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Research on the settling dynamics of snow particles, considering their complex
morphologies and real atmospheric conditions, remains scarce despite extensive
simulations and laboratory studies. Our study bridges this gap through a comprehensive
field investigation into the three-dimensional (3-D) snow settling dynamics under weak
atmospheric turbulence, enabled by a 3-D particle tracking velocimetry (PTV) system to
record over a million trajectories, coupled with a snow particle analyser for simultaneous
aerodynamic property characterization of four distinct snow types (aggregates, graupels,
dendrites, needles). Our findings indicate that while the terminal velocity predicted
by the aerodynamic model aligns well with the PTV-measured settling velocity for
graupels, significant discrepancies arise for non-spherical particles, particularly dendrites,
which exhibit higher drag coefficients than predicted. Qualitative observations of the
3-D settling trajectories highlight pronounced meandering in aggregates and dendrites,
in contrast to the subtler meandering observed in needles and graupels, attributable
to their smaller frontal areas. This meandering in aggregates and dendrites occurs at
lower frequencies compared with that of graupels. Further quantification of trajectory
acceleration and curvature suggests that the meandering frequencies in aggregates and
dendrites are smaller than that of morphology-induced vortex shedding of disks, likely
due to their rotational inertia, and those of graupels align with the small-scale atmospheric
turbulence. Moreover, our analysis of vertical acceleration along trajectories elucidates
that the orientation changes in dendrites and aggregates enhance their settling velocity.
Such insights into settling dynamics refine models of snow settling velocity under weak
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atmospheric turbulence, with broader implications for more accurately predicting ground
snow accumulation.

Key words: atmospheric flows, particle/fluid flow

1. Introduction

Understanding the intricacies of snow settling dynamics is critical for accurately modelling
snow accumulation, which has various scientific and socio-economic implications. These
include issuing natural hazard warnings such as avalanches (Steinkogler, Sovilla &
Lehning 2014) and snow-melt floods (Marks et al. 1998), understanding snow hydrology
and its influence on local climates (Clark et al. 2011), and optimizing traffic management
during snow events (Ogura et al. 2002). A crucial determinant in the rate of snow
accumulation is the settling velocity of snow particles, which can vary significantly,
ranging from 0.5m s−1 to speeds exceeding 3m s−1 (Garrett & Yuter 2014; Nemes et al.
2017; Li et al. 2021a). This variability greatly influences the drift distance of snowflakes as
they descend from clouds to the ground. Presently, weather forecast models often struggle
with precise predictions of ground snow accumulation, leading to potential economic
repercussions (Winkler 2015). The variability in the settling velocity of snow particles
in the atmosphere has been historically attributed to their morphology (e.g. size and
shape), which poses a challenge in predicting their aerodynamic drag due to their complex
and variable shapes (Locatelli & Hobbs 1974; Böhm 1989; Tagliavini et al. 2021a,b).
Snow particle morphology is mainly determined by environmental conditions within
clouds, such as temperature and humidity (i.e. supersaturation). The microphysics of ice
crystal formation, extensively studied in works like Magono & Lee (1966) and Libbrecht
(2005), reveals a variety of emerging crystal shapes. These range from disk-like plates
and dendrites to thin-cylinder needles and columns. In conditions of high supersaturation,
small, supercooled droplets can adhere to these crystals through a process known as
riming, leading to the creation of sphere-like graupels. As these ice crystals fall from
clouds to the ground, inter-particle collisions occur, resulting in increasingly complex
particle structures such as fragments and aggregates. Besides, the interaction between
air turbulence and snow particle settling has been often overlooked in simulations
and laboratory experiments. Atmospheric turbulence is typically sustained by the large
velocity gradients of the high-Reynolds-number atmospheric surface layer, where coherent
structures across various scales emerge, and modulate the snow settling velocity (see
Garrett & Yuter 2014; Nemes et al. 2017; Li et al. 2021a).
Historically, measurements of snow particle fall speed did not account for the influence

of atmospheric turbulence. The terminal fall speed, strictly defined in quiescent flow,
was directly linked to aerodynamic drag and influenced by factors like particle size,
shape and mass. Various studies, including early research by Nakaya & Terada (1935),
have sought to empirically correlate fall speeds with particle sizes. They observed an
increase in velocity with size for graupels, crystals with droplets and needles, while noting
that dendrites and powder snow typically fall at a slower rate (∼0.5m s−1), regardless
of size. However, as their study was carried out in the laboratory setting, the snow
particles might not reach their terminal velocity in a confined space. In a later study,
Heymsfield (1972) introduced equations for calculating the terminal velocities of different
snow morphologies, based on field measurements of drag coefficients, aspect ratios and
densities. Following this, Locatelli & Hobbs (1974) developed a specialized measurement
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Field 3-D snow settling dynamics under weak turbulence

instrument under a 3.8m-high shielded tower, to ensure snow particles reached terminal
velocity during measurement. Their extensive collection of over 300 varied snow particles
led to the development of empirical equations based on dimensional power laws, each
tailored to specific snow morphologies and dependent on particle size. These studies
underscore the importance of size and shape in determining the varying terminal velocities
of snow particles. Despite these advancements, a comprehensive understanding of the
detailed settling kinematics for these diverse morphologies remains an area for further
exploration.
Kajikawa’s extensive research from 1976 to 1997 laid a foundational understanding of

snow particle dynamics, focusing on the free-falling behaviours of various snow particle
types, such as columnar snow, early snow/aggregates and plate-like snow (Kajikawa
1976, 1982, 1989, 1992; Kajikawa & Okuhara 1997). In these laboratory experiments
they documented a spectrum of free-fall motions, ranging from stable, horizontal
movement-free descents to more complex patterns like non-rotating glides, swings,
rotating glides and spiral motions. Notably, the spiral motions exhibit inherent frequencies
that correlate with the particle’s Reynolds number, providing insights into the free-fall
dynamics of snow particles. More systematic studies investigated the falling dynamics
of idealized anisotropic particles, including disks and thin cylinders. These studies
revealed that due to their large aspect ratios, such particles often orient themselves to
maximize their projected area downwards during stable falls, i.e. preferential orientation.
However, this steady fall is not always maintained; instabilities can lead to fluttering
and even tumbling motions. These falling dynamics were explored extensively through
experiments and simulations by researchers like Willmarth, Hawk & Harvey (1964),
Auguste, Magnaudet & Fabre (2013) and Tinklenberg, Guala & Coletti (2023). Their work
demonstrated the diverse falling styles of disks in quiescent flow, influenced by varying
combinations of Reynolds number (Re) (or Galileo number, Ga; Archimedes number,
Ar) and dimensionless moment of inertia (I∗). Similarly, thin cylinders, as studied by
Jayaweera & Mason (1965) and Toupoint, Ern & Roig (2019), exhibit comparable settling
dynamics in quiescent flow. It was observed that due to their larger aspect ratio, even minor
disturbances could induce more pronounced instabilities, leading to complex spinning
(rotation around the axis of symmetry) and tumbling (rotation around other axes) in these
particles. These movements are important as they affect the settling of these particles
through the air, potentially changing their frontal area and their drag coefficient, which in
turn influences their settling velocity. As a result, particle morphology and falling styles
are deeply interconnected.
Air turbulence has been observed to modulate the settling velocity and spatial

distribution of heavy inertial particles, regardless of their shape, simply due to their
inability to follow exactly the motion of the fluid flow around them (Maxey 1987; Wang
& Maxey 1993; Yang & Lei 1998; Aliseda et al. 2002; Good et al. 2014; Falkinhoff et al.
2020). Most studies have focused on point particles or small spherical particles, trying to
separate morphological effects from turbulence effects. As anisotropic particles already
exhibit various dynamics in quiescent flow, turbulence introduces more disturbances,
suggesting that the two effects can hardly be decoupled (Voth & Soldati 2017). Esteban,
Shrimpton & Ganapathisubramani (2020) conducted experiments on free-falling disks and
observed unique and complex settling behaviour in turbulent flows (slow tumbling and
levitation). These motions displayed frequencies significantly lower than those of natural
disks settling in still air. Interestingly, they noted an increase in settling velocity with
greater horizontal velocity fluctuations and a decrease in oscillation frequency. Moreover,
Siewert et al. (2014) conducted simulations on settling spheroids with various shape
factors, including two extremes: disks (oblate spheroids) and needles (prolate spheroids),
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under various levels of turbulence. They observed that the preferential orientation of
anisotropic particles is randomized by increasing level of turbulence, thus leading to a
more enhanced settling velocity (even though the morphology effect remained strong
under weak turbulence).
Despite the extensive numerical simulations and laboratory experiments, there remains

a notable gap in field data that capture the complexity of realistic snow particles and
atmospheric flow conditions, as compared with the usage of simplified model particles
(Siewert et al. 2014; Toupoint et al. 2019; Esteban et al. 2020; Tinklenberg et al. 2023)
and controlled laboratory settings (Locatelli & Hobbs 1974; Kajikawa 1982, 1989, 1992;
Kajikawa & Okuhara 1997). Therefore, field data are crucial for a deeper understanding
of the settling dynamics of snow particles with varied morphologies in weakly turbulent
conditions. Our group has been actively involved in field investigations of snow settling
for the last decade. A significant advancement was the development of a super-large-scale
particle image velocimetry system (SLPIV) by Hong et al. (2014). This system has been
instrumental in visualizing flow structures in the wake of wind turbines (Hong et al.
2014; Dasari et al. 2019) and characterizing the atmospheric turbulent boundary layer
(Toloui et al. 2014; Heisel et al. 2018). More recently, it has been applied to research
on snow settling dynamics. Nemes et al. (2017) utilized this technology to quantify the
settling trajectories of snow particles, measuring their Lagrangian velocity, acceleration
and aerodynamic properties. Their findings revealed a significant enhancement in settling
velocity due to turbulence. Building on this, Li et al. (2021a) explored snow settling
and clustering under various conditions, noting clustering at near-critical Stokes numbers
and an increase in settling velocity correlating with concentration and cluster size.
These findings indirectly support the preferential sweeping mechanism. Furthermore,
Li et al. (2021b) provided direct evidence of preferential sweeping in atmospheric
turbulence by simultaneously using SLPIV and particle tracking velocimetry (PTV) for
flow and snow trajectory quantification. They observed increased snow concentration
and enhanced settling velocity on the downward side of vortices, directly supporting the
preferential sweeping mechanism. However, these studies were limited by planar imaging,
which restricts the observation of the snow particles’ three-dimensional (3-D) motion,
especially the spanwise motion, and did not consider the morphology effect of the snow
particles. Therefore, comprehensive 3-D field investigations and simultaneous, detailed
measurements of snow morphology are essential.
In this study we aim to bridge this gap by conducting field measurements during snow

events using an imaging-based 3-D PTV system (Bristow et al. 2023) for tracking 3-D
snow particle trajectories and a snow particle analyser (Li, Guala & Hong 2023) for
assessing snow morphology and density. Our objectives are threefold: to understand how
snow morphology influences snow aerodynamic properties, to determine the impact of
morphology on particle 3-D settling kinematics and to assess how these dynamics affect
snow settling velocity. Section 2 of this paper will detail the measurement instruments and
data processing procedures. Section 3 will discuss the results and findings, followed by
conclusions and discussions in § 4.

