

THE DIFFUSIVE ULTRASOUND MODULATED BIOLUMINESCENCE TOMOGRAPHY WITH PARTIAL DATA AND UNCERTAIN OPTICAL PARAMETERS*

TIANYU YANG[†] AND YANG YANG[†]

Abstract. The paper studies an imaging problem in the diffusive ultrasound-modulated bioluminescence tomography with partial boundary measurement in an anisotropic medium. Assuming plane-wave modulation, we transform the imaging problem to an inverse problem with internal data, and derive a reconstruction procedure to recover the bioluminescent source. Subsequently, an uncertainty quantification estimate is established to assess the robustness of the reconstruction. To facilitate practical implementation, we discretize the diffusive model using the staggered grid scheme, resulting in a discrete formulation of the UMBLT inverse problem. A discrete reconstruction procedure is then presented along with a discrete uncertainty quantification estimate. Finally, the reconstruction procedure is quantitatively validated through numerical examples to demonstrate the efficacy and reliability of the proposed approach and estimates.

Key words. Ultrasound Modulated Bioluminescence Tomography, Uncertainty Quantification, Partial Data

17 MSC codes. 35R30

1. Introduction and Problem Formulation. Bioluminescence refers to production and emission of native light inside living organisms such as fireflies. Based on this phenomenon, Bio-Luminescence Tomography (BLT) is developed as a technology that utilizes bioluminescence sources as bio-medical indicators to image biological tissue. Specifically, biological entities or process components (e.g. bacteria, tumor cells, immune cells, or genes) are tagged in BLT with reporter genes that encode one of a number of light-generating enzymes (luciferases) [18]. By measuring the light generated by the luciferin-luciferase reaction, BLT aims to image the spatial distribution of the internal bioluminescence sources.

27 The Inverse Problem in Diffusive BLT. Let Ω represent the strongly scattering biological tissue. We will assume Ω is a bounded connected open subset of \mathbb{R}^n with smooth boundary $\partial\Omega$. The light propagates in a strongly-scattering medium as a diffuse wave [4]. The spatial photon density $\phi = \phi(x)$ of the wave is modeled by the following time-independent diffusion equation with the Robin-type boundary condition [10]:

$$33 \quad (1.1) \quad -\nabla \cdot D(x) \nabla \phi(x) + \sigma_a(x) \phi(x) = S(x) \quad \text{in } \Omega.$$

$$34 \quad (1.2) \quad \phi(x) + \ell \nu \cdot D(x) \nabla \phi(x) = 0 \quad \text{on } \partial\Omega.$$

35 Here, $D = D(x)$ is the *diffusion coefficient*, $\sigma_a = \sigma_a(x)$ is the *absorption coefficient*,
 36 $S = S(x)$ is the spatial distribution of the *bio-luminescence source*, ℓ is the *extrapo-*
 37 *lation length*, and ν is the unit outer normal vector field to $\partial\Omega$. Henceforth, we will
 38 assume that the light intensity is measured only over a narrow band of frequencies,
 39 so that the diffusion coefficient D and the absorption coefficient σ_a are frequency-
 40 independent. The inverse problem in BLT can be stated as follows: given $D(x)$ and

*Submitted to the editors DATE.

Funding: The research of T. Yang and Y. Yang is partially supported by the NSF grants DMS-2006881, DMS-2237534, DMS-2220373, and the NIH grant R03-EB033521.

[†]Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI (yangti27@msu.edu, yangy5@msu.edu).

41 $\sigma_a(x)$, recover the internal source $S(x)$ from the boundary photon density $\phi|_\Gamma$ measured on an open subset of the boundary $\Gamma \subset \partial\Omega$.

43 **Ultrasound Modulation.** The measurement in diffusive BLT alone is insufficient
 44 to uniquely identify the bio-luminescence source. This is clear from the above
 45 formulation, as the inverse problem in BLT is a classical inverse source problem that is
 46 well known to lack unique solutions [26]. Diffusive BLT typically suffers from limited
 47 spatial resolution due to strong scattering of light in soft tissue. Various methods
 48 have been proposed to enhance the identifiability and spatial resolution of the bio-
 49 luminescence source. One of them [25] makes use of a focused ultrasound beam to
 50 modulate BLT and generate additional data. Here, ultrasound modulation means per-
 51 forming the usual BLT measurement while the medium undergoes a series of acoustic
 52 perturbation.

53 In the literature, two distinct models have been proposed for ultrasound modula-
 54 tion. One involves modulation with spherical waves, as detailed in [2], where the dis-
 55 placement function from a short diverging spherical acoustic impulse is derived. This
 56 model finds application in the analysis of ultrasound modulation across electromag-
 57 netic tomography [2], diffuse optical tomography [1], and acousto-optic imaging [3].
 58 The other model involves modulation with plane waves, for which the displacement
 59 function is calculated in [9]. This model has been studied, for instance, in the analysis
 60 of ultrasound modulated bio-luminescence tomography [7, 10, 14], optical tomogra-
 61 phy [8, 12, 13, 15, 16, 30, 31], and acousto-electromagnetic imaging [6, 28, 29]. In this
 62 paper, we will assume plane-wave modulation.

