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THE DIFFUSIVE ULTRASOUND MODULATED
BIOLUMINESCENCE TOMOGRAPHY WITH PARTIAL DATA AND
UNCERTAIN OPTICAL PARAMETERS*

TIANYU YANGT AND YANG YANGH

Abstract. The paper studies an imaging problem in the diffusive ultrasound-modulated biolu-
minescence tomography with partial boundary measurement in an anisotropic medium. Assuming
plane-wave modulation, we transform the imaging problem to an inverse problem with internal
data, and derive a reconstruction procedure to recover the bioluminescent source. Subsequently,
an uncertainty quantification estimate is established to assess the robustness of the reconstruction.
To facilitate practical implementation, we discretize the diffusive model using the staggered grid
scheme, resulting in a discrete formulation of the UMBLT inverse problem. A discrete reconstruc-
tion procedure is then presented along with a discrete uncertainty quantification estimate. Finally,
the reconstruction procedure is quantitatively validated through numerical examples to demonstrate
the efficacy and reliability of the proposed approach and estimates.

Key words. Ultrasound Modulated Bioluminescence Tomography, Uncertainty Quantification,
Partial Data

MSC codes. 35R30

1. Introduction and Problem Formulation. Bioluminescence refers to pro-
duction and emission of native light inside living organisms such as fireflies. Based on
this phenomenon, Bio-Luminescence Tomography (BLT) is developed as a technology
that utilizes bioluminescence sources as bio-medical indicators to image biological tis-
sue. Specifically, biological entities or process components (e.g. bacteria, tumor cells,
immune cells, or genes) are tagged in BLT with reporter genes that encode one of a
number of light-generating enzymes (luciferases) [18]. By measuring the light gener-
ated by the luciferin-luciferase reaction, BLT aims to image the spatial distribution
of the internal bioluminescence sources.

The Inverse Problem in Diffusive BLT. Let 2 represent the strongly scat-
tering biological tissue. We will assume €2 is a bounded connected open subset of
R™ with smooth boundar 0f2. The light propagates in a strongly-scattering medium
as a diffuse wave [4]. The spatial photon density ¢ = ¢(z) of the wave is modeled
by the following time-independent diffusion equation with the Robin-type boundary
condition [10]:

(1.1) =V - D(x)V¢(z) + o4(x)p(x) = S(x) in Q.
(1.2) o(x)+Lv-D(x)Ve(z) =0 on 0N).

Here, D = D(x) is the diffusion coefficient, o, = o4(x) is the absorption coefficient,
S = S(x) is the spatial distribution of the bio-luminescence source, ¢ is the extrapo-
lation length, and v is the unit outer normal vector field to 9. Henceforth, we will
assume that the light intensity is measured only over a narrow band of frequencies,
so that the diffusion coefficient D and the absorption coefficient o, are frequency-
independent. The inverse problem in BLT can be stated as follows: given D(x) and
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2 TIANYU YANG AND YANG YANG

oa(x), recover the internal source S(z) from the boundary photon density ¢|r mea-
sured on an open subset of the boundary I" C 9.

Ultrasound Modulation. The measurement in diffusive BLT alone is insuffi-
cient to uniquely identify the bio-luminescence source. This is clear from the above
formulation, as the inverse problem in BLT is a classical inverse source problem that is
well known to lack unique solutions [26]. Diffusive BLT typically suffers from limited
spatial resolution due to strong scattering of light in soft tissue. Various methods
have been proposed to enhance the identifiability and spatial resolution of the bio-
luminescence source. One of them [25] makes use of a focused ultrasound beam to
modulate BLT and generate additional data. Here, ultrasound modulation means per-
forming the usual BLT measurement while the medium undergoes a series of acoustic
perturbation.

In the literature, two distinct models have been proposed for ultrasound modula-
tion. One involves modulation with spherical waves, as detailed in [2], where the dis-
placement function from a short diverging spherical acoustic impulse is derived. This
model finds application in the analysis of ultrasound modulation across electromag-
netic tomography [2], diffuse optical tomography [1], and acousto-optic imaging [3].
The other model involves modulation with plane waves, for which the displacement
function is calculated in [9]. This model has been studied, for instance, in the analysis
of ultrasound modulated bio-luminescence tomography [7, 10, 14], optical tomogra-
phy [8, 12, 13, 15, 16, 30, 31], and acousto-electromagnetic imaging [6, 28, 29]. In this
paper, we will assume plane-wave modulation.

Suppose the incident plane wave is of the form cos(q -z + ¢) where ¢ € R™ is the
wave vector and ¢ is the phase. The time scale of the acoustic field propagation is
generally much greater than that of the optical field, hence the acoustic field can effec-
tively modulate the optical field. Following [10], the effect of the acoustic modulation
on the aforementioned optical parameters takes the form:

(1.3) D.(z) = (1+¢e(2y—1)cos(q -z + ¢))D(x),
. Oac(x) = (14+¢e(2y+1)cos(q-z+ ¢))oa(z),
(1.5) Se(z) = (1 +ecos(q-z+ 9))S(x),

where + is the elasto-optical constant, 0 < & < 1 is a small parameter related to the
amplitude, frequency, time, density and acoustic wave speed [10].

Inverse Problem in Diffusive Ultrasound Modulated BLT (UMBLT).
In the presence of ultrasound modulation, the optical parameters and the biolumines-
cence source are modulated according to (1.3)-(1.5). The diffusion equation for the
modulated photon density ¢. reads

(1.6) —V - D (2)V@e(x) + 04.c(x)pe(x) = Se(x) in Q.
(L.7) ¢ +Llv-D.N¢. =0 on Jf.

We will write Dy, 04,0, ¢o for the quantities without modulation, that is, when € = 0.
The measurement in UMBLT is the modulated boundary photon density on an open
subset of the boundary I' C 0€2:

(1.8) Az g.0[S] = ocr, for any ¢ € R™, € > 0.

We refer to the measurement as full data if I' = 0Q and partial data if ' C Q2. Note
that assuming such measurement, the modulated boundary photon current v-D V¢, |r
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UMBLT WITH PARTIAL DATA AND UNCERTAIN OPTICAL PARAMETERS 3

is readily known on T' in view of the relation (1.7). Therefore, the inverse problem
in UMBLT is to recover the bio-luminescence source S from the measurement (1.8),
assuming D and o, are given.