2. Method

We conducted a series of field experiments at the EOLOS field research station (figure 1)
in Rosemount, MN, USA, spanning the winter seasons fromNovember 2021 to April 2023.
The research station is well equipped with a meteorological tower, which includes sensors
for wind velocity, temperature and humidity. These instruments are crucial for assessing
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Field system

Wind direction

Met tower

EOLOS

wind turbine

Figure 1. Aerial view of the experimental field site in Rosemount, Minnesota, retrieved from Google Maps.
The annotations in the satellite image highlight the location of the system deployment and the meteorological
tower, with the transparent yellow circle segment indicating the range of wind directions during the field
deployments.

the atmospheric and turbulent conditions during our field experiments. The tower is fitted
with four sonic anemometers (CSAT3, Campbell Scientific) at heights of 10, 30, 80
and 129m. These anemometers, with a 20Hz sampling rate and path lengths of 5.8 cm
horizontally and 10 cm vertically, provide detailed wind velocity data. Additionally, six
cup-and-vane anemometers, each with a 1Hz sampling rate, are positioned at elevations
of 7, 27, 52, 77, 102 and 126m to complement the wind measurements. In each field
deployment we utilized a 3-D PTV system, as described by Bristow et al. (2023), to capture
the trajectories of settling snow particles. To characterize the morphology and density of
these snow particles, we employed a digital inline holography (DIH) system integrated
with a high-precision scale, known as a snow particle analyser, following the methodology
outlined by Li et al. (2023).

2.1. Experimental set-up and data processing
Figure 2(a,c) illustrate the set-up of our 3-D PTV system. This system consists of four
wire-synchronized cameras (Teledyne FLIR, FLIR Black Fly S U3-27S5C colour unit with
Sony IMX429 sensor: 1464 × 1936 pixels, 4.5μmpx−1) strategically positioned around a
light cone 5.5 m away, spanning a 90◦ angle range. This light cone is created by reflecting
and expanding light from a searchlight using a curved mirror, similar to the set-up used in
our planar measurements. The cameras are tilted upward with 58◦ angles, leading them to
image at a sample volume 10 m above ground. Each camera is then connected to its own
data acquisition unit. These units are equipped with a board-level computer for issuing
image capture commands to the cameras, a solid-state drive for storing both the system
software and captured images, and a dedicated power supply. The cameras capture images
with 2× decimation (732 × 968 pixels) to reach a 200Hz frame rate. As the standard
checkerboard method cannot be applied to a field of view 10m above ground after dark
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Beam expander Imaging lens

Laser

Collimating lens Camera

Condenser lens

High-precision scale

Camera

Curved mirrorSpotlight

DAQ

UAV

Illumination

Snow particle

analyzer

(b)(a)

(d )

(c)

Figure 2. (a) Schematic depicting the field set-up for the 3-D PTV system, consisting of four cameras with
their data acquisition units (DAQs), light source and an unmanned aerial vehicle (UAV) for camera calibration,
together with the snow particle analyser. (b) Design of the snow particle analyser combining the DIH system
and a high-precision scale. Actual field deployment images show (c) the 3-D PTV system in operation at night
and (d) the snow particle analyser for data collection.

in the field, we use the wand calibration method described by Theriault et al. (2014)
for camera calibration. We use two coloured light-emitting diodes (LEDs), set at a fixed
distance apart on a carbon fibre rod, to act as the ‘wand’ attached to an unmanned drone.
This calibration process is conducted multiple times before and after each deployment to
ensure the same field condition between camera calibration and snow particle imaging.
We have developed custom-designed camera control software that synchronizes the image
capturing process across all four cameras. The calibration of the cameras is conducted
using the open-access software easyWand (Theriault et al. 2014), which involves capturing
images of the two coloured LEDs as they move within the imaging volume. The software
utilizes the trajectories of the two LEDs from all four cameras to conduct the calibration,
resulting in a final reprojection error within 0.25 pixels.
For tracking snow particle trajectories, we utilize an open-source implementation of

the shake-the-box (STB) method (Tan et al. 2020). This version builds on the original
STB method proposed by Schanz, Gesemann & Schröder (2016), with enhancements
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Field 3-D snow settling dynamics under weak turbulence

specifically in the identification and removal of ghost particles. These improvements make
it particularly suitable for our field data, which feature relatively high noise levels and a
large field of view. This approach enables our system to capture snow particle trajectories
within a considerable volume of approximately 4 × 4 × 6 m3. The system achieves a
spatial resolution of 6.3mmvoxel−1 and a temporal resolution of 200Hz, allowing for
detailed and precise tracking of snow particle movements. The tracked snow particle
trajectories are then re-oriented as a group to have the average streamwise direction
as the x direction. Thus, the y direction is defined as the spanwise direction and the
z direction is defined as the vertical direction. From these trajectories, we obtain the
Lagrangian velocity, u = (ux, uy, uz), the Lagrangian accelerations, a = (ax, ay, az) and
the resulting curvature, κ = ‖u × a‖/‖u‖3, where × represents the cross-product. We use
the second-order central difference method to calculate the Lagrangian velocity (first-order
derivative) and acceleration (second-order derivative). The approximation introduces an
inherent error, O(�t2), which depends directly on the time step and is relatively small.
However, the positioning errors of the snow particles can propagate and magnify in
the velocity and acceleration calculation. As discussed by Schanz et al. (2016) and Tan
et al. (2020), the iterative particle reconstruction, STB tracking and trajectory filtering
techniques significantly refine and reduce positioning errors. We quantify the root mean
square of the difference between trajectory positions before and after filtering to be 0.3
pixels. This reduction potentially compensates for the positioning errors inherited from
camera calibration, resulting in smaller errors in velocity and acceleration calculations.
Consequently, the actual uncertainties in measuring velocity and acceleration are primarily
influenced by the selection of the filter length, which ranges from 45 ± 2 frames (see
Appendix A). This leads to an average acceleration uncertainty of 0.34 m s−2.
To complement our 3-D PTV system, we also deployed a snow particle analyser near

the 3-D PTV set-up to assess the morphology and density of snow particles during each
snow event (figure 2b,d). All these measurements are crucial for accurately estimating
the terminal velocity of snow particles in still air. As shown in figure 2(c), the snow
particle analyser employs a DIH system, which captures holograms of snow particles
within a sample volume of 2.9 × 2.2 × 14.0 cm3. This system achieves a spatial resolution
of 14 μm pixel−1 and a temporal resolution of 50Hz. Through image analysis of the
holograms, we obtain detailed information on particle size and shape, specifically the area
equivalent diameter (Deq), major axis length (Dmaj), minor axis length (Dmin), area (Ae),
etc. We also classify the shape of each particle into one of six types: aggregates, graupels,
dendrites, plates, needles and small particles. We define the characteristic particle size
(Dp) as the area equivalent diameter for aggregates, graupels and small particles, and as
the major axis length for dendrites, plates and needles. Additionally, a high-precision scale
measures the weight of snow particles passing through the DIH sample volume, allowing
us to estimate the average density of the particles. We also perform conditional sampling
to achieve measurement of the density of individual snow particles.
For estimating the aerodynamic properties of snow particles, we follow the method

proposed by Böhm (1989). This method involves calculating the Best number X (also
known as the Davies number), a dimensionless number that incorporates only the physical
properties of snow particles and ambient air, and represents the equilibrium between
gravity and drag forces. The Best number is defined as

X = CDRe2p = 8ρpVpgρa
πμ2

(
A
Ae

)1/4

. (2.1)
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Noteworthily, unlike particle Reynolds number (Rep = ρaW0Dp/μ) and drag coefficient
(CD), the definition of the Best number eliminates the need to incorporate particle terminal
velocity in the formulation, which is not readily available for complex snow particles. In
(2.1), ρp and Vp are the density and volume of the snow particles, respectively, which
are specific to the type of snow particle, as detailed in Li et al. (2023). Specifically,
we approximate the complex snow particles as spheroids (graupels and small particles),
combinations of small spheroids (aggregates), disks with thickness in correlation with
their diameter (plates and dendrites) and thin cylinders (needles and columns). Such a
method minimizes errors in volume estimation as compared with the typical spherical
assumption used in the snow measurement community, resulting in the uncertainties of
the volume estimation within 10% for snow particles with irregular shape (aggregates)
and uncertainties of density within 20% for all demonstration cases in Li et al. (2023).
Here Ae is the effective snow particle imaged area, and A is the circumscribed area of the
enclosing circle or ellipse. Such an area ratio, A/Ae, serves as a simplified two-dimensional
(2-D) measure of porosity and is instrumental in better predicting the drag of complex
snow particles. As the snow morphological parameters are quantified by the snow particle
analyser while particles settle in various orientations, we assume that the ratio A/Ae
remains constant regardless of orientation. Finally, ρa and μ are the density and viscosity
of air, respectively.
Following the definition of the Best number, the drag coefficient of snow particles

is modelled as a function of the particle Reynolds number, accounting for the unique
morphology of snow particles. This approach indirectly incorporates the effect of snow
particle density, which contributes to increasing the settling velocity. According to Stokes’
law for Rep ∼ O(1), the correlation for the drag coefficient dependent on the particle
Reynolds number is CD = 24/Rep. However, the Stokes’ law becomes invalid as the
Reynolds number increases, especially for complex snow particles. Researchers have made
various attempts to model the drag coefficient of snow particles theoretically (Böhm 1989;
Khvorostyanov & Curry 2002, 2005; Mitchell & Heymsfield 2005). As suggested by
Böhm (1989) and references therein, the drag coefficient of snow particles is modelled
by considering the boundary layer surrounding the snow particles as a whole:

CD = C0

(
1 + δ0

Re1/2p

)2

. (2.2)

Here C0 = 0.6 is an inviscid drag coefficient and δ0 = 5.83 is a parameter controlling
the evolution of the particle boundary layer, likely depending on the particle surface
roughness, both empirically estimated. Equation (2.2) has the form of corrected Stokesian
drag for a rigid sphere (Kaskas 1970), but with different coefficients, modulating the
transition from a linear drag at low Rep to a constant drag coefficient C0 in the
Rep independent regime. The effect of different snow morphologies is included in
the A/Ae term in (2.1), which is then used to predict the snow type specific drag
coefficients, CDe = (A/Ae)

3/4CD. The C0 and δ0 parameters have been more recently
updated, along with the dependency on the area ratio, by Heymsfield & Westbrook (2010)
and McCorquodale & Westbrook (2021). Additional corrections considering turbulent
boundary layer, temperature, humidity and accounting for different snow particle types,
have been discussed in Khvorostyanov & Curry (2002, 2005) and Mitchell & Heymsfield
(2005).
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As described in Böhm (1989), we then obtain a semi-analytical and semi-empirical
equation for the particle Reynolds number by combining (2.1) and (2.2):

Rep = δ20
4

⎛
⎝(

1 + 4X1/2

δ20C
1/2
0

)1/2

− 1

⎞
⎠

2

. (2.3)

The terminal velocity of the snow particles (W0) in quiescent air is then calculated from
the Reynolds number, Rep = ρaW0Dp/μ. Once the terminal velocity is obtained, the
aerodynamic particle response time is defined as τp = W0/g.
The analyses described have been meticulously applied to each snow particle type,

leveraging the unique physical properties of individual particles, captured by the snow
particle analyser. Through a detailed examination of the collected holograms, we identify
and classify each particle, subsequently analysing their specific inertial properties, namely
Dp, ρp, A and Ae. By employing these properties within the Böhm model (Böhm 1989), we
were able to estimate the aerodynamic properties of each particle. This rigorous method
allows us to calculate the distribution and mean values of the terminal velocity (W0) and
drag coefficient for individual snow particles and specific snow types.

2.2. Turbulence and snow conditions in the field
Over the course of the winter seasons from December 2021 to April 2023, we successfully
carried out eight field deployments, encompassing a diverse range of environmental
conditions. These deployments allowed us to study four major types of snow particles:
aggregates, graupels, dendrites/plates and needles/columns. We encountered wind speeds
varying from a gentle 0.6m s−1 to a more intense 8.4m s−1. Based on these wind
speeds, we categorized the conditions into three turbulence levels: weak turbulence
(wind speed less than 3m s−1 with turbulent kinetic energy (TKE) below 0.3 m2 s−2),
moderate turbulence (wind speed between 3 and 6m s−1 with TKE ranging from 0.3 to
2.0 m2 s−2) and relatively strong turbulence (wind speed exceeding 6m s−1 with TKE
above 2.0 m2 s−2). These turbulent properties were measured using the sonic anemometer
positioned at a height of 10m. Details of the estimation methods of these quantities can be
found in Li et al. (2021b). We use the second-order structure function of the streamwise
velocity fluctuation to estimate the dissipation rate (ε). The Taylor microscale (λ) is then
calculated as λ = u′√15ν/ε, where u′ =

√
(u′2

x + u′2
y + u′2

z )/3 is the representative scale

of fluctuating velocity and ν is the viscosity of air. Given the variety of snow particle
types and wind speeds, our field data encompasses a total of 31 distinct conditions. To
effectively separate the influences of snow morphology and atmospheric turbulence on
snow settling velocity, a more systematic classification of the field snow and turbulence
conditions is essential. We propose using the settling parameter SvL = W0/u′, which
quantifies the relative impact of turbulence on snow gravitational settling (Petersen, Baker
& Coletti 2019; Brandt & Coletti 2022). This parameter represents the ratio of the snow
particle’s terminal velocity in still air (W0) to the root mean square of the turbulent velocity
fluctuations (u′). A higher value of SvL indicates that the influence of turbulence on the
snow settling velocity is relatively minor.
In our analysis, we utilized the settling parameter, wind speed and TKE as key criteria

to categorize our 3-D PTV and snow particle analyser datasets. This approach led us to
identify four distinct groups, which we labelled as ‘weak turbulence’ cases, with relatively
smaller Taylor Reynolds number (Reλ) and higher settling parameters (SvL) as shown in
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Figure 3. A summary of the Taylor Reynolds number of the atmospheric flow (Reλ) and settling parameter
of the snow particles (SvL) for different snow particle types. Data points for aggregates are marked with a red
diamond, graupel with a blue circle, dendrites with a green star and needles with a magenta triangle.

figure 3. We assess the turbulence and micro-meteorological conditions for each group
detailed in table 1, employing estimation methods as outlined in the studies by Nemes
et al. (2017) and Li et al. (2021b). Each group is dominated by one specific type of
snow particle, which constitutes more than half of the snow population in the dataset.
These types are aggregates, graupels, dendrites and needles, as detailed in table 2 and
illustrated in the size and shape distributions in figure 4. We leverage the capabilities of
the snow particle analyser, as detailed in § 2.1, to estimate these physical properties of
snow particles. During a selected one-hour period characterized by dominant snow particle
types, our analysis encompasses 200 000 holograms for each type of snow particle. This
comprehensive dataset yields detailed information about approximately 28 000 aggregates,
13 000 graupels, 30 000 dendrites and 21 000 needles. Complementing the snow particle
analyser measurements, our 3-D PTV datasets include a total of 500 s of images for
each dominant snow type, which are broken down into 50 s segments throughout the
one-hour period selected. This rich dataset facilitates the identification of millions of
snow particle trajectories, specifically around 322 000 for aggregates, 285 000 for graupels,
1 037 000 for dendrites and 182 000 for needles, providing orders of magnitude more data
than our previous studies. Specifically, our 3-D PTV system measures the complete 3-D
velocity and particle acceleration components. The additional spanwise dimension of the
data, compared with planar measurements, enables a thorough analysis of snow particle
kinematics, including trajectory curvature and meandering. Furthermore, the integration
of the 3-D PTV system with the snow particle analyser allows us to correlate the specific
morphology of snow particles (e.g. size, shape and type) with their settling behaviour.
For the detected snow particles, their size and shape are measured through image

analysis described in § 2.1. Given that these particles may present various orientations
relative to the imaging plane, relying solely on the projected area (or equivalent diameter)
falls short of providing a precise representation of the characteristic size of each particle,
especially the non-spherical ones. We thus define the particle size as the equivalent
diameter for aggregates and graupels, the major axis for dendrites (diameter) and needles
(length), as detailed in Li et al. (2023). Upon closer examination, we observed notable
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Aggregate Graupel Dendrite Needle Dp Dmin/Dmaj A/Ae ρp
Snow type (%) (%) (%) (%) (mm) (–) (–) (kg m−3)

Aggregate 55.8 21.1 14.0 9.1 0.96 ± 0.63 0.61 ± 0.19 1.22 90
Graupel 2.5 93.3 3.7 0.5 0.75 ± 0.28 0.80 ± 0.16 1.06 220
Dendrite 16.9 19.3 55.4 8.4 0.93 ± 0.66 0.58 ± 0.21 1.98 280
Needle 13.2 22.4 7.2 57.2 0.74 ± 0.34 0.58 ± 0.20 1.21 360

Table 2. Comparative overview of snow particle characteristics across various dataset groups, including the
proportion of snow types where the dominant type exceeds 50% occurrence, the mean diameter (defined as the
average equivalent diameter for aggregates and graupels, as well as the average major axis length for dendrites
and needles), aspect ratio, area ratio and density values characterizing each dataset group.

1.5
3

2

1

0

1.0

0.5

0

p
.d

.f
.

2 4 6 0.2 0.4 0.6 0.8 1.0

D (mm) Dmin/Dmaj

Aggregate

Graupel

Dendrite

Needle

(b)(a)

Figure 4. (a) Probability distribution functions (p.d.f.s) of snow particle size (Dp, defined as the equivalent
diameter for aggregates and graupels, as well as the major axis length for dendrites and needles) and (b) p.d.f.s
of the aspect ratio (Dmin/Dmaj) for various snow types, plotted with different line styles and colours: aggregates
are represented by red solid lines, graupel by blue dotted lines, dendrites by green dashed lines and needles by
magenta dash-dotted lines.

differences among these types. Graupels and needles, for instance, tend to have a more
uniform size distribution, with a smaller average size and standard deviation compared
with aggregates and dendrites. Aggregates and dendrites, on the other hand, are generally
larger, and their datasets include a mix of other particle types, resulting in a broader
size distribution. We also analysed the aspect ratio (i.e. the ratio between the minor
and major axes lengths, Dmin/Dmaj) of these snow particles, defined as the ratio of
their minor to major axis lengths, as measured by the snow particle analyser. Graupels
predominantly exhibit aspect ratios greater than 0.8, indicating their near-spherical shape.
In contrast, the aspect ratios for the other types vary significantly from one, suggesting
more anisotropic shapes. In this respect, note that the 2-D holograms do not allow us to
accurately capture the averaged thickness of plate-like crystals due to the random particle
orientation, unless further analysis is performed on selected particle images as in Li et al.
(2023). Furthermore, we measured the average density (ρp), together with the average
particle size (Dp) and aspect ratio (Dmin/Dmaj), of the four datasets using the snow particle
analyser. Needles, being solid crystals with minimal riming, have the highest average
density of 360 kg m−3. Dendrites follow with an average density of 280 kg m−3, as it
is influenced by the gaps between branches, which contribute to the overall porosity of
the particles. Graupels have an average density of around 220 kg m−3, aligning with
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our previous measurements. Moreover, aggregates exhibit the lowest density of around
90 kg m−3, as expected, attributable to their larger size and higher porosity.

