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C L I M AT O L O G Y

Anthropogenic warming has ushered in an era of 
temperature-dominated droughts in the western 
United States
Yizhou Zhuang1, Rong Fu1*, Joel Lisonbee2,3, Amanda M. Sheffield2,3,  
Britt A. Parker2, Genoveva Deheza2

Historically, meteorological drought in the western United States (WUS) has been driven primarily by precipita-
tion deficits. However, our observational analysis shows that, since around 2000, rising surface temperature and 
the resulting high evaporative demand have contributed more to drought severity (62%) and coverage (66%) over 
the WUS than precipitation deficit. This increase in evaporative demand during droughts, mostly attributable to 
anthropogenic warming according to analyses of both observations and climate model simulations, is the main 
cause of the increased drought severity and coverage. The unprecedented 2020–2022 WUS drought exemplifies 
this shift in drought drivers, with high evaporative demand accounting for 61% of its severity, compared to 39% 
from precipitation deficit. Climate model simulations corroborate this shift and project that, under the fossil-
fueled development scenario (SSP5-8.5), droughts like the 2020–2022 event will transition from a one-in-more-
than-a-thousand-year event in the pre-2022 period to a 1-in-60-year event by the mid-21st century and to a 
1-in-6-year event by the late-21st century.

INTRODUCTION
The western United States (WUS) has been experiencing a pro-
longed dry period in the 21st century. The first two decades have 
been characterized by extended periods of extremely low precipita-
tion, record-setting heat waves, and a substantial decline in the 
Colorado River flow, which have led to imposed water restrictions 
and reduced hydropower production (1–4). This contemporary dry 
period is comparable to the worst “megadrought” in the paleocli-
matic records (5–7) and may represent a warming-induced shift 
toward a more arid climate for the region (8–10).

Recent droughts in the WUS have been costly and far-reaching. 
The 2020–2022 drought experienced frequent power shortages from 
hydropower production, intense and widespread wildfires, low res-
ervoir inflows, reduced agricultural productivity, and ecosystem 
degradation (3). Other studies on recent drought impacts show 
surges in respiratory and cardiovascular diseases, mental health dis-
orders, and other public health issues associated with drought (11). 
These impacts are caused not only by precipitation deficit but also by 
high temperature and the resulting evaporative demand.

Meteorological droughts usually result from the cumulative im-
balance between precipitation and evaporative demand. Historically, 
precipitation deficit has been the dominant factor in WUS droughts, 
whereas evaporative demand, largely controlled by surface tempera-
ture (Materials and Methods and fig. S1), has been a minor contribu-
tor to drought severity (12, 13). However, as surface temperatures 
continue to rise in recent decades, droughts have become not only 
more pervasive but also more impactful over the WUS. The increas-
ing concurrence and coupling between precipitation deficit and heat 
waves amplify water and energy demands; intensify heat and water 
stresses for humans, animals, and plants; and worsen air and water 

pollution (14). These changes are broadening the scope of drought 
dynamics and impacts, challenging our traditional precipitation 
deficit–centered definition, understanding, monitoring, and man-
agement strategy of droughts. As the temperature-driven increase in 
evaporative demand becomes a main drought driver (3), droughts in 
the WUS will be more intense, last longer, and become more fre-
quent and widespread despite uncertainties in future precipitation 
changes. Has a tipping point been reached? Has the main drought 
driver shifted from precipitation deficit to high evaporative demand? 
If so, when did this change occur? To what extent can long-term 
changes in these two drivers be attributable to climate change versus 
natural climate variability, and how have these changes contributed 
to increasing drought severity and coverage over the WUS? Answer-
ing these questions will provide insight into needed adaptation mea-
sures for future droughts.

The role of temperature or evaporative demand in drought has 
been explored in previous studies. Research has indicated that evap-
orative demand has become an increasingly impactful contributor to 
the prolonged dryness and droughts over the WUS (3, 5, 6, 15–18). 
They found, for example, that temperature has increasingly contrib-
uted to droughts in the 21st century compared to previous periods 
(18). Precipitation deficit and high temperature often co-occur dur-
ing major drought events in current and paleoclimates over the 
WUS (19–21). However, these studies did not quantify whether pre-
cipitation deficit or temperature-induced high evaporative demand 
is the leading cause. Although the increase in air temperature has led 
to higher evaporative demand and increased drought severity, exist-
ing research studies (22–24) have indicated that precipitation still 
remains the primary driver of drought in the past and current cli-
mate over the WUS, among other regions. However, the rapid in-
creases in vapor pressure deficit (VPD) over the most recent decade, 
especially during the 2020–2022 drought (3), highlight the potential 
for evaporative demand to rival or even surpass precipitation deficit 
as a primary drought driver, and the urgent need to investigate such 
a possibility.
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Previous observational studies have demonstrated the influences of 
precipitation and evaporative demand on droughts (16, 22, 23, 25, 26) 
without explicitly evaluating the temporal evolution of these changes 
or disentangling the influences of natural variability versus anthropo-
genic forcing. Because both natural variability and anthropogenic forc-
ing can modulate the relative contributions of precipitation versus 
evaporative demand, distinguishing their individual roles in droughts 
is crucial for determining whether the observed changes are natural 
and cyclical or long-term driven by climate change. Climate model 
simulations have been used to investigate the influences of climate 
change (27, 28). However, many climate models used in these studies 
do not accurately represent the observed variations at regional scales, 
such as over the WUS with complex topography, diverse landscapes, 
and high natural climate variability. To address this gap, we apply a re-
cently developed observation-based circulation analog approach (29) 
to quantify the influences of natural climate variability and anthropo-
genic warming on both precipitation and evaporative demand anoma-
lies, complementing the model-based attribution studies. The unique 
strength of this approach is its ability to more realistically quantify the 
contribution of natural climate variability to the observed variations in 
precipitation and evaporative demand than done by climate model 
simulations. This, in turn, allows a more realistic estimate of climate 
change’s influence on the observed changes in these variables of inter-
est (29). We also compare our observation-based results to those based 
on climate model simulations, confirming the robustness of the shift in 
drought drivers, and investigate how model-projected increases in 
evaporative demand will affect drought severity and frequency over 
the WUS in the foreseeable future.

RESULTS
Determine the changes in drought severity, coverage, 
and drivers
Warming temperatures enhance the atmosphere’s capacity to hold 
water vapor, leading to increased evaporative demand at the land 
surface. Evaporative demand is commonly quantified by VPD (3) or 
potential evapotranspiration (PET) (30). Although VPD is simpler 
and widely used, it cannot be directly compared to precipitation 
deficit due to differences in their units. We have chosen to use PET 
because it quantifies the maximum moisture flux leaving the surface 
due to evaporative demand and is directly comparable to precipita-
tion (P). The Climatic Research Unit (CRU) data (31) are a popular 
choice for PET analysis (22, 25); however, this dataset has an unreal-
istic wetting trend in the southwestern US (32) (Supplementary Text 
and figs. S2 and S3) that contradicts more recent research findings 
(33). Thus, we use the fifth-generation European Centre for 
Medium-Range Weather Forecasts (ECMWF) atmospheric reanaly-
sis (ERA5) (34) for PET-related variables and Climate Prediction 
Center (CPC) precipitation (35) data, for their long-standing re-
cords, availability of daily data, and proven reliability (33, 36). For 
simplicity, we will refer to the P or PET calculated from these 
observation-constrained reanalyses as “observed” hereafter.

