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1. BioLuminescence Tomography

On a tranquil summer night, the air carries the sweet fra-
grance of blooming flowers, mingled with the soft rustle
of grass in a meadow. The moonlight casts a gentle glow,
illuminating the serene ambiance. Amidst this nocturnal
scene, fireflies are dancing and playing. These tiny, lumi-
nous creatures orchestrate a mesmerizing spectacle, trans-
forming the darkness into an ethereal glow.

This natural light show has captivated the imagination
of poets and writers for its aesthetic beauty in various lit-
erary works. Interestingly, the phenomenon goes beyond
aesthetics. The principle behind fireflies’” illumination has
inspired researchers to harness and manipulate this natu-
ral phenomenon for scientific benefits. The idea has led to
the development of a cutting-edge technology in biomed-
ical imaging known as BioLuminescence Tomography (BLT).

Bioluminescence is the process of light emission in liv-
ing organisms. The phenomenon occurs widely in nature,
with typical examples including fireflies, jellyfish, and cer-
tain types of fungi (Figure 1). These creatures illuminate
as they carry DNA that encodes luminescent proteins, and
these proteins emit visible light when they undergo spe-
cific biochemical reactions. In 2018, the Nobel Prize in
Chemistry was awarded to three researchers: Osamu Shi-
momura, Martin Chalfie, and Roger Tsien for their discov-
ery and development of a glowing jellyfish protein known
as the green fluorescent protein. The green light has since
played crucial roles in biomedical research, enabling sci-
entists to track how cancer tumors form new blood vessels,
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how Alzheimer’s disease kills brain neurons, and how HIV-
infected cells produce new viruses.

(b)
Figure 1. Bioluminescent organisms: (a) Fireflies. (b) Jellyfish.

The term “tomography” is derived from the Greek
words tomos meaning “slice” or “section,” and graphia
meaning “writing” or “drawing.” Tomography is an imag-
ing technique that enables non-destructive visualization
of objects by acquiring cross-sectional images. In a tomo-
graphic imaging process, the object is positioned within an
imaging device that can capture multiple cross-sectional
images of the object from different angles. These im-
ages are processed by computers to reconstruct three-
dimensional representations of the internal structures.

BLT operates on the fundamental idea of utilizing bio-
luminescent sources to trace and visualize biological pro-
cesses at the cellular level. Bioluminescent sources are
typically cells that have been genetically engineered to ex-
press bioluminescent proteins. In a BLT experiment, re-
searchers inject bioluminescent sources into biological tis-
sue. Following the injection, the tissue is placed in a dark
environment to minimize external light interference. Op-
tical detectors or cameras are positioned around to capture
the bioluminescent light emitted from within. When the
sources are excited, they undergo biochemical reactions
and illuminate. The light illumination is recorded by the
optical detectors and utilized for computing the spatial
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Figure 2. The electromagnetic spectrum.

distribution of the bioluminescence source. The distribu-
tion serves as effective biomarkers for biological processes
of interest. BLT shows significant potential in the con-
text of cancer diagnostics: By introducing bioluminescent
sources specific to cancer cells, this technology enables dy-
namic imaging to monitor the progression of malignant
cells.

This introductory essay endeavors to guide readers
through some fascinating mathematics within BLT. The fo-
cus lies on formulating the problems and outlining key
ideas for their solution without delving into technical de-
tails. The exploration encompasses modeling light prop-
agation in biological tissue using an integrodifferential
equation in Section 2, analyzing the well-posedness of the
forward modeling in Section 3, investigating inverse prob-
lems arising in the imaging process of BLT in Section 4, as
well as discussing several related contemporary research ar-
eas in Section 5.

2. Light Propagation in Biological Tissue

The illumination utilized in BLT generally falls within the
visible light spectrum. Visible light is a narrow band of
the entire electromagnetic (EM) spectrum. EM radiation
is a form of energy that travels through space in the form
of waves. Examples include radio wave, microwave, visi-
ble light, X-ray, and gamma ray (Fig. 2). The elementary
particles of EM radiation are photons. Each photon carries
energy that is inversely proportional to the wavelength of
the EM radiation, with shorter wavelengths corresponding
to higher photon energy (Fig. 2). Photons interact with
biological tissue primarily through two processes: absorp-
tion and scattering (Fig. 3).

