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Abstract
We study nonwindowed geometric scattering transforms on compact Riemannian
manifolds without boundary. These transforms are formulated as Lq -norms, with
1 < q ≤ 2, of a cascade of geometric wavelet transforms and modulus operators.
We provide weighted measures for these operators, and prove that these operators
are well-defined under specific conditions on the manifold, invariant to the action of
isometries, and stable to diffeomorphisms for bandlimited functions.

Keywords Wavelet scattering · Geometric deep learning · Spectral geometry ·
Riemannian manifolds

1 Introduction

In recent years, deep convolutional neural networks have shown strong performance
on various vision-related tasks [25, 37, 39]. However, because of how complex deep
convolutional architectures are, it is not entirely clear what mechanisms enable deep
convolutional networks to get strong performance on these tasks. In an effort to better
understand the properties of deep convolutional architectures, Mallat proposed the
scattering transform [6, 28], which uses a cascade of specified filters and nonlinear-
ities to mimic the behavior of a deep convolutional neural network. Using a specific
class of wavelet filters, Mallat found that the scattering transform had many desirable
properties for machine learning tasks such as translation invariance and stability to
small deformations. Additionally, the scattering transform and its generalizations have
been found various applications as a general feature extractor, such as in [1–4, 7, 8,
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17, 26, 29, 30, 35, 36, 38]. Authors have also explored extensions of the scattering
transform to semi-discrete frames [27, 42, 43] and more general Gabor frames [15,
16].

However, certain formsof data, such as point clouddata have a geometry than is non-
Euclidean, which motivate manifold learning models [12, 40, 41] and geometric deep
learning [5]. As an extension of the scattering transform, researchers have considered
graph scattering transforms in [18–20, 32, 44] constructed via graph wavelets [12, 24];
additionally [33, 34] extend wavelets and the scattering transform to simplicial com-
plexes; the overarching idea is that these extensions of the scattering transform have
similar desirable stability properties, and present success on non-Euclidean datasets.

The scattering transform has also been extended to compact Riemannianmanifolds,
known as the geometric scattering transform, via defining the wavelet transform on
compact Riemannian manifolds using eigenfunctions of the Laplace–Beltrami opera-
tor. In particular, for the windowed geometric scattering transform, it is proved that the
representation was locally invariant to isometries for all square-integrable functions
and stable to diffeomorphic deformations under mild restrictions [31]. The concept
of nonwindowed geometric scattering transform is also proposed in [31], which is
proved invariant to isometries and stable to diffeomorphic deformations.

Regarding nonwindowed geometric scattering transforms, their Euclidean coun-
terparts, nonwindowed scattering transforms, have been effective for applications in
quantum chemistry, audio synthesis, and physics have appeared in [1, 8, 17, 26, 38];
theoretical results involving stability to deformations have also been provided in [11].
The main idea behind nonwindowed scattering transforms is that they provide a small
number of descriptive features for high dimensional data. As a natural extension, [10]
used scattering moments on manifolds for classifications tasks involving point cloud
data. However, there were limited theoretical results in [9] for scattering moments
provided in [10], which motivates this paper.

The major contribution of this paper is as follows:

• We provide a well-defined weighted measure for scattering moments for Lq(M)-
functionswith q ∈ (1, 2]. HereLq(M) denotes the space of q-integrable functions
on a compact Riemannian manifold without boundary M. Compared to the
work [31], our results provide theoretical justification for nonwindowed scatter-
ing moments with q ∈ (1, 2). From a practical perspective, the extension allows
dealing with real data sets sampled from a wider class of functions. However, our
weighted measure is only defined for an aribtrary, finite number of layers, and
requires restrictions on the regularity of the manifold.

• We show the measure also has a diffeomorphism stability result for bandlimited
functions, similar to [31]. This covers a wide class of functions, but is not fully
general like in [11, 28]. A diffeomorphism stability result for non-bandlimited
functions is left to future work.
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2 A review of the geometric scattering transform onmanifolds

2.1 Notation

We introduce some notations for the purposes of this paper. Henceforth,Mwill denote
a compact, smooth, n-dimensional Riemannian manifold without boundary contained
in Rd , where d ≥ n, with geodesic distance between two points x1, x2 ∈ M given by
r(x1, x2) and Laplace–Beltrami operator denoted as �. The notation Lq(M) denotes
the set of all functions f : M → R such that

∫
M | f (x)|q dμ(x) < ∞, where dμ(x)

is integration with respect to the Riemannian volume, whose measure is given by μ.
We use the notation Isom(M1,M2) be the set of isometries between manifolds M1
andM2. Lastly, the set of diffeomorphisms onMwill be denoted byDiff(M), and the
maximum placement of γ ∈ Diff(M)will be given by ‖γ ‖∞ := supx∈M r(x, γ (x)).

2.2 Spectral filters and the geometric wavelet transform

The convolution of two compactly-supported functions f , g ∈ L2(Rn) is usually
defined in space as

( f ∗ g)(x) =
∫

Rn
f (y)g(x − y) dy.

However, for a general manifold, even under the conditionswe have prescribed, a nota-
tion of translation does not necessarily exist, Tomotivate our definition below, consider
f , g ∈ L2([0, 1]). A basis is given by {cn(x)}n≥0. Via a fourier series expansion, we
have

( f ∗ g)(x) =
∑

n≥0

〈( f ∗ g), en〉en(x).

Based on the intuition above, one can create a spectral definition of convolution
via the spectral decomposition of −�. Denote N0 := N ∪ {0}. Because our manifold
is compact, it is well known that −� has a discrete spectrum, and we can order the
eigenvalues in increasing order and denote them as {λn}n∈N0 . We will denote the
corresponding eigenfunctions as {en(x)}n∈N0 , which form an orthonormal basis for
L2(M).

Suppose f ∈ L2(M). Since the set of functions {en(x)}n∈N0 forms a basis in
L2(M), we decompose

f (x) =
∑

n∈N0

〈 f , en〉en(x) =
∑

n∈N0

(∫

M
f (y)en(y) dμ(y)

)

en(x), (1)

which is similar to a Fourier series. Since en(y) is a replacement for a Fourier mode,
it is natural to let

f̂ (n) =
∫

M
f (y)en(y) dμ(y) (2)
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and define convolution on M between functions f , h ∈ L2(M) as

f ∗ h(x) =
∑

n∈N0

f̂ (n)ĥ(n)en(x). (3)

Defining the operator Th f (x) := f ∗ h(x), it is easy to verify that

Th f (x) =
∫

M
K̃h(x, y) f (y) dμ(y), K̃h(x, y) :=

∑

n∈N0

ĥ(n)en(x)en(y). (4)

Similar to how convolution commutes with translations on R
n , it is important for

convolution on M to be equivariant to a group action on M. The authors of [31]
construct an operator by convolving with functions that commute with isometries
since the the geometry ofM should be preserved by a representation. To accomplish
this goal, we use a similar definition for spectral filters. Afilter h ∈ L2(M) is a spectral
filter if λk = λ� implies ĥ(k) = ĥ(�). One can prove that there exists H : [0,∞) → R

such that

H(λn) = ĥ(n), ∀n ∈ N0.