We use P′−PET′ to gauge drought severity, a widely accepted ap-
proach in the literature (22, 30, 37–39), where P′ and PET′ are devia-
tions of P and PET from their respective 1948–1999 climatological 
averages, with the seasonal cycle removed (Materials and Methods). To 
focus on long-term droughts because they have stronger impacts on 
hydrology and ecology, we use the 12-month moving cumulative P′−
PET′ (assigned to the last month of each sliding 12-month window). 

For example, the drought severity reported for September 2020 reflects 
the cumulative P′−PET′ from October 2019 through September 2020. 
Throughout this study, we refer to this 12-month moving cumulative 
P′−PET′ as P′−PET′, unless stated otherwise. Drought periods are de-
fined when P′−PET′ falls below its local 30th percentile value (calcula-
tion of P′−PET′ percentile are detailed in Materials and Methods) for 
the climatological period of 1948–1999, a percentile threshold recom-
mended by the US Drought Monitor (USDM) (40). The relative impor-
tance of precipitation and evaporative demand during drought periods 
can be evaluated by the ratio of P′/(P′−PET′) and −PET′/(P′−PET′), 
respectively. The negative sign before the PET′ term indicates that 
higher PET′ (greater evaporative demand) reduces available moisture 
and thus worsens drought severity.

P′−PET′ exhibits a strong correlation with soil moisture data from 
various sources and other drought indices (Supplementary Text, fig. 
S4, and table S1) used by the USDM (40), such as the Palmer Drought 
Severity Index and Palmer moisture anomaly index (Z-index) (41). 
However, PET′ is higher than the actual evapotranspiration anomaly 
over the WUS when soil moisture cannot meet the evaporative de-
mand. As such, P′−PET′ has larger magnitudes than actual soil mois-
ture loss, especially in semiarid and arid regions with limited soil 
water capacity, such as the southwestern US (Supplementary Text and 
figs. S5 and S6). In this regard, while P′−PET′ could overestimate 
drought severity when compared to soil moisture anomalies, espe-
cially in arid regions, this is not necessarily an overestimation of 
drought impact in general. Higher PET′ often implies drought im-
pacts beyond those of increased evapotranspiration or decreased soil 
moisture, such as escalating plant water stress and water demand (42), 
which are not captured by soil moisture alone. However, our study 
does not aim to determine whether such overestimation actually oc-
curs or whether P′−PET′ accurately captures the broader drought ef-
fects on agricultural and ecological systems. Rather, we focus on 
partitioning the relative contributions of P′ and PET′ to the observed 
drought conditions, based on the demonstrated overall consistency 
between P′−PET′ and soil moisture anomalies within our study region.

We demonstrate the influence of P′ and PET′ on drought sever-
ity and coverage in 1948–2022 over the WUS in Fig. 1. The time se-
ries in Fig. 1A shows the evolution of drought severity P′−PET′ and 
its two components, P′ and −PET′. Throughout most of the period, 
the mean P′−PET′ closely follows its P′ component most of the 
time, especially before the 21st century. The PET′ component gener-
ally has a smaller amplitude than P′. However, since around 2000, 
PET′ has increased in magnitude as a response to regional warming, 
leading to its greater amplitude than P′ in almost all dry periods. 
Comparing the periods of 1948–1999 (P1) and 2000–2022 (P2), we 
observe a significantly (P <  0.01) more negative P′−PET′ and −
PET′ (drought severity in table S2), indicating an increasing surface 
moisture loss to the atmosphere, from P1 to P2, for all time in gen-
eral and for the identified WUS drought period (highlighted in yel-
low); however, changes in P′ are insignificant (P > 0.1). This trend in 
PET′ has led to the doubling of its contribution to drought severity 
during drought periods from 31% in P1 to 62% in P2 (table S3).

Figure 1B shows the evolution of drought coverage (defined as 
the grid points where local P′−PET′ values fall below their 30th per-
centile threshold values), with a decrease from the 1950s to the late 
1980s and a subsequent increase, reflecting dry periods in the 1950s 
to 1960s and post-2000, and a wet period in-between, which is like-
ly associated with the phase shift in the Pacific Decadal Oscillation, 
according to previous studies (43). Drought coverage in earlier 
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drought periods was predominantly influenced by P′. To determine 
the contribution of P′ to the drought coverage, we first set PET′ to 
zero and then identify grid points where P′ alone can cause P′−
PET′ to reach drought status (Materials and Methods). PET′ contri-
bution is quantified in a similar way by setting P′ to zero. We 
estimate that P′ accounted for 73% of the drought coverage on aver-
age in P1, significantly (P < 0.01) larger than the PET′ contribution 
of 26%; however, in P2, PET′ contribution has increased to 66%, 
surpassing 55% by P′ (table S3). Note that, in some regions, both P′ 
and PET′ alone are large enough in magnitude to cause droughts. 
Because the drought coverage due to P′ and PET′, respectively, is 
not mutually exclusive, the sum of their fractional coverage can ex-
ceed 100%. Further details on the full decomposition of drought 
coverage can be found in the Supplementary Text and table S4. 
These results indicate that the rise in PET′ is the primary driver be-
hind the intensification of drought severity and the expansion of 
drought coverage, shifting the main contributor from P′ in the 20th 
century (P1) to PET′ in the 21st century (P2). Detailed statistics 
on changes in drought severity and coverage from P1 to P2 are in-
cluded in table S2, and contributions of P′ and PET′ are detailed in 
table S3.

Next, we analyze the spatial variations in PET′ contribution to 
drought severity across the WUS to identify regions where the im-
pact of evaporative demand on drought severity has significantly 
(P <  0.05) changed from P1 to P2. When the ratio −PET′/(P′−
PET′) exceeds 50% during a drought period, it indicates that the 
evaporative demand contributes more to drought severity than pre-
cipitation deficit. We identify the grid points where this ratio is 
above 50% and calculate the areas they cover. Our result shows that, 
in P1, PET′ dominated less than one-third of the WUS area (Fig. 
1C), whereas, in P2, the dominance of PET expanded to more than 
half of the WUS, particularly affecting the southwestern US (Fig. 
1D). Overall, from P1 to P2, increases in PET′ contributions are ob-
served across most of the WUS (Fig. 1E). By identifying grid points 
with significant changes [P < 0.05, adjusted for false discovery rate 
(FDR) control (44) at 0.05 level; Materials and Methods], we esti-
mate that 93% of the WUS areas exhibit statistically significant 
changes (P < 0.05). This increase is particularly noticeable in South-
ern California, Nevada, and the Four Corners region. Consequently, 
PET′ has transitioned from a minor contributor to drought in the 
20th century to an equal or even greater contributor than P′ to 
drought severity across most of the WUS in the 21st century.