Absorption is the process in which photons are ab-
sorbed by atoms, molecules, or particles in a medium. The
absorbed photons elevate electrons in the absorber from
ground states to excited states. In the meanwhile, loss of
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photons causes graduatal reduction of the intensity of EM
radiation as it propagates in the medium. A medium’s abil-
ity to absorb photons is quantitatively characterized by its
absorption coefficient a, which is defined as the probability
of photon absorption per unit path length. The representa-
tive value of a in biological tissue is 0.1 cm~! [WW12]. The
reciprocal a~! is known as the absorption mean free path.

Scattering is the process in which photons change the
direction of propagation after interacting with small par-
ticles in a medium. The amount of scattering depends on
wavelength of the EM radiation as well as size and structure
of the medium. Scattering redirects photons, causing a dif-
fused spread of EM radiation. A medium’s ability to scatter
photons is quantitatively characterized by its scattering co-
efficient o, which is defined as the probability of photon
scattering per unit path pength. The representative value
of o in biological tissue is 100 cm™=! [WW12]. The recipro-
cal o~! is known as the scattering mean free path.

Light Source

Figure 3. Light absorption and scattering.

W
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2.1. Radiative Transfer Equation. We henceforth denote
biological tissue by a bounded open convex subset QO C R”
with smooth boundary dQ. The dimensions of practical
significance are n = 2 (2D) and n = 3 (3D), but the
mathematical framework works equally well in other di-
mensions.

The fundamental quantity for light propagation is radi-
ance, defined as the photon energy per unit normal area
per unit solid angle. It is a measure of the photon in-
tensity at a point in a particular direction. The distribu-
tion of radiance is generally dynamic as photons propa-
gate. However, the processes of interest in BLT typically
evolve on timescales much longer than the rapid propaga-
tion of light. It is thus valid to simply consider a stationary
distribution of radiance. We denote the radiance at x € Q
in the direction 8 € S"! by u(x, 8), where S"! is the
(n — 1)-dimensional unit sphere. As a result, the rate of
change of the radiance in the 8-direction is naturally mod-
eled by the directional derivative 8 - Vu where V = V, is
the spatial gradient.

The variation in radiance at x in a particular direction 6
primarily results from three factors: 1. loss of photons by
absorption and scattering; 2. gain of photons by scatter-
ing; and 3. gain of photons by bioluminescent emission.
These effects are modeled as follows: 1. Loss of photons
by absorption and scattering is proportional to the pho-
ton density, with the proportional factors a(x) and o(x),
respectively. If we write a := o + o, then the total loss is
—a(x)u(x, 6). 2. Gain of photons by scattering is propor-
tional to the photon density that is scattered to the direc-
tion 6 from other directions. Let k(x,6,6") be the prob-
ability of photons in the &’-direction being scattered to
the 6-direction, then the gain of photons due to scatter-
ing is g(x) fgn-1 k(x, 6,0 )u(x,6") d0’ where d¢’ is the (nor-
malized) spherical measure on $*~!. 3. Gain of photons
by bioluminescent emission is due to the presence of the
bioluminescent source f(x). All these factors combined
lead to the following Radiative Transfer Equation (RTE) on
Q x S"~! that dictates light propagation in biological tis-
sue:

6 - Vu(x, 0) + a(x)u(x, 6)

— a(x)/ k(x,6,0u(x,0")do" = f(x). (1)
Sn—l
Here k(x, 6, 6") is known as the scattering kernel. As a prob-
ability density function, it is non-negative and satisfies
Jsn-1k(x,6,6')d0" = [ou1 k(x,6,0')d6 = 1. We will re-
fer to a, 0, k as optical parameters. These parameters along
with the bioluminescent source f are allowed to be spa-
tially varying (that is, x-dependent) in the model to cap-
ture inhomogeneity of the medium. In applications, the
following spatially-invariant Henyey-Greenstein scattering
kernel has proven to be useful in approximating the an-
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gular scattering dependence of single scattering events in
biological tissue:

o2
prevvmr B
kHG’(x’ 67 e/) = 1 1_g2 i
— in 3D,

- 3
AT [14g2-2g(6-6")]2

where the constant g € (—1,1) is a measure of anisotropy,
with g = 0 corresponding to isotropic scattering.