Let G : [0,∞) → R be nonnegative and decreasing with G(0) > 0. A low-pass
spectral filter φ is given in frequency as φ̂(n) := G(λn) and its dilation at scale 2 j

for j ∈ Z is φ̂ j (n) := G(2 jλn). Using the set of low-pass filters, {φ̂ j } j∈Z, we define
wavelets by

ψ̂ j (n) := [|φ̂ j−1(n)|2 − |φ̂ j (n)|2]1/2 = [|G(2 j−1n)|2 − |G(2 j n)|2]1/2, (5)

Note that these are wavelets modeled after the wavelets from [13].
Fix J ∈ Z. Define the operators

AJ f := f ∗ φJ ,

� j f := f ∗ ψ j , j ≤ J .

The windowed geometric wavelet transform is given by

WJ f := {AJ f , � j f : j ≤ J } (6)

and the nonwindowed geometric wavelet transform is given by

W f := {� j f : j ∈ Z}. (7)

We have the following theorem, which provides a condition for when our wavelet
frame is a nonexpansive frame.



Generalizing geometric nonwindowed scattering transforms... Page 5 of 28 19

Theorem 1 Let G : [0,∞) → R be nonnegative, decreasing, and continuous with
0 < G(0) = C, limx→∞ G(x) = 0, and {ψ j } j∈Z is a set of wavelets generated by
using the low-pass filter φ̂(k) = G(λk) in Eq.5. Then we have

∑

j∈Z
‖ f ∗ ψ j‖22 = C2‖ f ‖22. (8)

Proof For fixed I , J > 1, we telescope to get

J∑

j=−I

|ψ̂ j (k)|2 =
J∑

j=−I

[
|G(2 j−1λk)|2 − |G(2 jλk)|2

]

= |G(2−I−1λk)|2 − |G(2Jλk)|2.

Since lim I→∞ |G(2−I−1λk)|2 = C2 and limJ→∞ |G(2Jλk)|2 = 0 by the assumption
on G, it follows that

∑

j∈Z
|ψ̂ j (k)|2 = lim

I→∞ |G(2−I−1λk)|2 − lim
J→∞ |G(2Jλk)|2 = C2.

We can write

‖ f ∗ ψ j‖22 =
∑

k∈N0

|ψ̂ j (k)|2| f̂ (k)|2.

Thus, it follows that

∑

j∈Z
‖ f ∗ ψ j‖22 =

∑

j∈Z

∑

k∈N0

| f̂ (k)|2|ψ̂ j (k)|2

=
∑

k∈N0

| f̂ (k)|2
⎛

⎝
∑

j∈Z
|ψ̂ j (k)|2

⎞

⎠

= C2‖ f ‖22.


�
In the case where we choose G(λ) = e−λ, which corresponds to our kernel being

the heat kernel on M, we have C = 1 and the relation above is an isometry.

2.3 The geometric scattering transform

Here, we recall the geometric scattering transform as defined in [31], which is a
geometric analog to theEuclidean definition of the scattering transform.This transform
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is useful as it provides a representation that meaningfully encodes high frequency
information of a signal f . Define the propagator as

U [ j] f := |� j f | ∀ j ∈ Z, (9)

which is convolution of a wavelet and applying a nonlinearity; we can also define the
windowed propagator as

UJ [ j] f := |� j f | ∀ j ≤ J . (10)

Similar to scattering transforms on Euclidean space, one can apply a cascade of convo-
lutions andmodulus operators repeatedly. In particular, form ∈ N, let j1, . . . , jm ∈ Z.
The m-layer propagator is defined as

U [ j1, . . . , jm] f := U [ jm] · · ·U [ j1] f = ||| f ∗ ψ j1 | ∗ ψ j2 | · · · ∗ ψ jm | (11)

and the m-layer windowed propagator is defined as

U [ j1, . . . , jm] f := U [ jm] · · ·U [ j1] f = ||| f ∗ψ j1 |∗ψ j2 | · · ·∗ψ jm |, j1, . . . , jm ≤ J
(12)

with U [∅] f = f and UJ [∅] f = f . To aggregate low frequency information and
get local isometry invariance, one can apply a low-pass filter in a manner similar to
pooling to each windowed propagator to get windowed scattering coefficients:

SJ [ j1, . . . , jm] = AJUJ [ j1, . . . , jm] f = UJ [ j1, . . . , jm] f ∗ φJ ,

where we defined SJ [∅] f = f ∗ φJ . The windowed geometric scattering transform
is given by

SJ f = {S j [ j1, . . . , jm] f : m ≥ 0, ji ≤ J , ∀1 ≤ i ≤ m}. (13)

It is proved that this windowed scattering operator was nonexpansive, invariant to
isometries up to the scale of the low-pass filter, and stable to diffeomporhisms under
mild assumptions [31].

On the other hand, for applications such as manifold classification, one desires full
isometry invariance instead of isometry invariance up to scale 2J . We see that

lim
J→∞ S[ j1, . . . , jm] f = vol(M)−1/2‖U [ j1, . . . , jm] f ‖1. (14)

As a proxy, one can consider

S f [ j1, . . . , jm] = ‖U [ j1, . . . , jm] f ‖1. (15)

This motivates defining the nonwindowed geometric scattering transform [31] as

S f = {S[ j1, . . . , jm] f : m ≥ 0, ji ∈ Z, ∀1 ≤ i ≤ m}. (16)
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In this paper, we will extend the domain of the nonwindowed geometric scatter-
ing transform: Instead of considering L1(M) norms of m-layer propagators, we will
instead considerLq(M) norms ofm-layer propagators for q ∈ (1, 2], which we define
as m-layer q-nonwindowed geometric scattering coefficients (which are also referred
to as scattering moments in other works):

S
m
q [ j1, . . . , jm] f = ‖U [ j1, . . . , jm] f ‖Lq (M) ∀( j1, . . . , jm) ∈ Z

m, (17)

which has seen application in quantum chemistry [17, 26, 38] and for point cloud
data [10]. As shorthand notation, we will use the following notation for one layer
coefficients:

Sq [ j] f = ‖U [ j] f ‖Lq (M) ∀ j ∈ Z. (18)

To measure stability, invariance, and equivariance, we define the following norm for
q-nonwindowed geometric scattering coefficients:

‖Smq f ‖q
�2(Zm)

:=
⎛

⎝
∑

jm∈Z
. . .

∑

j1∈Z
|Smq [ j1, . . . , jm] f |2

⎞

⎠

q/2

, (19)

which follows the definition in [11]. Since many of the results in [11] rely on results
of Littlewood Paley theory, we will provide extensions of these results to compact
manifolds, with some extra restrictions added.

3 Some results related to littlewood paley theory

Denote by �2(Z) the space of square-summable sequences indexed by integers, that
is,

�2(Z) := {(. . . , a−2, a−1, a0, a1, a2, . . . ) : a j ∈ C for each j ∈ Z,

∞∑

j=−∞
|a j |2 < ∞}.