63 Suppose the incident plane wave is of the form $\cos(q \cdot x + \varphi)$ where $q \in \mathbb{R}^n$ is the
 64 wave vector and φ is the phase. The time scale of the acoustic field propagation is
 65 generally much greater than that of the optical field, hence the acoustic field can effec-
 66 tively modulate the optical field. Following [10], the effect of the acoustic modulation
 67 on the aforementioned optical parameters takes the form:

68 (1.3)
$$D_\varepsilon(x) := (1 + \varepsilon(2\gamma - 1) \cos(q \cdot x + \varphi)) D(x),$$

69 (1.4)
$$\sigma_{a,\varepsilon}(x) := (1 + \varepsilon(2\gamma + 1) \cos(q \cdot x + \varphi)) \sigma_a(x),$$

70 (1.5)
$$S_\varepsilon(x) := (1 + \varepsilon \cos(q \cdot x + \varphi)) S(x),$$

71 where γ is the elasto-optical constant, $0 \leq \varepsilon \ll 1$ is a small parameter related to the
 72 amplitude, frequency, time, density and acoustic wave speed [10].

73 **Inverse Problem in Diffusive Ultrasound Modulated BLT (UMBBLT).**
 74 In the presence of ultrasound modulation, the optical parameters and the biolumines-
 75 cence source are modulated according to (1.3)-(1.5). The diffusion equation for the
 76 modulated photon density ϕ_ε reads

77 (1.6)
$$-\nabla \cdot D_\varepsilon(x) \nabla \phi_\varepsilon(x) + \sigma_{a,\varepsilon}(x) \phi_\varepsilon(x) = S_\varepsilon(x) \quad \text{in } \Omega.$$

78 (1.7)
$$\phi_\varepsilon + \ell \nu \cdot D_\varepsilon \nabla \phi_\varepsilon = 0 \quad \text{on } \partial\Omega.$$

79 We will write $D_0, \sigma_{a,0}, \phi_0$ for the quantities without modulation, that is, when $\varepsilon = 0$.
 80 The measurement in UMBBLT is the modulated boundary photon density on an open
 81 subset of the boundary $\Gamma \subset \partial\Omega$:

82 (1.8)
$$\Lambda_{\varepsilon,q,\varphi}[S] := \phi_\varepsilon|_\Gamma, \quad \text{for any } q \in \mathbb{R}^n, \varepsilon \geq 0.$$

83 We refer to the measurement as *full data* if $\Gamma = \partial\Omega$ and *partial data* if $\Gamma \subsetneq \partial\Omega$. Note
 84 that assuming such measurement, the modulated boundary photon current $\nu \cdot D_\varepsilon \nabla \phi_\varepsilon|_\Gamma$

85 is readily known on Γ in view of the relation (1.7). Therefore, the inverse problem
 86 in UMBLET is to recover the bio-luminescence source S from the measurement (1.8),
 87 assuming D and σ_a are given.

88 **Literature Review.** We briefly review the literature on mathematical inverse
 89 problems in BLT and UMBLET. In the diffusive regime (that is, the light propagation
 90 is modeled by the diffusion equation), the BLT and UMBLET aim to recover
 91 the spatial distribution of the bioluminescent source, that is $S(x)$ in (1.1) and $S_0(x)$
 92 in (1.6), respectively. The diffusive BLT measures a single diffusion solution at the
 93 boundary. This type of boundary data has a lower dimension compared to that of
 94 the unknown source, resulting in an underdetermined inverse problem that gener-
 95 ally suffers from nonuniqueness unless a priori information is provided regarding the
 96 source [17, 26]. Various strategies have been proposed in the literature to address
 97 the under-determination in BLT. One of them utilizes the idea of ultrasound modu-
 98 lation, leading to the development of the UMBLET. The diffusive UMBLET measures a
 99 series of perturbed diffusion solutions at the boundary. Through asymptotic analysis
 100 and integration-by-parts techniques, this boundary data can be readily converted into
 101 equivalent internal data, resulting in a formally-determined inverse problems [10].

102 In the transport regime (that is, the light propagation is modeled by the radi-
 103 tive transfer equation), the inverse problems in BLT and UMBLET seek to recover a
 104 bioluminescent source in the radiative transfer equation (RTE). The transport BLT
 105 measures angularly-resolved RTE solution at the boundary. The angular measurement
 106 provides additional information in contrast to diffusive BLT, making the transport
 107 BLT problem formally-determined ($n = 2$) or even overdetermined ($n \geq 3$). In par-
 108 ticular, some uniqueness, stability, and reconstruction results have been obtained for
 109 the transport BLT problem in [11, 21, 22, 23, 35]. On the other hand, the trans-
 110 port UMBLET measures a series of perturbed RTE solutions at the boundary. This
 111 boundary data can be likewise converted into internal data, resulting in an inverse
 112 source problem with internal functional data for the RTE [5]. Several uniqueness and
 113 stability results have been established in [7, 14].

114 **Contribution of the Paper.** The paper proposes a reconstructive source imag-
 115 ing procedure for diffusive UMBLET in optically anisotropic media with partial data
 116 and uncertain optical parameters. Within the framework of mathematical theory of
 117 diffusive UMBLET, the major contributions include:

- 118 • **Reconstruction in Optically Anisotropic Media.** Optically anisotropic ma-
 119 terials have different optical properties depending on the direction of light
 120 propagation within them. This is in contrast to optically isotropic materials,
 121 where the optical properties remain the same regardless of direction. A re-
 122 construction procedure for diffusive UMBLET has been obtained in optically
 123 isotropic media [10]. In Section 2, we follow the idea of the proof in [10] and
 124 generalize it to optically anisotropic media. The study provides a more com-
 125 prehensive understanding of diffusive UMBLET imaging in optically complex
 126 media.
- 127 • **Reconstruction with Partial Data.** In practical situations, it is common to
 128 have access only to partial or incomplete measurements due to limitations in
 129 sensing devices or environmental factors. Consequently, our study extends
 130 to source imaging in diffusive UMBLET when data is solely attainable at par-
 131 tial boundary. Our results encompasses the refinement of the reconstruction
 132 procedure to accommodate partial data, thereby furnishing a theoretical un-
 133 derpinning for source imaging with limited data acquisition, see Theorem 3.2.