2.2. Boundary condition. In BLI, the bioluminescent
sources are cells that have been genetically engineered to
express bioluminescent proteins. No external light source
is imposed to prevent contamination of the internal light
source. As a result, there is no radiance flowing into the
tissue from the boundary. Note that the RTE holds on
Q x S"~1 whose boundary dQ x S"~! is the union of two
subsets T, := {(x,0) € dQ x S*1 : +v(x) -6 > 0} with
v the unit outer normal vector field on Q. The subset T,
consists of the outward-pointing directions on the bound-
ary, while I'_ consists of the inward-pointing directions on
the boundary. We refer to I, and I'_ as the outgoing bound-
ary and incoming boundary, respectively. The fact that no
radiance flows into the tissue translates to the boundary
condition

ulp. =0. (2)

3. The Forward Problem and Structure of
Solutions

The RTE provides a mathematical framework for under-
standing light propagation in biological tissue. In partic-
ular, if all the optical parameters «, o, k as well as the bio-
luminescent source f are specified, the distribution of the
radiance is characterized by the solution of the boundary
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(a) (b)
Figure 4. A numerical solution to the boundary value
problem (1) (2) on the 2D unit square Q = [-1,1] x [-1,1].
Here, a(x;, x,) :== 3 — 2xy, 0(xy,x3) = 1, and the 2D
Henyey-Greenstein scattering kernel kg g with g = 0.5. (a)
~1006~3 =100 +3)? (b)
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1

bioluminescent source f(x;,x;) =e
Angularly averaged RTE solution [, u(x;,x,,0)d0. The
angular averaging is applied for the ease of illustration, as the
graph of the RTE solution u(xy, x,,6) is 4D and cannot be
represented by a colored image.
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value problem (1) (2). In this section, we derive this solu-
tion and investigate its structure.
Introduce

T u(x,0) := (6 -V + a(x)u(x, 6),

Ku(x,0) = cr(x)f k(x,0,0"u(x,68')de".
sh-1

Here K is an integral operator, and T, is a first-order linear
differential operator equipped with the domain D(T,) :=
{ue 2(QxS" 1) : 6-Vu € I2(QxS" 1), u|p_ = 0}. Using
these notations, the boundary value problem (1) (2) can
be written in the operator form:

(I, -Ku=f, u € D(T,). (3)

Therefore, solving for the RTE solution u amounts to in-
verting the operator T, — K on D(T).

3.1. Non-scattering media. When photon scattering in a
medium is relatively weak, we can neglect the scattering
effect by taking ¢ = 0 and simply concentrate on pho-
ton absorption. Such a medium is referred to as non-
scattering. Negligible scattering usually occurs when the
radiation wavelength is sufficiently short, or equivalently,
when the photon energy is sufficiently high. This is not
the case in BLT though: visible light photons in BLT do
not carry enough energy and typically exhibit strong scat-
tering in biological tissue. As such, biological tissue can-
not be regarded as a non-scattering medium for visible
light. However, there are still good reasons to begin with
the non-scattering assumption. On the one hand, it pro-
vides an important intermediate step toward understand-
ing the full structure of RTE solutions. On the other hand,
there do exist modalities that make use of EM radiation
with sufficiently short wavelengths for medical imaging in
biological tissue (and they are probably better known to
the public than BLT), such as Computed Tomography and
Single Photon Emission Computed Tomography. Under-
standing non-scattering scenarios will provide insight into
the mathematical mechanisms of these imaging modali-
ties.

In a non-scattering medium, we have 0 = O hence K = 0.
The operator form (3) simplifies to T,u = f. This is a first-
order linear partial differential equation. The solution sub-
ject to u|p_ = 0 can be found using the method of charac-
teristics:

0
T f(x,6) = / el ale+sO)ds £(x 4 16) di
—7_(x,0) 4)

(x,0) € Qx S"1

where 7,.(x,0) > 0 is defined so that (x,x £ 7.(x,0)0) €
[.. This representation indicates that the radiance at
x in the O-direction is attributed to the photons travel-
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ing in the straight line segment ¢, 4 := {(x + t6,6)
t € [-7_(x, 0),7,.(x,0)]} with the exponential attenuation

/51 ab+50)ds oo Fig. 5.

z—71_(z,0)0 Q

Figure 5. Definition of 7..(x, 6). The dotted line represents
photon trajectories that contribute to the radiance at x in the
O-direction in the absence of scattering.

3.2. Scattering medium. The calculation above shows
that T}, is invertible on the domain D(T,) and T, f is given
by (4). Therefore, in a scattering medium where o # 0, the
operator form (3) is equivalent to the integral equation

I-T/'Ku=T;'f, u € D(T). (5)

where I is the identity operator. This integral representa-
tion turns out to be informative in the analysis of RTE so-
lutions. In particular, it suggests that we may view T; 'K as
a perturbation to the identity operator. For instance, sup-
pose the absorption and scattering coefficients are suitable
so that T; 'K is a contraction (that is, || T; 'K]| < 1 with re-
spect to a suitable norm || - ||), then I — T; 'K is invertible
with a bounded inverse, and the solution is represented by
the following Neumann series:

u=(1- T K7 I

_ AP _ (6)
=+ T;/'K+ T;'KT; 'K + - )T Lf.