Fig. 1. Contributions of P′ and PET′ to the WUS drought. (A) Drought severity time series of 12-month moving cumulative P′−PET′, P′, and −PET′ during 1948–2022 
averaged over the WUS (with cosine latitude weighting); the thin lines represent 12-month cumulative values, while the thick lines are their 20-year moving average; the 
yellow-shaded area represents drought periods identified when average P′−PET′ falls below its 30th percentile value for the 1948–1999 climatological period (marked by 
the gray dashed horizontal line); the vertical dotted line separates 1948–1999 (P1) and 2000–2022 (P2). We multiply PET′ by −1 for direct comparison with P′. (B) Time 
series of drought coverage and contributions from P′ and −PET′; thin lines represent total areas within the WUS (11 contiguous US states, 3.12 × 106 km2 in total) that are 
in drought condition (local P′−PET′ below the 30th percentile value for any grid point; black) and those where PET′ (red line) or P′ (blue line) alone was strong enough to 
cause drought (Materials and Methods); thick lines are their 20-year moving average. (C) Map of averaged PET′ contribution to drought severity, i.e., −PET′/(P′−PET′), 
during drought periods in P1; the thick black line marks the boundary of the WUS region. (D) Same as (C), but for drought periods in P2. (E) Change of PET′ contribution 
from P1 to P2, i.e., the difference between (D) and (C); gray dotted areas indicate insignificant change (P ≥ 0.05; P values are adjusted using the false discovery rate (FDR) 
criterion of αFDR < 0.05).
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Quantify the influences of natural climate variability and 
human-induced climate change
Drought varies naturally on annual, decadal, and centennial 
scales. It can be difficult to separate the contributions of natural 
climate variability to drought from that of anthropogenic climate 
change. Past droughts were mostly driven by the natural variabil-
ity of the ocean through its influence on atmospheric circulation 
and associated feedback mechanisms (7). Large ensemble climate 
model simulations have been commonly used to isolate the im-
pact of anthropogenic climate change (5, 6, 45). However, these 
simulations either have random natural climate variability with-
out real-time information or show notable biases in the atmo-
spheric models forced by observed sea surface temperature (46). 
To realistically estimate the influence of natural climate variabil-
ity on droughts and complement the modeling approaches, we 
apply an observation-based ensemble constructed flow analog 
approach (29) to estimate P′ and PET′ induced by atmospheric 
circulation variation (Materials and Methods; “analog anomalies” 
hereinafter). The residual anomaly, i.e., the difference between 
observed and analog anomalies, represents variations beyond 
those that can be explained by circulation changes. They are 
mainly due to thermodynamic factors, especially anthropogenic 
forcings and their associated feedback. Because atmospheric cir-
culation anomalies over the WUS are mostly controlled by natu-
ral climate variability (29, 43), we assume that the analog P′ and 
PET′ are due to natural climate variability following (29). Note 
that this assumption neglects the potential anthropogenically 
forced atmospheric circulation change. Thus, the analog trend 
likely represents the upper bound of natural variability (47, 48), 

and the residual trend likely represents the lower bound of an-
thropogenically forced climate change and its feedbacks.

We apply this analog approach to assess how much natural cli-
mate variability and its resulting weather pattern variations have 
contributed to the observed changes of drought severity P′−PET′ 
and its two components (Fig. 2). Figure 2A shows that observed P′ 
largely aligns with analog P′, indicating that natural variability is 
the dominant factor. While previous studies (16) identified an in-
creasing precipitation trend in the region, we did not find a statisti-
cally significant change in observed P′ from P1 to P2 (Materials 
and Methods, fig. S7, A and D; and table S2). There are instances 
where observed P deficits exceed those of analog in magnitude, 
particularly when P′ exhibits a greater amplitude, in line with the 
expected impact of strong thermodynamic feedback associated 
with strong atmospheric circulation anomalies. For PET′, observed 
values match well with the analog values in P1 (Fig. 2B), suggesting 
that natural climate variability also dominated PET′. However, in 
P2, the gap between observed and analog PET′ has widened con-
siderably, driven by the positive trend in observed PET′. The simi-
lar distribution of analog PET′ in P1 and P2 (fig. S7, B and E) 
suggests no significant changes in the natural variability of PET′ 
between P1 and P2. As such, the anthropogenic warming (residu-
al) is mainly responsible for the observed changes in PET′ from P1 
to P2 for both all-time and drought periods (more detailed statis-
tics in table S5), qualitatively consistent with previous studies on 
VPD (5, 6, 29, 45). Notably, the disparities between observed and 
analog PET′ or P′−PET′ are more pronounced during drought pe-
riods than during non-drought periods (fig. S7) and nearly dou-
bled during all three major droughts over the WUS since 2005 

Fig. 2. Circulation contribution (analog) to the observed drought severity and its P′ and PET′ components. Twelve-month moving cumulative time series (thin lines) 
and 20-year moving averages (thick lines) of (A) P′, (B) −PET′, and (C) P′−PET′ for the WUS. Gray lines are observed anomalies, and red lines are analog anomalies. The 
yellow-shaded area represents the identified drought periods, same as Fig. 1. The vertical black line separates 1948–1999 (P1) and 2000–2022 (P2).
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(Figs. 1A and 2C) compared to those during droughts in P1. Thus, 
climate change has not only intensified overall drying, as evidenced 
by the PET′ trend, but also greatly amplified drought severity from 
P1 to P2 (drought severity in table S5).

Drivers behind the unprecedented 2020–2022 drought 
over the WUS
The 2020–2022 drought over the WUS was unprecedented in the in-
strumental record (3). How have PET′ and P′ contributed to this 
drought? Figure 3A shows the evolution of this drought and the contri-
bution of P′ and PET′ on a 31-day moving average timescale. This se-
vere multiyear drought was initiated by an episode of strong precipitation 
deficit in March 2020, followed by frequent and persistent low precipi-
tation periods extending from August 2020 to March 2022, except for 
intermittent episodes of heavy precipitation in November 2021 and 

January 2022. Although P′ magnitude remained larger than PET′ dur-
ing most of the dry spells within this drought, high PET′ persisted 
throughout the entire time, even after precipitation deficits ceased in 
spring 2022. This continual presence of high PET′ prolonged the 
drought, and, over annual or longer timescales, PET′ eventually has a 
notably greater contribution than P′. When comparing the original ob-
served anomalies to their analogs, the observed P′ can be mostly ex-
plained by its analog, with only a few minor exceptions. In contrast, the 
observed PET′ was consistently larger than its analog counterpart, es-
pecially during the warm season (April to October), providing evidence 
of the anthropogenic influence on these drought conditions.

The total contribution of P′ and PET′ to the 2020–2022 WUS 
drought, along with their natural variability and anthropogenically 
influenced components, can be illustrated using the total cumula-
tive values of these properties over the course of this drought 
(Fig. 3B). P′ was comparable to PET′ in magnitude in the early stage 
of the drought until the summer of 2021. Subsequently, cumulative 
PET′ exceeded P′ in magnitude and maintained the lead till the end 
of 2022. Over the 3-year period, although both P′ and PET′ have 
contributed to the cumulative P′−PET′, the relative contribution of 
PET′ (61%) notably exceeded that of P′ (39%), as indicated by the 
last data points of the cumulative P′ and PET′ time series in Fig. 
3B. PET′ exceeding P′ in magnitude to such an extent has not been 
observed before the mid-2000s in our analysis period. Only about a 
quarter of the cumulative PET′, compared to about three-quarters 
of cumulative P′, can be explained by their analog values due to 
natural climate variability. As a result, less than half (44%) of the 
cumulative P′−PET′ can be attributed to natural climate variability, 
with the remaining larger share being driven by anthropogenic in-
fluences.