- Uncertainty Quantification from the PDE Perspective. Our reconstruction procedure, with full or partial data, hinges essentially on prior knowledge of optical parameters, notably the diffusion coefficient and the absorption coefficient. As a result, it is paramount to understand the consequence of inaccuracies within these optical parameters on the source imaging process. One method to quantify such a consequence involves assessing the discrepancies between PDE solutions [27, 33]. In this paper, we take this perspective to investigate the source imaging problem in UMBLT. We derive a quantitative uncertainty estimate using the PDE theory of second-order elliptic equations, see Theorem 4.2. The estimate demonstrates how the variance of the source is linked to the variance of the optical parameters.
- Discrete Formulation for Diffusive UMBLT. The diffusive UMBLT model is further discretized using the staggered grid scheme to yield a discrete model. This discrete formulation serves two purposes: on the one hand, it provides a finite dimensional formulation of the source imaging problem in UMBLT; on the other hand, it facilitates the subsequent numerical implementation and validation of the diffusive model. Our analysis is further extended to this discrete model: we prove that the finite-dimensional formulation is well posed, adapt the reconstructive procedure to the discrete model, and derive a discrete estimate to quantify the impact of uncertain optical parameters on the discrete source imaging process, see Theorem 5.4.

Paper Organization. The paper is structured as follows. In Section 2, we derive internal data from the boundary measurement in UMBLT assuming plan-wave modulation, and propose the reconstruction procedure with full data in anisotropic media. This reconstruction procedure is generalized in Section 3 to the situation where only partial boundary measurement is available. Section 4 establishes an uncertainty quantification estimate for the reconstruction procedure. Section 5 discretizes the diffusion equation using the staggered grid scheme to result in a discrete formulation of the UMBLT inverse problem. A discrete reconstruction procedure is derived along with a discrete uncertainty quantification estimate. Section 6 is devoted to the implementation of the reconstruction procedure as well as quantitative validation using numerical examples.

2. Reconstruction with Full Data. Throughout the paper, the following hypotheses are made regarding the anisotropic diffusion coefficient $D(x)$ and the absorption coefficient $\sigma_a(x)$:

H1 $D(x)$ is a matrix-valued function and $D(x) = I$ near $\partial\Omega$. Here, I is the identity matrix.

H2 $\sigma_a \in C^\alpha(\Omega)$, $D_{ij} \in C^{1,\alpha}(\Omega)$ where $C^{k,\alpha}$ is the Hölder space of order k with exponent $\alpha \in (0, 1)$.

H3 $D(x)$ is positive definite for all $x \in \Omega$, that is, there exists a constant $\lambda > 0$ such that

$$\frac{1}{\lambda}|\xi|^2 \geq \xi^\top D(x)\xi \geq \lambda|\xi|^2 \quad \text{a.e. on } \bar{\Omega}$$

holds for any $\xi \in \mathbb{R}^n$.

H4 $\sigma_a \geq 0$ a.e. on $\bar{\Omega}$.

Under these hypotheses, we will derive a reconstructive procedure to recover the internal source S , provided the anisotropic diffusion coefficient $D(x)$ and the absorption coefficient $\sigma_a(x)$ are given. The idea is similar to the proof in [10] in spirit, but is

181 generalized to anisotropic $D(x)$. Recall that the full boundary measurement means
 182 $\Gamma = \partial\Omega$.

183 Consider the adjoint problem to (1.6)-(1.7) with $\varepsilon = 0$ and a prescribed Robin
 184 boundary condition g :

185 (2.1) $-\nabla \cdot D(x)\nabla\psi(x) + \sigma_a(x)\psi(x) = 0 \quad \text{in } \Omega.$

186 (2.2) $\psi + \ell\nu \cdot D\nabla\psi = g \quad \text{on } \partial\Omega.$

187 Note that the adjoint solution ψ can be computed, as D , σ_a and g are known. We
 188 multiply (1.6) by ψ , multiple (2.1) by ϕ_ε , then integrate their difference by parts over
 189 Ω to obtain

190 (2.3) $-\frac{1}{\ell} \int_{\partial\Omega} g\phi_\varepsilon \, ds = \int_{\Omega} (D_\varepsilon - D_0)\nabla\phi_\varepsilon \cdot \nabla\psi + (\sigma_{a,\varepsilon} - \sigma_{a,0})\phi_\varepsilon\psi - \psi S_\varepsilon \, dx,$

191 where the boundary integral are computed using the boundary conditions (1.7) and
 192 (2.2). Expand both sides in ε using (1.3)-(1.5) and equate the $O(\varepsilon)$ -terms to obtain
 193 (2.4)

$-\frac{1}{\ell} \int_{\partial\Omega} g \frac{\partial\phi_\varepsilon}{\partial\varepsilon} \Big|_{\varepsilon=0} \, ds = \int_{\Omega} [(2\gamma - 1)D\nabla\phi_0 \cdot \nabla\psi + (2\gamma + 1)\sigma_a\phi_0\psi - \psi S] \cos(q \cdot x + \varphi) \, dx.$

194 As the left hand side is known from the measurement (1.8), so is the right hand side.
 195 By varying the modulation parameters q and φ , one can recover the Fourier transform
 196 of the following function:

197 (2.5) $H_\psi := (2\gamma - 1)D\nabla\phi_0 \cdot \nabla\psi + (2\gamma + 1)\sigma_a\phi_0\psi - \psi S.$

198 If we choose a specific adjoint solution ψ_0 such that $\psi_0 \geq c > 0$ for some constant c ,
 199 then dividing both sides by ψ_0 and substituting S by the equation (1.6) with $\varepsilon = 0$
 200 give the following PDE

201 (2.6) $F_{\psi_0} := \frac{H_{\psi_0}}{\psi_0} = \nabla \cdot D\nabla\phi_0 + (2\gamma - 1)D\nabla\phi_0 \cdot \nabla \log \psi_0 + 2\gamma\sigma_a\phi_0.$

202 This is a second order elliptic PDE for ϕ_0 with known coefficients, which can be solved
 203 along with the boundary condition (1.7) with $\varepsilon = 0$ to yield ϕ_0 . Finally, the source S
 204 can be computed from (1.1).