Literature Review. We briefly review the literature on mathematical inverse
problems in BLT and UMBLT. In the diffusive regime (that is, the light propaga-
tion is modeled by the diffusion equation), the BLT and UMBLT aim to recover
the spatial distribution of the bioluminescent source, that is S(z) in (1.1) and Sp(z)
in (1.6), respectively. The diffusive BLT measures a single diffusion solution at the
boundary. This type of boundary data has a lower dimension compared to that of
the unknown source, resulting in an underdetermined inverse problem that gener-
ally suffers from nonuniqueness unless a priori information is provided regarding the
source [17, 26]. Various strategies have been proposed in the literature to address
the under-determination in BLT. One of them utilizes the idea of ultrasound modu-
lation, leading to the development of the UMBLT. The diffusive UMBLT measures a
series of perturbed diffusion solutions at the boundary. Through asymptotic analysis
and integration-by-parts techniques, this boundary data can be readily converted into
equivalent internal data, resulting in a formally-determined inverse problems [10].

In the transport regime (that is, the light propagation is modeled by the radia-
tive transfer equation), the inverse problems in BLT and UMBLT seek to recover a
bioluminescent source in the radiative transfer equation (RTE). The transport BLT
measures angularly-resolved RTE solution at the boundary. The angular measurement
provides additional information in contrast to diffusive BLT, making the transport
BLT problem formally-determined (n = 2) or even overdetermined (n > 3). In par-
ticular, some uniqueness, stability, and reconstruction results have been obtained for
the transport BLT problem in [11, 21, 22, 23, 35]. On the other hand, the trans-
port UMBLT measures a series of perturbed RTE solutions at the boundary. This
boundary data can be likewise converted into internal data, resulting in an inverse
source problem with internal functional data for the RTE [5]. Several uniqueness and
stability results have been established in [7, 14]

Contribution of the Paper. The paper proposes a reconstructive source imag-
ing procedure for diffusive UMBLT in optically anisotropic media with partial data
and uncertain optical parameters. Within the framework of mathematical theory of
diffusive UMBLT, the major contributions include:

e Reconstruction in Optically Anisotropic Media. Optically anisotropic ma-
terials have different optical properties depending on the direction of light
propagation within them. This is in contrast to optically isotropic materials,
where the optical properties remain the same regardless of direction. A re-
construction procedure for diffusive UMBLT has been obtained in optically
isotropic media [10]. In Section 2, we follow the idea of the proof in [10] and
generalize it to optically anisotropic media. The study provides a more com-
prehensive understanding of diffusive UMBLT imaging in optically complex
media.

e Reconstruction with Partial Data. In practical situations, it is common to
have access only to partial or incomplete measurements due to limitations in
sensing devices or environmental factors. Consequently, our study extends
to source imaging in diffusive UMBLT when data is solely attainable at par-
tial boundary. Our results encompasses the refinement of the reconstruction
procedure to accommodate partial data, thereby furnishing a theoretical un-
derpinning for source imaging with limited data acquisition, see Theorem 3.2.

This manuscript is for review purposes only.



134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

176
177
178
179
180

4 TIANYU YANG AND YANG YANG

e Uncertainty Quantification from the PDE Perspective. Our reconstruction
procedure, with full or partial data, hinges essentially on prior knowledge
of optical parameters, notably the diffusion coefficient and the absorption
coefficient. As a result, it is paramount to understand the consequence of
inaccuracies within these optical parameters on the source imaging process.
One method to quantify such a consequence involves assessing the discrepan-
cies between PDE solutions [27, 33]. In this paper, we take this perspective to
investigate the source imaging problem in UMBLT. We derive a quantitative
uncertainty estimate using the PDE theory of second-order elliptic equations,
see Theorem 4.2. The estimate demonstrates how the variance of the source
is linked to the variance of the optical parameters.

e Discrete Formulation for Diffusive UMBLT. The diffusive UMBLT model is
further discretized using the staggered grid scheme to yield a discrete model.
This discrete formulation serves two purposes: on the one hand, it provides
a finite dimensional formulation of the source imaging problem in UMBLT;
on the other hand, it facilitates the subsequent numerical implementation
and validation of the diffusive model. Our analysis is further extended to
this discrete model: we prove that the finite-dimensional formulation is well
posed, adapt the reconstructive procedure to the discrete model, and derive
a discrete estimate to quantify the impact of uncertain optical parameters on
the discrete source imaging process, see Theorem 5.4.

Paper Organization. The paper is structured as follows. In Section 2, we de-
rive internal data from the boundary measurement in UMBLT assuming plan-wave
modulation, and propose the reconstruction procedure with full data in anisotropic
media. This reconstruction procedure is generalized in Section 3 to the situation where
only partial boundary measurement is available. Section 4 establishes an uncertainty
quantification estimate for the reconstruction procedure. Section 5 discretizes the
diffusion equation using the staggered grid scheme to result in a discrete formulation
of the UMBLT inverse problem. A discrete reconstruction procedure is derived along
with a discrete uncertainty quantification estimate. Section 6 is devoted to the im-
plementation of the reconstruction procedure as well as quantitative validation using
numerical examples.

2. Reconstruction with Full Data. Throughout the paper, the following hy-
potheses are made regarding the anisotropic diffusion coefficient D(z) and the ab-
sorption coefficient o, (z):

H1 D(z) is a matrix-valued function and D(x) = I near 0€). Here, I is the
identity matrix.

H2 o, € C%(Q),D;; € C1*(Q) where C* is the Holder space of order k with
exponent a € (0,1).

H3 D(x) is positive definite for all z € Q, that is, there exists a constant A > 0
such that

%|§|2 > ¢ D(x)E > NE*  ae onQ

holds for any & € R™.
H4 o, >0 a.e. on Q.
Under these hypotheses, we will derive a reconstructive procedure to recover the in-
ternal source S, provided the anisotropic diffusion coefficient D(z) and the absorption
coefficient o, (z) are given. The idea is similar to the proof in [10] in spirit, but is
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generalized to anisotropic D(z). Recall that the full boundary measurement means
I'=o09Q.

Consider the adjoint problem to (1.6)-(1.7) with € = 0 and a prescribed Robin
boundary condition g:
(2.1) -V - D(x)Vy(z) + oq(x)p(x) =0 in Q.
(2.2) Y+Llv-DViyp =g on 0f.
Note that the adjoint solution 1 can be computed, as D, o, and g are known. We

multiply (1.6) by v, multiple (2.1) by ¢., then integrate their difference by parts over
Q) to obtain

1
23)  —p [ gocds= [ (D= Do)V6. Vit (00— ra0)rt — S do.
o0 Q

where the boundary integral are computed using the boundary conditions (1.7) and
(2.2). Expand both sides in ¢ using (1.3)-(1.5) and equate the O(g)-terms to obtain

(2.4)
[ % s = / (27 — DV o - Vib + (2 + Doadots — $5)] cos(q - = + o) de.
a0 € Q

As the left hand side is known from the measurement (1.8), so is the right hand side.
By varying the modulation parameters ¢ and ¢, one can recover the Fourier transform
of the following function:

(2.5) Hy == (29 = 1)DV¢y - Vi + (27 + 1)oadot — 9S.

