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Abstract

We study nonwindowed geometric scattering transforms on compact Riemannian
manifolds without boundary. These transforms are formulated as L7-norms, with
1 < g < 2, of a cascade of geometric wavelet transforms and modulus operators.
We provide weighted measures for these operators, and prove that these operators
are well-defined under specific conditions on the manifold, invariant to the action of
isometries, and stable to diffeomorphisms for bandlimited functions.

Keywords Wavelet scattering - Geometric deep learning - Spectral geometry -
Riemannian manifolds

1 Introduction

In recent years, deep convolutional neural networks have shown strong performance
on various vision-related tasks [25, 37, 39]. However, because of how complex deep
convolutional architectures are, it is not entirely clear what mechanisms enable deep
convolutional networks to get strong performance on these tasks. In an effort to better
understand the properties of deep convolutional architectures, Mallat proposed the
scattering transform [6, 28], which uses a cascade of specified filters and nonlinear-
ities to mimic the behavior of a deep convolutional neural network. Using a specific
class of wavelet filters, Mallat found that the scattering transform had many desirable
properties for machine learning tasks such as translation invariance and stability to
small deformations. Additionally, the scattering transform and its generalizations have
been found various applications as a general feature extractor, such as in [1-4, 7, 8,
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17, 26, 29, 30, 35, 36, 38]. Authors have also explored extensions of the scattering
transform to semi-discrete frames [27, 42, 43] and more general Gabor frames [15,
16].

However, certain forms of data, such as point cloud data have a geometry than is non-
Euclidean, which motivate manifold learning models [12, 40, 41] and geometric deep
learning [5]. As an extension of the scattering transform, researchers have considered
graph scattering transforms in [18-20, 32, 44] constructed via graph wavelets [12, 24];
additionally [33, 34] extend wavelets and the scattering transform to simplicial com-
plexes; the overarching idea is that these extensions of the scattering transform have
similar desirable stability properties, and present success on non-Euclidean datasets.

The scattering transform has also been extended to compact Riemannian manifolds,
known as the geometric scattering transform, via defining the wavelet transform on
compact Riemannian manifolds using eigenfunctions of the Laplace—Beltrami opera-
tor. In particular, for the windowed geometric scattering transform, it is proved that the
representation was locally invariant to isometries for all square-integrable functions
and stable to diffeomorphic deformations under mild restrictions [31]. The concept
of nonwindowed geometric scattering transform is also proposed in [31], which is
proved invariant to isometries and stable to diffeomorphic deformations.

Regarding nonwindowed geometric scattering transforms, their Euclidean coun-
terparts, nonwindowed scattering transforms, have been effective for applications in
quantum chemistry, audio synthesis, and physics have appeared in [1, 8, 17, 26, 38];
theoretical results involving stability to deformations have also been provided in [11].
The main idea behind nonwindowed scattering transforms is that they provide a small
number of descriptive features for high dimensional data. As a natural extension, [10]
used scattering moments on manifolds for classifications tasks involving point cloud
data. However, there were limited theoretical results in [9] for scattering moments
provided in [10], which motivates this paper.

The major contribution of this paper is as follows:

e We provide a well-defined weighted measure for scattering moments for LY (M)-
functions withg € (1, 2]. Here L7 (M) denotes the space of ¢-integrable functions
on a compact Riemannian manifold without boundary M. Compared to the
work [31], our results provide theoretical justification for nonwindowed scatter-
ing moments with ¢ € (1, 2). From a practical perspective, the extension allows
dealing with real data sets sampled from a wider class of functions. However, our
weighted measure is only defined for an aribtrary, finite number of layers, and
requires restrictions on the regularity of the manifold.

e We show the measure also has a diffeomorphism stability result for bandlimited
functions, similar to [31]. This covers a wide class of functions, but is not fully
general like in [11, 28]. A diffeomorphism stability result for non-bandlimited
functions is left to future work.
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2 Areview of the geometric scattering transform on manifolds
2.1 Notation

We introduce some notations for the purposes of this paper. Henceforth, M will denote
a compact, smooth, n-dimensional Riemannian manifold without boundary contained
in RY, where d > n, with geodesic distance between two points x1, xo € M given by
r(x1, x2) and Laplace-Beltrami operator denoted as A. The notation LY (M) denotes
the set of all functions f : M — R such that f/\/l | f(x0)|?du(x) < oo, where du(x)
is integration with respect to the Riemannian volume, whose measure is given by .
We use the notation Isom(M |, M») be the set of isometries between manifolds M
and M. Lastly, the set of diffeomorphisms on M will be denoted by Diff(M), and the
maximum placement of y € Diff(M) will be given by ||y [lc := sup,caq 7 (x, ¥ (x)).

2.2 Spectral filters and the geometric wavelet transform

The convolution of two compactly-supported functions f, g € L?(R") is usually
defined in space as

(f*9)x) = /Rn fMekx —y)dy.

However, for a general manifold, even under the conditions we have prescribed, a nota-
tion of translation does not necessarily exist, To motivate our definition below, consider
f,g € L2([0, 1]). A basis is given by {c,(x)},>0. Via a fourier series expansion, we
have

(f *)(x) = Y _((f %), Cn)en(x).

n>0

Based on the intuition above, one can create a spectral definition of convolution
via the spectral decomposition of —A. Denote Ny := N U {0}. Because our manifold
is compact, it is well known that —A has a discrete spectrum, and we can order the
eigenvalues in increasing order and denote them as {A,},cn,. We will denote the
corresponding eigenfunctions as {e, (x)},en,, which form an orthonormal basis for
L2(M).

