the center of U-Net, the bottleneck layer captures the most

critical features while preserving spatial information, as it

lacks pooling layers. The expansive path involves upsampling

the feature map at each step, followed by a 2× 2 convolution

(”up-convolution”) that halves the number of feature channels.

This is concatenated with the cropped feature map from the

contracting path, followed by two 3×3 convolutions, each with

a ReLU. Cropping is necessary due to the loss of border pixels

during convolution. The final layer uses a 1 × 1 convolution

to map each feature vector to the desired number of classes.

U-Net has 23 conv layers, resulting in over 31M parameters.

Due to the resource and power constraints of both robots

and edge devices, we optimized the network by replacing

the encoder with MobileNetV2. Additionally, we reduced the

number of kernels per layer in the bottleneck and decoder

sections. These modifications significantly decreased the net-

work’s parameters and MAC operations, resulting in a model

with only 4.33M parameters.

3) CaveSeg: The CaveSeg model used in this paper is in-

spired by the model developed in [13]. This model uses a light

transformer backbone and a multi-level pyramid head module

for feature extraction. Each RGB image is pre-processed into

4× 4 patches, arranged into a linear representation of tokens,

and then fed into the transformer network. The four-stage

backbone applies multi-head self-attention [50] on the feature

tokens using a windowed and shifted windowed module [51].

Each stage combines the patches with 2×2 neighboring pixels

and doubles the linear representation to maintain the number

of tokens. The window shifting technique is applied after each

transformation to improve feature extraction. The pyramid

head, inspired by [52], enhances higher-level features using

multi-scale convolution blocks [53]. The features extracted

by the backbone and the head module are upsampled and

aggregated into a hierarchical map representation [54]. These

features propagate into a dense convolution module that esti-

mates the semantic class for each pixel. The hyperparameters

are empirically tuned to achieve the best trade-off between ac-

curacy and computational cost. This model is larger compared

to the other two, with 35M parameters.

IV. EXPERIMENTAL SETUP

In this study, we deploy and evaluate our ML models on

a range of edge devices, including the Raspberry Pi, Intel

Movidius Neural Compute Stick 2 (NCS2), Nvidia Jetson

Nano, and Google Coral TPU, as shown in Figure 3. These

devices are widely used for various ML tasks, such as image

classification [48], semantic segmentation [26], and natural

language processing [47].

1) Raspberry Pi-4: The Raspberry Pi-4 board features a

Broadcom BCM2711 quad-core ARM Cortex-A72 CPU, with

operating frequencies that vary by model: 1.5GHz for the

2GB and 4GB RAM versions, and 1.8GHz for the 8GB RAM

version. Available in multiple configurations, the Raspberry Pi-

4 offers 2GB, 4GB, and 8GB of LPDDR4 RAM. The device

requires a 5V USB-C power supply, with the necessary current

rating depending on the intended use and peripherals.

1406

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Experimental setup. (a) Pi + NCS2 (b) Pi + Coral TPU

Coral Dev board (d) Jetson Nano.

2) Intel Neural Compute Stick: The Intel Neural Compute

Stick 2 (NCS2) is powered by the Intel Movidius-X Vision

Processing Unit (VPU), which is featured by 16 programmable

cores and a dedicated neural compute engine. The NCS2

operates at a base frequency of 700 MHz and includes 4 GB of

RAM. Intel provides the OpenVINO library, available in both

Python3 and C, to streamline the deployment of ML models

on the NCS2. This library includes a model optimizer that

converts models into a format suitable for NCS2 deployment.

Following this, the OpenVINO inference engine API can be

used to evaluate latency and power efficiency during inference.

3) Google Coral TPU: The Edge TPU serves as a co-

processor on Coral’s Dev Board, working alongside the

NXP i.MX 8M system-on-chip (SoC) within their system-

on-module (SoM) architecture. To run on the Coral Edge

TPU, models must be converted to TensorFlow Lite format

and quantized to 8-bit integer types. Coral also offers a

USB accelerator that can be integrated with a CPU as a co-

processor. With a power consumption of around two watts,

this accelerator is well-suited for low-power environments.