If we choose a specific adjoint solution 1y such that ¥y > ¢ > 0 for some constant c,
then dividing both sides by o and substituting S by the equation (1.6) with ¢ = 0
give the following PDE

Hwo
(2.6) Fy, = o =V -DV¢o+ (2y — 1)DV¢yq - Viog g + 2v0,¢0.
This is a second order elliptic PDE for ¢¢ with known coefficients, which can be solved
along with the boundary condition (1.7) with € = 0 to yield ¢(. Finally, the source S
can be computed from (1.1).

It remains to show the existence of the positive adjoint solution y. To see this,
note that there are suitable Dirichlet boundary conditions such that a positive solution
g > ¢ > 0 exists by the maximum principle. One can take the corresponding Robin
data g = 9o + v - DV to ensure the solution of (2.1)-(2.2) is 1y.

3. Reconstruction with Partial Data. In this section, we aim to extend the
reconstruction procedure in Section 2 to the partial data case where the boundary
measurement is made only on an open subset I' C 0€). A careful examination of
the proof suggests that the following modifications are necessary in order to adapt
the idea: (1). the left hand side of (2.3) must be computable in order to obtain the
internal data H, from the right hand side. In the partial data case, ¢. is known only
on I, this restriction requires the choice of the adjoint boundary condition g to vanish
on OQ\I', that is, glapo\r = 0. (2). A critical ingredient in the proof with full data
is the existence of a positive adjoint solution ¥y > 0. In the partial data case, we
need to show the existence of a positive adjoint solution 1y > 0 with the additional
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6 TIANYU YANG AND YANG YANG

constraint glpo\r = 0. Once the second modification is verified, the reconstructive
procedure in Section 2 would apply to the partial data case as well.

The main part of this section is devoted to proving the existence of a positive
solution to the adjoint problem (2.1)-(2.2) with g|po\r = 0. Instead of directly con-
structing a positive adjoint solution, we consider the following adjoint equation with
mixed boundary conditions:

(3.1) -V - D(2)Vi(x) + 0q(x)p(z) =0 in Q.
. Y+L-DVyp =0 ondQ\T.
(3.3) v=f onl.

Once we find a positive solution 1 to this mixed boundary value problem, we can
simply take g = (¢ + /v - DV)|sq in the adjoint problem (2.1)-(2.2), then the adjoint
solution is ¢ > 0.

The following result ensures the well-posedness of the mixed boundary value prob-
lem.

PROPOSITION 3.1 ([32, Theorem 1]). Assume that
0, €C*(Q), D € CH(Q), feCcm)nL>(),

then (3.1)-(3.3) has a unique solution 1 € C*(Q\T)NC°(Q)

THEOREM 3.2. Supppose the hypotheses H1-HY hold. If the Dirichlet boundary
condition f € C(T')NL>(T') is positive, then the mized boundary value problem (3.1)-
(3.3) admits a unique solution ¢ € C*(Q\T') N C°(Q) which is positive on .

Proof. By Proposition 3.1, the mixed boundary value problem has a unique so-
lution v € C?(Q\T) N C%Q). Suppose 9 takes negative values on Q, the weak
maximum principle [20, Section 6.4 Theorem 2] claims that the minimum is achieved
on the boundary 9. Since ®|r > 0, the minimum must be achieved at a point
rg € OQ\ T, that is, ¥(wg) = inf 5% < 0. According to the Robin boundary

condition (3.2), we have

0v(z0) = v - DVY(z0) = —%1/)(%) >0

where the first equality holds since D(z) = I near 092. This contradicts that zg is a
global minimum of v over Q. Therefore, 1) > 0 on Q.

If 1) achieves the zero minimum at an interior point, that is, ¢(x) = 0 for some
x € Q, the strong maximum principle [20, Section 6.4 Theorem 4] forces 1) = constant
in Q. In view of the Robin boundary condition on 9Q\I', we have ¥ = 0, contradicting
that ¥|r = f > 0. Therefore, ¢ > 0 in Q.

It remains to show v¥|sq > 0, or more precisely, ¥|so\r > 0 since 9|r = f > 0.
Suppose otherwise, that is, there exists zg € 9\ I" such that 9 (z¢) = inf, 59 = 0.
Applying the Hopf Lemma [20, Section 6.4 Lemma 3(ii)] to —t shows that 9,9 (zg) <
0, then

U(xo) + v - DVY(x0) = L0, (w0) <0,

contradicting the boundary condition on 9Q\I'. Therefore, we must have ¥|so\r > 0.
_ Combining all the cases, we see that 1) is a positive solution on the compact set
), hence has a positive lower bound. This completes the proof. 0
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Remark 3.3. Theorem 3.2 ensures the existence of a positive adjoint solution ¢ >
0 with partial data, then we can reconstruct the source S using the same process as
for the full data case.

4. Uncertainty Quantification with Continuous Diffusive Model. The
reconstructive procedures in Section 2 and Section 3 rely essentially on accurate prior
knowledge of the optical coefficients (D, o) to solve the elliptic equation (2.6) (along
with boundary conditions) for ¢o. The underlying rationale is that these optical co-
efficients can be measured in advance using other imaging modalities such as optical
tomography [4]. Practically, the imaging process in these additional modalities in-
evitably introduces inaccuracy to the optical coefficients, which in turn will impact
the UMBLT reconstructions. In the subsequent two sections, we aim to quantify
the impact to the reconstruction of the bio-luminescence source S that is due to the
inaccuracy of the optical coefficients, using the continuous and discretized models
respectively.

Let (D,0,) be the underlying true optical coefficients, and (ﬁ,&a) be the opti-
cal coefficients that are reconstructed through additional imaging modalities before
performing UMBLT. Observe that (D, ,) do not play a role in the derivation of the
internal data: This is because the boundary integral on the left hand side of (2.3)
remains the same, thus we can derive H, as before. Hereafter, we will assume the
internal data H, has been accurately extracted, and focus on quantifying the uncer-
tainty of the reconstructed source S. The full data case and partial data case will
be handled in one shot, since the reconstruction process are identical once a suitable
positive adjoint solution ¥ > 0 is chosen.