205 It remains to show the existence of the positive adjoint solution ψ_0 . To see this,
 206 note that there are suitable Dirichlet boundary conditions such that a positive solution
 207 $\psi_0 \geq c > 0$ exists by the maximum principle. One can take the corresponding Robin
 208 data $g = \psi_0 + \ell\nu \cdot D\nabla\psi_0$ to ensure the solution of (2.1)-(2.2) is ψ_0 .

209 **3. Reconstruction with Partial Data.** In this section, we aim to extend the
 210 reconstruction procedure in Section 2 to the partial data case where the boundary
 211 measurement is made only on an open subset $\Gamma \subsetneq \partial\Omega$. A careful examination of
 212 the proof suggests that the following modifications are necessary in order to adapt
 213 the idea: (1). the left hand side of (2.3) must be computable in order to obtain the
 214 internal data H_ψ from the right hand side. In the partial data case, ϕ_ε is known only
 215 on Γ , this restriction requires the choice of the adjoint boundary condition g to vanish
 216 on $\partial\Omega \setminus \Gamma$, that is, $g|_{\partial\Omega \setminus \Gamma} = 0$. (2). A critical ingredient in the proof with full data
 217 is the existence of a positive adjoint solution $\psi_0 > 0$. In the partial data case, we
 218 need to show the existence of a positive adjoint solution $\psi_0 > 0$ with the additional

219 constraint $g|_{\partial\Omega\setminus\Gamma} = 0$. Once the second modification is verified, the reconstructive
 220 procedure in Section 2 would apply to the partial data case as well.

221 The main part of this section is devoted to proving the existence of a positive
 222 solution to the adjoint problem (2.1)-(2.2) with $g|_{\partial\Omega\setminus\Gamma} = 0$. Instead of directly con-
 223 structing a positive adjoint solution, we consider the following adjoint equation with
 224 mixed boundary conditions:

225 (3.1)
$$-\nabla \cdot D(x)\nabla\psi(x) + \sigma_a(x)\psi(x) = 0 \quad \text{in } \Omega.$$

226 (3.2)
$$\psi + \ell\nu \cdot D\nabla\psi = 0 \quad \text{on } \partial\Omega \setminus \Gamma.$$

227 (3.3)
$$\psi = f \quad \text{on } \Gamma.$$

228 Once we find a positive solution ψ to this mixed boundary value problem, we can
 229 simply take $g = (\psi + \ell\nu \cdot D\nabla\psi)|_{\partial\Omega}$ in the adjoint problem (2.1)-(2.2), then the adjoint
 230 solution is $\psi > 0$.

231 The following result ensures the well-posedness of the mixed boundary value prob-
 232 lem.

233 **PROPOSITION 3.1** ([32, Theorem 1]). *Assume that*

234
$$\sigma_a \in C^\alpha(\Omega), \quad D_{ij} \in C^{1,\alpha}(\Omega), \quad f \in C(\Gamma) \cap L^\infty(\Gamma),$$

235 *then (3.1)-(3.3) has a unique solution $\psi \in C^2(\overline{\Omega} \setminus \overline{\Gamma}) \cap C^0(\overline{\Omega})$*

236 **THEOREM 3.2.** *Suppose the hypotheses **H1-H4** hold. If the Dirichlet boundary
 237 condition $f \in C(\Gamma) \cap L^\infty(\Gamma)$ is positive, then the mixed boundary value problem (3.1)-
 238 (3.3) admits a unique solution $\psi \in C^2(\overline{\Omega} \setminus \overline{\Gamma}) \cap C^0(\overline{\Omega})$ which is positive on $\overline{\Omega}$.*

Proof. By Proposition 3.1, the mixed boundary value problem has a unique solution $\psi \in C^2(\overline{\Omega} \setminus \overline{\Gamma}) \cap C^0(\overline{\Omega})$. Suppose ψ takes negative values on $\overline{\Omega}$, the weak maximum principle [20, Section 6.4 Theorem 2] claims that the minimum is achieved on the boundary $\partial\Omega$. Since $\psi|_\Gamma > 0$, the minimum must be achieved at a point $x_0 \in \partial\Omega \setminus \Gamma$, that is, $\psi(x_0) = \inf_{x \in \overline{\Omega}} \psi < 0$. According to the Robin boundary condition (3.2), we have

$$\partial_\nu\psi(x_0) = \nu \cdot D\nabla\psi(x_0) = -\frac{1}{\ell}\psi(x_0) > 0$$

239 where the first equality holds since $D(x) = I$ near $\partial\Omega$. This contradicts that x_0 is a
 240 global minimum of ψ over $\overline{\Omega}$. Therefore, $\psi \geq 0$ on $\overline{\Omega}$.

241 If ψ achieves the zero minimum at an interior point, that is, $\psi(x) = 0$ for some
 242 $x \in \Omega$, the strong maximum principle [20, Section 6.4 Theorem 4] forces $\psi \equiv \text{constant}$
 243 in Ω . In view of the Robin boundary condition on $\partial\Omega \setminus \Gamma$, we have $\psi \equiv 0$, contradicting
 244 that $\psi|_\Gamma = f > 0$. Therefore, $\psi > 0$ in Ω .