4) Nvidia Jetson Nano: The Jetson Nano is a modular

computer built around the Tegra X1 SoC, featuring a quad-

core ARM A57 processor and four 32-CUDA core processing

units. It comes with 4GB of memory. Nvidia™ provides two

operating modes for the Jetson Nano: in the low power mode

(Jetson-L), only two cores of the ARM A57 are active, with a

clock frequency of 0.9GHz, and the GPU runs at 0.64GHz. In

the high power mode (Jetson-H), all four cores of the ARM

A57 processor are active at a 1.5GHz frequency, while the

GPU operates at 0.92GHz. The Jetson Nano utilizes NVIDIA

TensorRT as its primary tool for ML model optimization.

V. PERFORMANCE EVALUATION

A. Deployment Considerations

After training and fine-tuning the ML models for the

underwater cave segmentation application, as outlined in the

previous section, we focus on deploying them across various

edge platforms. Using PyTorch for training, we exported the

models in ONNX format as an intermediary step. We then

evaluated the performance of these models on well-known

edge AI accelerators available in the market. Specifically, we

investigated two experimental setups: (1) USB accelerators,

where we compared the Intel NCS2 (Fig. 3a) with the Coral

TPU USB accelerator (Fig. 3b), and (2) Development Boards,

where we evaluated the Coral Edge TPU Dev Board (Fig. 3c)

against the Nvidia Jetson Nano (Fig. 3d). The USB accelera-

tors were integrated as co-processors with the Raspberry Pi.

Different configurations are required to run the models on

each of these edge devices. The Raspberry Pi-4 and Coral

TPU utilize TFLite models, with 32-bit floating-point (FP32)

precision for the Raspberry Pi-4 and 8-bit integer precision for

the Coral TPU. The Jetson platform uses TensorRT models

with FP16 precision. Additionally, we integrated the NCS2

accelerator as a co-processor with the Raspberry Pi-4, using

OpenVINO 2021 to convert the ONNX models into the

required format, employing FP16 operations.

As mentioned in Section III, the CaveSeg model is larger

than the other models and includes layers that are not sup-

ported by edge devices. Consequently, we deployed this model

exclusively on the Raspberry Pi as the baseline edge device.

Additionally, For the other models, due to the Edge TPU’s

inability to fully accommodate the entire architecture with

larger inputs, we resized the input dimensions for the Yolo and

U-Net models to 192× 192 and 128× 128, respectively. It is

important to note that with larger input sizes, some operations

are offloaded from the TPU to the CPU, which significantly

impacts system performance. This modification affects the

models’ accuracy, which is discussed in the following section.

B. Performance Metrics

Here, we evaluate the performance of the ML models using

a commonly used metric: Intersection Over Union (IOU). IOU

assesses the accuracy of object localization by calculating the

proportion of overlapping area between predicted and actual

labels. It is defined as:

IoU =
Area of Overlap

Area of Union
=

TP

TP+FP+FN
(1)

where, TP and FP represent true positives and false positives,

indicating the correct and incorrect selection of the class of

interest pixels, resepectively. FN represents false negatives,

indicating the pixels that are part of the target class in the

ground truth but are missed by the prediction.

We compared the results and sizes of our proposed models

with previous work, as shown in Table I. The YoLo outper-

forms other models with an IoU of 72.5%. The proposed U-

Net model follows closely, achieving an IoU of 65.55%. Ad-

ditionally, as illustrated in Table I, previous models, including

CaveSeg, are significantly larger than Yolo and the proposed

U-Net model, making them impractical for deployment on

edge devices. When comparing the sizes of Yolo and U-Net to

the CaveSeg model—which is already smaller than previous

studies—they are 10.29× and 8.08× smaller, respectively.

1407

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Quantitative performance comparisons of all models

in terms of IoU metrics and number of parameters.

Model # of Parameters IoU (%)

FastFCN 66 M 38.86
DeepLabV3+ 42 M 38.46

Segmenter 98 M 30.81
Segformer 82 M 35.36

Swin Transformer 120 M 48.11
CaveSeg 35 M 40.22

U-Net 4.33 M 65.55
Yolo 3.4 72.5

Pi

Pi+
TP

U

Pi+
NCS2

Jet
son

-L

Jet
son

-H

Cora
l D

ev

102

103

104

La
te

nc
y

(m
s) 15

37
.6

4

23
.2

8

52
3.

81

18
7.

77

13
7.

09

12
.6

2

19
57

.2
4

31
.6

1

22
2.

17

95
.4

0

69
.3

9

13
.5

9

Model
Unet
YOLOv8n

Fig. 4: Inference latency for all models and devices.