Suppose f € L2(M). Since the set of functions {e, (x)}nen, forms a basis in
L?(M), we decompose

FO =Y (foeden@) = Y. ( / f(y)en(y)du(y)) e, (1)
neNp neNp M

which is similar to a Fourier series. Since e, (y) is a replacement for a Fourier mode,
it is natural to let

f) = / Fen(») dp(y) 2)
M

) Birkhauser
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and define convolution on M between functions f, h € L2(M) as

frh(x) =Y fmhme,(x). 3)

nENO

Defining the operator T, f (x) := f * h(x), it is easy to verify that

Ty f(x) = /M Kn(e, f 0 duy), Ki(x,y) =Y h(me, (e, (). (4)

neNy

Similar to how convolution commutes with translations on R", it is important for
convolution on M to be equivariant to a group action on M. The authors of [31]
construct an operator by convolving with functions that commute with isometries
since the the geometry of M should be preserved by a representation. To accomplish
this goal, we use a similar definition for spectral filters. A filter i € LZ(M)isa spectral
filter if Ay = A¢ implies ﬁ(k) = fz(ﬁ). One can prove that there exists H : [0, c0) — R
such that

H(Ay) = h(n), VneN.
Let G : [0, 00) — R be nonnegative and decreasing with G(0) > 0. A low-pass
spectral filter ¢ is given in frequency as ¢>(n) = G(\,) and its dllatlon at scale 2/

for j € Zis ¢J (n) := GQI1). Using the set of low-pass filters, {¢J }jez, we define
wavelets by

i) =1 — ;) *1? = [IGRT'm)> = 1GRn)P12,  (5)

Note that these are wavelets modeled after the wavelets from [13].
Fix J € Z. Define the operators

Ajf =[xy,
‘-I—’jf:zf*l/fj, j<J.

The windowed geometric wavelet transform is given by
Wif ={Asf.VY;f: j=J} (6)
and the nonwindowed geometric wavelet transform is given by
Wf={¥;f: jelZ}. 7

We have the following theorem, which provides a condition for when our wavelet
frame is a nonexpansive frame.

W Birkhauser



Generalizing geometric nonwindowed scattering transforms... Page50f28 19

Theorem 1 Let G : [0, 00) — R be nonnegative, decreasing, and continuous with
0 < GO) =C, limy00G(x) =0, and (Y} jez is a set of wavelets generated by
using the low-pass filter <]3(k) = G (M) in Eq. 5. Then we have

U vl = CPIf N5 ®)
JEZL
Proof For fixed I, J > 1, we telescope to get

J

J
> k=Y [I6T WP - 16Q 0]

j=—1 j=—1
=GP =16 )P

Since lim;_, o0 |G 142)1? = C? and lim_, o0 |G (27 A4)|? = 0 by the assumption
on G, it follows that

D19 ®P = lim (G A~ lim |G =€
ez I—o00 J—00

We can write

Lf*wila =D WP f (P

kENo

Thus, it follows that

DTUfxvilz =Y Y If Rk

JjEZ J€Z keNy
=Y 1fOP [ Y 1wP
keNg JEZ
= C?| £113.

O

In the case where we choose G (L) = e~*, which corresponds to our kernel being
the heat kernel on M, we have C = 1 and the relation above is an isometry.

2.3 The geometric scattering transform

Here, we recall the geometric scattering transform as defined in [31], which is a
geometric analog to the Euclidean definition of the scattering transform. This transform

) Birkhauser
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is useful as it provides a representation that meaningfully encodes high frequency
information of a signal f. Define the propagator as

ULIf =1 fl  VjeZ, ©))

which is convolution of a wavelet and applying a nonlinearity; we can also define the
windowed propagator as

Ujljlf =1 fI vj=J. (10)

Similar to scattering transforms on Euclidean space, one can apply a cascade of convo-
lutions and modulus operators repeatedly. In particular, form € N, let ji, ..., j, € Z.
The m-layer propagator is defined as

Uljt, ooy Jmlf =Uljnl - UL =1 =gl sl x4, (11)

and the m-layer windowed propagator is defined as

Uljts - jmlf = Uljml - - UL LS = N ¥y [y -5, 1 iy jm =T
(12)
with U[@]f = f and Uy[0]f = f. To aggregate low frequency information and
get local isometry invariance, one can apply a low-pass filter in a manner similar to
pooling to each windowed propagator to get windowed scattering coefficients:

S][j11'°"jm]:AJUJ[jls""jm]f=U.][j17"'3jm]f*¢./7

where we defined S;[0]f = f * ¢;. The windowed geometric scattering transform
is given by

Srf=A{Sjlj1,-...jmlf :m=0, ji<J, Vl<i=<m} 13)
It is proved that this windowed scattering operator was nonexpansive, invariant to
isometries up to the scale of the low-pass filter, and stable to diffeomporhisms under
mild assumptions [31].