During the 12-month period of July 2020 to June 2021, at the 
peak of this multiyear drought with the lowest mean P′−PET′ (Figs. 
1A and 2C), more than 90% of the WUS areas were in drought con-
dition, i.e., local P′−PET′ falling below their local 30th percentile 
values based on the 1948–1999 distribution. Furthermore, more 
than half of the WUS experienced P′−PET′ below the second per-
centile values (Fig. 3C); this level of drought severity corresponds to 
“exceptional drought” according to the USDM’s recommended per-
centile range for most drought indicators (40). Next, we investigate 
the spatial extent and severity of drought that would have occurred 
if anthropogenic climate change had not contributed to the develop-
ment of this drought. Figure 3D shows that the analog P′−PET′ val-
ues, in the absence of anthropogenic influence, fell mostly within 
the 10th to 30th percentiles, based on the same historical distribu-
tion of observed P′−PET′. Continuing with the assumption that the 
differences between the observed and analog P′−PET′ represent the 
influences of anthropogenic forcing, Fig. 3D suggests that, without 
the influence of anthropogenic warming, although about three-
quarters of the WUS areas would still be in drought condition, the 
areas corresponding to exceptional drought would be negligible 
(<0.1% of the WUS). In addition, while either P′ or PET′ alone can 
lead to widespread drought conditions (70 to 80% of the WUS; fig. 
S8, A and B), neither can solely lead to exceptional drought condi-
tions over large areas.

Thus, while extreme precipitation deficit initiated the 2020–2022 
WUS drought and dominated drought severity on a monthly times-
cale, warm surface temperatures and the resulting persistent high 
evaporative demand prolonged the drought and dominated its 
severity on an annual or longer timescale. While anthropogenic 

Fig. 3. The evolution of the 2020–2022 WUS drought and impacts of climate 
change. (A) Thirty-one-day moving average time series of P′ (blue) and PET′ (red) 
averaged over the WUS during 2020–2022. (B) Cumulative P′ and PET′ since 1 January 
2020. In (A) and (B), P′−PET′ is represented by the distance between P′ and PET′ 
lines. (C) Drought severity map represented by percentile rank of 12-month P′−
PET′ during the period of July 2020 to June 2021, where the percentiles are relative 
to the 1948–1999 P′−PET′ record (Materials and Methods); percentage WUS areas 
in drought condition (<30th percentile) and in exceptional drought condition 
(<2nd percentile) are also listed. (D) Circulation-contributed (analog) drought se-
verity map; percentiles are relative to the 1948–1999 observed P′−PET′, same as 
(C). Complete percentile map for all components of the drought severity (observed, 
analog, and residual anomaly of P, −PET, and P−PET) are shown in fig. S8.
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warming influences or increased evaporative demand might not 
have been necessary for the widespread drought coverage during 
the peak of this event, they are crucial factors enabling this drought 
to reach “exceptional” severity levels.

The impact of high greenhouse gas emissions on future 
droughts over the WUS
Does the 2020–2022 WUS drought represent an exceptional anom-
aly or a future “new norm” for the region? We explore future P′−
PET′ trends using the multi-model all-forcing historical simulations 
provided by the Coupled Model Intercomparison Project Phase 6 
(CMIP6) and the future projections under the Shared Socioeco-
nomic Pathway 5-8.5 (SSP5-8.5) scenario (49). Data from these two 
experiments are combined to form a continuous record from 1948 
to 2100 and bias corrected using the quantile delta mapping (QDM) 
approach (50) (Materials and Methods and fig. S9). A total of 30 
climate models and more than 300 ensemble members are used in 
this study; model names and the number of ensemble members for 
each model are listed in table S6. It is important to note that the 
SSP5-8.5 scenario is the highest emission scenario assuming fossil-
fueled rapid economic growth (SSP5) with a high radiative forcing 
level by 2100 (8.5 W/m2) and may not be the most likely future.

Figure 4A shows that these CMIP6 model simulations generally 
capture the observed P′−PET′ trend over the WUS during 1948–
2022, supporting the hypothesis that the trend is anthropogenically 

forced and consistent with our flow analog analysis shown above. 
Despite the uncertainty of the individual models, particularly re-
garding the direction of future P′ trend and the extent of the positive 
PET′ trend (fig. S10), the CMIP6 ensemble means project a steady 
decrease in P′−PET′ due to increasing PET′, consistent with the de-
creasing trend found in modeled surface soil moisture (fig. S11A). 
This suggests a shift toward a more arid and warmer climate over the 
WUS in the future. Furthermore, the models also predict a larger 
range of variability in P′−PET′. This heightened variability is driven 
by increased fluctuations in both PET′ and P′, although the increase 
in variability is more pronounced for PET′ (figs. S12 and S13). The 
projected future increases in PET′ and P′, with larger variability than 
in the past, heighten the potential for more severe droughts and 
floods. On the basis of our analysis of the modeled P′−PET′ distri-
bution for both historical and future periods, droughts as severe as 
those experienced during 2020–2022 are projected to become in-
creasingly frequent. By analyzing the area under the P′−PET′ distri-
bution curve (fig. S13C) to the left of the observed minimum 
P′−PET′ value (July 2020 to June 2021), we calculate the exceedance 
probability for future droughts to reach or exceed this level of sever-
ity. Our findings indicate that, according to model simulations, the 
exceedance probability for such events will increase from being very 
rare (0.08% or 1-in-1300-year) in the recent 2000–2022 (P2) period 
to 1.6% (1-in-63-year) by 2040–2060 and 17% (1-in-6-year) by 
2080–2100 over the WUS. Detailed statistics of the exceedance 

Fig. 4. Comparison between observed and CMIP6 modeled drought severity and evolution of PET′ contribution. (A) Observed (black) and CMIP6 (blue) 12-month 
moving cumulative time series of P′−PET′ averaged over the WUS. (B) PET′ contribution to drought severity, defined as the magnitude of −PET′/(P′−PET′) averaged dur-
ing drought periods (12-month P′−PET′ < 30th percentile) for both observations and CMIP6 models. To acquire a smooth PET′ contribution time series, it is averaged 
during drought periods in a sliding 20-year window centered at the time of interest (e.g., the value for 1958 represents droughts during 1948–1967). Black and blue lines 
represent the observation and CMIP6 multi-model ensemble mean, respectively. The dark blue– and light blue–shaded areas represent the range of climate variability as 
depicted by the interquartile range (IQR) and 95% range of results from individual model realizations, respectively. In (A), the horizontal dashed line represents the 30th 
percentile P′−PET′ threshold value for drought, and the horizontal dotted line represents the P′−PET′ during 2020/7–2021/6, the peak 12-month drought severity during 
the 2020–2022 WUS drought. All anomalies are relative to their corresponding 1948–1999 climatologies.
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probabilities for various periods, based on both observations and 
models, are listed in table S7.