We define some �2(Z)-valued function spaces to be used later.
For 1 ≤ p < ∞, define the Lp

�2(Z)
(M)-norm as

‖g‖p
Lp

�2(Z)
(M)

:=
∫

M
‖g(x)‖p

�2(Z)
dμ(x) .

and the Lp,∞
�2(Z)

(M)-norm as

‖g‖Lp,∞
�2(Z)

(M) := sup
δ>0

δ · μ({x ∈ M : ‖g(x)‖�2(Z) > δ})1/p ,
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The spaces Lp
�2(Z)

(M) and Lp,∞
�2(Z)

(M) consist of �2(Z)-valued functions that have

finite Lp
�2(Z)

(M)-norm and Lp,∞
�2(Z)

(M)-norm, respectively. It is clear that for any
δ > 0,

δ p · μ({x ∈ M : ‖g(x)‖�2(Z) > δ}) =
∫

{x∈M:‖g(x)‖
�2(Z)

>δ}
δ p dμ(x)

≤
∫

{x∈M:‖g(x)‖
�2(Z)

>δ}
‖g(x)‖p

�2(Z)
dμ(x)

≤
∫

M
‖g(x)‖p

�2(Z)
dμ(x).

Taking the supremum in δ > 0 concludes

‖g‖Lp,∞
�2(Z)

(M) ≤ ‖g‖Lp

�2(Z)
(M) .

Hence Lp
�2(Z)

(M) embeds continuously into Lp,∞
�2(Z)

(M).

Recall that we have defined the operator W f : M → �2(Z) given by

W ( f )(x) := {� j f (x)} j∈Z =
{∫

M
K2− j/2(x, y) f (y) dμ(y)

}

j∈Z
.

with kernel given by �K = {K2− j/2} j∈Z associated to the wavelets {ψ j } j∈Z generated
using a low-pass filter G ∈ S(R+) satisfying the conditions of Theorem 1 for Eq.5.
Since

‖W ( f )(x)‖�2(Z) =
⎛

⎝
∑

j∈Z
| f ∗ ψ j (x)|2

⎞

⎠

1/2

,

we conclude from Theorem 1 that

‖W f ‖L2
�2(Z)

(M) = C‖ f ‖L2(M).

Our goal is to extend this operator and prove that for all q ∈ (1, 2), there exists Cq

such that

‖W f ‖Lq

�2(Z)
(M) ≤ Cq‖ f ‖Lq (M),

Before providing any proofs, we will state preliminary lemmas that will be vital to
our approach. The first few lemmas concern the kernel of our convolution operator.
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Lemma 2 ([23,Corollary 2.2])Let n be the dimension ofM. Suppose that F ∈ S(R+),
the space of Schwartz functions (all functions with rapidly decreasing derivatives of
all orders), restricted to the nonnegative real axis and F(0) = 0. For the kernel

Kt (x, y) =
∑

n∈N
F(t2λn)en(x)en(y),

the following pointwise bound holds for some Cn > 0 and for all t > 0 and all
x, y ∈ M:

|Kt (x, y)| ≤ Cnt−n

(
1 + r(x,y)

t

)n+1 .

The next result is proved in [22, Proposition 3.1].We include its proof (following the
idea for [22, Proposition 3.1]) to demonstrate that the constants c1, c2 can be chosen
to depend continuously on the metric g. Such continuous dependence is subsequently
necessary for the remark preceding Example 1. Recall that given an open cover U on
the manifoldM, a number γ > 0 is called a Lebesgue number for U if for all x ∈ M,
there exists Ux ∈ U such that B(x, γ ) ⊂ Ux , where we define

B(x, r0) := {y ∈ X : r(x, y) < r0}. (20)

Lemma 3 ([22, Proposition 3.1])CoverMwith a finite collection of open sets Pi with
1 ≤ i ≤ I such that the following properties hold for each index i:

1. there exists a chart (Vi , ϕi ) with Pi ⊂ Vi (Pi denotes the closure of Pi )
2. ϕi (Pi ) is a ball in Rn.

Choose δ > 0 so that 3δ is a Lebesgue number for the covering {Pi }. Then there
exist c1, c2 > 0 such that for any x ∈ M and any B(x, 3δ) ⊂ Pi , the following
statements hold in the coordinate system on Pi obtained from ϕi :

1. For all y, z ∈ Pi , we have r(y, z) ≤ c2|y − z|.
2. For all y, z ∈ B(x, δ), we have r(y, z) ≥ c1|y − z|.
Here, | · | denotes the Euclidean norm induced by the ϕi -coordinates.

Proof This proof follows the idea for [22, Proposition 3.1] yet with explicitly identified
constants c1, c2 to demonstrate their continuous dependence on the metric g.

Using the coordinates given by ϕi , we identify g(x) with an n × n smooth matrix
for each x ∈ Pi . We write | · |g for the norm induced by g, and | · | for the Euclidean
norm in the ϕi -coordinates. For each x ∈ Pi and a tangent vector vx ∈ TxM, we have

�(x)|vx |2 ≤ |vx |2g(x) =
n∑

α,β=1

vα
x gαβ(x)vβ

x ≤ �(x)|vx |2.
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Here �(x),�(x) denote the minimum and maximum eigenvalues of the matrix g(x)
respectively. We conclude

(

min
x∈Pi

�(x)

)

|vx |2 ≤ |vx |2g(x) ≤
(

max
x∈Pi

�(x)

)

|vx |2

uniformly for (x, v) ∈ T Pi . As both�(x) and�(x) are positive continuous functions
of x on the compact subset Pi , their minimum and maximum are strictly positive.

For the first statement, take y, z ∈ Pi and define γ : [0, 1] → Pi , γ (t) := t z +
(1 − t)y where the coordinates of y, z are given by ϕi . Then γ is a smooth curve
connecting y, z and |γ ′(t)| = |y − z| for all t . By the definition of the Riemannian
distance r(y, z), we have

r(y, z) ≤ length of γ =
∫ 1

0
|γ ′(t)|g(γ (t)) dt

≤
(

max
x∈Pi

�(x)

) 1
2 ∫ 1

0
|γ ′(t)| dt =

(

max
x∈Pi

�(x)

) 1
2

|y − z|.

One choice for c2 is

c2 := max
i=1,...,I

(

max
x∈Pi

�(x)

) 1
2

.

For the second statement, take y, z ∈ B(x, δ) and letγk : [0, 1] → Mbe a sequence
of piecewise C1 curves connecting y, z such that their lengths �(γk) → r(y, z) as
k → ∞. For large k, we have

r(γk(t), x) ≤ r(γk(t), y) + r(y, x) ≤ r(z, y) + δ ≤ r(z, x) + r(x, y) + δ ≤ 3δ

for all t ∈ [0, 1], hence γk ⊂ Pi . Therefore, we have for large k that

�(γk) =
∫ 1

0
|γ ′

k(t)|g dt ≥
(

min
x∈Pi

�(x)

) 1
2 ∫ 1

0
|γ ′

k(t)| dt

≥
(

min
x∈Pi

�(x)

) 1
2 ∣
∣
∣
∣

∫ 1

0
γ ′
k(t) dt

∣
∣
∣
∣ ≥

(

min
x∈Pi

�(x)

) 1
2

|y − z|.