This representation immediately implies that the integral
equation (5) admits a unique solution, and the solution
depends continuously on the source f. The assumptions
to make T; 'K a contraction usually involve conditions
on the relative order of magnitude of & and o, known as
the sub-critical conditions [Ago98, CS99]. This series solu-
tion reveals that the radiance at x in the 6-direction comes
from infinite terms. Let us look at them one by one. The
first term, T; ! f(x, 6), as we have discussed in the previous
subsection, represents the photons that travel in a straight
line and arrive at x in the 6-direction without undergoing
scattering interactions. From the second term onward, the
scattering operator K appears, indicating the involvement
of scattering. The second term T; 'K T; ! f(x, 6) represents
the particles that are bounced to x in the 8-direction after
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undergoing a single scattering interaction. Likewise, the
general term (T;'K)"T;!f(x,0) represents the photons
that are bounced to x in the 6-direction after undergoing
n scattering interactions. Consequently, the total radiance
at x in the 6-direction is the sum of photons arriving from
various locations along different paths (Fig. 6).

single
scattering /"

/ \ multiple
/ " scattering
photon \

transport

Figure 6. Selected photon trajectories in the presence of
scattering. The black/blue/red dotted lines represent photon
trajectories that experience no/single/multiple scattering
before contributing to the radiance at x in the 6-direction.

4. The Inverse Problem and Integral Transforms

Given the optical parameters «, g, k as well as the biolumi-
nescent source f, the analysis in Section 3 shows that the
distribution of radiance is determined by the Neumann
series representation (6). However, the bioluminescent
source f is not known in BLT. Instead, it is this source that
serves as biomarkers of biological processes and must be
computed for the imaging purpose. What one can mea-
sure in BLT is the radiance that flows out of the tissue
and captured by optical cameras. If we consider the ideal-
ized scenario where optical cameras are placed everywhere
around the tissue and denote by R, u := u|r, therestriction
operator onto the outgoing boundary (in the trace sense),
then the BLT data, in view of (6), is

xa,crf = ull"+ = R+(I - Ta_lK)_lTa_1f~ (7)

The operator X, ; maps the unknown source linearly to
the data and is referred to as the source-to-data map. As a
result, the imaging problem in BLT can be mathematically
formulated as inverting the source-to-data map. This type
of problem, where the goal is to recover the cause (i.e., the
bioluminescent source) from an observed effect (i.e., the
outgoing radiance), is common in science and engineering.
Such problems are known as inverse problems, in contrast to
“forward problems” where the cause is given and the task
is to simulate or predict observations. For example, solv-
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ing the RTE boundary value problem with specified opti-
cal coefficients and bioluminescent sources, as discussed
in Section 3, is a forward problem. This section focuses
on the inverse problem in BLT. Along the journey of in-
vestigation, we will make brief detours to explore mathe-
matical models for a few other notable medical imaging
methods. These models, which can be viewed as simpli-
fied versions of the BLT model, hold both practical signif-
icance and mathematical interest on their own. Through-
out this section, we assume the optical parameters «, 0, k
are known, and the objective is to invert the source-to-data
map X k.

4.1. Non-scattering media.

Non-absorbing non-scattering media. Let us begin with the
idealized scenario where neither absorption nor scattering
occurs, that is « = 0 = 0. Then K = 0 and the source-to-
data map (7) reduces to:

Xoof(x,6) =R, Ty ' f(x,6)

0
=/ f(x+1t9)dt, (x,0)eTl,.
—7_(x,0)

Here (x,6) € T, can be identified with the line segment
£y so that I’y provides a parameterization of all the line
segments inside , see Fig. 7. If we extend f to be a func-
tion in R” that vanishes outside Q and denote this exten-
sion again by f, the source-to-data map X defines an
integral transform that maps the function f to its line in-
tegrals, known as the X-ray transform. The inverse problem
in BLT in a non-absorbing, non-scattering medium reduces
to inverting the X-ray transform.

@ (z,0) e

z —71_(z,60)0 Q

Figure 7. The line of integration in the definition of X'y o. Note
that (x,6) € I,,.