It remains to show $\psi|_{\partial\Omega} > 0$, or more precisely, $\psi|_{\partial\Omega \setminus \Gamma} > 0$ since $\psi|_\Gamma = f > 0$.
 Suppose otherwise, that is, there exists $x_0 \in \partial\Omega \setminus \Gamma$ such that $\psi(x_0) = \inf_{x \in \overline{\Omega}} \psi = 0$.
 Applying the Hopf Lemma [20, Section 6.4 Lemma 3(ii)] to $-\psi$ shows that $\partial_\nu\psi(x_0) < 0$, then

$$\psi(x_0) + \ell\nu \cdot D\nabla\psi(x_0) = \ell\partial_\nu\psi(x_0) < 0,$$

245 contradicting the boundary condition on $\partial\Omega \setminus \Gamma$. Therefore, we must have $\psi|_{\partial\Omega \setminus \Gamma} > 0$.

246 Combining all the cases, we see that ψ is a positive solution on the compact set
 247 $\overline{\Omega}$, hence has a positive lower bound. This completes the proof. \square

248 *Remark 3.3.* Theorem 3.2 ensures the existence of a positive adjoint solution $\psi >$
 249 0 with partial data, then we can reconstruct the source S using the same process as
 250 for the full data case.

251 **4. Uncertainty Quantification with Continuous Diffusive Model.** The
 252 reconstructive procedures in Section 2 and Section 3 rely essentially on accurate prior
 253 knowledge of the optical coefficients (D, σ) to solve the elliptic equation (2.6) (along
 254 with boundary conditions) for ϕ_0 . The underlying rationale is that these optical co-
 255 efficients can be measured in advance using other imaging modalities such as optical
 256 tomography [4]. Practically, the imaging process in these additional modalities in-
 257 evitably introduces inaccuracy to the optical coefficients, which in turn will impact
 258 the UMBBLT reconstructions. In the subsequent two sections, we aim to quantify
 259 the impact to the reconstruction of the bio-luminescence source S that is due to the
 260 inaccuracy of the optical coefficients, using the continuous and discretized models
 261 respectively.

262 Let (D, σ_a) be the underlying true optical coefficients, and $(\tilde{D}, \tilde{\sigma}_a)$ be the opti-
 263 cal coefficients that are reconstructed through additional imaging modalities before
 264 performing UMBBLT. Observe that $(\tilde{D}, \tilde{\sigma}_a)$ do not play a role in the derivation of the
 265 internal data: This is because the boundary integral on the left hand side of (2.3)
 266 remains the same, thus we can derive H_ψ as before. Hereafter, we will assume the
 267 internal data H_ψ has been accurately extracted, and focus on quantifying the uncer-
 268 tainty of the reconstructed source S . The full data case and partial data case will
 269 be handled in one shot, since the reconstruction process are identical once a suitable
 270 positive adjoint solution $\psi_0 > 0$ is chosen.

271 We record a regularity result for the diffusion equation with Robin boundary
 272 conditions. Here, $W^{s,\infty}(\Omega)$ and $H^s(\Omega)$ denotes the L^∞ -based and L^2 -based Sobolev
 273 spaces of order $s \in \mathbb{R}$, respectively.

274 PROPOSITION 4.1 ([19, Theorem 2.4]). *Suppose D is uniformly elliptic, $D_{ij} \in$
 275 $W^{1,\infty}(\Omega)$, $A \in L^\infty(\Omega; \mathbb{R}^n)$ is a vector field, and $0 \leq \sigma_a \in L^\infty(\Omega)$ a.e. For $S \in L^2(\Omega)$
 276 and $g \in H^{\frac{1}{2}}(\partial\Omega)$, the following boundary value problem*

$$277 \quad (4.1) \quad -\nabla \cdot D(x) \nabla \phi(x) + A(x) \cdot \nabla \phi(x) + \sigma_a(x) \phi(x) = S(x) \quad \text{in } \Omega.$$

$$278 \quad (4.2) \quad \phi + \ell \nu \cdot D \nabla \phi = g \quad \text{on } \partial\Omega.$$

279 admits a unique solution $\phi \in H^2(\Omega)$ with the estimate

$$280 \quad (4.3) \quad \|\phi\|_{H^2(\Omega)} \leq C(\|S\|_{L^2(\Omega)} + \|g\|_{H^{\frac{1}{2}}(\partial\Omega)})$$

281 where C is a constant independent of ϕ .

282 We have the following global uncertainty quantification (UQ) estimate for the
 283 diffusive UMBBLT reconstruction.

284 THEOREM 4.2. *Suppose all optical coefficients and solutions satisfy*

$$285 \quad \|D_{ij}\|_{W^{1,\infty}(\Omega)}, \|\tilde{D}_{ij}\|_{W^{1,\infty}(\Omega)} \leq C_D, \quad \|\phi\|_{W^{2,\infty}(\Omega)}, \|\tilde{\phi}\|_{W^{2,\infty}(\Omega)} \leq C_\phi,$$

$$286 \quad \|\psi\|_{W^{2,\infty}(\Omega)}, \|\tilde{\psi}\|_{W^{2,\infty}(\Omega)} \leq C_\psi, \quad \|\sigma_a\|_{L^\infty(\Omega)}, \|\tilde{\sigma}_a\|_{L^\infty(\Omega)} \leq C_\sigma,$$

$$287 \quad \psi, \tilde{\psi} \geq c_\psi > 0,$$

288 where $C_D, C_\phi, C_\psi, C_\sigma, c_\psi$ are constants, and 0 is not eigenvalue of the following operators equipped with the zero Robin boundary condition:

290
$$\nabla \cdot D \nabla + (2\gamma - 1) D \nabla \log \psi \cdot \nabla + 2\gamma \sigma_a, \quad \nabla \cdot \tilde{D} \nabla + (2\gamma - 1) \tilde{D} \nabla \log \tilde{\psi} \cdot \nabla + 2\gamma \tilde{\sigma}_a,$$

291 then we can find constants $C_{1ij}, C_2 > 0$ such that

292 (4.4)
$$\|S - \tilde{S}\|_{L^2(\Omega)} \leq \sum_{i \leq j} C_{1ij} \|(D - \tilde{D})_{ij}\|_{H^1(\Omega)} + C_2 \|\sigma_a - \tilde{\sigma}_a\|_{L^2(\Omega)}$$

Proof. Let ϕ and $\tilde{\phi}$ solve the diffusion equations

$$S = -\nabla \cdot [D \nabla \phi] + \sigma_a \phi, \quad \tilde{S} = -\nabla \cdot [\tilde{D} \nabla \tilde{\phi}] + \tilde{\sigma}_a \tilde{\phi},$$

respectively. Subtract these equations to get

$$S - \tilde{S} = -\nabla \cdot [(D - \tilde{D}) \nabla \phi] - \nabla \cdot [\tilde{D} \nabla (\phi - \tilde{\phi})] + (\sigma_a - \tilde{\sigma}_a) \phi + \tilde{\sigma}_a (\phi - \tilde{\phi}).$$

293 Taking the L^2 -norms on both sides, we have

294 (4.5)
$$\begin{aligned} & \|S - \tilde{S}\|_{L^2(\Omega)} \\ & \leq \|\nabla \cdot [(D - \tilde{D}) \nabla \phi]\|_{L^2(\Omega)} + \|\nabla \cdot [\tilde{D} \nabla (\phi - \tilde{\phi})]\|_{L^2(\Omega)} \\ & \quad + \|(\sigma_a - \tilde{\sigma}_a) \phi\|_{L^2(\Omega)} + \|\tilde{\sigma}_a (\phi - \tilde{\phi})\|_{L^2(\Omega)} \\ & \leq \sum_{ij} \|\partial_j \phi\|_{L^\infty(\Omega)} \|\partial_i (D - \tilde{D})_{ij}\|_{L^2(\Omega)} + \sum_{ij} \|\partial_{ij} \phi\|_{L^\infty(\Omega)} \|(D - \tilde{D})_{ij}\|_{L^2(\Omega)} \\ & \quad + \sum_{ij} \|\partial_i \tilde{D}_{ij}\|_{L^\infty(\Omega)} \|\partial_j (\phi - \tilde{\phi})\|_{L^2(\Omega)} + \sum_{ij} \|\tilde{D}_{ij}\|_{L^\infty(\Omega)} \|\partial_{ij} (\phi - \tilde{\phi})\|_{L^2(\Omega)} \\ & \quad + \|\phi\|_{L^\infty(\Omega)} \|\sigma_a - \tilde{\sigma}_a\|_{L^2(\Omega)} + \|\tilde{\sigma}_a\|_{L^\infty(\Omega)} \|\phi - \tilde{\phi}\|_{L^2(\Omega)} \\ & \leq c_1 \|\phi - \tilde{\phi}\|_{H^2(\Omega)} + \sum_{i \leq j} c_{2ij} \|(D - \tilde{D})_{ij}\|_{H^1(\Omega)} + c_3 \|\sigma_a - \tilde{\sigma}_a\|_{L^2(\Omega)} \end{aligned}$$

295 where the constants $c_1, c_{2ij}, c_3 > 0$ can be made explicit as follows:

296
$$c_1 = \sqrt{\|\tilde{\sigma}_a\|_{L^\infty(\Omega)}^2 + \sum_j \left[\sum_i \|\partial_i \tilde{D}_{ij}\|_{L^\infty(\Omega)} \right]^2 + 4 \sum_{i < j} \|\tilde{D}_{ij}\|_{L^\infty(\Omega)}^2 + \sum_i \|\tilde{D}_{ii}\|_{L^\infty(\Omega)}^2}$$

297
$$c_{2ij} = \sqrt{4 \|\partial_{ij} \phi\|_{L^\infty(\Omega)}^2 + (\|\partial_i \phi\|_{L^\infty(\Omega)} + \|\partial_j \phi\|_{L^\infty(\Omega)})^2} \quad (i < j)$$

298
$$c_{2ii} = \sqrt{\|\partial_{ii} \phi\|_{L^\infty(\Omega)}^2 + \|\partial_i \phi\|_{L^\infty(\Omega)}^2}$$

299
$$c_3 = \|\phi\|_{L^\infty(\Omega)}$$

300 In order to estimate the term $\|\phi - \tilde{\phi}\|_{H^2(\Omega)}$, we turn to the second order elliptic
301 equations generated from the internal data $H_\psi = H_{\tilde{\psi}}$:

302
$$F_\psi = \frac{H_\psi}{\psi} = (2\gamma - 1) D \nabla \phi \cdot \nabla \log \psi + 2\gamma \sigma_a \phi + \nabla \cdot D \nabla \phi$$

303
$$F_{\tilde{\psi}} = \frac{H_{\tilde{\psi}}}{\tilde{\psi}} = (2\gamma - 1) \tilde{D} \nabla \tilde{\phi} \cdot \nabla \log \tilde{\psi} + 2\gamma \tilde{\sigma}_a \tilde{\phi} + \nabla \cdot \tilde{D} \nabla \tilde{\phi}.$$