3. Results

Utilizing the snow particle analyser, we have successfully measured both the morphology
and density of snow particles, enabling us to accurately predict their aerodynamic
properties. Additionally, our 3-D PTV system has provided detailed 3-D settling dynamics
from millions of snow particle trajectories. Armed with this comprehensive data, we
address three key questions in the following section. First, how does the morphology
of snow particles influence their aerodynamic properties? Second, in what ways does
morphology impact the settling kinematics of these particles? Third, how do the varying
settling dynamics among different types of snow particles affect the overall settling
velocity of snow? These inquiries form the core of our investigation, shedding light on the
intricate interplay between snow particle morphology and their settling behaviour through
the atmosphere.

3.1. Aerodynamic properties
This section presents an in-depth examination of the aerodynamic characteristics,
including their terminal velocity, drag coefficient and settling velocity, for each snow
particle type. Table 3 consolidates key aerodynamic parameters derived from our analysis:
the average settling velocity (Ws) obtained through 3-D PTV, the average estimated
still-air terminal velocity (W0) as outlined in § 2.1, the velocity fluctuation (u′) and the
Kolmogorov time scale (τη) of the flow, the particle’s Stokes number (Stη = τp/τη), their
settling parameter (SvL = W0/u′) and the Froude number (Frη = aη/g, where aη = uη/τη

is the Kolmogorov scale acceleration). Needles exhibit the highest terminal velocity
among all four types. With the same particle size, the cylindrical-shaped needles have
the smallest projected area and the highest density, leading to larger terminal velocities.
The Stokes number gauges the particle’s velocity response to sudden changes in flow,
with values around one signifying a critical condition for turbulence–particle interactions.
Settling parameters greater than one imply a weak influence of turbulence on the settling
particles. The Froude number, a ratio of the characteristic flow acceleration (aη = uη/τη)
to gravitational acceleration, suggests that gravitational settling is more pronounced than
the turbulence effect on the particles (Bec, Homann & Ray 2014). Comparatively, the
settling velocity enhancements from the terminal velocities are moderate, ranging up to
32% for aggregates, 13% for dendrites, 4% for needles and 3% for graupels. These
findings indicate that the turbulence effects (e.g. preferential sweeping and loitering) on
particle settling is generally weak under the examined conditions. Variations in settling
enhancement across snow types may be largely attributable to differences in particle size,
shape and density.
Figure 5 presents a comparative analysis of the probability density functions (p.d.f.s)

for settling velocity (Ws) and estimated still-air terminal velocity (W0) across various
snow particle types. The estimate of W0 is based on the Best number, X = CDRe2p, which
does not directly depend on the settling velocity of the snow particles, but rather on
their physical properties and the ambient air. Following the approach of Böhm (1989),
summarized by (2.1)–(2.3), we estimate the terminal velocity from measurable geometric
and inertial properties by the snow particle analyser. The p.d.f.s for graupel, which
are nearly spherical in shape, exhibit a close overlap between the settling and terminal
velocities, indicating a minimal influence of turbulent eddies on their settling dynamics.
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Snow type Ws (m s−1) W0 (m s−1) u′ (m s−1) τη (s) Stη (–) SvL (–) Frη (–)

Aggregate 1.37 ± 0.22 1.04 ± 0.31 0.16 0.238 0.44 6.5 0.003
Graupel 1.06 ± 0.25 1.03 ± 0.34 0.17 0.218 0.48 6.0 0.006
Dendrite 1.14 ± 0.24 1.01 ± 0.60 0.25 0.119 0.87 4.0 0.009
Needle 1.45 ± 0.17 1.40 ± 0.66 0.16 0.238 0.60 8.7 0.003

Table 3. Summary of characteristic parameters for snow particles and atmospheric flow, encompassing
average terminal (W0) and settling velocities (Ws), Stokes number (Stη), settling parameter (SvL), flow velocity
scale (u′), Kolmogorov time scale (τη) and Froude number (Frη).

Note that the ‘dent’ in the distribution of the terminal velocity of graupels in figure 5(b)
reflects their size distribution. On the contrary, for the other snow types – characterized
by non-spherical geometries – the p.d.f.s diverge despite the mean settling and terminal
velocities for needles displaying only a 4% discrepancy. This variation suggests that
the aerodynamic behaviour of non-spherical particles is considerably affected by the
randomization of their orientation due to flow disturbances and unsteady behaviour. In
quiescent conditions, particles falling stably tend to orient themselves to maximize the
aerodynamic drag (i.e. preferential orientation), potentially due to the inertial forces of
the surrounding media, presenting their maximal cross-sectional area perpendicular to
the fall direction (Willmarth et al. 1964; Cho, Iribarne & Richards 1981). However, in
turbulent conditions, such a preferential orientation is not appreciable (Cho et al. 1981;
Klett 1995), and the varying orientations result in a reduced effective cross-sectional area,
potentially leading to an increased average settling velocity for non-spherical particles.
Furthermore, while the settling velocity distributions for different snow types approximate
a Gaussian profile, the estimated terminal velocities are rather skewed. This asymmetry
arises from the inherent size distributions of the snow particles, which are typically
modelled using a gamma distribution (Field, Heymsfield & Bansemer 2007). We also
acknowledge the potential sampling differences between the 3-D PTV measurements
(likely under-representing the finest size fraction) and the snow particle analyser data
collection.
Historical studies have demonstrated that the terminal velocity of snow particles exhibits

a size-dependent characteristic, since the early research by Nakaya & Terada (1935),
Heymsfield (1972) and Locatelli & Hobbs (1974) fitting empirical data to establish
a particle-mass-based approach to the settling. Specifically, Locatelli & Hobbs (1974)
conducted a thorough investigation of various snow particle types, deriving power-law
empirical formulas to represent the size-dependent terminal velocity, expressed as W0 =
aDb

p, where a and b are constants that differ based on the snow particle type, based on
shape and density. For our analysis, we employed the formulas relevant to aggregates
of unrimed radiating assemblages of dendrite (W0 = 0.8D0.16

p ), conical graupel (W0 =
1.2D0.65

p ), rimed dendrites (W0 = 0.62D0.33
p ) and rimed columns (W0 = 1.1L0.56, where L

is the length). Such power-law equations can be empirically obtained by fitting the size
distributions in figure 4 with the settling velocity in figure 5. We optimize the linear
coefficient with the same exponent to impose the same mean and similar distribution
of the settling velocity for each snow type and, thus, obtained the empirical equations:
Ws = 1.45D0.16

p for aggregates,Ws = 1.2D0.65
p for graupels,Ws = 0.92D0.33

p for dendrites,
Ws = 1.66L0.56 for needles. We thus obtain the same equation for W0 and Ws for
graupels, suggesting close alignment in the mean values and distributions between the
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Figure 5. Probability distribution functions (p.d.f.s) contrasting the estimated still-air terminal velocity (W0)
using snow properties measured by the snow particle analyser and the experimentally measured settling
velocity (Ws) by the 3-D PTV system for four datasets with different dominant snow types: (a) aggregates,
(b) graupel, (c) dendrites and (d) needles. Insets within each panel display representative holographic images
of the corresponding snow particle type.

measured settling velocities and the estimated terminal velocities, the same as predicted
using equations from Böhm (1989). This also confirms negligible effects by the specific
atmospheric turbulence conditions monitored during the settling of graupels. In contrast,
for other non-spherical types of snow, the linear coefficients forWs are higher than those of
W0. This discrepancy highlights the morphology effects that modulate the settling velocity
of these non-spherical snow particles, with potential turbulence effects considering the
varying particle orientation because of turbulence disturbances, and the production of
the Stokes number and settling parameter reaching critical condition (StηSvL ∼ 1, as
suggested in Petersen et al. 2019; Brandt & Coletti 2022).
To better model the terminal velocity, it is important to quantify the aerodynamic

drag of snow particles for various morphological types. In figure 6 we present the
mean drag coefficients and mean Reynolds numbers, estimated using the average particle
size and measured settling velocity. The error bars indicate the variability of these
quantities, reflecting the distribution of snow particle sizes and settling velocities as
represented by their standard deviations. The drag coefficient is calculated as CDe,mean =
2ρpVpg/(ρaW2

s Ae,max), where ρp is the average snow particle density, Vp is the average
particle volume (different expressions for different snow particle types defined in Li et al.
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2023),W2
s is the mean square settling velocity and Ae,max is the average maximal projected

area of the measured snow particles (e.g. a flat-falling dendrite, see Appendix B). The
snow particles have an average Reynolds number (Rep,mean = Ws Dp/ν) of the order of
100, agreeing with typical field measurements (Heymsfield & Westbrook 2010). The drag
coefficients for aggregates, graupels and needles agree well with the model predictions
from Böhm (1989, equation (2.2)), CDe = (A/Ae)