The term “X-ray transform” might seem strange in the
context of BLT, where no X-rays are involved. Indeed, this
name originates from another medical imaging modality
Computed Tomography, or simply CT. CT images biological
tissue utilizing X-rays, a type of EM radiation with wave-
length in the range of 0.01 — 10 nanometers. (Fig. 2).
Such wavelengths are significantly shorter compared to
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visible light, allowing X-ray photons to carry considerably
higher energy than light photons—so high that they ex-
perience negligible scattering in biological tissue (account-
ing for the assumption ¢ = 0) and travel along straight
trajectories. In a CT scan, X-ray beams are directed from
various angles through the body, and the transmitted X-
ray intensities are measured by detectors. The CT data is
the difference between the outgoing X-ray intensities and
the incoming X-ray intensities, known as the sinogram, see
Fig. 8(b) for an example. Given that the drop in X-ray in-
tensities is solely attributed to absorption, the sinogram
consists precisely of line integrals of the absorption coef-
ficient « along various straight trajectories, which is X o
using our notation. The imaging problem at the core of
CT is the inverse problem of inverting the X-ray transform
to recover the spatial distribution of a. This inverse prob-
lem was first studied in 2D by the Austrian mathematician
Johann Radon (1887-1956). For this reason, the X-ray
transform in 2D is also known as the Radon transform.!
Radon’s investigation of the inverse problem was earlier
than the invention of CT scanners and was mostly driven
by mathematical considerations. Nevertheless, his math-
ematics turns out to play a crucial role in the theory of
CT imaging. Interested readers are referred to the mono-
graphs [Eps08, Nat01] for in-depth discussion of the math-
ematics behind CT. The invention of CT has revolution-
ized medical diagnostics by providing detailed 3D images
of internal structures, greatly improving the accuracy of di-
agnosis and treatment planning. Its societal benefits were
recognized with the 1901 Nobel Prize in Physics awarded
to the German physicist Wilhelm Rontgen for his discovery
of X-rays, as well as the 1972 Nobel Prize in Physiology or
Medicine that was awarded to the South African-American
physicist Allen Cormack and the British engineer Sir God-
frey Hounsfield for their contribution to the development
of CT scanners.

We sketch the idea to invert the X-ray transform. First, it
is easy to show using the Cauchy-Schwarz inequality that
Xoo : I*(R") — I*(Z,do) is a bounded linear operator.
Here T := {(z,0) : 8 € S" 1,z € 6} is a parameteriza-
tion of lines and 6* is the hyperplane orthogonal to 6, the
measure do = dS(z)d6 where dS(z) is the usual Lebesgue
measure on 8+ and d@ is the spherical measure on S$"1.
As such, the X-ray transform has an adjoint X  defined as

25,0h(x) = / h(x — (x - 6)8,6)d6

sh-1

= f h(€x5)d6 h = h(z,0) € IA(Z,do).
sn-1

YThe definitions of these two transforms diverge in 3D or higher dimensions,
where the X-ray transform refers to integration over lines while the Radon trans-
form refers to integration over hyperplanes.
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In words, & is a function that assigns values to each line
¢y, and X oh(x) is the average of h over all the lines that
pass through x. For this reason, Xg, is named the back-
projection.

Now that we have two operators: X, integrates over
lines and X, averages over lines, it seems a natural at-
tempt to simply back-project the line integrals to hopefully
recover something about the function. Direct calculation
shows x;;,fx\o,of(g) = 277|S"2||€| 71 f(€) in the Fourier do-
main where * denotes the Fourier transform and |S"~2|
is the surface area of S"~2. This relation suggests that f
can be recovered if an extra Fourier multiplier is included
to eliminate |£|7!, leading to the following inversion for-
mula:

1 %
f= mxo,o‘\/ =8, Xo,0f,

where 4/ —A, is the square root of the negative Laplacian
in z. In 2D, one can further apply the relation y/—A, =
H Zdi where H, is the Hilbert transform with respect to the

zZ
z variable to obtain
1 .. d
f= Exo,onExo,of-

This is the inversion formula obtained by Radon. From the
perspective of signal processing, the operator HZ% con-
tributes |€| in the Fourier domain and plays the role of a
filter, thus the inversion formula filters the Radon trans-

form before applying the back-projection. For this reason,
the inversion is known as the filtered back-projection.

This filtering process includes the differentiation %
which amplifies high-frequency content of the data. Such
a filter generally makes functions more singular and sharp-
ens blurred edges in images, see Fig. 8(c)(d). However,
this feature raises significant issues when the data con-
tains noise. Noise, which is of high frequency and non-
differentiable, tends to be amplified during the inversion.
As a result, even a small amount of noise in the data can
lead to substantial deviations from the true source. In
other words, the problem of inverting the Radon transform
is ill-posed, meaning that the solution f is not continuously
dependent on the data X, o f. This issue essentially stems
from the fact that the inverse Radon transform X is an
unbounded operator.