Figure 4B compares PET′ contribution to drought severity aver-
aged in 20-year moving windows between observations and CMIP6. 
The observed PET′ contribution was initially about 30% and then 
experienced a slight decrease from the 1950s to the 1980s, attributed 
to “global dimming” driven primarily by increased aerosols and 
cloud cover according to previous studies (51), which reduced sur-
face shortwave radiation and subsequently lowered PET. Since then, 
the PET′ contribution has climbed steadily and reached the mile-
stone of 50% around 2000, marking the turning point from precipi-
tation deficit dominance to high evaporative demand dominance of 
droughts in the WUS. The time series of the CMIP6 ensemble mean 
PET′ contribution generally follows the observed increasing trend, 
although it reached 50% in the mid-1990s, earlier than that ob-
served mainly because models overestimate PET′ magnitude during 
drought periods in P1 (fig. S14B). In addition, this discrepancy 
could also be influenced by errors in how the models simulate the 
response to aerosol forcing and the subsequent recovery after 1970s, 
which may have affected the timing of changes in PET′ contribu-
tion. The CMIP6 models project that PET′ contribution will con-
tinue to increase. Because of the strong increase in future PET′, 
weak to moderate droughts may occur with positive P′ (fig. S14A). 
These weaker droughts generally show larger PET′ contributions 
compared to stronger droughts (fig. S15, A and C), which are typi-
cally associated with negative P′. Such an effect might potentially 
hinder an ending of drought conditions. By 2040–2060, weaker 
droughts with positive P′ will account for about half of the total 
future drought events (fig. S14A), leading to more than 100% PET′ 
contribution to drought severity, i.e., −PET′/(P′−PET′) >  100%. 
In addition, the projected increase in precipitation (figs. S12A and 
S13A) will weaken precipitation deficits during droughts. Overall, 
the combined effects of these increases in P′ and PET′ lead to the 
projected PET′ contribution to drought severity exceeding 100% in 
the future. In addition, this anticipated increase in PET′ contribu-
tion to drought severity does not solely stem from the average 
warming trend but also from the increase in PET variability. In both 
observation and models, the distribution of PET′ has been narrower 
than that of P′ in the historical period, but their spreads are pro-
jected to become comparable by the end of the 21st century (figs. 
S12 and S13).

DISCUSSION
This study has uncovered that rising temperatures and the resulting 
high evaporative demand have surpassed precipitation deficit as the 
dominant drought driver around the year 2000 in the WUS. This 
change cannot be explained by natural climate variability and is 
mainly caused by warming due to anthropogenic forcing. This 
drought regime shift has led to increased drought severity and cov-
erage since the turn of the 21st century, marking the beginning of a 
new era where WUS droughts are increasingly driven by evapora-
tive demand rather than precipitation deficits. The 2020–2022 WUS 
extreme drought exemplifies this new paradigm. While this excep-
tional drought was initiated by record-low precipitation during its 
first year and a half, high surface temperature persisted afterward 
for another year. High temperatures contributed more (61%) to the 
drought’s severity than precipitation deficit (39%), and the drought 
lasted longer than that expected from a traditional precipitation 

deficit–dominated drought. More than half of the WUS experienced 
exceptional drought (P′−PET′ below the second percentile), far ex-
ceeding the would-be drought severity (10th to 30th percentiles) 
without climate change impact. The 2020–2022 drought is likely a 
presage of future drought patterns in the region.

Climate model simulations show a similar, albeit earlier, shift in 
drought drivers. The early bias is likely due to the lack of realistic 
decadal climate variability in the ensemble mean and model biases. 
The degree of aridification and intensification of droughts in the region 
depends on the extent of anthropogenic warming. Under an energy-
intensive, fossil-fueled economic development scenario (SSP5-8.5), the 
WUS is projected to become more arid and drought prone than has 
been hitherto observed. By the mid-21st century, more than half of the 
future droughts would occur even with heavier precipitation than its 
climatological values in the recent past (1948–1999). Droughts like the 
2020–2022 event, a rare occurrence in the current climate—equivalent 
to a one-in-more-than-a-thousand-year event—are projected to be-
come more frequent, equivalent to a 1-in-60-year event by the mid-
21st century and a 1-in-6-year event by the late-21st century.

One can glimpse the impacts of temperature-dominated droughts 
through the lens of the 2020–2022 WUS drought. This drought was 
associated with high VPD, which contributes to the occurrence of 
wildfires or intensifies them, further exacerbating drought impacts (3). 
In 2020 alone, the combined cost of drought and wildfire reached up to 
$23 billion in the southwestern US, more than an order of magnitude 
higher than the cost of drought alone (3). The cascading economic im-
pacts, such as supply chain disruptions, and long-term effects on public 
health, particularly from smoke and heat stress, are likely on the order 
of hundreds of billions (52). As surface temperature increases under 
the fossil-fueled economic development scenario, drought can occur 
without precipitation deficits. In addition, drought will become more 
intense, more frequent, and longer-lasting. These observed and pro-
jected changes over the WUS highlight the importance of new drought 
monitoring and management strategies to effectively manage and sup-
port long-term societal resilience to droughts in a changing climate, 
and the urgency to control greenhouse gas emissions to avoid a much 
more arid and drought-prone future over the WUS than it has experi-
enced in the recent history and possibly in the last millennium.

Our findings, while consistent with extensive research demon-
strating the growing contribution of temperature-driven evapora-
tive demand to drought (3, 5, 6, 15–21), differ from previous studies 
(22–24) that found that precipitation deficit remained the primary 
drought driver. The differences arise from several factors and should 
not be simply viewed as contradictory. For example, earlier studies 
(23) may not include the recent period when PET’s impact surged. 
In addition, studies (22, 25, 32) using CRU data may underestimate 
PET impact, as PET data from CRU are calculated with synthetic 
vapor pressure (VP) derived from daily minimum temperature as a 
proxy for dew point temperature, which can result in an unrealistic 
wetting trend due to anthropogenic warming, especially for semi-
arid to arid regions (53). In particular, a more recent study (33) has 
reported drying trends in the southwestern US based on ERA5 VP 
data, which has been validated with in situ measurements. Our anal-
ysis (Supplementary Text and figs. S2 and S3) further supports that 
the discrepancies in PET between ERA5 and CRU datasets primar-
ily arise in the southwestern US and are mainly due to their opposite 
VP trends.