On the other hand, for applications such as manifold classification, one desires full
isometry invariance instead of isometry invariance up to scale 2/. We see that

Jim St ooy gl f = volM)T UL, - jmd f - (14)
As a proxy, one can consider
SfUL v jml = UL - ] fl (15)
This motivates defining the nonwindowed geometric scattering transform [31] as
Sf={8Ujt.....jmlf : m=0, ji€Z V1I<i<m}. (16)

W Birkhauser
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In this paper, we will extend the domain of the nonwindowed geometric scatter-
ing transform: Instead of considering L' (M) norms of m-layer propagators, we will
instead consider LY (M) norms of m-layer propagators for g € (1, 2], which we define
as m-layer g-nonwindowed geometric scattering coefficients (which are also referred
to as scattering moments in other works):

EZl[.lly7.]}”’1].](.2”[J[.]lv7.]}’!‘!]_]C||L‘1(./\/l) V(]l,,]m)EZm, (17)

which has seen application in quantum chemistry [17, 26, 38] and for point cloud
data [10]. As shorthand notation, we will use the following notation for one layer
coefficients:

SqUilf =1V fllLarmy Vi € 2. (18)

To measure stability, invariance, and equivariance, we define the following norm for
g-nonwindowed geometric scattering coefficients:

q/2

ISy Flazm = | Do -+ D 1S s dml P ] (19)

Jm€Z J1EZ
which follows the definition in [11]. Since many of the results in [11] rely on results

of Littlewood Paley theory, we will provide extensions of these results to compact
manifolds, with some extra restrictions added.

3 Some results related to littlewood paley theory
Denote by ¢2(Z) the space of square-summable sequences indexed by integers, that
is,
o
Z2(Z) ={(..,a—2,a_y1,0a9,ay1,a3,...) :a; € Cforeach j € Z, Z |aj|2 < oo}

j=—00

We define some ¢2(Z)-valued function spaces to be used later.

For 1 < p < oo, define the ng(Z) (M)-norm as

gl » :=/ 1§ (X157, d1t(x) -
L, M T oy e

p,00
and the L; @ (M)-norm as

gl (g o= supd - u(fx € M : lg(X) 2z > SHYVP,
Iy v = SUb 8l z)

) Birkhauser
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The spaces ng (z)(M) and Lfif% (M) consist of £2(Z)-valued functions that have

finite LZZ @ (M)-norm and Lfgé) (M)-norm, respectively. It is clear that for any
6 >0,
57 ullx € M gl oy > 3 = | 8 dpu(x)
{XEM:Hg(x)”£2<Z)>5}

<

llg()15 5 dpa(x)
/{.xeMilg(X)|[2<Z)>5} @

< [ 8@l dir).
J e
Taking the supremum in § > 0 concludes

Iglpes o < I8l -

Hence sz (2, (M) embeds continuously into sz’z) M).

Recall that we have defined the operator Wf : M — ¢2(Z) given by

W(HX) :={¥;f(X)}jez = {/M Ky—jnn(x, ) f () du(y)}

JEZ

with kernel given by K = {K,-j2}jez associated to the wavelets {1/} jcz generated
using a low-pass filter G € S(R™) satisfying the conditions of Theorem 1 for Eq.5.
Since

1/2
W@y = | DI =y |,
JEZ
we conclude from Theorem 1 that

w =C .
IWFlz, o = € Tz

Our goal is to extend this operator and prove that for all ¢ € (1, 2), there exists C,
such that

w <C ,
I f”Lzz@)(M) < Cyll fllLaomy

Before providing any proofs, we will state preliminary lemmas that will be vital to
our approach. The first few lemmas concern the kernel of our convolution operator.

W Birkhauser
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Lemma 2 ([23, Corollary 2.2]) Let n be the dimension of M. Suppose that F € S(R™),
the space of Schwartz functions (all functions with rapidly decreasing derivatives of
all orders), restricted to the nonnegative real axis and F(0) = 0. For the kernel

Ki(x,y) =Y F(t*An)en(x)en(y),
neN

the following pointwise bound holds for some C, > 0 and for allt > 0 and all
x,y € M:

Cyt™"

|Kf(xvy)|§ RN TS
rey) \"t
(1+—, )

The next resultis proved in [22, Proposition 3.1]. We include its proof (following the
idea for [22, Proposition 3.1]) to demonstrate that the constants c1, ¢y can be chosen
to depend continuously on the metric g. Such continuous dependence is subsequently
necessary for the remark preceding Example 1. Recall that given an open cover I/ on
the manifold M, a number y > 0 is called a Lebesgue number for U if for all x € M,
there exists Uy € U such that B(x, y) C Uy, where we define

B(x,rp):={ye X : r(x,y) <ro}. (20)

Lemma 3 ([22, Proposition 3.1]) Cover M with a finite collection of open sets P; with
1 <i < I such that the following properties hold for each index i:

1. there exists a chart (V;, ¢;) with P; C V; (P; denotes the closure of P;)
2. @i (P;)is aball in R

Choose 6 > 0 so that 36 is a Lebesgue number for the covering { P;}. Then there
exist ¢, ca > 0 such that for any x € M and any B(x,38) C P;, the following
statements hold in the coordinate system on P; obtained from ¢;:

1. Forall y,z € P;, we have r(y, z) < ca|y — z|.
2. Forall y,z € B(x,§), we have r(y, z) > c1|y — z|.

Here, | - | denotes the Euclidean norm induced by the ¢;-coordinates.

Proof This proof follows the idea for [22, Proposition 3.1] yet with explicitly identified
constants ¢y, ¢; to demonstrate their continuous dependence on the metric g.

Using the coordinates given by ¢;, we identify g(x) with an n x n smooth matrix
for each x € P;. We write | - | ¢ for the norm induced by g, and | - | for the Euclidean
norm in the ¢;-coordinates. For each x € P;anda tangent vector vy € Ty M, we have

n
Al < oelyy = D v¥gap)vf < A)Ju,l*.
o,f=1

) Birkhauser
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Here A(x), A(x) denote the minimum and maximum eigenvalues of the matrix g(x)
respectively. We conclude

<min A(x)) |Ux|2 = |Ux|§(x) = (mixx(x)> |Ux|2
XEr;

xeP;

uniformly for (x, v) € T P;. Asboth A(x)and A(x) are positive continuous functions
of x on the compact subset P;, their minimum and maximum are strictly positive.