Absorbing non-scattering media. This case corresponds to
o = 0 hence K = 0. The source-to-data map in view of (7)
becomes

Xq,0f(x,6) = R, TG
0
= / o/Siabe+sO)ds (x4 16) dt.
—7_(x,6)

(x,0) eI,

This gives rise to another integral transform X, o that maps
a function to its exponentially-attenuated line integrals,
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Figure 8. Numerical inversion of the X-ray transform X o: (a)
Bioluminescent source f. (b) Sinogram X o f. (c)
Back-projection X oXo,0f. (d) Filtered back-projection
inversion.

known as the attenuated X-ray transform. The BLT inverse
problem in an absorbing, non-scattering medium thus re-
quires inversion of the attenuated X-ray transform.

This inverse problem, although motivated by the dis-
cussion of BLT here, rises earlier in another medical imag-
ing modality Single Photon Emission Computed Tomography
(SPECT). In SPECT, small doses of radioactive tracers that
are able to emit single photons (e.g., Xenon-133) are in-
jected into patients. The choice of the tracers depends on
the specific organ or function being studied. These trac-
ers accumulate in target tissues and emit gamma rays as
they undergo radioactive decay. The detectors are rotated
around the tissue to record the outgoing gamma rays. This
data is then processed to create cross-sectional images of
the distribution of the tracers. The spatial distribution of
the gamma-ray radiance in SPECT can be effectively mod-
eled by the same RTE (1) and the boundary condition (2),
where the internal source f denotes the distribution of
the radioactive tracers. As gamma rays carry even higher
energy than X-rays (Fig. 2), the scattering effect again be-
comes negligible. Consequently, the inverse problem in
SPECT is the same as that in BLT but with o = 0. When im-
plementing SPECT scans, CT scans are usually performed
beforehand to obtain the attenuation coefficient a. It re-
mains to invert the attenuated X-ray transform to image

f.
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Inversion of the attenuated X-ray transform presents

greater challenges compared to its counterpart for the clas-
sical X-ray transform. In particular, the inversion formula
must account for the exponential decay of X-ray intensity.
Various inversion formulae have been derived in the litera-
ture by building insightful connections with other mathe-
matical theories. Notably, [ABK97] reduces the inversion
process in 2D to the boundary value problem for an ellip-
tic equation with operator coefficients, developing the the-
ory of A-analytic functions; [Nov02] adapts spectral analy-
sis for eigenvalue equations [FS05] and connects the inver-
sion with the inverse scattering theory for the RTE. As for
the X-ray transform, the inversion of the attenuated X-ray
transform is ill-pose in the sense that the inverse operator
X exists but is unbounded.
4.2. Scattering media. We are ready to invert the full
source-to-data map X, in a general scattering medium
where o # 0. The idea is to treat X, , as a perturbation of
the attenuated X-ray transform X, . Specifically, resolvent
identities show that [SU08]

Xao = RyTyV 4+ RUTIIKT NI - TK) L (8)

The first term R, T; ! = X is just the attenuated X-ray
transform, which is known to be invertible. Therefore, ap-
plying X5 yields
XibXaof =1+ XgoR Ta ' KT ' — To'K)-1 £
=S

We now view the operator S as a perturbation to the iden-
tity. If the operator I + S is invertible by Neumann series
(which holds, for example, if ¢ is sufficiently small so that
S becomes a contraction [BT07]), we obtain

f = Z(_l)jija_,(l)xa,af-
j=0

This is an explicit inversion formula that recovers the bio-
luminescent source f from the BLT data X, . f. It is worth
noting that the Neumann series is not the sole method for
inversion. For example, [SU08] demonstrates that S is a
compact operator for an open and dense subset of (a, k),
leading to a Fredholm-type inversion. Moreover, convexifi-
cation approaches [SKN19] and Fourier methods [FST20]
have also been developed in addition to the perturbation
arguments.