There are limitations in our analysis. The analysis period of 75 years 
may not cover the full range of the natural climate variability, especially 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia Los A
ngeles on N

ovem
ber 06, 2024



Zhuang et al., Sci. Adv. 10, eadn9389 (2024)     6 November 2024

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

8 of 13

compared to that suggested by paleoclimate records (7). While the 
FAO-56 Penman-Monteith (PM) equation that we used is considered 
the best practice for calculating PET due to its physical basis and 
reliability validated by numerous studies (54–56), it assumes time-
invariant surface resistance to avoid the inherent complexity of deter-
mining the stomatal and atmospheric conductance and to foster 
standardization and consistency in climatic research (57, 58). Such an 
assumption may not hold with changes in land surface and vegetation 
cover in a changing climate; future research could explore the impact 
of incorporating dynamic surface conductance in PET calculations, as 
demonstrated by (59). Over the long term, PET is largely influenced by 
temperature, yet surface wind speed also plays a role. Although model 
projections of surface wind generally carry higher uncertainty com-
pared to temperature (60), our model results indicate a slightly de-
creasing trend in wind speed (fig. S9), which has lowered the PET 
trend compared to calculations with wind climatology of the 20th cen-
tury. As a drought index, P′−PET′ tends to have greater amplitudes 
and variations than soil moisture anomalies over the moisture-limited 
regions (fig. S11), especially during droughts. Furthermore, the im-
pacts of PET′ on vegetation and surface hydrology in the future cannot 
be simply extrapolated from today’s climate, in part due to plants’ 
physiological responses to elevated CO2 (61). In our observation-
based circulation analog analysis, the analog approach might overesti-
mate natural climate variability because it assumes that the positive 
trend in circulation-induced PET′ is solely due to natural climate vari-
ability (29); some studies have suggested that anthropogenic forcing 
contributes to an increased frequency of ridging patterns over the 
WUS associated with high PET or VPD (62, 63), although the poten-
tial impact of climate change on circulation changes remains debated 
(64, 65). The land-surface and atmospheric thermodynamic feedbacks 
to the natural atmospheric circulation anomalies may be stronger in a 
warmer, drier climate with elevated CO2 concentration (66). These po-
tential effects on PET′ and P′ are not captured by our flow analog 
analysis that relies on historical data. Last, while SSP5-8.5 aligns with 
historical cumulative CO2 emissions (67), it represents only one poten-
tial future characterized by very high emissions. However, these limita-
tions are unlikely to alter our main conclusions qualitatively.

MATERIALS AND METHODS
Observation-based data
The precipitation dataset used in this study is the National Oceanic 
and Atmospheric Administration (NOAA) CPC Unified Gauge-
Based Analysis of Daily Precipitation over CONUS (35), provided by 
the NOAA Physical Sciences Laboratory, from their website at https://
psl.noaa.gov/data/gridded/data.unified.daily.conus.html. This dataset 
has a spatial resolution of 0.25° × 0.25° and a temporal coverage from 
1948 to the present. This study uses data during 1948–2022.

The fifth-generation European Centre for Medium-Range Weather 
Forecasts (ECMWF) atmospheric reanalysis of the global climate 
(ERA5) (34) data are retrieved from the Copernicus Climate Change 
Service Climate Data Store (https://cds.climate.copernicus.eu). This 
global reanalysis dataset covers the period from 1940 to the present 
and has a native spatial resolution of 0.25° × 0.25°. We use this dataset 
for observed PET calculation and characterization of mid-tropospheric 
circulation, with data during 1948–2022 to match the CPC dataset de-
scribed above. Variables used from the ERA5 include 2-m tempera-
ture, 2-m dew point temperature, 10-m u-component of wind, 10-m 
v-component of wind, mean surface downward short-wave radiation 

flux, forecast albedo, and 500-hPa geopotential (Z500). For Z500, 
6-hourly data at 1° × 1° resolution are retrieved. Similar to (29), the 
daily global area-weighted mean Z500 is subtracted from the original 
daily Z500 data at each grid point (68, 69) to remove the large-scale 
increase in Z500 due to the expansion of the atmospheric column as 
global surface temperature increases (62). For other variables, hourly 
data at 0.25° ×  0.25° resolution are retrieved and averaged to daily 
value, except for temperature and wind. For hourly temperature, daily 
maximum and minimum values are calculated. Hourly u- and v-
components of wind are used to calculate wind speed and then aver-
aged to daily values.

Climate model data and bias correction
Monthly climate model outputs, specifically precipitation flux (pr), 
maximum and minimum near-surface air temperature (tasmax and 
tasmin), near-surface relative humidity (hurs), near-surface wind 
speed (sfcWind), and surface downwelling shortwave radiation 
(rsds), are obtained from 30 climate models participating in the 
sixth phase of the Climate Model Intercomparison Project. The his-
torical simulations spanning 1850–2014 are combined with SSP5-
8.5 projections for 2015–2100 to produce a continuous record. For 
each model, only those realizations that are common to both his-
torical simulations and SSP5-8.5 projections are used for P and PET 
analysis. Details about the specific models and the number of en-
semble numbers used are listed in table S6. Data of all models are 
bilinearly interpolated to a common spatial resolution of 1° × 1° to 
ensure consistency in the analysis and facilitate the computation of 
the ensemble mean. When calculating the multi-model ensemble 
mean, we first average all ensemble members within each model and 
then average the results across all models. For ensemble spread met-
rics, such as SD, percentiles, and probability density functions, each 
ensemble member is assigned a weight inversely proportional to the 
number of ensemble members in its model. This ensures that each 
model contributes equally to our analysis, regardless of the number 
of ensemble members it has.

Although climate model simulation and projections are important 
tools for assessing climate impact, it is well-known that there are system-
atic biases between climate model output and observations. Model bias-
es can manifest as consistent overestimation or underestimation of 
certain climate variables, including their mean, variability, extremes, and 
distribution inconsistency compared to observations. To address these 
biases, bias correction methods are developed to statistically adjust mod-
el outputs with reference to observation data. Past studies have shown 
that projections of aridity and drought can exhibit large discrepancies 
between raw model output and bias-corrected output (70). In this study, 
we use the QDM technique (50) for bias correction. QDM corrects the 
model biases by adjusting the quantiles of modeled data to match ob-
served data quantiles while preserving the model’s projected climate 
change signal (71). The code and data that we used to perform QDM are 
deposited at https://zenodo.org/doi/10.5281/zenodo.13836244. All data-
sets are regridded to a 1° × 1° resolution before bias correction to address 
the mismatch in spatial resolution between the observations (e.g., ERA5 
and CPC) and the CMIP6 climate models. Bias correction is conducted 
at the grid scale before averaging the results over the WUS. For pre-
cipitation, the multiplicative delta method is used, while the additive 
delta method is used for other variables. The reference dataset for pre-
cipitation and other input variables for PET calculation is CPC and 
ERA5, respectively, with a consistent reference period of 1948–1999 
for all variables. The comparison between raw climate model output 
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and the bias-corrected data, in terms of the WUS mean time series of 
all model variables mentioned above, is shown in fig. S9. Apart from 
this comparison, we only report results based on the QDM bias-
corrected data.

Calculation of PET
PET quantifies the maximum amount of actual evapotranspiration 
under reference land surface condition when there is no limit for 
water availability. PET is largely determined by temperature, though 
it can also be influenced by humidity, wind, surface radiation, etc. 
Because PET represents surface moisture loss to the atmosphere, a 
higher PET value signifies a more severe drought. PET can be esti-
mated by many different approaches. Simpler methods such as 
Thornthwaite (72) usually overestimate the PET magnitude and 
trend (73). Here, we used the FAO-56 PM equation, a physically 
based method recommended by the Food and Agriculture Organi-
zation (FAO) (54) as well as many previous studies (55, 56). The PM 
equation requires input variables including maximum temperature, 
minimum temperature, humidity (e.g., dew point temperature or 
relative humidity), wind speed, and incoming shortwave radiation.