As mentioned in Section IV.A, deploying the Yolo and U-

Net models on the Edge TPU requires reducing their input

sizes to 192×192 and 128×128, respectively. This reduction

impacts the models’ accuracy. According to the results, the

Yolo model running on the Edge TPU achieves an IoU of

69.01%, while the U-Net model on the same device reaches

62.76%. Compared to the original models, this represents a

reduction in IoU of 3.49% for Yolo and 2.72% for U-Net.

Despite this decrease, these models still offer significantly

better accuracy than previous works. Table III provides the

U-Net and YOLOv8n segmentation outputs for three sample

images from the dataset.

C. Inference Latency Measurement

To evaluate inference latency, we first conducted one hun-

dred inference operations for each model on each edge plat-

form and measured the total latency. We then calculated

the average inference time per image. Given the size and

complexity of the CaveSeg model, we only ran it on the

Raspberry Pi. The latency for processing a single input with

the CaveSeg model is 35 seconds, which is significantly longer

than the latency of the other two models on the same device.

Figure 4 displays the inference latency results for all plat-

forms running YOLOv8n and U-Net. The results show that

all edge accelerators offer significant speedup compared to

the baseline Raspberry Pi 4 CPU for both models. The Coral

Dev Board achieved the fastest inference times, with 12.62

ms per inference for U-Net and 13.59 ms for Yolo. Compared

to the baseline Raspberry Pi, this represents a 144× speedup

for Yolo and a 121.84× speedup for U-Net, highlighting the

effectiveness of the Coral Dev Board for this application. For

TABLE II: FPS rates for models running on Nvidia™ A100

GPU, Coral Devboard, and Coral USB as a co-processor.

Model Device FPS

FastFCN Nvidia™ A100 GPU 16.89
DeepLabV3+ Nvidia™ A100 GPU 15.04

Segmenter Nvidia™ A100 GPU 13.73
Segformer Nvidia™ A100 GPU 10.92

Swin Transformer Nvidia™ A100 GPU 12.39
CaveSeg Nvidia™ A100 GPU 19.78

Coral Dev 79.24
U-Net

Pi + Coral USB 42.95
Coral Dev 73.58

YOLOv8n
Pi + Coral USB 31.64

both Yolo and U-Net, the order of inference latency from

shortest to longest is as follows: Coral Dev Board, Raspberry

Pi + Coral USB, Jetson high power mode, Jetson low power

mode, Raspberry Pi + NCS2, and Raspberry Pi.

1) USB Accelerators: For the USB accelerators, both the

NCS2 and Coral USB accelerators demonstrated improve-

ments over the baseline Raspberry Pi 4 for both the Yolo

and U-Net models. Specifically, running Yolo on the Coral

USB resulted in a 61.91× speedup, while the NCS2 showed

an 8.81× improvement. For the U-Net model, the Coral

USB and NCS2 achieved a 66.05× and 2.93× improvement,

respectively. These results indicate that integrating compact

USB accelerators into the robot can significantly enhance

system performance.

2) Development Boards: Both development boards provide

significant speedups compared to the Raspberry Pi. For the

Yolo model, we observe a 20.52× improvement in the Jetson

low power mode and a 28.21× improvement in the Jetson high

power mode over the baseline device. The Coral Dev Board

offers an even greater improvement, with a 144.02× increase

in performance. For the U-Net model, the Jetson board shows

an 8.19× improvement in low power mode and an 11.22×

improvement in high power mode, while the Coral Dev Board

achieves a 121.84× improvement over the baseline device.

Table II presents a comparison between our proposed mod-

els and other studies in terms of frame per second (FPS)

ratio. Except for Yolo and the proposed U-Net model, none of

the models can be deployed on edge devices due to resource

limitations. Therefore, we deployed the larger models on a

Nvidia™ A100 GPU, while Yolo and U-Net were deployed

on the Coral Dev Board, which demonstrated superior perfor-

mance in terms of latency compared to other edge devices.

As listed in Table II, U-Net running on the Coral Dev Board

achieves the highest frame rate at 79.24 FPS, followed closely

by Yolo on the same device with 73.58 FPS. We also include

the FPS ratio for running mobile models on the Coral USB as

a co-processor, achieving 42.95 FPS for YOLOv8n and 31.64

FPS for U-Net. These results demonstrate that both models

are well-suited for real-time underwater cave segmentation

applications. Particularly, since many robots are equipped with

their own processors, integrating a co-processor like the Coral

USB makes real-time applications feasible. Among the larger

models running on the Nvidia™ A100 GPU, CaveSeg achieves

the highest FPS of 19.78.