Letting k → ∞ proves the statement, and one choice for c1 is

c1 := min
i=1,...,I

(

min
x∈Pi

�(x)

) 1
2

.
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�
For the rest of this paper, we fix the collections {Pi }, {Vi }, {ϕi }, and constants

δ, c1, c2 from the previous Lemma.

Lemma 4 Suppose that r(y, z) < min
{ 1
2r(x, y), δ

}
so that y and z lie on the same

ball of the covering. Assume that there exist c1 and c2 from Lemma 3 with c1c2 < 2.
Then there exists a constant Cδ such that

|Kt (x, y) − Kt (x, z)| ≤ Cδ

r(y, z)t−n−1

(
1 + r(x,y)

t

)n+1 .

Proof Using the proof of Theorem 5.5 in [22], for each x ∈ M, there exists a point
wx on the segment connecting y to z such that

|Kt (x, y) − Kt (x, z)| ≤ C1
r(y, z)t−n−1

(
1 + r(x,wx )

t

)n+1 . (21)

Now notice that triangle inequality implies that

r(x, y) ≤ r(x, wx ) + r(y, wx ).

By Lemma 3, since wx lies on the line segment between y and z, we see that

r(y, wx ) ≤ c2|y − wx | ≤ c2|y − z| ≤ c1c2r(y, z).

It follows that

r(x, y) − c1c2r(y, z) ≤ r(x, wx ).

Since c1c2 < 2 and r(x, y) ≥ 2r(y, z), we see that

r(x, y) − c1c2
2

r(x, y) ≤ r(x, wx )

so that 1 − c1c2
2 > 0. This leads to r(x, y) ≤ Crr(x, wx ) for some constant Cr

independent of x . Finally, we can make a replacement in the right side of (21) to get

|Kt (x, y) − Kt (x, z)| ≤ Cδ

r(y, z)t−n−1

(
1 + r(x,y)

t

)n+1 .


�
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Nowwe provide the necessary tools from classical harmonic analysis for extension.
The idea is similar to the proof in the Euclidean case; we wish to prove a weak-type
(1, 1) bound and extend by interpolation. Let X be a set, β a metric, and μ a measure
on X such that 0 < μ(B(x, r)) < ∞ for all x ∈ X and r > 0. We say that a space
(X , β, μ) is of homogeneous type, though often with the metric and measure omitted
when implied, if for all x ∈ X and r > 0 there exists a constant CD such that

μ(B(x, 2r)) ≤ CDμ(B(x, r)), (22)

where B(x, r) is a ball of radius r centered at x for (X , β). The property above is
also known as the doubling property. It is well known that a C∞ compact Riemannian
manifold using the standard Riemannian metric and volume is of homogeneous type.

The first result we will need is a Calderon-Zygmund decomposition:

Theorem 5 ([14], Corollary 2.3) Suppose that X is a space of homogeneous type.
Suppose that f ∈ L1(X) and choose α > 0 such that α−1‖ f ‖1 < μ(X). Then we
can decompose f := g + b such that

‖g‖2L2(M)
≤ C1α‖ f ‖L1(M),

b =
∑

i

bi ,

where C1 > 0 is a constant, supp(bi ) ⊂ B(xi , ri ) for some countable collection of
balls {B(xi , ri )}, and each bi satisfies

∫

X
bi (x)dμ(x) = 0,

‖bi‖1 ≤ Cαμ(B(xi , ri )),
∑

i

μ(B(xi , ri )) ≤ Cα−1‖ f ‖L1(M).

Theorem 6 Suppose that we choose wavelets {ψ j } j∈Z generated using G ∈ S(R+) in
Eq.5 that satisfy the conditions of Theorem 1 and c1c2 < 2 in Lemma 3. The following
weak (1, 1) bound holds for some A > 0:

‖W f ‖L1,∞
�2(Z)

(M)
≤ A‖ f ‖L1(M).

Proof First, for any α such that α−1‖ f ‖L1(M) > μ(M), we see that

μ({x ∈ M : ‖W f (x)‖�2(Z) > α}) ≤ μ(M) ≤ α−1‖ f ‖L1(M).

Now, we consider the case where α−1‖ f ‖L1(M) ≤ μ(M). We use our Caulderon-
Zygmund decomposition and write f = g + b. It follows that
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μ({x ∈ M : ‖W f (x)‖�2(Z) > α}) ≤ μ({x ∈ M : ‖Wg(x)‖�2(Z) > α/2})
+ μ({x ∈ M : ‖Wb(x)‖�2(Z) > α/2})

:= I1 + I2.

For I1, we apply Chebyshev inequality, L2
�2(Z)

(M) boundedness of W , and our
assumption on g to find that

μ({x ∈ M : ‖Wg(x)‖�2(Z) > α/2}) ≤ 4

α2 ‖Wg‖2
L2

�2(Z)
(M)

≤ 4

α2 ‖W‖2
L2(M)→L2

�2(Z)
(M)

‖g‖2L2(M)

≤ 4C1

α
‖W‖2

L2(M)→L2
�2(Z)

(M)
‖ f ‖L1(M).

For I2, let B = ⋃
i B(xi , 2ri ). Then it follows that

I2 ≤ μ(B) + μ({x ∈ Bc : ‖Wb(x)‖�2(Z) > α/2}
≤ CD

α
‖ f ‖L1(M) + 2

α
‖Wb‖L1

�2(Z)
(Bc)

≤ CD

α
‖ f ‖L1(M) + 2

α

∑

i

‖Wbi‖L1
�2(Z)

(B(xi ,2ri )c)
,

where the constantCD comes from the fact that ourmeasure has the doubling property.
To estimate ‖Wbi‖L1

�2(Z)
(B(xi ,2ri )c)

, we notice that

‖Wbi‖L1
�2(Z)

(B(xi ,2ri )c)
=

∫

B(xi ,2ri )c
‖Wbi (x)‖�2(Z) dμ(x)

=
∫

B(xi ,2ri )c

∥
∥
∥
∥

∫

B(xi ,ri )

�K (x, y)bi (y) dμ(y)

∥
∥
∥
∥

�2(Z)

dμ(x).

Now, since each of the functions bi integrate to zero over the balls B(xi , ri ),

∫

B(xi ,2ri )c

∥
∥
∥
∥

∫

B(xi ,ri )

�K (x, y)bi (y) dμ(y)

∥
∥
∥
∥

�2(Z)

dμ(x)

=
∫

B(xi ,2ri )c

∥
∥
∥
∥

∫

B(xi ,ri )
( �K (x, y) − �K (x, xi ))bi (y) dμ(y)

∥
∥
∥
∥

�2(Z)

dμ(x).

Examining

∥
∥
∥
∥

∫

B(xi ,ri )
( �K (x, y) − �K (x, xi ))bi (y) dμ(y)

∥
∥
∥
∥

�2(Z)

.
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more closely, we have

∥
∥
∥
∥

∫

B(xi ,ri )
( �K (x, y) − �K (x, xi ))bi (y) dμ(y)

∥
∥
∥
∥

�2(Z)

=
⎛

⎝
∑

j∈Z

∣
∣
∣
∣

∫

B(xi ,ri )
( �K (x, y) − �K (x, xi ))bi (y) dμ(y)

∣
∣
∣
∣

2
⎞

⎠

1/2

≤
∑

j∈Z

∫

B(xi ,ri )
| �K (x, y) − �K (x, xi )| |bi (y)| dμ(y).