For the first statement, take y, z € P; and define y : [0, 1] — P;, y(t) := tz +
(1 — t)y where the coordinates of y, z are given by ¢;. Then y is a smooth curve
connecting y, z and |y’(¢)| = |y — z| for all . By the definition of the Riemannian
distance r(y, z), we have

IA

1
r(y,2) lengthOfl/:/ 1Y () lg(y ) dt
0

1

3o 3
(max&x)) / |y/(r>|dr=<maxK(x>> ly —zl.
xeP; 0 xeP;

IA

One choice for ¢; is

1

bl

c2 = max [maxA(x)]| .
i=l...I \ xeP;

For the second statement, take y, z € B(x, §) andlety; : [0, 1] = M beasequence

of piecewise C! curves connecting y, z such that their lengths £(yx) — 7(y,z) as
k — oo. For large k, we have

r(vi(), x) <r(ye@), y) +r(y,x) <r(z,y)+3 <r(z,x) +r(x,y) +68 <368

for all t € [0, 1], hence yx C P;. Therefore, we have for large k that

1
1 LS|
ﬂ(yk)=[0 IJ/;é(t)IgdtZ<minA(X)) folyk/(t)ldt

X€eP;
1 1
2 1 2
> [ min A(x) / yi@ydi| = [ min A ) |y —zl.
XE?I' 0 xE?i

Letting k — oo proves the statement, and one choice for ¢y is

1
2
cy:= min [ min A(x)| .
i=1,...,1 x€eP;

W Birkhauser
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O

For the rest of this paper, we fix the collections {P;}, {V;}, {¢;}, and constants
8, c1, ¢ from the previous Lemma.

Lemma4 Suppose that r(y, z) < min {%r(x, y), 8} so that y and 7 lie on the same

ball of the covering. Assume that there exist ¢ and ¢ from Lemma 3 with cicy < 2.
Then there exists a constant Cg such that

r(y, )t

Ki(x.y) — Ki(x, 2)] < Cs
(1+ 7o)
t

Proof Using the proof of Theorem 5.5 in [22], for each x € M, there exists a point
w, on the segment connecting y to z such that

r(y, ot "1

K (x,y) — K;(x,2)| < Clﬁ-
(X, Wy
(14t

21

Now notice that triangle inequality implies that
r(x,y) = r(x, we) +r(y, wy).
By Lemma 3, since w, lies on the line segment between y and z, we see that
r(y,wy) < c2ly —wxl < caly =zl = crear(y, 2).
It follows that
r(x,y) —crear(y, z) < r(x, wy).

Since cjcp < 2 and r(x, y) > 2r(y, z), we see that

cie
rix,y) — TV(X,)’) < r(x, wy)

so that 1 — % > 0. This leads to r(x,y) < C,r(x,w,) for some constant C,
independent of x. Finally, we can make a replacement in the right side of (21) to get

—n—1

r(y, 2t

IKi(x,y) — Ki(x, 2)| < Caﬂ'
r(x,
(1++)

O

) Birkhauser
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Now we provide the necessary tools from classical harmonic analysis for extension.
The idea is similar to the proof in the Euclidean case; we wish to prove a weak-type
(1, 1) bound and extend by interpolation. Let X be a set, 8 a metric, and u a measure
on X such that 0 < u(B(x,r)) < oo forall x € X and r > 0. We say that a space
(X, B, n) is of homogeneous type, though often with the metric and measure omitted
when implied, if for all x € X and r > 0 there exists a constant Cp such that

w(B(x,2r)) < Cpu(B(x,r)), (22)

where B(x,r) is a ball of radius r centered at x for (X, 8). The property above is

also known as the doubling property. It is well known that a C*° compact Riemannian

manifold using the standard Riemannian metric and volume is of homogeneous type.
The first result we will need is a Calderon-Zygmund decomposition:

Theorem 5 ([14], Corollary 2.3) Suppose that X is a space of homogeneous type.
Suppose that f € LY(X) and choose a > 0 such that a='|| f|i < u(X). Then we
can decompose f = g + b such that

lglf2g < Crall fllLi oy

b:Zb,-,
i

where C1 > 0 is a constant, supp(b;) C B(x;, r;i) for some countable collection of
balls {B(xi, ri)}, and each b; satisfies

/ bi(x)du(x) =0,

X

Ibilly < Corpu(B(xi, 7).

> (B ) < Ca | fllniomy-

Theorem 6 Suppose that we choose wavelets {\/;} jez, generated using G € S(R™) in
Eq. 5 that satisfy the conditions of Theorem 1 and cicy < 2 in Lemma 3. The following
weak (1, 1) bound holds for some A > 0:

(Wil e < Al fllLimy-
Lﬂ@(M) LI(M)

Proof First, for any « such that o' I fllLi gy > m(M), we see that

n(fx € MW@l > ab) < wM) <a  Flipiou-

Now, we consider the case where | f iy < m(M). We use our Caulderon-
Zygmund decomposition and write f = g + b. It follows that

W Birkhauser
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px e M IWf @z > ab) < nllx € M [Wg(X)lp2z) > a/2})
+u{x € M [Wb(X)ll2(zy > «/2})
=1L+ .