We record a regularity result for the diffusion equation with Robin boundary
conditions. Here, W*>°(Q) and H*(2) denotes the L*>°-based and L2-based Sobolev
spaces of order s € R, respectively.

PROPOSITION 4.1 ([19, Theorem 2.4]). Suppose D is uniformly elliptic, D;; €
Whee(Q), A e L®(Q;R") is a vector field, and 0 < o, € L°(Q) a.e. For S € L*(Q)
and g € H%(BQ), the following boundary value problem
(4.1) =V - D(@)Ve(x) + A(x) - Vo(x) + oq(x)d(x) = S(z) in Q.

(4.2) op+lv-DVp=yg on 0N).

admits a unique solution ¢ € H?(Q) with the estimate

(4.3) [l 20y < CUIS|L2(0) + HQHH%(QQ))

where C' is a constant independent of ¢.

We have the following global uncertainty quantification (UQ) estimate for the
diffusive UMBLT reconstruction.

THEOREM 4.2. Suppose all optical coefficients and solutions satisfy

I Dijllw.= (), | Dijllw.= 0y < Chp, pllw2. (0, | Bllwz ) < Co,
19 llw2.00 (), ¥ llw2.0e () < Cys loall Lo ()s 10all L @) < Co,
77[’71[’ Z Cqp > Oa
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288 where Cp, Cy,Cy, Cy, cy are constants, and 0 is not eigenvalue of the following op-
289 erators equipped with the zero Robin boundary condition:

200 V-DV 4+ (2y—1)DVlogt -V +2v0,, V-DV+ (2y—1)DVlog -V + 275,
291 then we can find constants Ch;j,Ca > 0 such that
202 (4.4) IS = Sliz20) < Y Caigll(D = D)l (@) + Calloa = Gall2(e)
i<j
Proof. Let ¢ and ¢ solve the diffusion equations
§=-V:[DVe] + a0, § ==V -[DVG] +5ad,

respectively. Subtract these equations to get

§=8==V-[(D~D)\V¢] = V- [DV() = §)] + (0a = Fa)d + Fal — ).
293 Taking the L-norms on both sides, we have

15 = 5|20
<V [(D = D)Vl 2y + IV - [DV(6 = §)]l|2 ()
+ (00 — 5a)dllz2(0) + 15a(¢ — D)l L2
< 1056l L@ 10:(D = D)ijlizaiy + Y 106l Lo @l (D = D)ijll 2oy
294 (4.5) v *
+ Z 195 D || Lo (2 10 (¢ = D) L2y + Z 1Dis | o (11955 (¢ = D)l 222
13 )
+ 6]l L@ lloa — Fallz2 (@) + 15allLoe@)lld — Dl 2o
<allg = dlla2) + D c2i (D = D)isll @) + eslloa — Gall 2o

1<j

295 where the constants ¢, cg;5,c3 > 0 can be made explicit as follows:

2
296 1= | 15all ooy + D +4) 1D o ) + D I1Diill o
J 1<J i
- 2 . .
297 Caij = \/4H3ij¢\|ioo<g) + ([10:0ll o< @) + 1056 Lo (52)) (i <)
208 eai = /106l s )+ 10:0l3 o)

299 ez = ||@llLos ()

S 10:Dis ] e (o)
k3

300 In order to estimate the term ||¢ — q~5||H2(Q), we turn to the second order elliptic
301 equations generated from the internal data Hy = H B

H.
302 Fy = Ww = (2y—1)DV¢-Viogy + 2yo,6 + V- DV¢
H - - - - -
303 F: = J’ = (27— 1)DVé - Viogt) + 27y6,6 + V - DV .
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304  Subtracting these equations gives
— V- DV[p—¢] - 295a(¢ — ¢) — (2y = 1)DV(¢ — ) - Vlog )
- %(w—iw (27~ 1)(D ~ D)V¢- Viogy

+(2y=1)DV¢ - (Vlogy — Vlogy) + 2v(0q — 64)¢ + V - [D — D]V,

306 This is a second order elliptic equation for ¢ —(5 with zero Robin boundary condition,
307 we have the following regularity estimate by Proposition 4.1:

6 — bl
H ~ -
<c(|Zew-9)|  +rv-1llo - D)o Viogvliney
vy L2(Q)

+ 2y = 1[||DVé - (Vg — Viog )| r2(q) + |V - [D — DIV¢| 12(q)

12yl (0w — &a>¢|L2<Q>)

[ Hyll > (o " N
SC<02()”¢ o wHLQ(Q) + Z Hajd)”L‘”(Q)”az(D - D)ij||L2(Q)
308 (4.6) v ij
12y = 1) I1Dill e 0 1958l L () | 9: (log ¥ — log ¥) | L2«
j
+12y =11 [18ilog ¥ oo (@100 e (o | (D = D)ijl 22w
ij
+ Z Hazj(b”Loo(Q)H(D — D)ij||L2(Q) + ‘2'7|||¢||L00(Q)||O’a — &a||L2(Q)>
ij
§C4H¢ - 7;”]11(9) + ZCE)in(D — b)inHl(Q) + C6||Ua - a'a||L2(Q)
(5]

309 where in the last inequality, we used the upper bound
1
310 10; log | oo () < a”aid)”L‘X’(Q)

311  and

[|0i(log ¥ —log )| 12 (er)

<L 160 — POl L2y = — (6 — $)03) — PO — D)l z2ce
Gy

-l
2
Sy
1 ~ ~ 1 - -

§%II8¢wHLw<mII¢ — Y20 + %Hﬂ)HLw(Q)H@W =)z

313 The constants cq4, c545,c6 > 0 are defined as

Cw n

i

2
Clzy — 1| . .
314 cq4 =——p— Z ZHDinLz(ﬁ)Hag“i’HLw(ﬁ)HwnLOC(ﬁ)
J

[N

ij

2
. Iyl oo & ~ ~
315 + (m—ﬁ) + 31Dl 2 e 18561l oo ey 10Dl oo o)
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10 TIANYU YANG AND YANG YANG

|2y — 1]
cy

|2y — 1]
cy

2
csij =C - <<2H3u‘¢||mo(§) + 10:4 | oo (g3 195 Il Loo @y + Haﬂ/)HLw(ﬁ)Haz‘¢||mo(§)>

1

2 . .
+ (‘|8i¢‘|LW(§) + \|3j¢||Loo(ﬁ)) > (i <J)

12y — 1] :
csii =C - \/(“&'Wﬂ‘yﬁ(ﬁ) + - 10: 1l oo @) 10i Ml Loo @y ) + ||8i¢||2Loo<§)

c6 =1271C - 16l oo ()

It remains to estimate the term |[¢ — /(/;”HI(Q). Let us consider the adjoint equa-
tions

—V - DV + 0a1p = 0,

(4.7) RS
—V - DV + G4t = 0.