Thus, after an application of Fubini’s theorem, we have

∫

B(xi ,2ri )c

∥
∥
∥
∥

∫

B(xi ,ri )
( �K (x, y) − �K (x, xi ))bi (y) dμ(y)

∥
∥
∥
∥

�2(Z)

dμ(x)

≤
∫

B(xi ,ri )
|bi (y)|

∫

B(xi ,2ri )c

∑

j∈Z

∣
∣K2− j/2(x, y) − K2− j/2(x, xi )

∣
∣ dμ(x) dμ(y)

=
∫

B(xi ,ri )
|bi (y)|

⎛

⎝
∑

j∈Z

∫

B(xi ,2ri )c

∣
∣K2− j/2(x, y) − K2− j/2(x, xi )

∣
∣ dμ(x)

⎞

⎠ dμ(y),

where �K is the kernel defined on page 7. Now we consider the term inside the
parentheses. We will break this argument into cases. First, consider if 2ri ≥ δ. We see
that

∑

j∈Z

∫

B(xi ,2ri )c
|K2− j/2(x, y) − K2− j/2(x, xi )| dμ(x)

≤ C
∑

j∈Z

∫

B(xi ,2ri )c

2nj/2
(
1 + 2 j/2r(x, xi )

)n+1 + 2nj/2
(
1 + 2 j/2r(x, y)

)n+1 dμ(x)

where the inequality follows from Lemma 2.
Now, since xi is the center of B(xi , ri ), if x ∈ B(xi , 2ri )c, then r(x, xi ) ≥ 2ri ≥ δ.

Similarly, since y ∈ B(xi , ri ), it follows that r(y, xi ) < ri and we have 2r(y, xi ) ≤
r(x, xi ). Apply triangle inequality to get

r(x, xi ) ≤ r(x, y) + r(y, xi ) ≤ r(x, y) + ri ≤ r(x, y) + 1

2
r(x, xi ),

which means that r(x, xi ) ≤ 2r(x, y).
Going back to the integral, there exists C1 such that
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∑

j∈Z

∫

B(xi ,2ri )c

2nj/2
(
1 + 2 j/2r(x, y)

)n+1 + 2nj/2
(
1 + 2 j/2r(x, xi )

)n+1 dμ(x)

≤ C1

∑

j∈Z

∫

r(x,xi )≥2r(y,xi )

2nj/2
(
1 + 2 j r(x, xi )

)n+1 dμ(x)

= C1

∑

j≥0

∫

r(x,xi )≥2r(y,xi )

2nj/2
(
1 + 2 j/2r(x, xi )

)n+1 dμ(x)

+ C1

∑

j<0

∫

r(x,xi )≥2r(y,xi )

2nj/2
(
1 + 2 j/2r(x, xi )

)n+1 dμ(x)

:= J1 + J2.

For J1, since r(x, xi ) > δ,

∑

j≥0

∫

r(x,xi )≥2r(y,xi )

2nj/2
(
1 + 2 j/2r(x, xi )

)n+1 dμ(x)

≤
∑

j≥0

∫

r(x,xi )≥2r(y,xi )

2nj/2

(2 j/2r(x, xi ))n+1 dμ(x)

=
∑

j≥0

2− j/2
∫

r(x,xi )≥2r(y,xi )
r(x, xi )

−n−1 dμ(x)

< ∞.

For J2, it is routine to see that

∑

j<0

∫

r(x,xi )≥2r(y,xi )

2nj/2
(
1 + 2 j/2r(x, xi )

)n+1 dμ(x) ≤
∑

j<0

2nj/2μ(M) < ∞.

Nowwe consider the casewhere 2ri < δ. In this case, we see that r(y, xi ) < ri < δ,
and we still have 2r(y, xi ) < r(x, xi ). Thus, the bound

|K2− j/2(x, y) − K2− j/2(x, xi )| ≤ C
2nj/2

(
1 + 2 j/2r(x, xi )

)n+1

still applies. We can also apply Lemma 4 to get

|K2− j/2(x, y) − K2− j/2(x, xi )| ≤ Cδ

r(y, xi )2(n+1) j/2

(
1 + 2 j/2r(x, xi )

)n+1 .
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Taking the geometric mean, for any s ∈ [0, 1], we have

|K2− j/2(x, y) − K2− j/2(x, xi )| ≤ C2
2nj/2(2 j/2r(y, xi ))s

(
1 + 2 j/2r(x, xi )

)n+1

for some constant C2. It now follows that for C3 = max{Cδ,C2}, we have
∑

j∈Z
|K2− j/2 (x, y) − K2− j/2 (x, xi )|

≤
∑

2 j/2< 2
r(x,xi )

|K2− j/2 (x, y) − K2− j/2 (x, xi )| +
∑

2 j/2≥ 2
r(x,xi )

|K2− j/2 (x, y) − K2− j/2 (x, xi )|

≤ Cδ

∑

2 j/2< 2
r(x,xi )

r(y, xi )2
(n+1) j/2

(
1 + 2 j/2r(x, xi )

)n+1 + C2
∑

2 j/2≥ 2
r(x,xi )

2nj/2(2 j/2r(y, xi ))
1/2

(
1 + 2 j/2r(x, xi )

)n+1

≤ C3

⎛

⎜
⎜
⎝r(xi , y)

∑

2 j/2< 2
r(x,xi )

2(n+1) j/2 + r(xi , y)
1/2

∑

2 j/2≥ 2
r(x,xi )

2(n+1/2) j/2

(2 j/2r(x, xi ))n+1

⎞

⎟
⎟
⎠

≤ C4(r(xi , y)r(x, xi )
−n−1 + r(xi , y)

1/2r(x, xi )
−n−1/2).

Integrating over 2r(xi , y) ≤ r(x, xi ) yields a constant independent of ri . It now
follows that

‖Wbi‖L1
�2(Z)

(B(xi ,ri )c)
≤ C5‖bi‖L1(M)

for some constant C5. Using the Calderón-Zygmund decomposition,

I2 ≤
(
CD

α
+ 2C5

α

)

‖ f ‖L1(M).


�
Recall the following result, which is a vector-valued version of Marcinkiewicz

Interpolation:

Lemma 7 ([21], Theorem 1.18) Let A1,A2 be Banach spaces, T : A1 → A2 be
quasilinear on Lp0

A1
(X) and Lp1

A1
(X) with 0 < p0 < p1. If T satisfies

‖T f ‖Lpi ,∞
A2

(X)
≤ Mi‖ f ‖Lpi

A1
(X)

for i = 0, 1, then

‖T f ‖Lp
A2(X)

≤ Np‖ f ‖Lp
A1

(X) ∀p ∈ (p0, p1),

where Np is dependent on p.
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The following corollary is a direct result of interpolation now:

Corollary 8 Suppose that we choose wavelets {ψ j } j∈Z generated by using G ∈ S(R+)

in Eq.5, G satisfies the conditions of Theorem 1, and c1c2 < 2. We have

‖W f ‖q
Lq

�2(Z)
(M)

≤ Cq‖ f ‖qLq (M)

for some constant Cq > 0, where q ∈ (1, 2).