For 11, we apply Chebyshev inequality, L?z @ (M) boundedness of W, and our
assumption on g to find that

A

4 2
pfx € M W) llp2zy > /2}) = —IIWgll
@ o? L§2<z>(M)
< W e olelann
o 22
S THW”LZ(M)_)L?Z(Z)(M) ”f”Ll(M)
For I, let B = | J; B(x;, 2r;). Then it follows that

I < u(B) + (i € B Wbz, > @/2)

D 2
< — + —IWb c
= ”f“Ll(M) o I ”Léz(Z)(B )

IA

Cp 2
7||f||L1(M) + - 21: Wi ||L;2(Z)(B(x,-,2rl-)v)’

where the constant Cp comes from the fact that our measure has the doubling property.
To estimate || Wb;||; 1 (B(x; 2r)c)» WE notice that
2 @ i<l

IWhillL,  (Bxi.20)) 2/ Wi (xX) g2z dpe(x)
“@ B(xi,2r;)¢

B /B(Xilri)C

Now, since each of the functions b; integrate to zero over the balls B(x;, r;),

/B(xi ,2r;)¢
B /B(Xi,?n)‘

Examining

du(x).
()

/ K (x, y)bi(y) dp(y)
B(x;,ri)

du(x)
2(2)

/ K (x, y)bi(y) dp(y)
B(x;,ri)

du(x).
(Z)

/B( (R = Km0 dn

/ (K (x, y) — K, x)bi (y) dju(y)
B(x;,ri) 02(Z)

) Birkhauser
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more closely, we have

fB( (K@) = Kxbi) duy)

£2(2)
) ) 5 1/2
= Zf (K (x, y) = K (x, x))b; (y) du(y)
jez |V BW&iri)
< Z/B( K (x,y) = K(x,xi)| 1bi ()] d ().
JEZ XiTi)

Thus, after an application of Fubini’s theorem, we have

/B(xi ,2ri)¢

< / Ibi(y)|/ Z |Ky—j2(x, y) = Kymjpo(x, xi) | dpe(x) dpu(y)
B(xi,ri) B(x;,2r;

ez

du(x)
2(Z)

fB( .)(I?(x, ) — K (x, x;)bi (y) du(y)

= /B RSP f |Kymin (6, 3) = Kyoie (o) | dn@) | dpa(y),

=/ B(xi,2ri)¢

where K is the kernel defined on page 7. Now we consider the term inside the
parentheses. We will break this argument into cases. First, consider if 2r; > §. We see
that

> / |Ky-ii2(x, y) = Ky-j2 (x, ) dja(x)
jez B(x;,2r;)¢
2nj/2 2nj/2
<C / : + : dp(x)
jeZZ B(x;,2r;)¢ (1 + 202 (x, xi))n+l (1 + 272 (x, y))n_'—1

where the inequality follows from Lemma 2.

Now, since x; is the center of B(x;, r;),if x € B(x;, 2r;)¢, thenr(x, x;) > 2r; > 6.
Similarly, since y € B(x;, r;), it follows that r(y, x;) < r; and we have 2r(y, x;) <
r(x, x;). Apply triangle inequality to get

1
ree,xi) = r@y) +rly,x) Sr@y) i < e y) + e x),

which means that r(x, x;) < 2r(x, y).
Going back to the integral, there exists C such that
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Z/ omj/2 onj/2
+
B(x;, 2r,)f 1+ 20/2r(x, y))n+1 (1 +2i2p(x, xi))n+1
2nj/2
e / | dp(x)
]XE% roxz2r () (14 27r(x, Xi))n+1

2nj/2

du(x)

du(x)
=0 dreanzarta (142072r(x, )"

+C12f

j<0vr
=J1+ ).

2n]/2

dp(x)
(eoz2ro) (14202 (x, x)"

For Jy, since r(x, x;) > 6,

/ 2n//2
; du(x)
Tolrezzrom (142020, x)"

/ 2n]/2
= S gt )
oI rwmnzar @G )t

= ZZ_j/Zf r(x,x) " dp(x)

= r(x,xi)=2r (y,x;)

< OQ.

For J», it is routine to see that

onj/2 '
, d(x) <Y 2972 (M) < oo.
Jg(:)/r(x x;)22r (y,x;) (1 +272p(x, xl-))"H ]Z<(:)

Now we consider the case where 2r; < 4. In this case, we see thatr (y, x;) < r; < 6,

and we still have 2r(y, x;) < r(x, x;). Thus, the bound

2nj/2
(1+2072r (x, xp))"*!

[Ky—jp(x,y) — Ky—jpn(x,x;)| < C

still applies. We can also apply Lemma 4 to get

(v, X202

|Ky-jn(x,y) — Kyp-jpn(x, x;)| < Cs : .
J J i (1 +2j/2r(x’xi))n+1
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Taking the geometric mean, for any s € [0, 1], we have

20122025 (y, x1))°
(1+272r @, x))"

|Ky—j2(x,y) — Ky-jr(x,x))] < Ca

for some constant C». It now follows that for C3 = max{Cs, C»}, we have

D 1Ky (e, y) = Ky (x, x7))
JjEZ
< Y Kyip(y) = KyinGoxpl+ Y 1Ky (e, y) — Kpmjp(x, xp)|

i/2 2 i/2 2
VR VP2

3 r(y, x)2t /2 2M122112r (y, x))1/?