While the inversion holds mathematical validity, the
illposedness remains due to the application of the un-
bounded operator X to the BLT data. This is an inher-
ent issue of the inverse problem. Indeed, the decomposi-
tion (8) indicates that the BLT data is dominated by the
attenuated X-ray transform if o is sufficiently small. This
integral transform is known to have a smoothing effect in
the sense that X o f has higher Sobolev regularity than
f. From the pespective of imaging sciences, a smoothing
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process usually averages pixel values (for example, X, o av-
erages pixel values along lines) and blurs image features
such as edges and corners. The resulting smoother data
cannot adequately capture abrupt variations and fine-scale
details, leading to a loss of information. From the pespec-
tive of Fourier analysis, abrupt variations and fine-scale de-
tails are contained in the high frequencies, yet a smooth-
ing process tends to damp the high-frequency content of
a function. As a result, any inversion strategy must am-
plify the high frequency content in order to recover a less
smooth function. In the filtered back-projection, such am-
plification is implemented with the help of the Hilbert
transform and differentiation. A clear limitation, as has
been discerned from our examination of the filtered back-
projection, is that the amplification inevitably intensifies
noises of high frequency, making the reconstruction less
stable and reliable.

Ill-posedness is ubiquitous in inverse problems, and
various methods have been developed to mitigate it. A
generic class of techniques is regularization. Regularization
stabilizes solutions of ill-posed problems by incorporating
prior knowledge about the solution into the mathemat-
ical formulation. The integration of prior knowledge is
achieved by adding a penalty term to discourage unlikely
or unrealistic solutions. Typical penalty terms include con-
straints on the solution, assumptions about its smooth-
ness, or expectations regarding characteristics of the solu-
tion. This additional penalty contributes to a more well-
posed problem, reducing sensitivity to noise and guiding
the inversion process towards more stable solutions. The
idea of regularization has also found broad applications
in machine learning for model complexity reduction and
overfitting prevention.

5. Related Topics

The preceding sections provide an overview of both the
forward and inverse problems in BLT, with a concise pre-
sentation summarizing the main ideas and results. How-
ever, there are crucial topics that are not covered in the out-
line. In this section, we delve into three topics concerning
simplification and generalization of the BLT model. These
topics remain vibrant research areas and give rise to even
more intriguing mathematical questions.

5.1. Diffusion approximation. The RTE provides an ac-
curate modeling of light propagation when the transport
mean free path of photons is at the same order as the char-
acteristic length of the medium. Nevertheless, the mean
free path of photons in biological tissue is typically much
shorter than the characteristic length. Light propagation
in biological tissue is thus predominantly governed by dif-
fusion, allowing for an effective approximation of the RTE
using a diffusion equation

—V-DV® + ad = f(x)
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subject to a homogeneous Robin boundary condi-
tion [KSO5]. Here ®(x) == fqn_1 u(x, 0) dO is the angularly-
averaged radiance, D is the diffusion coefficient, and o is
the absorption coefficient. The diffusion approximation is
derived using the ansatz that the radiance is linear in the
angular variable 8. The underlying rationale is that when
the scattering is strong, the radiance is expect to have a rel-
atively smooth isotropic distribution hence it suffices to
retain only the first angular moment. Higher-order angu-
lar moments are neglected as they represent more-detailed,
fine-grained angular variations. The BLT inverse problem
using the diffusion approximation requires identification
of the bioluminescent source f from the effective bound-
ary data ®|5q.

The diffusion approximation offers remarkable advan-
tages in terms of computational efficiency and simplicity.
For instance, the 3D RTE depends on three spatial vari-
ables and two angular variables, making numerical com-
putation prohibitively expensive due to its high dimen-
sionality. In contrast, the 3D diffusion approximation is
a standard second-order elliptic equation for which vari-
ous fast numerical solvers are readily available. However,
the diffusion approximation also suffers a clear weakness:
the BLT inverse problem becomes under-determined as the
unknown source f is a higher-dimensional object than
the boundary data. For example, if y is a smooth func-
tion compactly supported inside Q, the two biolumines-
cent sources f and (—V - DV + )y + f generate two diffu-
sion solutions ® and ® + y respectively, yet the resulting
BLT data is identical since y|sq = 0,¥|sq = 0. This lack
of identifiability represents another form of ill-posedness
that is quite common for inverse problems. The approach
to address this challenge involves either incorporating ad-
ditional data that offers complementary insights (see Sec-
tion 5.2), or confining the source to a more restrictive class
based on prior knowledge.

5.2. Ultrasound modulated BLT. In BLI, photons emit-
ted from a bioluminescent source undergo significant scat-
tering in biological tissue, which blurs directional infor-
mation and makes it challenging to accurately locate the
source. Consequently, conventional BLT often suffers
from limited spatial resolution. An emerging approach to
overcome this limitation, known as Ultrasound Modulated
BIT (UMBLT), integrates BLT with ultrasound modulation.
In UMBLT, ultrasound waves are used to manipulate the
optical properties of the medium. The frequencies in use
are approximately 1-5 MHz, which provide a good com-
promise between axial resolution and penetration depth.
The interaction of ultrasound with biological tissue alters
the paths of the photons, leading to more controlled redi-
rection and increased spatial resolution.