Subtract these two equations to get
(48)  —V DV ~9) +5( =) =V (D~ D)V¢ — (04— Ga)¥

This is a second order elliptic equation for ¢ — 1/; with the zero Robin boundary
condition. Again, by the elliptic regularity result Proposition 4.1, we have

[ = Pl 1)
<C(|V - [(D = D)VY]|l 120 + (00 — Ga)¥l|L2(0))

<C<Z 10,91l L (@) 10:(D = D)ijll 2@y + Y 1059l Lo @ I(D = D)ijll 2o

i i

(4.9)
el (0 — aa>|m>)

< el (D = D)ijllm ) + eslloa — Gall2(e)
i<j

with constants cz7;;,cg > 0, where

2 . .
crig =C- \/(H@WILw(Q) F105%llee(e)” +4105¢ 7 <0y (<)
eris = C - \J100I ) + 1060113

cs =C - [[YL=(e)

Combining (4.5) (4.6) and (4.9), we conclude that

(4.10) IS = Sliz2) <> Crig (D = D)ijll e + Collo = 6llz2(q),

1<j

with Ch3; = cicacrij + cicsij + 245 and Co = cicacg + cic6 + c3. Note that all the
constants in this proof are explicit, except for the constant C' that comes from the
estimate of elliptic regularity. ]
Remark 4.3. Theorem 4.2 can be interpreted as follows. Squaring estimate (4.4)
gives
312 112 ~ 12
18 = Sll32() < € (11D = Dl o) + 100 = Fallizqey )

This manuscript is for review purposes only.
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where the constant € is in terms of C;; and Ch. If we take S,D,o, to be the
underlying ground-truth parameters and S, D, &, the corresponding parameters in
the presence of additive random uncertainty of mean zero, then E[S] = S, E[D] = D,
E[64] = 04. The estimate provides a quantitative error bound on the variance of the
bioluminescent source.

5. Uncertainty Quantification with Discretized Diffusive Model. In the
previous section, we considered the impact of inaccurate (D,o,) using continuous
PDE models. However, for the subsequent numerical simulation, the PDEs have to
be discretized into finite dimensional discrete models. This motivates us to study a
similar UQ problem based on the finite difference discretization of the PDE model.
The analysis in this section provides a finite dimensional counterpart of the infinite
dimensional UQ estimate (4.4), bridging the gap between the infinite dimensional
analysis and the finite dimensional numerical experiments.

We will consider the discretization of three diffusion-type equations: the for-
ward problem (1.6)-(1.7), the adjoint problem (2.1)-(2.2), and the internal data prob-
lem (2.5) equipped with the zero Robin boundary condition. These problems need
to be discretized in order to implement the reconstruction procedure outlined in
Section 2. The discretization procedure requires numerical evaluation of the terms
V - DV o, DV - Vogiy, and o,¢9. The last term can be readily evaluated on a
grid. In the following, we explain how to discretize the first two differential operators
using the staggered grid scheme.

We take Q2 to be a 2D domain to agree with the setup of the subsequent numerical
experiments. The 2D coordinates are written as (x,y). The problem in 3D can be
considered likewise with an additional spatial variable. Let Ax, Ay denote the grid
size on the z-direction and y-direction, respectively. We will discretize the divergence-
form diffusion operator using the staggered grid scheme, see Figure 1. The black
dots are indexed by (i,j), where i = 1,2,...,N,, j = 1,2,..., N,, white dots are
indexed by (i 4+ %,j), wherei=1,2,...,N, —1,j=1,2,...,Ny and (i,j + %), where
1=1,2,...,N;, j=1,2,...,N, — 1. For a function u, we use u; ; to represent an
approximate value of u(x;,y;), where x; = z1 + (i — 1)Az and y; = y1 + (j — 1)Ay
are the coordinates of the grid points.

Fig. 1: The illustration of staggered grid scheme. The zero and second order terms
are defined on the grid points (black dots), the first order terms and D are defined
on the edges (white dots).

This manuscript is for review purposes only.
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12 TIANYU YANG AND YANG YANG

5.1. Discretization with Isotropic Diffusion Coeflicients.. We begin the
discretization with an isotropic diffusion coefficient, that is, D = D(x) is a scalar
function.

5.1.1. Discretization of the Forward Problem.. First, we consider dis-
cretization of the forward problem (1.6)-(1.7). Using the staggered grid scheme, the
operator V - DV is discretized as

[V . DV’U,},‘J’
:[&EDE)wu + ayDayu]m'
N[Daxu]zur%,j - [Daxu]i—%,j n [Dﬁyu]i,ﬁ% - [Day“]z‘,j—é
- Ax Ay
Dy jluigry —wig] = Diy jluig — uioa )
- AV

(5.1)
N D; jytluigen —wigl = Dy i fuig — uija]
Ay?

D, 1 D, 1. D, . 1 D, . 1
i+l i1, ig+3 ii—4
Divyi  Dicgg  Digey | Dis4]

Ax? Az? Ay? Ay? w7

where =~ denotes the staggered grid scheme approximation.

For the Robin boundary condition on the four boundaries (excluding the four cor-
ners), it is simply ©+2D0d,u on the right/left boundary, u42Dd,u on the top/bottom
boundary. For the four corner points, e.g. the bottom left corner (Figure 2), the out-

going vector v is chosen as (—g, —%) For example,
[u + v - DVU]Ll
V20 V20
il T[Daxu]ué,l - T[Dayuh,ué
(5.2) V20 D1+%,1 NG D171+%

=u1,1 o Ax [u1,1 — u12] + 5 Ay [u1,1 — u2,1]

. V20D 1 N V20D 141 V20D V20D, 141
2Ax 2Ay 411 Ay 2 2Ay “

2,1

This discretization gives rise to a linear system with the unknowns u; ;. In order to
make this linear system explicit, we introduce the index function Z(i, j) == (i—1)N,+j
and use (i,j) ~ (¢,;') to mean that the (¢/,j’)-point is a neighbor of (i, j)-point.
Denote by I the set of interior points, by B the set of non-corner boundary points,
and by B, the set of four corner points. According to the scheme (5.1) and (5.2), the
forward problem (1.6)-(1.7) is discretized to yield the linear system