3/4C0(1 + δ0/Re
1/2
p )2, as presented by

the dotted lines. Note that the average area ratio, A/Ae, is calculated from the snow
particle holograms for each snow type, and it is necessary to rescale the generalized
drag equation (2.2) to the specific snow morphologies (Böhm 1989). As graupels show
more sphere-like features, their drag coefficient leans towards that of spheres (corrected
for high Reynolds number by Kaskas 1970). Despite the smaller terminal velocity for the
non-spherical particles considering the particle orientation, the drag coefficient is well
predicted by the Böhm (1989) model for aggregates and needles. Potential contamination
from other types (∼20% after filtering out particles with close to an aspect ratio of 1)
within the datasets might lead to the mismatch between the p.d.f.s of the terminal velocity
and measured settling velocity for needles. The enhanced settling for aggregates could
be a combined result of particle orientation, weak turbulence enhancement considering
the critical condition of StηSvL ∼ 1 and contamination from other types that do not align
with the statistically dominant group, as shown in table 2. Moreover, the dendrites show,
on average, a higher drag coefficient as compared with the other types, potentially due
to their large frontal area and higher density. Such a discrepancy could also explain
the underestimation of the terminal velocity of dendrites by the equations from Böhm
(1989), considering the higher, on average, settling velocity. The error bars in figure 6
represent the natural variability of the data sample rather than measurement errors.
However, measurements taken using the 3-D PTV system and snow particle analyser
do introduce errors in settling velocity, particle volume and density estimates. Based
on Appendix A, the velocity measurement uncertainty is estimated to be 0.002m s−1.
From our previous study (Li et al. 2023), the volume estimation uncertainty is around 5%
due to size measurement and classification errors, leading to a similar 5% uncertainty
in density estimates. Since the drag coefficient depends on particle size, density and
settling velocity, we estimate the overall measurement error for CD to be approximately
7.4%, while the error for Rep is around 2.2%. Additional errors may arise due to
the presence of other snow morphologies during the investigated periods. By selecting
only the snow particles matching the dominant snow types – aggregates and dendrites
– while maintaining the estimated average density and the measured averaged velocity,
we calculated CD and Rep values as 1.9 and 139 for aggregates, compared with 1.6 and
108 when including all snow particle types within the aggregate-dominant dataset. For
dendrites, the calculation yielded a higher drag coefficient of 4.4, compared with 3.6
when all snow particles were considered, with the particle Reynolds number around 166,
compared with 90. All the above estimated measurement errors lead to uncertainties
in the quantities that are within the plotted standard deviations represented in figure 6.
We further compare our measurements with laboratory experiments by Tagliavini et al.
(2021a), with squares representing the aggregates (AgCr77, Ag15P1, AgSt18), pentagrams
representing the dendrite (D1007) and left-pointed triangles representing the columnar
snow (CC20Hex2). Our measurements agree well with the laboratory experiments, with
the dendrite type showing a larger drag coefficient due to its disk-like shape. Such
observations provide insights for snow settling modelling, especially for the predominantly
dendrite snow events, as they show a large deviation from the Böhm (1989) model
prediction.
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Figure 6. The relationship between drag coefficient (CD) and particle Reynolds number (Rep) for four types
of snow particles. Presented data points, with corresponding error bars indicating the natural variability in the
data sample, denote mean values of CD and Rep derived from average particle size and settling velocity for
each snow type: aggregates (red diamond), graupel (blue circle), dendrites (green star) and needles (magenta
triangle). These measured data are compared against theoreticalCD − Rep correlations for spheres (dashed line,
Kaskas 1970) and flat disks at high Rep values Roos & Willmarth (1971), as well as with empirical correlation
(CDe = (A/Ae)

3/4C0(1 + δ0/Re
1/2
p )2) for natural snow particles (dotted lines, with the same colour scheme as

the measured drag coefficient) and recent findings from 3-D-printed snow particles (black squares, pentagrams
and left-pointed triangles) by Tagliavini et al. (2021a).

3.2. Settling kinematics

3.2.1. Qualitative observation
Besides the settling velocity, the kinematic behaviours of snow particle settling trajectories
are as variable as their shapes, with morphology playing a significant role in their
settling behaviour. Similar to the findings of Kajikawa’s laboratory studies (Kajikawa
1976, 1982, 1989, 1992; Kajikawa & Okuhara 1997), snow particles demonstrate a range
of falling styles under weak atmospheric turbulence, akin to those of disks and thin
cylinders in quiescent flows. Figure 7 displays a collection of snow particle trajectories,
differentiated by the colour-coded spanwise acceleration, from datasets dominated by
different snow types. The distinct kinematics observed here are likely a consequence
of each type’s unique morphology under similar atmospheric conditions. Aggregates
and dendrites, in particular, exhibit a pronounced meandering motion, characterized
by substantial acceleration fluctuations at a relatively low frequency. This behaviour
could be attributed to their larger sizes and frontal areas, which, when subject to even
weak atmospheric turbulence, result in unstable settling patterns marked by fluttering or
tumbling motions. In contrast, graupels, with their quasi-spherical form, show a relatively
high-frequency, low-magnitude meandering motion, and maintain a consistent travel
direction. This suggests that graupels can better follow the fluid flow, considering their
smaller particle size and lower density compared with the other non-spherical particle
types, with their meandering motion possibly revealing interactions with small turbulent
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Figure 7. A random selection of 50 trajectories for four snow particle types, with paths colour coded according
to spanwise acceleration and centred at the origin. Panels (a–d) each display a group of sample trajectories for
(a) aggregates, (b) graupel, (c) dendrite and (d) needles. Insets provide corresponding holograms for each snow
type. We remind the reader that with our coordinate system aligned with the mean wind direction, all particles
will travel towards a positive x value.

eddies. Needles exhibit weak magnitude and infrequent fluctuations in acceleration,
but appear to experience a wider spanwise velocity range, as shown by the spread of
trajectories in the spanwise direction. Their elongated, cylindrical shape, presenting a
minimal frontal area relative to length, likely contributes to their tendency to align with
the flow, resulting in this distinct settling pattern. Additionally, a detailed but qualitative
examination of the trajectories indicates that non-spherical particles predominantly exhibit
zig-zag motions, potentially due to the vortex shedding in their wake (Willmarth et al.
1964; Toupoint et al. 2019), whereas graupels tend to follow more helical paths, potentially
spiralling around vortex tubes (Mezić, Leonard & Wiggins 1998).

3.2.2. Kinematic quantification
To thoroughly analyse the kinematics of snow particles, we examine their trajectories using
the particle velocity (u = (ux, uy, uz)), the Lagrangian accelerations (a = (ax, ay, az))
and the resulting curvature (κ = ‖u × a‖/‖u‖3), where × represents the cross-product.
The curvature quantifies the trajectory’s deviation from a straight path, influenced by
flow structures or the snow particle morphology. We define two curvatures: one based
on the original path and another adjusted to reduce the effect of the different mean
streamwise flow and settling velocities across datasets (κ = ‖u′ × a‖/‖u′‖3, with u′ =
(ux − ux, uy, uz − uz)). Figure 8 demonstrates this analysis with the trajectory of a dendrite
snow particle. The apparent sinusoidal meandering is an actual measurement from our 3-D
PTV system. This meandering is underscored by the sinusoidal patterns in the velocity
and acceleration components (figure 8b,d), particularly pronounced in the acceleration
signals in the horizontal plane. Spectral analysis of the acceleration variation along specific
trajectories enables us to discern the strength and frequency of the meandering motion
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Figure 8. Kinematic analysis of a sample trajectory. (a) Annotated meandering trajectory of a dendrite snow
particle detailing its Lagrangian velocity components (ux, uy, uz), accelerations (ax, ay, az), curvature (κ) and
radius of curvature (R). (b) Temporal variations in the three velocity components along the trajectory: x
(black solid line), y (blue dashed line), z (red dotted line). (c) Frequency spectrum of horizontal acceleration,
highlighting the peak frequency and maximum fluctuation amplitude. Inset shows the same spectrum in log-log
scale. (d) Corresponding temporal variations in the three acceleration components along the trajectory with the
same colour scheme as in (b).

(figure 8c). The dominant frequency is identified from the spectral peak, and the intensity
is characterized by the magnitude of the horizontal acceleration fluctuations at this
frequency. This comprehensive analysis yields detailed insights into how the morphology
of snow particles influences their settling dynamics, particularly highlighting the effects
on their acceleration statistics and trajectory geometry, which will be explored in depth in
subsequent sections.

3.2.3. Acceleration statistics
Having quantified the settling trajectories of snow particles, we proceed to examine and
compare the acceleration statistics across datasets featuring four snow particle types.
Figure 9 presents a detailed comparison of the acceleration behaviours of different
types through the normalized acceleration p.d.f.s and the Lagrangian acceleration
autocorrelation. The acceleration response of the particles is influenced by their
morphological features and density within the weak atmospheric turbulence. Figure 9(a)
juxtaposes the normalized acceleration p.d.f.s of different snow types against the
acceleration of fluid parcels in homogeneous isotropic turbulence, based on simulations
by Bec et al. (2006). It is generally anticipated that, due to inertia, particles in turbulence
will not accelerate as intensely as the surrounding fluid because they cannot keep pace with
the rapid fluctuations of the turbulent flow. Nevertheless, the shape of the particles is also
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Figure 9. (a) Probability density functions of acceleration across four snow particle types – aggregates (red
diamonds), graupel (blue circles), dendrites (green stars) and needles (magenta triangles) – set against the
benchmark fluid parcel acceleration from homogeneous isotropic turbulence, as reported by Bec et al. (2006).
(b–d) Acceleration autocorrelation functions, (b) ρa,x, (c) ρa,y and (d) ρa,z, averaged from these snow particle
trajectories, with each type depicted by the following colour and line style: aggregates (red solid line), graupel
(blue dotted line), dendrites (green dashed line) and needles (magenta dash-dotted line). The x axis, temporal
difference, is normalized by the Kolmogorov time scale.