1408

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Qualitative analysis indicates that YOLOv8n outperforms the U-Net model in pixel accuracy and localization. The

results for CaveSeg are not shown, as our focus is on mobile models that are suitable for deployment on edge devices.

Original Image Label
Model Outputs

U-Net YOLOv8n

D. Inference Power Measurement

To assess power dissipation during inference for the various

models deployed on Raspberry Pi-4, NCS2, and Edge TPU

devices, we used the MakerHawk UM34C USB multimeter,

as depicted in Figure 3a. For the Jetson Nano, we utilized its

internal sensors to monitor CPU and GPU power dissipation.

We ran each model for five minutes, with power dissipation

measured at a rate of one sample per second. Figure 5 shows

the dynamic power measurements for both models across all

platforms. The Coral Dev Board exhibits the lowest power

dissipation compared to the other devices. Additionally, the

figure indicates that power dissipation is comparable for both

models on all platforms except for Pi+Coral TPU.

1) USB Accelerators: For the USB accelerators, both the

NCS2 and Coral USB accelerator generally exhibit higher

power dissipation compared to the baseline Raspberry Pi, with

the exception of the Coral USB when running YOLOv8n. In

this case, there is a 1.53× reduction in power dissipation.

Additionally, when comparing the two USB accelerators, the

Coral USB dissipates 2.52× less power for running Yolo and

1.43× less power for U-Net.

2) Development Boards: Compared to the Raspberry Pi, the

Coral Dev Board offers a 2.67× reduction in power dissipation

for the Yolo model and a 2.71× reduction for the U-Net model.

In contrast, the Jetson Nano shows higher power dissipation

compared to the Raspberry Pi. Specifically, in low power

mode, the Jetson Nano’s power dissipation increases by 1.32×

for the Yolo model and 1.39× for the U-Net model. In high

power mode, the increases are 2.77× for the Yolo model and

2.5× for the U-Net model.

Pi

Pi+
TP

U

Pi+
NCS2

Jet
son

-L

Jet
son

-H

Cora
l D

ev

100

101

Po
we

r (
W

)

1.
33 1.

58 2.
26

1.
85

3.
33

0.
49

1.
36

0.
89

2.
24

1.
79

3.
77

0.
51

Model
Unet
YOLOv8n

Fig. 5: Dynamic power comparison for all models and devices.

E. Inference Energy Measurement

Figure 6 provides a comparative analysis of inference

energy results. All edge AI accelerators offer a significant

improvement in inference energy efficiency compared to the

baseline Raspberry Pi. For instance, the Coral Dev board

outperforms other edge devices by consuming only 6.23mJ

for running the U-Net model and 6.96mJ for the Yolo model.

1) USB Accelerators: The results show that the Coral USB

consumes 95.14× less energy for running the Yolo model and

55.71× less for the U-Net model compared to the baseline

Raspberry Pi. For the NCS2, the energy reduction is 5.36×

for the Yolo model and 1.73× for the U-Net model when

compared to the Raspberry Pi. Additionally, the Coral USB

consumes 32.15× and 17.76× less energy than the NCS2 for

running U-Net and Yolo models, respectively.

1409

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

Pi

Pi+
TP

U

Pi+
NCS2

Jet
son

-L

Jet
son

-H

Cora
l D

ev

101

102

103

104

En
er

gy
 (m

J)

20
52

.7
5

36
.8

5

11
84

.8
7

34
7.

01

45
5.

96

6.
23

26
67

.7
2

28
.0

4

49
8.

11

17
0.

87

26
1.

89

6.
96

Model
Unet
YOLOv8n

Fig. 6: Dynamic energy comparison for all models and devices.

2) Development Boards: Compared to the Raspberry Pi, the

Coral Dev board achieves a 338.29× reduction in inference

energy for the Yolo model and a 329.49 reduction for the

U-Net model. When comparing the Jetson-low and Jetson-

high modes to the Raspberry Pi, the Jetson provides a 15.61×

and 10.19× improvement in energy efficiency for the Yolo

model, respectively. For the U-Net model, there is a 5.91×

improvement in energy efficiency with Jetson-low and a 4.5×

improvement with Jetson-high.