By duality, the result of Corollary 8 actually holds for q ∈ (1,∞). However, for
generalizing the nonwindowed geometric scattering transform, we only need results
for q ∈ (1, 2) since L2(M) ⊂ Lq(M). For q > 2, since our manifold is compact,
we have Lq(M) ⊂ L2(M), so previous results in [31] are applicable, and further
theoretical analysis is not as significant.

Additionally, although the result of Corollary 8 seems restrictive because one needs
c1c2 < 2, the result applies for a variety of different manifolds. If one finds a metric
where the condition above holds, a class of metrics can be found by perturbing the
metric. This is because the choice of the constants c1, c2 in the proof of Lemma 3
depend continuously on the metric g. Thus if c1c2 < 2 for g, the same strict inequality
holds for all metrics that are sufficiently close to g. We provide a simple example
below where the conditions of Lemma 3 hold. The result of the example below can
also be extended to n-torii without much difficulty.

Example 1 Consider M = S
1, the unit circle that is embedded in R

2, along with the
charts:

V1 := {(x1, x2) : x21 + x22 = 1, x1 > 0}, ϕ1 : V1 → R, (x1, x2) �→ x2

V2 := {(x1, x2) : x21 + x22 = 1, x2 > 0}, ϕ2 : V2 → R, (x1, x2) �→ x1

V3 := {(x1, x2) : x21 + x22 = 1, x1 < 0}, ϕ3 : V3 → R, (x1, x2) �→ x2

V4 := {(x1, x2) : x21 + x22 = 1, x2 < 0}, ϕ4 : V4 → R, (x1, x2) �→ x1.

These are clearly diffeomorphisms onto their ranges. Choose

P = {(−π
3 + ω, π

3 − ω), (π
6 + ω, 5π

6 − ω), ( 2π3 + ω, 4π
3 − ω), ( 7π6 + ω, 11π

6 − ω)}
:= {P1, P2, P3, P4}.

Hereω ∈ (0, π
12 ) is a small angle. The covers Pi clearly satisfy the first two conditions

laid out in Lemma 3. Equip S
1 with the standard metric induced by the inclusion

S
1 ↪→ R

2. We can verify the desired estimates in Lemma 3 as follows: It is clear that
any arc of S1 with length less than π

6 is contained in one of P1, . . . , P4. If we choose
δ ∈ (0, π

36 ), then for any x ∈ S
1, B(x, 3δ) ⊂ Pi for some i . Suppose

y = (y1, y2) = (cos θ, sin θ),

z = (z1, z2) = (cos θ̃ , sin θ̃ ),
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θ, θ̃ ∈ (−π
3 + ω, π

3 − ω),

y2, z2 ∈ (sin(−π
3 + ω), sin(π

3 − ω)).

The ϕ1-coordinates of y, z are y2, z2, respectively. Hence,

|y − z| = |y2 − z2| = | sin θ − sin θ̃ |
r(y, z) = |θ − θ̃ |.

By the mean value theorem:

|y − z| = | sin θ − sin θ̃ | = | cos ξ |
ξ∈(−π

3 +ω,
π
3 −ω)

|θ − θ̃ | ≤ |θ − θ̃ | = r(y, z).

and

r(y, z) = |θ − θ̃ |
= | arcsin y2 − arcsin z2|

=
∣
∣
∣
∣
∣

1
√
1 − η2

∣
∣
∣
∣
∣
η∈(sin(−π

3 +ω),sin( π
3 −ω))

|y2 − z2|

≤ 1
√
1 − sin2

(
π
3 − ω

) |y2 − z2|

= 1
√
1 − sin2

(
π
3 − ω

) |y − z|.

This suggests the choice c1 = 1 and c2 = 1√
1−sin2( π

3 −ω)
. We have

c1c2 = 1
√
1 − sin2

(
π
3 − ω

) <
1

√
1 − sin2

(
π
3

) = 2.

The analysis for y, z ∈ P3 is similar, only with the difference that θ, θ̃ ∈ ( 2π3 +
ω, 4π

3 −ω) andwe have y2, z2 ∈ (sin( 4π3 −ω), sin( 2π3 +ω)) = (sin(−π
3 +ω), sin(π

3 −
ω)).

Next, consider y, z ∈ P2. Suppose

y = (y1, y2) = (cos θ, sin θ),

z = (z1, z2) = (cos θ̃ , sin θ̃ ),

θ, θ̃ ∈ (π
6 + ω, 5π

6 − ω),

y1, z1 ∈ (cos( 5π6 − ω), cos(π
6 + ω)).
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The ϕ2-coordinates of y, z are y1, z1, respectively. Hence,

|y − z| = |y1 − z1| = | cos θ − cos θ̃ |
r(y, z) = |θ − θ̃ |.

By the mean value theorem:

|y − z| = | cos θ − cos θ̃ | = | sin ξ |
ξ∈(

π
6 +ω,

5π
6 −ω)

|θ − θ̃ | ≤ |θ − θ̃ | = r(y, z).

and

r(y, z) = |θ − θ̃ |
= | arccos y1 − arccos z1|

=
∣
∣
∣
∣
∣

1
√
1 − η2

∣
∣
∣
∣
∣
η∈(cos( 5π6 −ω),cos( π

6 +ω))

|y1 − z1|

≤ 1
√
1 − cos2(π

6 + ω)
|y1 − z1|

= 1
√
1 − cos2(π

6 + ω)
|y − z|.

This suggests the choice c1 = 1 and c2 = 1√
1−cos2( π

6 +ω)
. We have

c1c2 = 1
√
1 − cos2(π

6 + ω)
<

1
√
1 − cos2

(
π
6

) = 2.

Note that the choice agrees with the case y, z ∈ P1. The analysis for y, z ∈ P4 is
similar as well, which proves the desired claim.

4 Generalizing nonwindowed geometric scattering

Now that we have developed the machinery necessary for the rest of the paper, we
prove the q-nonwindowed scattering transforms are bounded operators with respect
to (19) and outline basic properties of the representation.

4.1 The 2-nonwindowed geometric scattering norm

We start by proving that 2-nonwindowed scattering transforms are bounded operators
with respect to (19).
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Theorem 9 Suppose that G satisfies the conditions of Theorem 1 and {ψ j } j∈Z be a
set of spectral filters generated by using G in Eq.5. Then we have

‖Sm2 f − S
m
2 g‖2�2(Zm )

≤ C2m‖ f − g‖2L2(M)

for all f , g ∈ L2(M).

Proof In the case of m = 1, we see that

∑

j∈Z
|S2 f [ j] − S2g[ j]|2 =

∑

j∈Z
|‖ f ∗ ψ j‖2 − |g ∗ ψ j‖2|2

≤
∑

j∈Z
‖ f ∗ ψ j − g ∗ ψ j‖22

=
∑

j∈Z
‖( f − g) ∗ ψ j‖22

≤ C2‖ f − g‖2L2(M)
.