Asymptotic analysis [BS14, BCS16] shows that UMBLT
by plane waves allows for the calculation of the following
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function inside Q:

H(x):= f v(x,6)8 - Vu(x,6)db x € Q,
sn—1

where v denotes a solution of the adjoint RTE. Ideally,
one may think of ultrasound modulation as a probing
method that enables “internal measurement” H inside
the tissue, and the inverse problem in UMBLT seeks to
invert the source-to-internal-data map f +~ H. This
map is a continuous linear operator with a bounded in-
verse [BCS16,CYY21]. Therefore, the inverse problem with
internal data becomes well-posed, in contrast to the ill-
posed inverse problem in the conventional BLT. The well-
posedness implies that a small amount of noise causes
only a minor deviation from the true solution, enabling
UMBIT to provide more precise identification of the bio-
luminescent source with superior spatial resolution.

5.3. Riemannian RTE. Biological tissues often have com-
plex structures that cannot be effectively modeled by Eu-
clidean geometry. For instance, the scattering and absorp-
tion coefficients in structured tissue may not only vary spa-
tially but also depend on direction. In such cases, Rie-
mannian geometry allows for the incorporation of direc-
tional information, providing a more comprehensive rep-
resentation of the optical properties of tissues. The BLT for-
mulation on an n-dimensional (n > 2) compact smooth
Riemannian manifold with boundary (M, g) is given by
the integro-differential equation on the unit sphere bun-
dle SM:

Gu(x, 0) + a(x)u(x, 6)

—o(x) k(x, 6,0 u(x,6")do,(6") = f(x) on SM
SxM

subject to the the boundary condition (2). Here, G is the
geodesic vector field restricted to SM, SyM is the fiber of
SM over x, and do, is the volume form on S, M induced
by the metric g(x). In the Euclidean geometry, the geodesic
vector field reduces to Glsp; = & - V with |§] = 1, agreeing
with the RTE in (1). The solution is known to exist un-
der sub-critical conditions [McD04,AY15], and the inverse
problem seeks to recover the unknown source f from the
outgoing radiation flux u|r, .

As in the Euclidean case, the crucial step for solving the
inverse problem is to understand the non-scattering sce-
nario k = 0, then the general scenario can be handled
using a similar perturbation argument as in Section 4.2.
When k = 0, the BLT data is

0
XM f(x,0) = f

—7_(x,6)

e/ axe s £y (1)) d

for (x,0) € I, where y, ¢ is the maximal geodesic with
the initial conditions y,¢(0) = x and y,4(0) = 6. This
is another integral transform where the integration is over
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all geodesics with exponentially-weighted attenuation. It
is the Riemannian counterpart of the attenuated Radon
transform, known as the attenuated geodesic X-ray transform.
When a =0, JCC% is simply the geodesic X-ray transform.
The invertibility of .')sz‘ff0 is complicted by the geometry
of the manifold. For example, if the manifold contains
maximal geodesics that cannot reach the boundary in a fi-
nite time, JC% clearly does not see the integration of f over
such geodesics. A manifold is said to be non-trapping if no
such geodesics exists. The study of DC% is better suited for
a non-trapping manifold that has a strictly convex bound-
ary (in the sense that the second fundamental form on M
is strictly positive), as Iy gives a convenient parameteriza-
tion of all the maximal geodesics in this case. The geodesic
X-ray transform and attenuated geodesic X-ray transforms
for functions, or more broadly for symmetric tensor fields,
remain vibrant research topics in integral geometry, geo-
metric inverse problems and imaging sciences [Sha94].

6. Conclusion

The inverse problem in BLT encompasses numerous fasci-
nating mathematical questions related to differential equa-
tions, integral geometry, and Fourier analysis, with vibrant
research continually unfolding in this area. This essay pro-
vides only a glimpse into the extensive landscape of in-
verse problems within BLT. The perspective presented here
is just one of many approaches to address these challenges,
and the references provided are by no means exhaustive.
The primary goal of this essay is to offer an introduction to
this fascinating field and to outline some interesting math-
ematics in imaging sciences, with the hope of sparking the
interest of junior researchers and inspiring their future con-
tributions.
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