a critical factor in their acceleration dynamics. Dendrites, for instance, are more prone to
high acceleration events, likely a consequence of their considerable size, expansive frontal
area and the nonlinear nature of the drag forces they experience. Aggregates and graupels
display a decrease in the probability of high accelerations, attributable to their less intricate
shapes. Needles, characterized by their slender profile, exhibit a diminished probability of
encountering higher acceleration events, which may be due to their streamlined shape that
naturally aligns with the flow and vortex structures within, along with their smaller size
and frontal area (Voth & Soldati 2017). The p.d.f. tails of these non-spherical particles
also appear to correlate with their shape factors, with needles being prolate (β > 1),
dendrites oblate (β < 1) and aggregates displaying a spectrum in between these extremes.
This observation contrasts with the recent findings reported by Singh, Pardyjak & Garrett
(2023), which provides a universal scaling for snow particle acceleration. Additional
experimentation under various turbulence conditions is needed to further investigate this
discrepancy.
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Field 3-D snow settling dynamics under weak turbulence

af ,horz af ,z fhorz f̄z St = fhorz × Dp/Ws 4τ0,x 4τ0,y 4τ0,z τη

Snow type (m s−2) (m s−2) (Hz) (Hz) (–) (s) (s) (s) (s)

Aggregate 0.27 0.60 2.6 3.8 2 × 10−3 0.38 0.42 0.27 0.24
Graupel 0.19 0.45 5.6 6.6 4 × 10−3 0.26 0.36 0.26 0.22
Dendrite 0.30 0.47 2.0 3.3 2 × 10−3 0.51 0.48 0.32 0.12
Needle 0.22 0.55 2.5 4.1 1 × 10−3 0.32 0.44 0.24 0.24

Table 4. Comparative summary of horizontal and vertical acceleration variations in snow particle trajectories,
presenting the average magnitude (af ,horz, af ,z) and frequency ( fhorz, fz), alongside the zero-crossing times (τ0,x,
τ0,y and τ0,z) of the acceleration autocorrelation functions and the Kolmogorov time scale (τη), for different
snow particle types.

In figure 9(b–d) the acceleration autocorrelation functions of the Lagrangian
acceleration components reveal distinct inertial responses for the four types of snow
particles. These functions are derived from the snow particles’ settling trajectories, using
the formula ρa(n�t) = 〈a(t0)a(t0 + n�t)〉/〈a2〉, where n is the number of time steps and
�t = 1/200 s is the time step. Dendrites display the highest inertia, indicating a more
pronounced resistance to changes in the fluid motion, followed by aggregates, needles and
graupels (small differences among the three for all components). The particle inertia is
attributable to the larger sizes of dendrites and aggregates, their non-spherical shapes and
their greater density in the case of dendrites and needles. The zero-crossing points (τ0) on
the autocorrelation curves also provide temporal insights into the acceleration fluctuations
and, consequently, the frequency of the meandering motions of the snow particles, as
listed in table 4. It scales with one-fourth the period of the meandering motion. In table 4
we present a comparison of four times the zero-crossing time (4τ0) of the acceleration
autocorrelation function for the three acceleration components across various snow
particle types. Generally, dendrites exhibit the largest zero-crossing time scales in their
acceleration autocorrelation functions, suggesting a low-frequency meandering motion.
Conversely, graupels demonstrate the smallest zero-crossing time scales, suggesting the
fastest meandering frequency, corroborating the qualitative observations from figure 7.
The acceleration autocorrelation functions for needles and aggregates reach their initial
zero at intermediary times, with aggregates showing slightly larger time scales. The trends
in these autocorrelation functions further emphasize the influence of particle morphology
on settling behaviour, with the aspect ratios of non-spherical particles mirroring the trends
in the zero-crossing time scales.
Following up the autocorrelation functions of acceleration above, we provide a

more direct measurement of the meandering motion of snow particles by examining
the Lagrangian variations in position, velocity and acceleration along their settling
trajectories, as shown in figure 8. The horizontal acceleration component, displaying
the most pronounced variation, serves as a key indicator of meandering behaviours,
as illustrated in figure 10(a,b), which depict the p.d.f.s of acceleration fluctuation
frequency and magnitude for different snow particle types. This analytical approach
aligns with the qualitative findings from figure 7 and supports the acceleration statistics
presented in figure 9. The measured average frequencies and corresponding magnitudes
are summarized in table 4. These frequencies can be non-dimensionalized into Strouhal
numbers, St = fhorz × Dp/Ws, as proposed by Willmarth et al. (1964), and summarized
in table 4. Although the near-spherical shape of graupels is not expected to induce
meandering motion, our measurements surprisingly reveal a weak meandering or helical
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Figure 10. (a) Probability density functions of the frequency of horizontal acceleration fluctuations ( fhorz)
and (b) p.d.f.s of the magnitude of these fluctuations (af ,horz) across four snow particle types. Aggregates are
represented by red solid lines, graupels by blue dotted lines, dendrites by green dashed lines and needles by
magenta dash-dotted lines.

motion, as evidenced by variations in velocity and acceleration. The observed average
frequency of this motion closely matches the Kolmogorov scale frequency 1/τη = 4.6Hz.
This correspondence suggests that, despite the dominance of morphological effects in
dictating particle behaviour, especially for non-spherical particles, graupels still move
around and weakly interact with the Kolmogorov eddies within the flow, considering their
sizes close to those of the Kolmogorov eddies. In contrast, the meandering frequencies
for non-spherical particles are lower than both the frequency corresponding to the
Kolmogorov scale and the vortex shedding frequency in the wake of anisotropic particles
identified in various studies (Willmarth et al. 1964; Jayaweera & Mason 1965; Auguste
et al. 2013; Toloui et al. 2014; Tinklenberg et al. 2023). Specifically for dendrites,
we estimate the dimensionless moment of inertia to be ∼ O(0.1 − 1), resulting in the
Strouhal number ∼ O(0.01) based on Willmarth et al. (1964), larger than that of the
dendrites from our measurement. This discrepancy may be attributable to the delayed
inertial response of non-spherical particles to the fluid flow and vortex shedding, as
well as to the permeability of the dendrites. Moreover, the measured Strouhal numbers
for these particles are consistent with Kajikawa’s laboratory measurements (Kajikawa
1976, 1982, 1989, 1992; Kajikawa & Okuhara 1997), situating our findings within the
observed range for the meandering motions of non-spherical snow particles. The vertical
acceleration component displays fluctuations that could stem from orientation changes
(resulting in drag force variation) in anisotropic particles due to horizontal meandering.
The az fluctuation magnitudes are more pronounced since the horizontal component
combines the x and y components, which are typically out of phase. Furthermore, the
vertical acceleration fluctuation frequency is nearly twice the horizontal one because the
inferred changes in particle orientation, caused by horizontal meandering, e.g. a perfectly
edge-on configuration, have a 180◦ periodicity for disk- and needle-like shapes. This
interpretation is consistent with the minimal differences observed for the near-symmetric
graupel, and the trend is also consistent with the shorter zero-crossing times (τ0,z) observed
in our data.
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Figure 11. (a) Probability density functions of the normalized trajectory curvature (κη, normalized by the
Kolmogorov scale) for four different snow particle types using original path data. (b) Probability density
functions of normalized curvature after adjusting for the mean streamwise flow and settling velocities. Each
snow type is depicted by a distinctive line style and colour: aggregates with red solid lines, graupel with blue
dotted lines, dendrites with green dashed lines and needles with magenta dash-dotted lines.

3.2.4. Trajectory geometry
The variance in meandering frequency and magnitude across different types of snow
particles results in distinctive trajectories. To quantify their geometrical differences, we
employ curvature calculations both with and without the impact of the mean streamwise
and settling velocities. Figure 11 illustrates the p.d.f.s of these normalized trajectory
curvatures (κη, where η is the Kolmogorov scale). For the original trajectories, curvature
is calculated using the formula κ = ‖u × a‖/‖u‖3 (figure 11a), where × indicates the
cross-product between the velocity (u) and acceleration (a) vectors. Additionally, to
minimize the influence of varying flow and settling velocities across datasets, we adjust
the velocity vector to u′ = (ux − ux, uy, uz − uz)), and recompute curvature (figure 11b).
Previous research by Braun, De Lillo & Eckhardt (2006), Xu, Ouellette & Bodenschatz
(2007) and Scagliarini (2011) has explored the geometry of fluid trajectories in turbulence,
uncovering characteristic scaling within the curvature p.d.f.s. Their findings suggest a
universal scaling for both tails of the p.d.f.s: low curvature events scale with κ1, while
high-curvature events follow a κ−5/2 scaling. Xu et al. (2007) propose that these tail
scaling laws result from Gaussian velocity statistics rather than turbulence gradients,
contending that high-curvature events correlate with periods of low velocity rather than
high acceleration from interactions with thin vortex tubes as one might expect. Moreover,
curvature can also be expressed as κ = ‖an‖/‖u‖2, so the tail of the curvature p.d.f.,
Pκ→∞, as κ → ∞, scales similarly to the tail of the p.d.f. of u−2 = 1/(u2x + u2y + u2z ),
Pu−2→∞, as u−2 → ∞. Assuming velocity components are independent and follow
Gaussian statistics, Pu−2→∞ conforms to a chi-square distribution with three degrees
of freedom, leading to the derived scaling of Pκ→∞ ∼ κ−5/2. Bhatnagar et al. (2016)
extended this theoretical framework to heavy inertial particles and verified through
simulations that the same scaling applies to the p.d.f.s of these particles’ trajectories.
These theoretical insights can be integrated into our analysis of the geometry of snow
particle trajectories, providing a better understanding of the intricate settling dynamics
and trajectory geometry under the influential role of particle morphology.
Figure 11(a,b) reveals that for most snow particle types, the tails of the curvature p.d.f.s