The original PM equation assumes a homogeneous surface al-
bedo of 0.23; here, to better account for the spatial variation, we 
used the 1948–1999 climatological mean surface forecast albedo 
from ERA5 for each grid point. PET data are first calculated at a 
daily scale and then aggregated to a monthly scale. For the flow ana-
log analysis (Figs. 2 and 3), the daily PET anomaly (PET′) is used as 
input. When showing observed PET′ in other figures, the aggregated 
monthly PET′ is used. Our additional analysis in fig. S1 also indi-
cates that temperature is the most influential factor for WUS PET, 
with VP (derived from dew point) as the second. Only considering 
the variabilities of temperature and VP while using climatology for 
other inputs can still allow us to account for 94% of the variance 
observed in the original calculation. Excluding either temperature 
or VP results in a substantial reduction in the representation of PET 
variability and its long-term trend. We also compared the PET′ cal-
culated with ERA5 data and that with the Global Surface Summary 
of the Day (GSOD) data to confirm the ERA5 PET′ well represents 
the station observation (Supplementary Text and fig. S16).

For CMIP6 models, PET′ is only calculated at a monthly scale us-
ing monthly tasmax, tasmin, hurs, sfcWind, and rsds as inputs to the 
PM equation. These input variables are individually bias corrected 
before being used in the PM equation to calculate bias-corrected 
PET. An exception is made for hurs, which is first converted to VP 
and then bias corrected (74); we made this adjustment because rela-
tive humidity (hurs) is not an absolute measure of atmospheric hu-
midity and can be considerably influenced by temperature as well, 
and we have dew point temperature in ERA5 instead of relative hu-
midity. For simplicity, we use the ERA5 1948–1999 monthly climato-
logical surface albedo, consistent with the observed PET. Note that 
the PM equation with monthly inputs differs slightly from that with 
daily inputs (e.g., soil heat flux G cannot be omitted and is estimated 
with temperature changes). It is expected that the aggregated month-
ly PET′ from daily inputs and PET′ calculated directly from monthly 
inputs may not be exactly the same. Nevertheless, our additional 
analysis shows that, at least for the period of 1948–2022 and averaged 
over the WUS, observed PET′ calculated with daily and monthly 
ERA5 inputs (whether at the original 0.25° × 0.25° resolution or the 
reduced 1° ×  1° resolution) are highly consistent and significantly 
correlated (fig. S17). In addition, considering the large volume of 

CMIP6 data, it is both reasonable and efficient to perform the com-
parison between observed and modeled PET′ at a monthly scale.

Calculation of anomalies
Daily anomalies of P (P′) and PET (PET′) are calculated as their 
respective departures from the 1948–1999 daily climatology and 
then aggregated to monthly values. Standardized anomalies are used 
only with circulation data (Z500) or when comparing P′−PET′ to 
soil moisture and other drought indices, as these variables have dif-
ferent units. The daily climatological mean and SD for a specific Ju-
lian day are computed using daily samples within a 31-day calendar 
window centered on that day (29, 75); for example, the climatology 
for 1 January is calculated using daily data from 17 December to 
16 January during 1948–1999 (31 days/year × 52 years = 1612 days). 
For monthly data (e.g., soil moisture and CMIP6 model data), cli-
matology is directly calculated for each month during the same 
1948–1999 period; however, for fig. S4, where we compare P′−PET′, 
soil moisture, and other drought indices, we use the 1980–2010 pe-
riod as the climatological baseline to calculate standardized anoma-
lies when all the datasets are available.

Drought severity, drought coverage, and contributions 
of P and PET
In this study, drought severity is defined as the 12-month cumula-
tive P′−PET′ for either the area average for the WUS or for indi-
vidual grid points. For each 12-month period, the contributions of 
P′ and PET′ to the drought severity are defined as their respective 
ratio: P′/(P′−PET′) for P′, and −PET′/(P′−PET′) for PET′.

For most analyses in this study, the term “drought period” (yellow-
shaded area in Figs. 1, A and B, and 2) refers to any 12-month period 
when the WUS mean P′−PET′ falls below its 30th percentile value. This 
threshold is recommended by the USDM from their “Drought classifi-
cation – percentile range for most indicators” and is comparable to their 
“D0 – abnormally dry” category (40) (see also https://droughtmonitor.unl.
edu/About/AbouttheData/DroughtClassification.aspx). However, it is 
important to note that the actual USDM product is not based solely on 
percentile range of a single drought index; rather, it involves assess-
ments of a wide range of indicators and expert guidance. The percen-
tile threshold is based on 12-month P′−PET′ values during 1948–1999 
(12-month windows from 1948/1–1948/12, 1948/2–1949/1,…, to 
1999/1–1999/12, resulting in a total of 613 samples) and is calculated 
using the “prctile” function in MATLAB. In Fig. 1 (C and D), where 
we show the spatial distribution of average PET contribution to 
drought severity for each grid point during P1 and P2, the drought 
period is defined for each grid point locally using the same approach. 
In addition, when calculating the average P or PET contribution to 
drought severity in P1 or P2 (Fig. 1, C and D, and table S3) to be con-
sistent with the “12-month” timescale, we first calculate P or PET con-
tributions across all 12-month periods identified as drought periods 
within P1 or P2 and then average them to get the mean P or PET 
contribution to drought severity in P1 or P2.

To determine drought coverage at any 12-month period, we first 
identify the “drought” status of each grid point using their local 
P′−PET′ values and then calculate the area covered by these grid 
points, taking into account the area weighting of grid points (i.e., 
cosine latitude). To further determine the contribution of P′ to 
drought coverage, we first set PET′ to zero and identify grid points 
where P′ alone can cause P′−PET′ to fall below the same local 30th 
percentile threshold values as determined in the reference period 
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of 1948–1999. The proportion of these grid points’ area to the 
original total drought coverage, as previously determined by the 
actual P′−PET′, is used to quantify P contribution to drought cover-
age. PET contribution is quantified in a similar way by setting P′ 
to zero. Note that the contributions of P and PET to drought cover-
age do not necessarily add up to 100% as they do for drought sever-
ity because the definition of drought coverage does not follow a 
simple additive form like drought severity. Determination of 
drought coverage depends on the “drought status” of each grid 
point, where some grid points may be in drought due to a combina-
tion of both factors.

Quantifying circulation contribution: Ensemble constructed 
flow analog
The observation-based flow analog (or circulation analog) method 
is widely used to quantify circulation contribution to surface me-
teorological variables such as temperature, precipitation, and VPD 
(43, 76–78). Our study uses the ensemble constructed flow analog 
approach (29), a variant that uses multiple analog schemes to pro-
vide a more robust estimation of circulation contribution and 
quantify the uncertainties. Applying this technique, we determine 
circulation-induced P or PET anomalies, or simply termed analog 
P or PET anomalies, at a daily scale using historical information 
from days with similar circulation conditions. Similar to how we 
process the original observed anomalies, these analog anomalies 
are then aggregated over the moving 12-month windows to repre-
sent the influence of circulation change or internal variability on 
drought conditions.