Lo =s

where ¢ consists of the vectorized values of the forward solution ¢y at black dots

This manuscript is for review purposes only.
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Fig. 2: The outgoing vector at the corner

389 such that d)OI(i,j) = ¢o(i,y5)-

(5.3)
Digi i4i P
2~ AT gm0 (050 = (9), (7)) €1
- \i—i’|Aa:%+|jij’\Ay2’ (l/ajl) ~ (laj)v (’Laj) el
V035G h)~tid) iiaer s gmge (@0d) = (6:0), (6,)) € B
390 Lz iz iy = il i’ o .
Tl ") =TTy I's(i,j') ~(i,)) € B,
V20 o iti o gti Y NP ..
L4255 2 ~tid) Timaty iRy (@0 d") = (6,4), (i,5) € Be,
*@m, (i',5") ~ (i,7), (4,7) € B,
0 others
S; j > .a ) € Ia
301 (5.4) sty =4 - (Z ])
’ 0, (i,7) € BUB..
392 Before discussing further properties of the matrix L, we recall the definition of

393
394
395
396
397

398

some special matrices. Given a square matrix A = (Ay;), its k-th row is said to be

weakly diagonally dominant (WDD) if [Ax| = 37, A, and the matrix A is said
to be WDD if all the rows are WDD. Likewise, its k-th row is said to be strictly
diagonally dominant (SDD) if > is replaced by a strict inequality >, and the matrix
A is said to be SDD if all the rows are SDD.

DEFINITION 5.1. A square matriz A = (Ag;) is said to be weakly chained diago-

399 nally dominant (WCDD) if

400 e A is WDD.

401 o For each row k that is not SDD, there exists ky,ka, ..., k, such that Ay, ,
4102 Akikyys -+ Aky_sk,, Ak, are nonzero and the row A, . is SDD.

403 ProOPOSITION 5.2. L is a WCDD matrix.

Proof. First, we show L is WDD. As D > 0, g, > 0 everywhere, all the off-
diagonal terms (see Row 2, 4, 6, 7 in (5.3)) are non-positive and all the diagonal
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14 TIANYU YANG AND YANG YANG

terms (see Row 1, 3, 5 in (5.3)) are non-negative. It suffices to show that

Lrajzag > 9,  —Lzagzwgn
(i) (0.5)

Move all the terms in this inequality to the left side. It suffices to show that any row
sum of L is non-negative. This is obvious from the definition of L in (5.3), where the
row sum of the Z(, j)-th row is o; ; when (4, j) € I, and the row sum of the Z(i, j)-th
row is 1 when (i,7) € B U B.. This proves that L is WDD. Moreover, the analysis
shows that the Z(7, j)-th row is SDD when (7, 5) € BU B,.

Next, we show the chain condition. If the Z(4, j)-th row is not SDD, then (i, j) € I.
As the finite difference grid is connected, there exist (i1,71),- .-, (ip,jp) such that
(ip, jp) € BU B, and (4,5) ~ (i1,71) ~ -+ ~ (ip, jp). Notice that the definition of L
has the property that Lz j) (5, < 0 for (,7) ~ (i, j) (see Row 2,4,6 in (5.3)), we
conclude the entries Lz(; j) z(i; j1)s -+ Lz(i,_1,5,-1),Z(ip,j,) are all negative, and the
row Lz, ;.. is SDD since (ip, jp) € BU B.. d

PROPOSITION 5.3 ([34]). WCDD matrices are invertible.

As a result, the discretized forward problem admits a unique solution ¢y = L~ 's.

5.1.2. Discretization of the Adjoint Problem.. The adjoint problem(2.1),
(2.2) takes a similar form as the forward problem, except that the source g is imposed
on the boundary. Therefore, the adjoint problem can be discretized likewise to yield
a linear system

where L is the same finite difference matrix defined in (5.3), 9 consists of the vector-
ized values of the adjoint solution 1 at black dots such that vz jy = ¥ (zs,y;), and

0, (i,j) €I,
(5.5) S 23
) g(miayj)v (Z’]) EBUBC

5.1.3. Discretization of the Internal Data Problem.. It remains to dis-
cretize the internal data problem (2.5) along with the zero Robin boundary condi-
tion. This requires discretizing an operator of the form DVu - Vv = DVuv - Vu. The
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staggered grid scheme gives
[DV’U . Vu]i,j
~ [DOyudyvliy s ; + [DOpudyvli_y N [DOyudyv]; j41 + [DOyudyvl; ;_1
- 2 2
D] jluigry = wig] + D]y jluiy — wioy ]
- 2Ax
N [DOyv]; jy 1 [wijer — wig] + [DOy]; j_1[us; — uij]
2Ay
D1 i[vit1s — vi] D, 1 [vi-1; — vij]
i+2,5Vi+1,g 2,7 [ jLVi—1,5 1,7
(5.6) = 2 SAL2 ] U1, + 2 TN U1,

+

2Ay? 2Ay2

D; jyavijer — Ui,j]] N
Uq, 541

D; ;-1 [vij—1 — vig]
Ug,5—1

| Pirgglvirng —oigl | Diglvieng — vigl
2Ax2 2Ax2

D; jy1vije1 — vigl N D; j_1vij—1 — vi]
U
24192 2Ay2 “

The discretization of (2.5) becomes

Ao o = hy,

where ¢¢ consists of the vectorized values of the forward solution ¢ at black dots
such that (bOI(i,j) = ¢(Ii,yj), and

(5.7)
Di+€ J+J [¥i i+ Q’Y 1[11171 i ;] 0 o o
;Z(;’-})N([ZJ) «,, ‘[;} Z‘AZDZ'H]]] HINE + 2’7‘71‘,3‘%,]” (’L ] ) = (hj)? (17.7) €l
ixit gyt Wit it g Wi
- \iii’|A12+|jfj’|Ay2 ; (@,3") ~ (i,5), (i,7) €
z+i J+J
(A ) 1 +£ZDI3 2]) (2,3) |i— Z\Az+|j ]\Ay ( ): (27])7 ( )
Y )IL(i,5), L3 57) = il g
€|z z'\Am-Hj i'1Ay? (Z aj/) ~ (Zv.])
f o 7+7 J+J
L+ 7% 7,7)~(4,3) Ji— 1\Aw+|J Flay’ ( ) (17.7)7 (Z,J) € B,
z+1 atd’
22€ |i— 1’|A1+|J 2] Ay ( ) (17])7 (Za.]) € BC7
0 others
(Hd))ija (iaj)EIa
5.8 hy )z = »
(5:8) (hy)z(i.) {0, (i,j) € BU B..