VI. CONCLUSION AND FUTURE WORK

This paper addresses the challenge of real-time underwater

cave segmentation, a critical task for autonomous underwater

robots engaged in cave exploration and mapping. Given the

limited connectivity of AUVs to the surface and the con-

straints of space, relying on cloud services or powerful GPUs

for running deep learning-based segmentation models is not

practical. Therefore, our study explores the trade-offs involved

in deploying two different mobile segmentation models on

various edge platforms, with a focus on evaluating accuracy,

latency, power, and energy consumption.

Our experimental results reveal that the anticipated trade-

offs are not always accurate. Contrary to expectations, larger

models did not consistently deliver higher accuracy at the

expense of increased inference times and energy consumption.

Modern architectures like YOLOv8n, as well as special-

ized models such as U-Net for semantic segmentation, per-

formed better than much larger models like encoder-decoder

transformers. Our analysis uncovered several key insights:

(i)YOLOv8n achieved notably high IoU values (72.5%), sur-

passing models that are 10 times larger, (ii) the FPS rate,

crucial for real-time operation, is significantly influenced by

the choice of edge platform. For example, running the U-

Net model on the Coral Dev Board achieved an underwater

cave segmentation speed of 79.24 FPS, meeting real-time

criteria. Similarly, the YOLOv8n model, which demonstrated

the highest accuracy, achieved 73.58 FPS on the same device.

It is important to consider that many robots use their own

processors and boards. In such cases, incorporating USB accel-

erators as co-processors can enhance real-time performance for

computation-intensive tasks like semantic segmentation. Our

findings indicate that a USB accelerator like the Coral USB

also meets real-time requirements, delivering speeds of 42.95

FPS and 31.64 FPS for U-Net and YOLOv8n, respectively.

The comprehensive quantitative analyses presented in this

paper serve as a valuable guide for making informed design

decisions and managing trade-offs when integrating our cave

segmentation systems with underwater robots for cave explo-

ration and mapping missions. In future research, we plan to

explore the practical implications of these trade-offs, including

considerations like battery life, real-world accuracy, and the

thermal effects resulting from computing power dissipation.

ACKNOWLEDGMENT

This research has been supported in part by the NSF

grants 1943205, 2024741, 2340249, and the UF research

grant #132763. The authors also acknowledge the help of

the Woodville Karst Plain Project (WKPP), El Centro Inves-

tigador del Sistema Acuı́fero de Quintana Roo A.C. (CIN-

DAQ), Global Underwater Explorers (GUE), and Ricardo

Constantino, Project Baseline in collecting data, providing

access to underwater caves, and mentorship in underwater

cave exploration. Also, we thank Halcyon Dive Systems for

their equipment support, Teledyne FLIR LLC for cameras, and

KELDAN GmbH for underwater lighting solutions.

REFERENCES

[1] M. J. Lace and J. E. Mylroie, “The biological and archaeological
significance of coastal caves and karst features,” in Coastal Karst

Landforms, pp. 111–126, Springer, 2013.

[2] D. Ford and P. Williams, Introduction to Karst, ch. 1, pp. 1–8. John
Wiley & Sons, Ltd, 2007.

[3] L. Potts, P. Buzzacott, and P. Denoble, “Thirty years of american cave
diving fatalities,” Diving Hyperbaric Medicine, vol. 46, pp. 150–154,
2016.

[4] P. L. Buzzacott, E. Zeigler, P. Denoble, and R. Vann, “American cave
diving fatalities 1969-2007,” International Journal of Aquatic Research

and Education, vol. 3, no. 2, p. 7, 2009.

[5] B. Joshi, M. Xanthidis, S. Rahman, and I. Rekleitis, “High definition,
inexpensive, underwater mapping,” in IEEE International Conference on

Robotics and Automation (ICRA), pp. 1113–1121, 2022.

[6] K. Richmond, C. Flesher, N. Tanner, V. Siegel, and W. C. Stone,
“Autonomous exploration and 3-D mapping of underwater caves with the
human-portable SUNFISH® AUV,” in Global Oceans 2020: Singapore–

US Gulf Coast, pp. 1–10, IEEE, 2020.

[7] M. J. Islam, A. Quattrini Li, Y. A. Girdhar, and I. Rekleitis, “Computer
vision applications in underwater robotics and oceanography,” pp. 173–
204, CRC Press, 2024.

[8] S. Exley, Basic cave diving: A blueprint for survival. Cave Diving
Section of the National Speleological Society, 1986.

[9] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, “Hamilton-
jacobi skeletons,” International Journal of Computer Vision, vol. 48,
no. 3, pp. 215–231, 2002.