Several data preprocessing procedures are implemented before 
the analog analysis. For circulation data, we subtract the daily global 
area-weighted mean Z500 from the original Z500 data to remove 
trends (68, 69) due to warming-induced thermal expansion effect 
(62). There are other detrending approaches used in the literature, 
such as local linear detrending or high-pass filtering, which assumes 
the forced circulation trend is smooth and additive. We do not use 
local detrending because, at a decadal scale with a relatively short 
observation record, circulation trends can result from both thermal 
expansion and internal variability (e.g., certain circulation types be-
coming more frequent due to phase shift of climate modes). Local 
detrending would eliminate these signals altogether, whereas our 
approach preserves local circulation changes not related to thermal 
expansion. However, this approach does not remove any potential 
anthropogenically driven changes in circulation patterns (79). For P 
and PET data, we apply a locally weighted scatterplot smoother with 
a span value of 0.5 and a first-degree polynomial model. This fitted 
low-frequency trend, which approximates anthropogenic influence, 
is subtracted from the P and PET data. In addition, to mitigate high-
frequency synoptical noises, a simple 5-day moving average filter is 
applied to Z500, P, and PET data that are used as input for the analog 
analysis.

The main steps for the ensemble constructed flow analog include 
the following:

1) Analog selection: For any target day j, we select N analog days 
(i = 1, 2, …, N) with similar circulation by minimizing the distance 
function between the standardized anomaly of Z500 (Z500′) field of 
the target day j and those of the analog days i. The analog day selec-
tion is limited to a 61-day window centered on the target calendar 
day, drawn from the reference period 1948–1999 (excluding the tar-
get year).

2) Circulation regression: The Z500′ patterns from the N analog 
days are used to linearly regress against the target day Z500′ pattern, 
i.e., Z500�

j
=
∑N

i=1

�

a ⋅Z500�
i

�

. After solving for coefficient ai (i = 1, 
2, …, N), the fitted field 

∑N

i=1

�

ai ⋅Z500
�

i

�

 is the “constructed analog” 
Z500′ pattern, which closely resembles the target day Z500′

j
.

3) Calculation of analog and residual components: The coeffi-
cients ai are applied to P′ or PET′ of the analog days to calculate the 
analog P′ or PET′, i.e., P�

j−ANA
=
∑N

i=1
aiP

�

i
, which represents the 

contribution from circulation or internal variability. The residual, 
P�

j−RES
= P�

j
− P�

j−ANA
, captures the thermodynamic influences.

4) Ensemble schemes: The above three steps are repeated for 
three distance functions (Euclidean distance, Pearson’s correlation, 
and Spearman’s rank correlation), three geographic domains for 
Z500′ input (160°W to 80°W, 20°N to 60°N; 150°W to 90°W, 25°N 
to 55°N; and 140°W to 100°W, 30°N to 50°N), and five nonoverlap-
ping daily subsets (days 1, 6, 11, …; days 2, 7, 12, …; etc.). Sampling 
from one of the five daily subsets avoids selecting consecutive 
days from the same weather event. The mean of the resulting 45 
(3 × 3 × 5) estimates serves as the final analog value for P′ or PET′, 
and the interquartile range of them is used to quantify the uncer-
tainty. In addition, for precipitation, if the calculated P�

j−ANA
 is below 

the negative climatological value − Pj, then we assign it the value of 
− Pj, so that the total analog precipitation value, Pj−ANA = Pj + P�

j−ANA
, 

remains nonnegative.

Other statistical analysis
Area weighting (using cosine latitude as the weight for each grid point) 
is applied across all analyses in this study whenever the analysis is for the 
WUS overall instead of individual grid points. When we compare the 
spatial distribution of drought with or without the anthropogenic influ-
ences during 2020/7–2021/6, the peak of the 2020–2022 WUS drought 
(Fig. 3, C and D), we show percentile rank instead of the original values 
of the 12-month P′−PET′ to provide a more straightforward under-
standing of drought severity and facilitate comparisons across different 
regions. These percentile ranks of the 12-month moving cumulative 
P′−PET′, or simply termed percentile P′−PET′, are calculated for each 
grid point using the “invprctile” function in MATLAB (www.math-
works.com/matlabcentral/fileexchange/41131-inverse-percentiles-of-
a-sample). This calculation is based on 12-month P′−PET′ data from 
the reference period 1948–1999, which includes n = 613 samples from 
the 12-month moving windows (1948/1–1948/2, 1948/2–1949/1, …, 
1999/1–1999/12). To calculate the percentile P′−PET′ of a target period 
(e.g., 2020/7–2021/6), the P′−PET′ values from the n reference samples 
are first sorted in ascending order. Then, the position i of the target P′−
PET′ in the sorted list is determined. Last, the percentile P′−PET′ of the 
target period is calculated as (i − 0.5)/n.

When assessing the significance (P value) of temporal correlation 
(figs. S1 to S3, S16, and S17 and table S1), we follow (80) to adjust the 
effective sample size (degrees of freedom) to account for the autocor-
relation present in the time series data, avoiding overestimation of the 
correlation’s significance. To assess the significance of the increase in 
PET contribution from P1 to P2 at WUS grid points (Fig. 1E), we ap-
ply the FDR controlling criterion (44) using the MATLAB function 
“fdr_bh” (www.mathworks.com/matlabcentral/fileexchange/27418-
fdr_bh). The FDR method reduces the likelihood of false positives by 
adjusting for multiple comparisons, which is important given the po-
tential spatial autocorrelation in the data.
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We use a Monte Carlo permutation test (75) to evaluate whether 
the contribution of P′ or PET′ to drought severity or coverage has 
significantly changed from P1 to P2 and whether PET′ contribution 
to drought severity or coverage is significantly different than P′ 
contribution in either P1 or P2. We begin by randomly permuting 
the order of years in P and PET data and then recalculating the 
30th percentile P′−PET′ threshold for drought using the permuted 
1948–1999 data. Next, we recalculate the contributions of PET′ or 
P′ to drought severity and coverage. This process is repeated 
10,000 times. Last, for example, to test the null hypothesis that PET 
contribution is no larger than P contribution to drought severity in 
P2 (one-sided test), we compare the original difference between PET 
and P contributions to drought severity in P2; if this difference is 
larger than 96% of the permuted difference, then it is considered 
significant at the 0.05 level, with the P value being 0.04. The one-
sided test is used as we focus on directional hypotheses. As discussed 
in Introduction, previous studies have consistently shown an in-
creasing PET trend in many regions due to global warming which 
intensified droughts; given this established direction of change, we 
are specifically testing whether PET′ has become a more dominant 
factor in drought compared to P′ and whether drought severity/
coverage has intensified/expanded. The results of all null hypotheses 
tested and their significance levels are shown in tables S2 and S3.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S17
Tables S1 to S7
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