- +C :
(1 +2]/2F(x,xl-))"+l i (2 : (1 +2j/2"(X,xi))n+1
= r(x,.x;

r(x,x;)

2(nt1/2)j/2

_ (n+1)j/2 Y
sCfreey 35 2P YT oo

2o _2 _ 2> 2
21/ <r(x,xl-) 2// Zr().‘.)ri)

< Ca(r(xi, y)rGe, x) " r G, e, )12,

Integrating over 2r(x;,y) < r(x,x;) yields a constant independent of r;. It now
follows that

|| Wb[ “Léz(z)(B(xi’ri)C) = C5 ”bl ||L1(M)

for some constant Cs. Using the Calder6n-Zygmund decomposition,

Cp 2Cs
L < <7 + 7) If Lt

m}

Recall the following result, which is a vector-valued version of Marcinkiewicz
Interpolation:

Lemma7 ([21], Theorem 1.18) Let Ay, Ay be Banach spaces, T : Ay — Ay be
quasilinear on LZOI (X) and Li‘l (X) with0 < po < p1. If T satisfies

”Tf“Li{;o(X) =< Mi”f”LZ{I(X)
fori =0,1, then
<
ITf s, < Nol s, oy Y2 € (po. p).
where N, is dependent on p.
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The following corollary is a direct result of interpolation now:

Corollary 8 Suppose that we choose wavelets {\;} jez, generated by using G € S(R™)
in Eq.5, G satisfies the conditions of Theorem 1, and cicy < 2. We have

q q
”Wf”sz(Z)(M) = Cq”f”Lq(M)

for some constant C; > 0, where g € (1, 2).

By duality, the result of Corollary 8 actually holds for g € (1, co). However, for
generalizing the nonwindowed geometric scattering transform, we only need results
for ¢ € (1,2) since L>(M) c L4(M). For g > 2, since our manifold is compact,
we have LY(M) C L?(M), so previous results in [31] are applicable, and further
theoretical analysis is not as significant.

Additionally, although the result of Corollary 8 seems restrictive because one needs
cica < 2, the result applies for a variety of different manifolds. If one finds a metric
where the condition above holds, a class of metrics can be found by perturbing the
metric. This is because the choice of the constants ¢, ¢ in the proof of Lemma 3
depend continuously on the metric g. Thus if c;cy < 2 for g, the same strict inequality
holds for all metrics that are sufficiently close to g. We provide a simple example
below where the conditions of Lemma 3 hold. The result of the example below can
also be extended to n-torii without much difficulty.

Example 1 Consider M = S!, the unit circle that is embedded in R2, along with the
charts:

Vo= {(x1, x2) :xlz—i—x% =1, x1 > 0}, o1: V1 > R, (x1,x) — x2
Vo = {(x1,x2) : x% —l—x% =1, x > 0}, Vo —> R, (x1,x) — x1
V3 = {(x1, x2) :xlz—i—x% =1, x; <0}, ©3: V3 >R, (x1,x) — x2
Vi = {(x1, x2) :x12+x§ =1, x; <0}, @q1: V4 —> R, (x1,x2) — x1.

These are clearly diffeomorphisms onto their ranges. Choose

P={-F+0.F-0).G+o.F -0 F+o,F -0).(F+o & -o)
= {P1, Py, P3, P4}.

Here € (0, {5) is a small angle. The covers P; clearly satisfy the first two conditions
laid out in Lemma 3. Equip S' with the standard metric induced by the inclusion
S! < RZ. We can verify the desired estimates in Lemma 3 as follows: It is clear that
any arc of S! with length less than % is contained in one of Py, ..., P4. If we choose
8 € (0, 3”—6), then for any x € S', B(x, 38) C P; for some i. Suppose

y = (y1, y2) = (cos 0, sinf),
7= (21, 22) = (cosd, sinf),
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0.0 (-3 +0.5—w),
y2, 22 € (Sin(—=% + w), sin(§ — )).

The ¢1-coordinates of y, z are y», z», respectively. Hence,

ly —z| = |y2 — 22| = | sin® — sind|
”(y’Z) = |0_9~|

By the mean value theorem:

ly —z| = |sin6 —sind| = o8&l z )0 -0l <160 —-0]=r(,2).

and
r(y,z2) =10 -6
= | arcsin y, — arcsin z»|
1
=7 [y2 — 22
v1i=mn neGin(— % +w).sin(§ —0))
1
< ; ly2 — 22|
s b
1 —sin (7 — a))
1
= 5 ly —zl.
: T
1 —sin* (5 — o)
This suggests the choice ¢; = 1 and ¢; = —————. We have

l—sinz(% —w)

=2

C1Cy =

1 1
<
\/l—sinz(%—a)) \/l—sinz(%)

The analysis for y, z € Ps is similar, only with the difference that 6, 6 € (27” +
w, 4?’T—a)) and we have y, 77 € (sin(%”—a)), sin(zT” +w)) = (sin(—75 +w), sin(5 —

w)).
Next, consider y, z € P>. Suppose
y = (y1, y2) = (cos b, sinf),
7= (21, 22) = (cosd, sinh),
0,0 €(%+w % -w),

Y1121 € (cosCE — w), cos(E + w)).
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The ¢;-coordinates of y, z are yj, z1, respectively. Hence,

ly —z| = |y1 — z1] = | cos 6 — cos |
r(y,2) =10 —4|.

By the mean value theorem:

|y —z| = |cos@ —cosb| = |sm§|§€(%+w’?i

and

r(y,2) =160 — 0|

= | arccos y; — arccos 21|

1
N '—/1—;72
1

= Iyt — z1
/1 —cos?(§ + w)

Iy1 — zil
ne(cos(%—w),cos(%—&-w))

This suggests the choice ¢; = 1 and ¢y = ——1— We have
g8 : 2 1/1—(:052(%+w)
1 1
cicy = =2.

<
\/1 — cos? (£ + o) \/1 — cos? (%)

se 10—01<10—0|=r(y2).
)

Note that the choice agrees with the case y, z € Pj. The analysis for y,z € P4 is

similar as well, which proves the desired claim.