exhibit similar scaling trends as reported in previous research (Braun et al. 2006; Xu et al.
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2007; Scagliarini 2011; Bhatnagar et al. 2016). Nonetheless, when considering the mean
streamwise and settling motions, the p.d.f.s of curvature for non-spherical particles exhibit
a notably different scaling, approximately following a κ−4 trend as shown in figure 11(a).
This deviation may arise from the rotation and meandering motion due to the morphology
of non-spherical snow particles, which modulates the Lagrangian velocities along the
trajectories. Notably, when the mean settling and streamwise velocities are removed from
consideration, the tails of the curvature p.d.f.s for different snow types tend to align on
the higher curvature end. This pattern indicates that particle morphology predominantly
influences the mean values of the settling and streamwise velocities, rather than their
fluctuations. Moreover, the peaks of the p.d.f.s are around 10−2 and 10−3, similar to
those in the previous studies. However, as proposed by Xu et al. (2007), for fluid tracers,
the peak of the p.d.f. scale with (ηReλ)−1, which for the snow particle trajectories,
would be ∼ O(1). The smaller curvature for the snow particle trajectories might be
attributed to the particle inertia (Maxey 1987). Further analysis shows that, despite the
pronounced meandering behaviour of dendrites, they exhibit the smallest mean curvature,
with aggregates, needles and graupels following in ascending order. This trend can be
explained by the fact that both the frequency and magnitude of the meandering motion
contribute to the overall trajectory curvature. Dendrite trajectories, while displaying
significant fluctuations in spanwise meandering motion, have a lower frequency, which
culminates in a reduced mean curvature. The observed differences in the curvature
p.d.f.s for graupels and other non-spherical snow types can be elucidated by drawing
upon our earlier analysis in § 3.2.3. For graupels, the curvature p.d.f. in figure 11(a)
scales like that of fluid trajectories, indicating that the weak meandering behaviour of
graupels may stem from interactions with turbulent eddies. In contrast, for non-spherical
particles, it is likely due to the combined influence of wake vortex instabilities, as
discussed in § 3.2.3, and weak atmospheric turbulence, as the scaling later converged in
figure 11(b).
Figure 12 then delves into the relationship between normalized spanwise velocity

(|uy|/Ws) and normalized trajectory curvature (κη) for snow particles, taking into account
the theoretical finding by Xu et al. (2007) that high-curvature events tend to coincide with
low velocities. While snow particles settling in the atmosphere generally have non-zero
streamwise and settling velocities, high-curvature events are often tied to moments when
the spanwise velocity is minimal and changing sign. This trend is evident in figures 7 and
8(a), where the spanwise velocity approaches zero and reverses direction at the peaks of
the meandering motion, leading to increased curvature at these turning points. In figure 12,
joint p.d.f.s map the spanwise velocity magnitude and the local trajectory curvature, after
subtracting the mean streamwise and settling velocities, for each snow particle type.
A pronounced negative correlation between spanwise velocity and trajectory curvature
is observed, particularly for dendrites (figure 12c), which exhibit the most substantial
correlation coefficient (σxy = −0.80). Aggregates display a similar negative correlation,
but with a slightly lower coefficient (σxy = −0.77) and a reduced magnitude of spanwise
velocity. Needles, despite having the lowest spanwise velocity magnitude potentially due
to their smaller frontal area and high density, maintain a strong correlation with curvature,
indicated by a correlation coefficient of σxy = −0.76. Graupels, on the other hand, show
the weakest correlation among all particle types, with the lowest coefficient (σxy = −0.71).
This analysis highlights the profound effect of snow particle morphology on meandering
motion for non-spherical particles, which associates the near-zero spanwise velocity in the
meandering extremes with the high curvature in their trajectories. Unlike graupels, whose
weaker meandering motion is influenced more by interactions with turbulence eddies,
non-spherical particles do not exhibit the expected correlation between high curvature and
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Figure 12. Joint p.d.f.s depicting the interdependence of normalized spanwise velocity magnitude (|uy|/Ws)
and normalized trajectory curvature (κη) for four types of snow particles: (a) aggregates, (b) graupel,
(c) dendrites and (d) needles. The colour gradient indicates the probability of data occurrence, with warmer
colours representing higher concentrations. Insets provide sample holograms of typical particles from each
type.

high acceleration, suggesting that their complex morphology dominates this meandering
motion and corresponding high-curvature events.

3.3. Interconnection between trajectory geometry and settling velocity
Our comprehensive analysis elucidates the distinctive settling behaviours of snow particles
with various morphologies, addressing the questions raised at the beginning of our results
section. Concerning the influence of morphology on snow aerodynamic properties, we
observe that the response times for all snow particles are broadly similar, averaging
around 0.1 s, of the same order of the intercept in the acceleration autocorrelation
function. However, needles exhibit a marginally increased response time attributed to
their higher density, particularly when compared with the density of the surrounding air.
This higher density contributes to the needles’ higher average terminal velocity in still air.
Furthermore, the empirical models by Böhm (1989) well predict the drag coefficients for
aggregates, graupels and needles, while dendrites emerge as anomalies, exhibiting drag
coefficients exceeding model predictions, likely due to their large frontal area and oblate,
disk-like, geometry. Notably, although dendrites and needles have similar aspect ratios, as
measured by the snow particle analyser, the dendrites are disk-like, oblate spheroids, while
the needles are columnar, prolate spheroids.
The different aerodynamic properties and morphologies of these snow particles have

strong effects on their settling kinematics. Specifically, dendrites display unique behaviour
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compared with other types. Their nonlinear drag and substantial frontal area result
in the most prominent acceleration fluctuation magnitude, occurring at relatively low
frequencies. While the acceleration p.d.f. for dendrites closely resembles that of a fluid
parcel in turbulence, the acceleration autocorrelation function indicates a slow response to
the rapid fluctuation of the flow velocity. Conversely, needles exhibit minimal acceleration
fluctuation magnitude, suggesting relatively large inertia and a tendency to avoid intense
cross-flow drag and convoluted trajectories. Yet, the acceleration autocorrelation function
indicates a moderate rate of change in the direction of acceleration. Such different
behaviours from that of dendrites are possibly due to their streamlined shape aligning with
fluid flow structures, as for fibres in turbulence. Overall, acceleration statistics appear to
correlate with the shape factors of these particles considered as spheroids, with dendrites
and needles representing the spectrum’s extremes and aggregates positioned in between.
Finally, to answer the third question, it becomes apparent, from our analysis above,

that the combination of turbulence and non-spherical particle morphologies can modulate
the particle settling velocities even under weak atmospheric turbulence. For the cases
investigated here, we hypothesize that dendrites exhibit an enhanced settling velocity
(figure 5c) that is due to an underestimation of the drag coefficient in the model
by Böhm (1989); graupels settling velocity is well predicted even though spherical
particles smaller than the Kolmogorov scale and close to critical Stokes conditions were
expected to exhibit settling velocity enhancement. The significant cross-flow velocities
(considering the large settling parameter SvL) experienced by graupels may suggest that
preferential sweeping was not the only mechanism in play during settling. Aggregates drag
coefficient is well captured in the still-air model, implying that the observed enhanced
settling is likely due to combined effects of anisotropic particle orientation and the
weak atmospheric turbulence. The observed conditions are marked by StηSvL ∼ 1 for
which settling enhancement has been predicted and observed (Petersen et al. 2019;
Brandt & Coletti 2022). Disentangling turbulence and morphology effects is challenging
because turbulence-induced disturbances alter the preferential orientation (i.e. particles
with their largest projected area facing the settling direction) of stably falling particles.
The meandering motions of the non-spherical particles, whether fluttering or tumbling,
likely affect their orientation, reducing their average projected area compared with a steady
settling and thus enhancing settling velocity. However, direct measurement of particle
orientation during settling is technically challenging and beyond our current capability.
Thus, we investigate the interconnection between the meandering motion and the

vertical acceleration along the trajectories of snow particles. Recognizing that these
fluctuations might not be perfectly synchronized (owing to the particles’ inertial response
and the variability in drag force related to changes in projected area and settling velocity),
we have considered a slight phase shift between the varying spanwise location y(t) and
vertical acceleration az(t + τ) along the trajectories. This adjustment aims to align the
locations of maximum meandering with the smallest projected area, which typically
corresponds to greater downward acceleration. To maintain the integrity of the correlation,
we limit the phase shift to 0.15 times a quarter of the meandering period to avoid creating
an inverse relationship between vertical acceleration and meandering motion. Note that
this time lag (τ ) is of the order of 0.1τp, and close to the estimated Strouhal number for
the disk-like particles. Thus, during a fraction of the anisotropic particle rotation and the
corresponding translational response time, the particle is experiencing a reduction in drag
area, leading to its acceleration downward. Figure 13(a,b) demonstrates that, following
this phase shift, the greatest downward accelerations predominantly occur at the furthest
extent of the spanwise meandering motion (y′

a,max ∼ 1). Conversely, the least downward
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Figure 13. (a,b) Probability density functions of the spanwise snow particle positions, normalized by its
maximum excursion for each trajectory, conditioned on high (y′

a,max) and low (y′
a,min) values of the vertical

accelerations, and categorized by four snow particle types: aggregates (red), graupels (blue), dendrites (green)
and needles (magenta). (c) Probability density functions of the correlation coefficients (σy,a) between the
normalized spanwise position and the downward (positive) acceleration for these particles throughout their
meandering path. Note that the spanwise particle locations y(t) and corresponding vertical accelerations az(t)
are slightly temporally shifted to account for the response of the particle acceleration to change in orientation.

acceleration – or even upward acceleration – tends to happen near the central position
(y′

a,min ∼ 0), where anisotropic snow particles are likely to have their maximum projected
area facing downwards. Subsequently, we calculate the correlation coefficient between
vertical acceleration and spanwise position during the snow particles’ meandering motion.
The results reveal substantial positive correlation coefficients for dendrites (σy,a = 0.58)
and aggregates (σy,a = 0.45), which is consistent with their observed enhanced settling
velocities. Needles display a moderate correlation coefficient (σy,a = 0.33), reflective of
their anisotropic shape. Graupels, however, exhibit a low average correlation coefficient of
σy,a = 0.15, as changes in particle orientation are not expected to significantly affect the
drag force.
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4. Conclusions and discussion