5.1.4. Discrete Uncertainty Quantification Estimate.. Parallel to Theo-
rem 4.2, we derive the following UQ estimate for the discretized model. Note that the

uncertainties of the optical parameters (D, o,) are implicitly encoded in the difference
L — L and A 5 — Ag,-
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16 TIANYU YANG AND YANG YANG

THEOREM 5.4. Suppose 0 is not an eigenvalue of Ay, and Ad;o for some 1pg > 0
and 150 > 0, then

(5.9) 118 = sll2 <Ihgo ll2 (1 AZ) 21T = Lz + (Ll AL 2| Apy 1214 5, — Agoll2).

Proof. Under the assumption, the matrix A, is invertible for some g > 0. We
can represent ¢g = A;ihd,o, then s = Lgg = LA;ih%. Therefore,

8= sl (LA} — LAZ he, .
<|LAZ — LA |l2[hg, 2

(5.10) <((L - L)AZ! LA — A |2)|h

<@ =LA llo + [IL(A S = Ag)ll2)[[heo 2

<(IL = Ll Ag ll2 + L2l ALY — AL (12 D, 2
where || - ||2 denotes the vector/matrix 2-norm. Using the relation A= — B=1 =
A7Y(B — A)B™1, we obtain the desired estimate. O

5.2. Discretization with Anisotropic Diffusion Coefficients.. When D is
anisotropic, i.e, a symmetric positive definite matrix-valued function, the operators
V - DV and DVwv -V can be discretized as follows

(DVunl 1 —[(DVun],_1 o [(DVu)a], ;1 — [(DVu)o], 1
[V-DVu];; = 2 2=+ 2 2
Ax Ay
(DVv)10gul, 1 o+ [(DVv)20zul,_1 ;. [(DVv)20yul], ;1 + [(DVv)20yul; ;1
[DVv - V], ; = 2 27 e .

where (DVu); (resp. (DVu)z) denotes the first (resp. second) component of the
vector DVu. The discretization now differs from the isotropic case. This is because
for an isotropic D

(DVu); = DOyu, (DVu)2 = DOyu

which only requires [0yul;; 1 ; and [Oyul; ;, 1 in the staggered grid. However, for an
anisotropic D:

(DVu)l = D110,u + Dlgayu, (DVU)Q = Dy10,u + Dggayu

which requires two additional terms [0y u; ;1 and [9yul;, 1 ;. These additional terms
can be discretized as follows:

[Oyulij + [Oyulivr;  wit1j41 + Ui — Uijo1 — Uig1,j—1
- b

[Oyuli1 ;= 5 1Ay
0,1 _[Oxu]ig + [Opulijrr  Wig1 g1+ Uig1y — Uim1 — Wis1g41
ety = 2 - 1A ’

see [24] for the detail. This discretization results in a matrix L. The rest of the
analysis is similar provided L is invertible, and we can obtain Theorem 5.4 as well.

6. Numerical Experiment. In this section, we demonstrate numerical experi-
ments to validate the reconstruction procedure and quanfity the impact of inaccurate
optical coefficients (D, o,) to the source recovery. We will restrict the discussion in
this section to isotropic D for the ease of notations.
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6.1. Uncertainty Generation. We will utilize the generalized Polynomial Chaosfi

Expansion (PCE) to facilitate generation of uncertainty. PCE approximates a well-
behaved random variable using a series of polynomials under certain probability dis-
tribution. Specifically, let (X, F,P) be a probability space, and let (w) be a random
variable (where w € X is a sample) with probability density function p(t). Suppose a
deterministic ground-truth u = u(z) is given, then the uncertainty generated by PCE
takes the form

(6.1) u(@,Ew) = Y u(@)P(¢w),  (zw)eQxX
k=0

where uy(z)’s are the coeflicients, ug is the ground truth, &5 = 1, ®;’s are orthogonal
polynomials; that is,

R
For the numerical experiments, £ is chosen to be uniformly distributed on the sample

space X = [—1,1]; ®;’s are the Legendre polynomials on [—1, 1]; the PCE is truncated
at k = K.. Then

K.
E[u] = uo, Var[u] = Zui
k=1

In the subsequent numerical experiments, we inject uncertainties into the optical
coefficients (D, 0,) based on the following process:
(1) Generate the coefficients upy, us, , using the truncated Fourier series in a:

Upp = Z Cinsin(mm - ) 4 con cos(mn - ),
In]loo=Fk

Uoof, = Z C3n SIN(TN - ) + C4n cOs(TN - T).
In]loo=Fk

Here n € Z", the Fourier coefficients cin, Con, C3n, Can are independently chosen
from the uniform distributions on [—1,1]. Once generated, they are fixed so that
the coefficients upy, u,,,, are deterministic.

(2) Randomly generate € from the uniform distribution on [—1, 1], then construct the
uncertainties up, u,, according to (6.1) with k =1,2,...,10:

10 10
Up = ZUDk(I)k(f(w))v Ug, = Zuaakék(g(w))
k=1 k=1

Note that Elup] = E[u,, ] = 0.
(3) Once the uncertainties are generated, we rescale the uncertainties based on pre-
scribed relative uncertainty levels ep, e, to construct the optical coeflicients with

uncertainty (D, &,) as follows:

Uupeép

[up ]| a

~ uO’ 60'
Go = 0g + —22 T

D:=D+ | Dl &1,
(6.2)

T, Tz 12 12
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18 TIANYU YANG AND YANG YANG

The impact of the inaccuracy in the optical coefficients will be quantitatively
measured by the relative standard deviation defined as follows:

E[|S — SI7:] E[||D — DII3:]  \/Elllga — oall7]

6.3 E,’S = — e = s oy =
(6.3) EE D 1Dl Toullze

Note that £€p = ep and &,, = e, are precisely the relative uncertainty levels that
are used to define (D, &,) in (6.2). This justifies that the relative standard deviation
is a reasonable quantity to measure the uncertainty. In the following, we will specify
various uncertainty levels ep, e, and plot £s versus them, see Figure 7 and Figure 12.

6.2. Numerical Implementation.. We choose the 2D computational domain
Q) = [~1,1]2. The diffusion equation is solved using the staggered grid scheme outlined
in Section 5. To avoid the inverse crime, the forward problem is solved on a fine mesh
with step size h = ﬁ, while the inverse problem is solved on a coarse mesh with step
size h = ﬁ using re-sampled data.