304 Subtracting these equations gives

$$\begin{aligned}
 & -\nabla \cdot \tilde{D} \nabla [\phi - \tilde{\phi}] - 2\gamma \tilde{\sigma}_a (\phi - \tilde{\phi}) - (2\gamma - 1) \tilde{D} \nabla (\phi - \tilde{\phi}) \cdot \nabla \log \psi \\
 305 & = \frac{H_\psi}{\psi \tilde{\psi}} (\psi - \tilde{\psi}) + (2\gamma - 1) (D - \tilde{D}) \nabla \phi \cdot \nabla \log \psi \\
 & + (2\gamma - 1) \tilde{D} \nabla \tilde{\phi} \cdot (\nabla \log \psi - \nabla \log \tilde{\psi}) + 2\gamma (\sigma_a - \tilde{\sigma}_a) \phi + \nabla \cdot [D - \tilde{D}] \nabla \phi,
 \end{aligned}$$

306 This is a second order elliptic equation for $\phi - \tilde{\phi}$ with zero Robin boundary condition,
 307 we have the following regularity estimate by Proposition 4.1:

$$\begin{aligned}
 & \|\phi - \tilde{\phi}\|_{H^2(\Omega)} \\
 \leq & C \left(\left\| \frac{H_\psi}{\psi \tilde{\psi}} (\psi - \tilde{\psi}) \right\|_{L^2(\Omega)} + |2\gamma - 1| \|(D - \tilde{D}) \nabla \phi \cdot \nabla \log \psi\|_{L^2(\Omega)} \right. \\
 & + |2\gamma - 1| \|\tilde{D} \nabla \tilde{\phi} \cdot (\nabla \log \psi - \nabla \log \tilde{\psi})\|_{L^2(\Omega)} + \|\nabla \cdot [D - \tilde{D}] \nabla \phi\|_{L^2(\Omega)} \\
 & \left. + |2\gamma| \|(\sigma_a - \tilde{\sigma}_a) \phi\|_{L^2(\Omega)} \right) \\
 \leq & C \left(\frac{\|H_\psi\|_{L^\infty(\Omega)}}{c_\psi^2} \|\psi - \tilde{\psi}\|_{L^2(\Omega)} + \sum_{ij} \|\partial_j \phi\|_{L^\infty(\Omega)} \|\partial_i (D - \tilde{D})_{ij}\|_{L^2(\Omega)} \right. \\
 308 & (4.6) \quad + |2\gamma - 1| \sum_{ij} \|\tilde{D}_{ij}\|_{L^\infty(\Omega)} \|\partial_j \tilde{\phi}\|_{L^\infty(\Omega)} \|\partial_i (\log \psi - \log \tilde{\psi})\|_{L^2(\Omega)} \\
 & + |2\gamma - 1| \sum_{ij} \|\partial_i \log \psi\|_{L^\infty(\Omega)} \|\partial_j \phi\|_{L^\infty(\Omega)} \|(D - \tilde{D})_{ij}\|_{L^2(\Omega)} \\
 & \left. + \sum_{ij} \|\partial_{ij} \phi\|_{L^\infty(\Omega)} \|(D - \tilde{D})_{ij}\|_{L^2(\Omega)} + |2\gamma| \|\phi\|_{L^\infty(\Omega)} \|\sigma_a - \tilde{\sigma}_a\|_{L^2(\Omega)} \right) \\
 \leq & c_4 \|\psi - \tilde{\psi}\|_{H^1(\Omega)} + \sum_{i \leq j} c_{5ij} \|(D - \tilde{D})_{ij}\|_{H^1(\Omega)} + c_6 \|\sigma_a - \tilde{\sigma}_a\|_{L^2(\Omega)}
 \end{aligned}$$

309 where in the last inequality, we used the upper bound

$$310 \quad \|\partial_i \log \psi\|_{L^\infty(\Omega)} \leq \frac{1}{c_\psi} \|\partial_i \psi\|_{L^\infty(\Omega)}$$

311 and

$$\begin{aligned}
 & \|\partial_i (\log \psi - \log \tilde{\psi})\|_{L^2(\Omega)} \\
 \leq & \frac{1}{c_\psi^2} \|\psi \partial_i \tilde{\psi} - \tilde{\psi} \partial_i \psi\|_{L^2(\Omega)} = \frac{1}{c_\psi^2} \|(\psi - \tilde{\psi}) \partial_i \tilde{\psi} - \tilde{\psi} \partial_i (\psi - \tilde{\psi})\|_{L^2(\Omega)} \\
 312 & \leq \frac{1}{c_\psi^2} \|\partial_i \tilde{\psi}\|_{L^\infty(\Omega)} \|\psi - \tilde{\psi}\|_{L^2(\Omega)} + \frac{1}{c_\psi^2} \|\tilde{\psi}\|_{L^\infty(\Omega)} \|\partial_i (\psi - \tilde{\psi})\|_{L^2(\Omega)}
 \end{aligned}$$