Now assume that we have

‖Sn2 f − S
n
2g‖2�2(Zn)

≤ C2n‖ f − g‖2L2(M)

for some k ≥ 1. For the m = k + 1 case, we see that

∑

( j1,..., jk+1)∈Zk+1

∣
∣
∣S

k+1
2 f [ j1, . . . , jk+1] − S

k+1
2 g[ j1, . . . , jk+1]

∣
∣
∣
2

=
∑

( j1,..., jk+1)∈Zk+1

∣
∣‖U [ j1, . . . , jk] f ∗ ψ j+1‖2 − ‖U [ j1, . . . , jn]g ∗ ψ j+1‖2

∣
∣2

≤
∑

( j1,..., jk+1)∈Zk+1

‖(U [ j1, . . . , jk] f −U [ j1, . . . , jk]g) ∗ ψ j+1‖22

≤ C2
∑

( j1,..., jk )∈Zk

‖U [ j1, . . . , jk] f −U [ j1, . . . , jk]g‖22

= C2‖Sk2 f − S
k
2g‖2�2(Zk )

Now apply the induction hypothesis to get

C2‖Sk2 f − S
k
2g‖2�2(Zk )

≤ C2(k+1)‖ f − g‖2L2(M)
.

Thus, the claim is proven. 
�
Corollary 10 Suppose that G satisfies the conditions of Theorem 1 and let {ψ j } j∈Z be
a set of wavelets generated by using G in Eq.5. Then we have

‖Sm2 f ‖2
�2(Zm )

=C2m‖ f ‖2L2(M)
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for all f ∈ L2(M) and all m ≥ 1.

For proper invariance, we provide a theorem that demonstrates that the 2-
nonwindowed geometric scattering transform is invariant to isometries.

Theorem 11 Let ξ ∈ Isom(M,M′), and let f ∈ L2(M). Define f ′ = Vξ f and let(
S
m
2

)′
be the corresponding 2-nonwindowed geometric scattering transform on M′

produced by a littlewood paley wavelet satisfying the conditions described in Theorem

1. We have
(
S
m
2

)′
f ′ = S

m
2 f .

Proof We see that S2[∅] f = ‖ f ‖2 = ‖Vξ f ‖2 since Vξ is an isometry. Now suppose
that we consider p = ( j1, . . . , jm). Then since convolution using a spectral filter
commutes with isometries and modulus operators (see Theorem 2.1 in [31]),

S
m
2 [ j1, . . . , jm] f = ‖U [p] f ‖L2(M)

= ‖VξU [p] f ‖L2(M)

= ‖U [p]Vξ f ‖L2(M)

= ‖U [p] f ′‖L2(M)

=
(
S
m
2

)′ [ j1, . . . , jm] f ′.

Thus, we can see that each layer is isometry invariant. 
�

4.2 The q-nonwindowed geometric scattering norm

Now we prove the q-nonwindowed Geometric Scattering Transforms, for q ∈ (1, 2),
are bounded operators with respect to (19) under mild assumptions.

Theorem 12 Suppose that we choose wavelets {ψ j } j∈Z generated by using G ∈
S(R+) in Eq.5, G satisfies the conditions of Theorem 1, and c1c2 < 2. Then

‖Smq f − S
m
q g‖q�2(Zm )

≤ Cm
q ‖ f − g‖qLq (M)

for all f , g ∈ Lq(M), for all m ≥ 1, and some constant Cq dependent on q.

Proof We start by providing a proof for the case of m = 1:

‖Sq f − Sqg‖q�2(Zm )
=

⎛

⎝
∑

j∈Z
|Sq [ j] f − Sq [ j]g|2

⎞

⎠

q/2

=
⎛

⎝
∑

j∈Z
|‖U [ j] f ‖q − ‖U [ j]g‖q |2

⎞

⎠

q/2
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≤
⎛

⎝
∑

j∈Z
‖U [ j] f −U [ j]g‖2q

⎞

⎠

q/2

=
⎛

⎝
∑

j∈Z

(∫

M
|U [ j] f (x) −U [ j]g(x)|q dμ(x)

)2/q
⎞

⎠

q/2

Via Minkowski’s Integral Inequality,

⎛

⎝
∑

j∈Z

(∫

M
|U [ j] f (x) −U [ j]g(x)|q dμ(x)

)2/q
⎞

⎠

q/2

≤
∫

M

⎛

⎝
∑

j∈Z
|U [ j] f (x) −U [ j]g(x)|2

⎞

⎠

q/2

dμ(x)

≤
∫

M

⎛

⎝
∑

j∈Z
|( f ∗ ψ j )(x) − (g ∗ ψ j )(x)|2

⎞

⎠

q/2

dμ(x)

=‖W ( f − g)‖q
Lq

�2(Z)
(M)

.

Now apply Corollary 8 to get

‖W ( f − g)‖q
Lq

�2(Z)
(M)

≤ Cq‖ f − g‖qLq (M)
.

Now assume that for some m ≥ 1, we have

‖Smq f − S
m
q g‖q�2(Zm)

≤ Cm
q ‖ f − g‖qLq (M)

.

Similar to above, when we consider the case with m + 1, we can mimic the steps
above to get

‖Sm+1
q f − S

m+1
q g‖q

�2(Zm )

=
⎛

⎝
∑

jm+1∈Z
· · ·

∑

j1∈Z
|Sm+1

q [ j1, . . . , jm+1] f − S
m+1
q [ j1, . . . , jm+1]g|2

⎞

⎠

q/2

=
⎛

⎝
∑

( j1,..., jm )∈Zm

· · ·
∑

jm+1∈Z

(∫

M
|U [ j1, . . . , jm+1] f (x)

−U [ j1, . . . , jm+1]g(x)|q dμ(x)

⎞

⎠

2/q
⎞

⎟
⎠

q/2
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=
⎛

⎝
∑

( j1,..., jm )∈Zm

⎛

⎝
∑

jm+1∈Z

(∫

M
|U [ j1, . . . , jm+1] f (x)

−U [ j1, . . . , jm+1]g(x)|q dμ(x)

⎞

⎠

2/q
⎞

⎟
⎠

q
2 · 2q

⎞

⎟
⎟
⎠

q/2

≤
⎛

⎝
∑

( j1,..., jm )∈Zm

⎛

⎝
∫

M

⎛

⎝
∑

jm+1∈Z
|U [ j1, . . . , jm+1] f (x)

−U [ j1, . . . , jm+1]g(x)|2
)q/2

dμ(x)

⎞

⎠

2/q
⎞

⎟
⎠

q/2

≤
⎛

⎝
∑

( j1,..., jm )∈Zm

‖W (U [ j1, . . . , jm] f −U [ j1, . . . , jm]g)‖2
Lq

�2(Z)
(M)

⎞

⎠

q/2

= Cq

⎛

⎝
∑

( j1,..., jm )∈Zm

‖U [ j1, . . . , jm] f −U [ j1, . . . , jm]g‖2Lq (M)

⎞

⎠

q/2

.