[10] B. Yu, R. Tibbetts, T. Barna, A. Morales, I. Rekleitis, and M. J. Islam,
“Weakly Supervised Caveline Detection For AUV Navigation Inside
Underwater Caves,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 9933–9940, IEEE, 2023.

[11] M. J. Islam, Y. Xia, and J. Sattar, “Fast Underwater Image Enhancement
for Improved Visual Perception,” IEEE Robotics and Automation Letters

(RA-L), vol. 5, no. 2, pp. 3227–3234, 2020.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and

Computer-Assisted Intervention (MICCAI), pp. 234–241, Springer, 2015.

[13] A. Abdullah, T. Barua, R. Tibbetts, Z. Chen, M. J. Islam, and I. Rek-
leitis, “Caveseg: Deep semantic segmentation and scene parsing for
autonomous underwater cave exploration,” in IEEE International Con-

ference on Robotics and Automation (ICRA), pp. 3781–3788, 2024.

1410

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

[14] “Ultralytics: YOLOv8 Docs, official website =
https://docs.ultralytics.com/.” Accessed: 2023-09-01.

[15] M. J. Islam, C. Edge, Y. Xiao, P. Luo, M. Mehtaz, C. Morse, S. S. Enan,
and J. Sattar, “Semantic Segmentation of Underwater Imagery: Dataset
and Benchmark,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2020.

[16] K. Koreitem, F. Shkurti, T. Manderson, W.-D. Chang, J. C. G. Higuera,
and G. Dudek, “One-shot informed robotic visual search in the wild,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 5800–5807, IEEE, 2020.

[17] M. J. Islam, R. Wang, and J. Sattar, “SVAM: Saliency-guided Visual
Attention Modeling by Autonomous Underwater Robots,” in Robotics:

Science and Systems (RSS), (NY, USA), 2022.

[18] J. Zhu, S. Yu, L. Gao, Z. Han, and Y. Tang, “Saliency-Based Diver
Target Detection and Localization Method,” Mathematical Problems in

Engineering, vol. 2020, 2020.

[19] M. J. Islam, P. Luo, and J. Sattar, “Simultaneous Enhancement and
Super-Resolution of Underwater Imagery for Improved Visual Percep-
tion,” in Robotics: Science and Systems (RSS), 2020.

[20] M. Modasshir, A. Quattrini Li, and I. Rekleitis, “Deep neural networks: a
comparison on different computing platforms,” in Canadian Conference

on Computer and Robot Vision (CRV), (Toronto, ON, Canada), pp. 383–
389, May 2018.

[21] T. Manderson, J. C. G. Higuera, R. Cheng, and G. Dudek, “Vision-based
Autonomous Underwater Swimming in Dense Coral for Combined
Collision Avoidance and Target Selection,” in IEEE/RSJ Int. Conference

on Intelligent Robots and Systems (IROS), pp. 1885–1891, 2018.

[22] Y. Girdhar and G. Dudek, “Modeling Curiosity in a Mobile Robot
for Long-term Autonomous Exploration and Monitoring,” Autonomous

Robots, vol. 40, no. 7, pp. 1267–1278, 2016.

[23] Y. Girdhar, P. Giguere, and G. Dudek, “Autonomous Adaptive Ex-
ploration using Realtime Online Spatiotemporal Topic Modeling,” Int.

Journal of Robotics Research (IJRR), vol. 33, no. 4, pp. 645–657, 2014.

[24] M. Modasshir, S. Rahman, O. Youngquist, and I. Rekleitis, “Coral
Identification and Counting with an Autonomous Underwater Vehicle,”
in IEEE International Conference on Robotics and Biomimetics (RO-

BIO), (Kuala Lumpur, Malaysia, (Finalist of T. J. Tarn Best Paper in
Robotics)), pp. 524–529, Dec. 2018.

[25] M. Modasshir, S. Rahman, and I. Rekleitis, “Autonomous 3D Semantic
Mapping of Coral Reefs,” in 12th Conference on Field and Service

Robotics (FSR), (Tokyo, Japan), pp. 365–379, Aug. 2019.

[26] M. Mohammadi, S.-E. Huang, T. Barua, I. Rekleitis, M. J. Islam, and
R. Zand, “Caveline detection at the edge for autonomous underwater
cave exploration and mapping,” in International Conference on Machine

Learning and Applications (ICMLA), pp. 1392–1398, 2023.