4 Generalizing nonwindowed geometric scattering

Now that we have developed the machinery necessary for the rest of the paper, we

prove the g-nonwindowed scattering transforms are bounded operators with respect

to (19) and outline basic properties of the representation.

4.1 The 2-nonwindowed geometric scattering norm

We start by proving that 2-nonwindowed scattering transforms are bounded operators

with respect to (19).
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Theorem 9 Suppose that G satisfies the conditions of Theorem 1 and {{;};cz be a
set of spectral filters generated by using G in Eq. 5. Then we have

IS5 £ =55 8l2czm, < C2™IF = &lF 200

forall f,g € L2(M).

Proof In the case of m = 1, we see that

D O IS2f 11 = Sagli1 = D IILf * ¥jlla — lg = wjllaf

JEZ =/
<D If v —gxvil3
JEZ
=Y I —8) = ¥li3
JEZ

< C?IIf = gllfa gy
Now assume that we have
=N =n
1555 =S58 05 < CPIF = &llf20un)

for some k > 1. For the m = k + 1 case, we see that

<kl . <k+l 2
> ‘52 Ut e = Sy gl - k]
(1o i 1) EZKF
. ; ; ; 2
= > UL i sl = UL - dnlg * Yl
(J1seees Jia 1) EZFH
< Y MWL g f = UL k) = Yyl
(1seees Jir 1) EZKH
<C* > NUlLjiees jidf = Uljt. - ilgli3
(15w JK)EZE
2,k <k 2
=C ||S2f - S2g”g2(zk)
Now apply the induction hypothesis to get
C? gk _ gk 2 < 2D £ _ o2
” 2f 2g||g2(Zk) = ”f g”L2(M)
Thus, the claim is proven. O

Corollary 10 Suppose that G satisfies the conditions of Theorem I and let {;} jc7, be
a set of wavelets generated by using G in Eq. 5. Then we have

IS5 12 m=C*" 1L 13 200y

W Birkhauser



Generalizing geometric nonwindowed scattering transforms... Page210f28 19

forall f € L2(M) and allm > 1.

For proper invariance, we provide a theorem that demonstrates that the 2-
nonwindowed geometric scattering transform is invariant to isometries.

Theorem 11 Let £ € Isom(M, M), and let f € L*(M). Define f' = Vi f and let

g /
(S;n) be the corresponding 2-nonwindowed geometric scattering transform on M’
produced by a littlewood paley wavelet satisfying the conditions described in Theorem
—m\/ —
1. We have (s;") =57

Proof We see that S>[#1f = || fll2 = | Ve f1l2 since Vg is an isometry. Now suppose
that we consider p = (Ji, ..., jm). Then since convolution using a spectral filter
commutes with isometries and modulus operators (see Theorem 2.1 in [31]),

Sy Lt - jmlf = IULPfllL2omy
= VeUlplfll2om
= ULPIVe f L2 (my
= 1ULP1f 2 omy

I
<m . .
= (53) Utooos gl
Thus, we can see that each layer is isometry invariant. O

4.2 The g-nonwindowed geometric scattering norm

Now we prove the g-nonwindowed Geometric Scattering Transforms, for g € (1, 2),
are bounded operators with respect to (19) under mild assumptions.

Theorem 12 Suppose that we choose wavelets {;};c7 generated by using G €
S@R™) in Eq. 5, G satisfies the conditions of Theorem 1, and c\c; < 2. Then

ISy £ = Sg 8l zm, = CoILf = 8lifacany
forall f, g € LY(M), for all m > 1, and some constant C, dependent on q.

Proof We start by providing a proof for the case of m = 1:

q/2
1S f = Sq& 1%z, = | D_1SqL1f = Sqlilsl?
JEZL
q/2

= [ S nutirrig - 1wl ?

JEZL
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q/2
< | Doty - utjlel
JEZL
24 q/2
= Z( / IU[j]f(X)—U[j]g(X)I"du(X))
JEZL M

Via Minkowski’s Integral Inequality,

2/ q/2
> ( / ULj1f(x) = ULjlg(x))? du(x))
JEL M
q/2
< / S - ULg@R | due)
M \jez
q/2
SIS Y@ — @xypN@IP ]| dulx)
JEZ
=W =0

z (Z)

Now apply Corollary 8 to get

15 (Z)

Now assume that for some m > 1, we have
1Sy £ = Sy &l < CoIF = &l pny:

Similar to above, when we consider the case with m + 1, we can mimic the steps
above to get

<m+1 <m
”Sq f_Sq g”gZ(Zm)
q/2
+1

—m+1_ . . = . .
= X S et =S T g 1g

Jm+1€Z J1€ZL

_ Z Z </M|U[j1,...,jm+1]f(x)

(J1seees Jm) EZ™ Jm+1€Z
2/q q/2

—ULjts -+ jms11g(0)? dpu(x)
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- = Z ([ wtimenreo

(J1oeor Jm)EZM™  \ jm+y1€Z
q.2\ 4/2
2/q\ 24

—Ulj1, - Jmer1g0)|? dn(x)

IA

Z f Z UL - Jma]f ()

(jl ~~~~~ jm)EZm J’m-ﬁ—lEZ
2/q\ 4/2

/2
~ULjts - 180P) T du)

q/2
< o WLl f = Uit e )
(loeoesjm)EL™ e

q/2
=C | D0 WU gl f = ULt gl
(jl ~~~~~ j/n)GZ
Now we see that we can apply the induction hypothesis to get
q/2
WLt gl f = ULjt. - jmlglf
Z " m LZZ(Z)(M)

(1seees jm)EL™
= ISg Lt - jmlf = SG it )82z,
< CIf = &llfa -

]

Corollary 13 Suppose that we choose wavelets {{r;}cz generated by using G €
S@R™) in Eq. 5, G satisfies the conditions of Theorem 1, and c\c; < 2. Then

-m
1Sg F 1152 czmy = € I IEa )

forall f € LY(M), for allm > 1, and some constant Cy dependent on q.