Now we see that we can apply the induction hypothesis to get

⎛

⎝
∑

( j1,..., jm )∈Zm

‖U [ j1, . . . , jm] f −U [ j1, . . . , jm]g‖2
Lq

�2(Z)
(M)

⎞

⎠

q/2

= ‖Smq [ j1, . . . , jm] f − S
m
q [ j1, . . . , jm]g‖q

�2(Zm )

≤ Cm
q ‖ f − g‖qLq (M)

.


�
Corollary 13 Suppose that we choose wavelets {ψ j } j∈Z generated by using G ∈
S(R+) in Eq.5, G satisfies the conditions of Theorem 1, and c1c2 < 2. Then

‖Smq f ‖q
�2(Zm )

≤ Cm
q ‖ f ‖qLq (M)

for all f ∈ Lq(M), for all m ≥ 1, and some constant Cq dependent on q.

For the next theorem, we omit the proof since it is identical to the case when q = 2,
but we state it for completeness.

Theorem 14 Let ξ ∈ Isom(M,M′), and let f ∈ Lq(M). Define f ′ = Vξ f and let(
S
m
q

)′
be the corresponding q-nonwindowed geometric scattering transform on M′
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produced by wavelets {ψ j } j∈Z using G ∈ S(R+) in Eq.5, G satisfies the conditions

of Theorem 1, and c1c2 < 2 in Lemma 3. We have
(
S
m
q

)′
f ′ = S

m
q f .

5 Diffeomorphism stability

Inmachine learning tasks, it is often necessary for a representation to have some degree
of invariance with respect to the action of a group. For tasks involving manifolds, one
may like to have local isometry invariance. More formally, let Vξ f (x) = f (ξ−1x) for
ξ ∈ Isom(M) and consider a representation � : B1 → B2, where B1,B2 are Banach
Spaces. It would be desirable to have a representation such that

‖� f − �Vξ f ‖B2 ≤ 2−nJ‖ξ‖∞‖ f ‖B1 ,

where J controls the degree of invariance. A simple choice is to use an averaging filter,
but this potentially leads to the loss of information that can be crucial for the task.

For other tasks, such as manifold classification, a fully rigid representation may be
required, and full isometry invariance is desirable. That is to say, we have

‖� f ‖B2 = ‖�Vξ f ‖B2 .

In addition to invariance, it is necessary for a representation to also have stability
properties. Instead of considering an isometry, consider ξ ∈ Diff(M) and think of
Vξ f as a small deformation of f . We want

‖� f − �Vξ f ‖B2 ≤ K (ξ, J )‖ f ‖B1 ,

where K (ξ, J ) → 0 as ‖ξ‖∞ → 0 for fixed J and K (ξ, J ) → 0 as J → ∞ for fixed
ξ ; this is to ensure that small deformations of an input do not lead to large changes in
the representation.

With the above discussion in mind, we provide diffeomorphism stability results for
a generalization of bandlimited functions, λ-bandlimited functions, which are defined
as functions which satisfy f̂ (k) = 〈 f , φk〉 = 0 whenever λk ≥ λ.

Lemma 15 ([31]) Suppose ξ ∈ Diff(M). If f ∈ L2(M) is λ-bandlimited, then

‖ f − Vξ f ‖L2(M) ≤ C(M)λn‖ξ‖∞‖ f ‖L2(M)

for some constant C(M).

Theorem 16 Suppose ξ ∈ Diff(M). Let f ∈ L2(M), and assume that ψ is a wavelet
family satisfying the conditions of Theorem 1. Then

‖Sm2 f − S
m
2 Vξ f ‖�2(Zm ) ≤ C(M)λn‖ξ‖∞‖ f ‖L2(M).

Proof We apply Theorem 9, so Lemma 15 gives the desired result. 
�
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5.1 Stability results for the q-nonwindowed geometric scattering norm

Lemma 17 Suppose ξ ∈ Diff(M) and 1 < q < 2. If f ∈ Lq(M) is λ-bandlimited,
then

‖ f − Vξ f ‖Lq (M) ≤ Cq(M)λn‖ξ‖∞‖ f ‖Lq (M)

for some constant Cq(M).

Proof Since f is λ-bandlimited, f ∈ L2(M) as well, and the proof is nearly identical
to the proof of the case when q = 2, but we provide the steps for completeness. We
define πλ be the operator that projects a function f ∈ L2(M) onto the eigenspace Eλ

and define the projection operator

Pλ :=
∑

λn≤λ

πλn

with kernel

K (λ)(x, y) =
∑

λn≤λ

en(x)en(y).

We have Pλ f = f μ-almost-everywhere. Thus, via Holder’s inequality,

| f (x) − Vξ f (x)| = |Pλ f (x) − Vξ Pλ f (x)|
=

∣
∣
∣
∣

∫

M
K (λ)(x, y) f (y) dy −

∫

M
K (λ)(ξ−1(x), y) f (y) dy

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

M
(K (λ)(x, y) − K (λ)(ξ−1(x), y)) f (y) dy

∣
∣
∣
∣

≤ ‖ f ‖Lq (M)

(∫

M
|K (λ)(x, y) − K (λ)(ξ−1(x), y)|p dy

)1/p

≤ Cq,Vol(M)‖ f ‖Lq (M)‖ξ‖∞‖∇K (λ)‖∞

for some constant Cq,Vol(M) dependent on q and the volume of the manifold. Here, p
is the conjugate exponent of q in the sense that 1

p + 1
q = 1. Now, by Lemma H.1 in

[31], we have

‖∇K (λ)‖∞ ≤ C(M)λn .

for some constant C(M). Thus, the proof is complete. 
�
Theorem 18 Suppose ξ ∈ Diff(M). Let f ∈ Lq(M) be λ-bandlimited. Additionally,
suppose that we choose wavelets {ψ j } j∈Z generated by using G ∈ S(R+) in Eq.5, G
satisfies the conditions of Theorem 1, and c1c2 < 2. Then

‖Smq f − S
m
q Vξ f ‖�2(Zm) ≤ C(M)λn‖ξ‖∞‖ f ‖Lq (M)
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for some constant C(M).

Proof We apply Theorem 12 to get

‖Smq f − S
m
q Vξ f ‖�2(Zm) ≤ Cq‖ f − Vξ f ‖Lq (M).

By Lemma 17, we have

‖ f − Vξ f ‖Lq (M) ≤ C(M)λn‖ξ‖∞‖ f ‖Lq (M),

which gives the desired result. 
�

6 Conclusions and future work

We have provided a framework for understanding nonwindowed scattering coef-
ficients. In particular, we provide a weighted measure for distortion between
nonwindowed scattering coefficients, showed our weighted measure is well-defined
mapping for Lq(M) functions, and showed that nonwindowed scattering coefficients
are stable to diffeomorphisms for λ-bandlimited functions. For future work, it is of
interest to see if it is possible to extend our results to manifolds that are not restricted
the conditions present in Sects. 4 and 5. Additionally, what are other manifolds that
satisfy the conditions present in sections 4 and 5?
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