[27] A. B. Rajeoni, B. Pederson, A. Firooz, H. Abdollahi, A. K. Smith,
D. G. Clair, S. M. Lessner, and H. Valafar, “Vascular system segmen-
tation using deep learning,” Artificial Intelligence: Machine Learning,

Convolutional Neural Networks and Large Language Models, vol. 1,
p. 85, 2024.

[28] A. Bagheri Rajeoni, B. Pederson, D. G. Clair, S. M. Lessner, and
H. Valafar, “Automated measurement of vascular calcification in femoral
endarterectomy patients using deep learning,” Diagnostics, vol. 13,
no. 21, p. 3363, 2023.

[29] M. Mohammadi, M. Morsali, S. Tabrizchi, B. C. Reidy, A. Roohi,
S. Angizi, and R. Zand, “Pixelprune: Optimizing aiot vision systems via
in-sensor segmentation and adaptive data transfer,” Authorea Preprints,
2024.

[30] Y. Dai, T. Zheng, C. Xue, and L. Zhou, “Segmarsvit: Lightweight
mars terrain segmentation network for autonomous driving in planetary
exploration,” Remote Sensing, vol. 14, no. 24, p. 6297, 2022.

[31] M. K. Ferguson, A. Ronay, Y.-T. T. Lee, and K. H. Law, “Detection
and segmentation of manufacturing defects with convolutional neural
networks and transfer learning,” Smart and sustainable manufacturing

systems, vol. 2, 2018.

[32] P. P. Ray, “A review on tinyml: State-of-the-art and prospects,” Journal

of King Saud University-Computer and Information Sciences, vol. 34,
no. 4, pp. 1595–1623, 2022.

[33] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, vol. 126, p. 103514, 2022.

[34] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint

arXiv:1704.04861, 2017.
[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference

on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.
[37] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,

Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,”
in IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 1314–1324, 2019.

[38] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,
pp. 6848–6856, 2018.

[39] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the

European conference on computer vision (ECCV), pp. 116–131, 2018.
[40] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection

system on mobile devices,” Advances in neural information processing

systems, vol. 31, 2018.
[41] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,

and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pp. 2820–2828, 2019.
[42] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train

one network and specialize it for efficient deployment,” arXiv preprint

arXiv:1908.09791, 2019.
[43] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More

features from cheap operations,” in IEEE/CVF conference on computer

vision and pattern recognition, pp. 1580–1589, 2020.
[44] S. Mehta and M. Rastegari, “Mobilevit: light-weight, general-

purpose, and mobile-friendly vision transformer,” arXiv preprint

arXiv:2110.02178, 2021.
[45] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,

and H. Adam, “Netadapt: Platform-aware neural network adaptation for
mobile applications,” in Proceedings of the European Conference on

Computer Vision (ECCV), pp. 285–300, 2018.
[46] B. C. Reidy, M. Mohammadi, M. E. Elbtity, and R. Zand, “Work in

progress: Real-time transformer inference on edge ai accelerators,” in
2023 IEEE 29th Real-Time and Embedded Technology and Applications

Symposium (RTAS), pp. 341–344, 2023.
[47] B. C. Reidy, M. Mohammadi, M. E. Elbtity, and R. Zand, “Efficient

deployment of transformer models on edge tpu accelerators: A real
system evaluation,” in Architecture and System Support for Transformer

Models (ASSYST ISCA), 2023.
[48] M. Mohammadi, H. Smith, L. Khan, and R. Zand, “Facial expression

recognition at the edge: Cpu vs gpu vs vpu vs tpu,” in Proceedings of

the Great Lakes Symposium on VLSI 2023, GLSVLSI ’23, (New York,
NY, USA), p. 243–248, Association for Computing Machinery, 2023.

[49] H. Smith, J. Seekings, M. Mohammadi, and R. Zand, “Realtime facial
expression recognition: Neuromorphic hardware vs. edge ai acceler-
ators,” in 2023 International Conference on Machine Learning and

Applications (ICMLA), pp. 1547–1552, 2023.
[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.
[51] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and

B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on

computer vision, pp. 10012–10022, 2021.
[52] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing

network,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 2881–2890, 2017.
[53] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual

parsing for scene understanding,” in Proceedings of the European

conference on computer vision (ECCV), pp. 418–434, 2018.
[54] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature pyramid networks for object detection,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 2117–
2125, 2017.

1411

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 09,2025 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.