In this study we conduct a comprehensive field investigation into the 3-D settling dynamics
of snow particles under weak atmospheric turbulence. This investigation was enabled
by a field 3-D PTV system (Bristow et al. 2023), recording over a million settling
trajectories for four distinct types of snow particles (i.e. aggregates, graupels, dendrites,
needles) and by simultaneous characterization of their aerodynamic properties using
a holographic snow particle analyser (Li et al. 2023). We have examined the snow
particle aerodynamic properties, including terminal velocity in air, settling velocity, drag
coefficient, settling kinematics including acceleration statistics and trajectory geometry,
and the interconnection between the observed meandering path and settling velocity of the
snow particles. The comparison between the estimated terminal velocity (Böhm 1989)
and the measured settling velocity demonstrate that non-spherical particles, especially
aggregates and dendrites, exhibit large differences between measurements and model
predictions potentially due to dynamic orientation changes along their meandering paths,
which is not observed in graupels. Specifically, the settling enhancement observed in
aggregates is likely a synergistic result between morphology-induced oscillations due
to vortex shedding and the ambient flow that promotes wake instabilities and the onset
of meandering motions. Even though dendrites are characterized by a higher drag
coefficient, as compared with other snow types, corroborating the laboratory findings
of Tagliavini et al. (2021a), their settling velocity under weak atmospheric turbulence
is higher than model predictions assuming a nominal flat-falling drag area (Böhm 1989).
These apparently contradicting results emphasize the need to quantify particle settling
dynamics along their complex trajectories in the field. A detailed Lagrangian analysis
reveals that dendrites and aggregates undergo pronounced meandering motions in the
horizontal plane perpendicular to the direction of gravity at relatively lower frequencies,
likely governed by their inertia to tumbling and rotation but enabled by ambient turbulence.
Needles, however, exhibit weaker meandering amplitudes due to their smaller frontal
area. Graupels, despite their near-spherical form, undergo oscillatory motions along their
settling paths, characterized by higher frequencies comparable to the Kolmogorov scale
and smaller amplitudes. This behaviour suggests a limited interaction with small-scale
turbulence structures under the conditions investigated, a notion corroborated by the
agreement between model-predicted terminal velocities and measured settling velocities.
These distinct settling motions and styles are also reflected in the curvature statistics,
differentiating non-spherical particles from graupels. More specifically, the analysis
of vertical acceleration during meandering paths reveals that periodic changes in the
orientation of non-spherical particles, especially dendrites and aggregates, contribute
to their enhanced settling velocity. These findings highlight the dominant impact of
the morphology of snow particles on their settling dynamics under weak atmospheric
turbulence.
In light of these observations and insights, our current study provides a unique dataset

that captures realistic snow morphologies and their corresponding settling trajectories.
These measurements contribute to the modelling and simulation of snow settling velocity
and subsequent snow accumulation rate on the ground. Despite the dominant morphology
effect, interactions between the snow particles and the weak atmospheric turbulence are
still manifested in some aspects of their settling dynamics. Although the non-spherical
particles are likely to rotate or tumble when settling in quiescent flow, disturbances
by the ambient flow promote these unsteady motions. Besides, the meandering motion
of graupels exhibits frequencies closest to that of the Kolmogorov scale, hinting at
a weak interaction with the ambient turbulence. The weak turbulence effect is also
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manifested in the curvature statistics of the particle trajectories. We observe distinct
scaling laws for the high-curvature tails of the p.d.f.s, which mark differences between
spherical particles, consistent with Xu et al. (2007) for fluid trajectories in turbulence
and Bhatnagar et al. (2016) for inertial particles, and non-spherical particles, hinting at
morphological influences on their settling kinematics. To compensate for variations in
streamwise flow velocity and settling velocity across different datasets and morphologies,
we have corrected the curvature formulation. The resulting high-curvature tails of the
p.d.f.s converge to a universal scaling associated with low spanwise velocity, reinforcing
the concept that high-curvature events are associated with the meandering motions
of non-spherical particles. This association is further emphasized by the observed
inverse correlation between the trajectory curvature and spanwise velocity. Our detailed
characterization of the snow particle morphology, density and settling velocity may
lead to an improved prediction of ground snow accumulation, benefiting several related
applications in snow hazard warning, climate modelling and traffic regulation during/after
snowfall.
Despite our major findings that substantiate the hypothesis of strong morphological

effects on dictating snow particle settling dynamics under conditions of weak atmospheric
turbulence, several challenges persist. First, quantifying the exact enhancement or
hindrance of settling velocities due to weak atmospheric turbulence remains a challenging
task. A better model that elaborates on the interplay between particle morphology and
turbulence will be necessary. Second, current predictive models, including those by
Böhm (1989), fall short in estimating the aerodynamic properties, especially the drag
coefficient, for dendrites. There is a clear need for refined models that can more accurately
represent these unique and complex snow particle types. Third, while we aimed to correlate
the meandering motion and orientation changes to enhanced settling in non-spherical
particles, the spatial resolution of our 3-D PTV system is insufficient for capturing
the orientation dynamics of particles throughout their settling. Some of the smaller
particles captured by the snow particle analyser might also exhibit too weak a signal
to be detected by the 3-D PTV system. Advancements in measurement systems could
enable simultaneous assessments of particle orientation and settling trajectory and higher
resolution for capturing smaller snow particles. Systems such as a high-magnification,
high-resolution 3-D PTV (Marcus et al. 2014; Leinonen, Grazioli & Alexis 2021) or a DIH
set-up with an expanded field of view (Wu et al. 2015; Li et al. 2023) and higher sampling
rate, hold promise for the desired measurements. Finally, the variability of field conditions
presents an additional layer of complexity. Snow particle types and concentrations, as
well as average wind speed and direction, are subject to change over each measurement
period, which typically spans 3–5 h. The relatively slow streamwise wind adds to the
difficulty of accurately estimating turbulence quantities. Looking ahead, we aim to extend
our investigations to scenarios involving moderate to intense turbulence. By contrasting
the settling behaviours across a spectrum of turbulence intensities, particularly for
different snow particle morphologies, we anticipate a more thorough understanding of how
turbulence and snow particle morphology collectively influence the settling dynamics of
snow particles. This future research will enable us to improve our predictive capabilities
of snow settling velocity and, in the long term, of the spatial distribution and intensity of
snow accumulation on the ground during snowfalls.
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Appendix A

We employ a Gaussian kernel as a low-pass filter to reduce uncertainties in determining
the 3-D positions of snow particles and to prevent these errors from affecting Lagrangian
statistics. Large errors typically occur at the trajectory ends after filtering; therefore,
these segments are excluded from the statistical analysis. The selection of the kernel
size is critical. A kernel that is too short fails to sufficiently reduce position uncertainty,
while a kernel that is too long may suppress genuine strong acceleration events. We
optimize the kernel size by analysing the change in acceleration variance, defined as a0 =
〈a′2〉v1/2/ε3/2, across varying kernel sizes. As shown in figure 14, this approach enables
the identification of the optimal kernel size. We determined that a minimal kernel size of
45 frames best maintains the exponential dependency of acceleration variance on kernel
size. Notably, this selected kernel size, τg, is comparable to the Kolmogorov length scale,
τη, corroborating findings from previous studies (Voth et al. 2002; Gerashchenko et al.
2008; Nemes et al. 2017). The estimated uncertainty in the acceleration measurements
reflects the uncertainty in the filter size, which ranges between 43 and 47 frames. This
results in the root-mean-square error in acceleration estimation, arms, ranging between
0.32 and 0.38m s−2 for different snow particle types, which lead to the uncertainty of
velocity measurement to be around 0.002m s−1 as δv = δa dt.

Appendix B

To more accurately model the drag coefficient of snow particles, significant efforts have
been made by researchers (Böhm 1989; Heymsfield & Westbrook 2010; McCorquodale
& Westbrook 2021). The illustrations in figure 15 summarize and clarify the calculations
used in this study. The drag coefficient of snow particles can be defined using either the
projected area, CDe = f (Ae), or the circumscribed area, CD = f (A). According to Böhm
(1989), the two drag coefficients are correlated by the area ratio, CDe/CD = (A/Ae)

3/4,
where CD is defined by (2.2). Thus, to compare the model (CDe = (A/Ae)

3/4C0(1 +
δ0/Re

1/2
p )2) with the measured drag coefficient (CDe,mean), as discussed in § 3.1, it is

necessary to calculate the maximum projected area, Ae,max. Given that our snow particle
analyser only measures the general projected area (Ae) and the circumscribed area (A)
at an unknown orientation, we assume that the ratio A/Ae remains constant regardless
of orientation. Consequently, the maximum projected area can be estimated as Ae,max =
Amax(Ae/A). In this equation, the maximum circumscribed area is calculated as Amax =
πD2

maj/4 for plates and dendrites and as Amax = πDmajDmin/4 for other snow particle
types, where Dmaj and Dmin are measured by the snow particle analyser.
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Figure 14. (a) The variation of the mean square of the acceleration fluctuation with the increasing Gaussian
filter length. The black line represents the exponential fit and the red circle identifies the optimal filter length.
The red diamonds represent aggregates, blue circles for graupels, green stars for dendrites and magenta triangles
for needles. (b) The normalized acceleration variance (a0 = 〈a′2〉v1/2/ε3/2) as a function of the filter length
(τg) normalized by the Kolmogorov time scale (τη). The vertical lines indicate the selected filter length for
different snow particle types.
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Figure 15. The illustration on (a) defines the maximum projected area (Ae,max) and the maximum
circumscribed area (Amax) of a dendrite snow particle when oriented downward. The illustration on (b) defines
the general projected area (Ae), the circumscribed area (A), the major axis length (Dmaj) and the minor axis
length (Dmin) of a dendrite snow particle in any orientation.
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