A challenge in the numerical simulation is ensuring that the adjoint solution g
is strictly positive. Although it is proved in Theorem 3.2 that 1y has a positive lower
bound, named ¢y, > 0 in Theorem 4.2, the constant ¢y can be quite small in the
numerical implementation (especially when g is partly vanishing on 0%), resulting
in numerical instability. To mitigate this issue, we choose to solve the adjoint equa-
tion (2.1) not with the Robin boundary condition (2.2), but instead with a Dirichlet
boundary condition to generate 1y, and then name the resulting Robin boundary
condition as g. The advantage of this trick is that the Dirichlet condition, with the
help of the Maximum Principle, guarantees that the constant ¢, > 0 is not too close
to 0. However, the trick makes it difficult to ensure that g vanishes on a desired part
of 0. Given that the estimate in Theorem 4.2 takes a similar form for full data and
partial data, we will apply the trick at the cost of restricting the subsequent numerical
experiments to only the full data case.

With the help of the trick, we numerically calculate the noise-free ¢y and g
using ground truth S and (D, 0,). Once we have ¢ and 1)y, we calculate the internal
data Hy, through (2.5). Note that the internal data is derived from the boundary
measurement, hence is independent of the uncertainty on the optical coefficients.

Experiment 1 In this experiment, we consider the case that the optical coeffi-
cients can be represented using low-frequency Fourier basis. We choose

D = cos®(x + 2y) — 3sin*(3z — 4y) + 5, 0 = cos®(5z) +sin®(5y) + 1,

and the source S to be the Shepp-Logan phantom, see Figure 3.

Using the ground-truth (D, 0,), we generate the uncertainties according to (6.2)
to obtain 1000 samples of inaccurate optical coefficients (D,&,). Set AD := D — D
and Ao, = 6, —0,. We implemented the reconstruction procedure 1000 times to plot
the distribution of ||AS||z2 versus ||[AD| g and ||Aocy|z2, see Figure 4. It is clear
that for fixed |AD| g1, ||AS||z2 is more concentrated compared to fixed [|Acgl|zz,
suggesting that the uncertainty in D has larger impact to the reconstruction than
the uncertainty in &,. Moreover, the distribution of the scatter plot suggests that
[IAS]| 2 is locally Lipschitz stable with respect to ||AD| g for small AD, agreeing
with the estimates in Theorem 4.2 and Theorem 5.4. One of the reconstructions is
illustrated in Figure 5, and the average of the 1000 reconstructed sources is illustrated
in Figure 6. We see that the averaged S is close to the ground truth S. This can
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be understood as follows. Let us view S = S[D,0,] as a nonlinear functional of
(D,0,). When small perturbations (dD, do,) are added, the response perturbation
0SS = dS(6D,d0,) depends almost linearly on (6D, do,) where dS is the Frechét
derivative. Hence E[S] ~ dS(E[0D],E[do,]) = 0.

To better understand the relations between Eg versus Ep (resp. Es versus &, ),
we take Ao, = 0 (resp. AD =0) and add ep = 2%, 4%, 6%, 8%, 10% of random noise
to D (resp. ey, = 2%,4%,6%, 8%, 10% of random noise to o,). The plots are shown
in Figure 7. We observe that £¢ depends linearly or superlinearly on £p and &,,, and
the same level of relative uncertainty on D has larger impact than on o,. Note that
the plotted curves are nonlinear because the constant factors C1;;, C's in Theorem 4.2
also depend on (D, ,).

Remark 6.1. If X is a random variable and f is a nonlinear function, it is generally
not true that Ef(X) # f(E(X)). For example, if we choose a uniformly distributed
random variable X ~ U (—1,1) and a nonlinear function f,(z) := |z|* (0 < o < 1).
Then E[X] = 0, hence f,(E[X]) = fo(0) =0. But

1

1
E[fo(X)] = = Cdp——— <1
0<Elfa(X)] = [ ol dr= =7 <
and E[f,(X)] monotonically increases to 1 as a — 0+.

1
1
08 28
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06 28
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24 07
22 06
2 0s
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Fig. 3: Left: Diffusion coefficient D. Middle: Absorption coefficient o,. Right: Shepp-
Logan Source S.
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Experiment 2 In this experiment, we consider the case that the optical coeffi-
cients can not be represented using the low frequency Fourier basis. We choose

3 1 4
D=3-max{lellyl},  oa=} - 5o (:r by 5) ,

and we choose the source S to be the Shepp-Logan phantom, see Figure 8. We choose
the relative uncertainty level at 10% and run 1000 reconstructions to plot the dis-
tribution of ||S — S| 2 versus |D — D| gz and |64 — 04l|z2, see Figure 9. One of
the reconstructions is illustrated in Figure 10, and the average of 1000 reconstructed
sources is illustrated in Figure 11. For the relation between the relative standard de-
viations, we fix D and o, respectively and add 2%, 4%, 6%, 8%, 10% Gaussian random
noise to another optical coefficient. The relations are shown in Figure 12. Again, we
observe that uncertainties in D have larger impact to the reconstruction than that
in 0,. We also observe that the averaging process reduces the uncertainty in the
reconstruction. The impact £g also depends linearly or superlinearly on £p and &, .
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Al 0 0 |lA D| 004

llaall

Fig. 4: The distribution of the error with respect to the inaccuracies in optical coef-
ficients

Remark 6.2. In Figure 9, the plot ||AS|| versus |AD|| has two branches. This
is because the plot shows the relation between the norms. As a simple example, let
y = (z +1)?, z € R. The same branches appear if we plot |y| versus |z|.

7. Conclusion. The paper has presented a novel approach to addressing the
imaging problem in ultrasound-modulated bioluminescence tomography (UMBLT)
within an anisotropic medium, focusing on scenarios with partial boundary measure-
ments and uncertainty optical coefficients. By leveraging the plane-wave modulation
assumption, we effectively transformed the imaging problem into an inverse problem
with internal data, facilitating a robust reconstruction procedure for recovering the
bioluminescent source. The study further enhanced this reconstruction process by in-
tegrating an uncertainty quantification estimate, ensuring a rigorous assessment of the
reconstruction’s robustness. The practical applicability of the proposed methodology
was strengthened through the discretization of the diffusive model using the stag-
gered grid scheme, leading to a discrete formulation of the UMBLT inverse problem.
This allowed for the development of a corresponding discrete reconstruction proce-
dure, along with a discrete uncertainty quantification estimate. The effectiveness
and reliability of these methods were demonstrated through comprehensive numerical
examples, underscoring the potential of the approach in practical scenarios.
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