For the next theorem, we omit the proof since it is identical to the case when g = 2,
but we state it for completeness.

Theorem 14 Let & € Isom(M, M), and let f € LY(M). Define f' = V¢ f and let

N/
(S;n) be the corresponding q-nonwindowed geometric scattering transform on M’
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produced by wavelets {{;} ez using G € S (RT) in Eq. 5, G satisfies the conditions
—m\/ -
of Theorem 1, and cicy < 2 in Lemma 3. We have (S;n) f= SZlf.

5 Diffeomorphism stability

In machine learning tasks, it is often necessary for a representation to have some degree
of invariance with respect to the action of a group. For tasks involving manifolds, one
may like to have local isometry invariance. More formally, let Vg f(x) = f(§ ~1x) for
& € Isom(M) and consider a representation ® : 3; — >, where By, I3, are Banach
Spaces. It would be desirable to have a representation such that

1Df — DVe fllg, < 27" 1€ lleoll flIs,»

where J controls the degree of invariance. A simple choice is to use an averaging filter,
but this potentially leads to the loss of information that can be crucial for the task.

For other tasks, such as manifold classification, a fully rigid representation may be
required, and full isometry invariance is desirable. That is to say, we have

@15, = I1PVe fliB,-

In addition to invariance, it is necessary for a representation to also have stability
properties. Instead of considering an isometry, consider & € Diff(M) and think of
Ve f as a small deformation of f. We want

I®f — PV flB, = KE DI flB

where K (&, J) — 0 as ||£||co — O forfixed J and K (¢, J) — 0as J — oo for fixed
&; this is to ensure that small deformations of an input do not lead to large changes in
the representation.

With the above discussion in mind, we provide diffeomorphism stability results for
a generalization of bandlimited functions, A-bandlimited functions, which are defined
as functions which satisfy f (k) = (f, ¢r) = 0 whenever A; > A.

Lemma 15 ([31]) Suppose & € Diff(M). If f € L?(M) is A-bandlimited, then
If = Ve fllzovy < CDAIE ool f 2 M)

for some constant C(M).

Theorem 16 Suppose & € Dif(M). Let f € L*(M), and assume that  is a wavelet
family satisfying the conditions of Theorem 1. Then

IS5 f = S5 Ve fll2zmy < CODN € ool £ 2y -

Proof We apply Theorem 9, so Lemma 15 gives the desired result. O
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5.1 Stability results for the g-nonwindowed geometric scattering norm

Lemma 17 Suppose & € Diff(M) and 1 < g < 2. If f € L4(M) is A-bandlimited,
then

If = Ve fllLaomy < Ca(MIA" & lloo Il f llLa
for some constant Cy(M).

Proof Since f is A-bandlimited, f € L?(M) as well, and the proof is nearly identical
to the proof of the case when ¢ = 2, but we provide the steps for completeness. We
define 7;, be the operator that projects a function f € L?(M) onto the eigenspace E;,
and define the projection operator

P)L = Z A,

An <A

with kernel

KW, y) =" en(x)en(y).

A <A

We have P, f = f p-almost-everywhere. Thus, via Holder’s inequality,
[f(x) = Ve f)l =P f(x) = VePyf(x)]
= '/ KX,y f(y)dy —/ K®E (0, y)f(y)dy’
M M

=

/M(Km(x, y) = KPET @), ) () dy‘

1/p
< I f e (/M IKP(x,y) = KPE @), y>|f’dy)
< CqvolM 1 f s (A 1€ oo I VK@ 1o
for some constant C, voi(Aq) dependent on g and the volume of the manifold. Here, p

is the conjugate exponent of ¢ in the sense that % + Cll = 1. Now, by Lemma H.1 in
[31], we have

VK|l < C(M)A".

for some constant C (M). Thus, the proof is complete. O

Theorem 18 Suppose & € Diff(M). Let f € L1(M) be A-bandlimited. Additionally,
suppose that we choose wavelets {\} jcz, generated by using G € S(R") in Eq.5, G
satisfies the conditions of Theorem 1, and cicy < 2. Then

IS0 £ = S0 Ve fll 2y < CODVE oo f sty

) Birkhauser



19 Page 26 0of 28 A.Chua, Y. Yang

for some constant C(M).

Proof We apply Theorem 12 to get
IS5 £ =S Ve Fllamy < Call f = Ve fllLamy-
By Lemma 17, we have

If = Ve fllamy = CMDA [ lloo Il f s (v

which gives the desired result. O

6 Conclusions and future work

We have provided a framework for understanding nonwindowed scattering coef-
ficients. In particular, we provide a weighted measure for distortion between
nonwindowed scattering coefficients, showed our weighted measure is well-defined
mapping for L7 (M) functions, and showed that nonwindowed scattering coefficients
are stable to diffeomorphisms for A-bandlimited functions. For future work, it is of
interest to see if it is possible to extend our results to manifolds that are not restricted
the conditions present in Sects.4 and 5. Additionally, what are other manifolds that
satisfy the conditions present in sections 4 and 57
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