313 The constants $c_4, c_{5ij}, c_6 > 0$ are defined as

$$\begin{aligned}
 314 \quad c_4 & = \frac{C|2\gamma - 1|}{c_\psi^2} \left(\sum_i \left(\sum_j \|\tilde{D}_{ij}\|_{L^2(\bar{\Omega})} \|\partial_j \phi\|_{L^\infty(\bar{\Omega})} \|\tilde{\psi}\|_{L^\infty(\bar{\Omega})} \right)^2 \right. \\
 315 & \left. + \left(\frac{\|H_\psi\|_{L^\infty(\bar{\Omega})}}{|2\gamma - 1|} + \sum_{ij} \|\tilde{D}_{ij}\|_{L^2(\bar{\Omega})} \|\partial_j \phi\|_{L^\infty(\bar{\Omega})} \|\partial_i \tilde{\psi}\|_{L^\infty(\bar{\Omega})} \right)^2 \right)^{\frac{1}{2}}
 \end{aligned}$$

$$\begin{aligned}
316 \quad c_{5ij} &= C \cdot \left(\left(2\|\partial_{ij}\phi\|_{L^\infty(\bar{\Omega})} + \frac{|2\gamma-1|}{c_\psi} \|\partial_i\psi\|_{L^\infty(\bar{\Omega})} \|\partial_j\phi\|_{L^\infty(\bar{\Omega})} + \frac{|2\gamma-1|}{c_\psi} \|\partial_j\psi\|_{L^\infty(\bar{\Omega})} \|\partial_i\phi\|_{L^\infty(\bar{\Omega})} \right)^2 \right. \\
317 \quad &\quad \left. + \left(\|\partial_i\phi\|_{L^\infty(\bar{\Omega})} + \|\partial_j\phi\|_{L^\infty(\bar{\Omega})} \right)^2 \right)^{\frac{1}{2}} \quad (i < j) \\
318 \quad c_{5ii} &= C \cdot \sqrt{\left(\|\partial_{ii}\phi\|_{L^\infty(\bar{\Omega})} + \frac{|2\gamma-1|}{c_\psi} \|\partial_i\psi\|_{L^\infty(\bar{\Omega})} \|\partial_i\phi\|_{L^\infty(\bar{\Omega})} \right)^2 + \|\partial_i\phi\|_{L^\infty(\bar{\Omega})}^2} \\
319 \quad c_6 &= |2\gamma| C \cdot \|\phi\|_{L^\infty(\bar{\Omega})}
\end{aligned}$$

320 It remains to estimate the term $\|\psi - \tilde{\psi}\|_{H^1(\Omega)}$. Let us consider the adjoint equa-
321 tions

$$\begin{aligned}
322 \quad (4.7) \quad & -\nabla \cdot D \nabla \psi + \sigma_a \psi = 0, \\
& -\nabla \cdot \tilde{D} \nabla \tilde{\psi} + \tilde{\sigma}_a \tilde{\psi} = 0.
\end{aligned}$$

323 Subtract these two equations to get

$$324 \quad (4.8) \quad -\nabla \cdot \tilde{D} \nabla (\psi - \tilde{\psi}) + \tilde{\sigma}_a (\psi - \tilde{\psi}) = \nabla \cdot (D - \tilde{D}) \nabla \psi - (\sigma_a - \tilde{\sigma}_a) \psi$$

325 This is a second order elliptic equation for $\psi - \tilde{\psi}$ with the zero Robin boundary
326 condition. Again, by the elliptic regularity result Proposition 4.1, we have

$$\begin{aligned}
327 \quad (4.9) \quad & \|\psi - \tilde{\psi}\|_{H^1(\Omega)} \\
& \leq C(\|\nabla \cdot [(D - \tilde{D}) \nabla \psi]\|_{L^2(\Omega)} + \|(\sigma_a - \tilde{\sigma}_a) \psi\|_{L^2(\Omega)}) \\
& \leq C \left(\sum_{ij} \|\partial_j \psi\|_{L^\infty(\Omega)} \|\partial_i(D - \tilde{D})_{ij}\|_{L^2(\Omega)} + \sum_{ij} \|\partial_{ij} \psi\|_{L^\infty(\Omega)} \|(D - \tilde{D})_{ij}\|_{L^2(\Omega)} \right. \\
& \quad \left. + \|\psi\|_{L^\infty(\Omega)} \|(\sigma_a - \tilde{\sigma}_a)\|_{L^2(\Omega)} \right) \\
& \leq \sum_{i \leq j} c_{7ij} \|(D - \tilde{D})_{ij}\|_{H^1(\Omega)} + c_8 \|\sigma_a - \tilde{\sigma}_a\|_{L^2(\Omega)}
\end{aligned}$$

328 with constants $c_{7ij}, c_8 > 0$, where

$$\begin{aligned}
329 \quad c_{7ij} &= C \cdot \sqrt{\left(\|\partial_i \psi\|_{L^\infty(\Omega)} + \|\partial_j \psi\|_{L^\infty(\Omega)} \right)^2 + 4 \|\partial_{ij} \psi\|_{L^\infty(\Omega)}^2} \quad (i < j) \\
330 \quad c_{7ii} &= C \cdot \sqrt{\|\partial_i \psi\|_{L^\infty(\Omega)}^2 + \|\partial_{ii} \psi\|_{L^\infty(\Omega)}^2} \\
331 \quad c_8 &= C \cdot \|\psi\|_{L^\infty(\Omega)}
\end{aligned}$$

332 Combining (4.5) (4.6) and (4.9), we conclude that

$$333 \quad (4.10) \quad \|S - \tilde{S}\|_{L^2(\Omega)} \leq \sum_{i \leq j} C_{1ij} \|(D - \tilde{D})_{ij}\|_{H^1(\Omega)} + C_2 \|\sigma - \tilde{\sigma}\|_{L^2(\Omega)},$$

334 with $C_{1ij} = c_1 c_4 c_{7ij} + c_1 c_{5ij} + c_{2ij}$ and $C_2 = c_1 c_4 c_8 + c_1 c_6 + c_3$. Note that all the
335 constants in this proof are explicit, except for the constant C that comes from the
336 estimate of elliptic regularity. \square

335 *Remark 4.3.* Theorem 4.2 can be interpreted as follows. Squaring estimate (4.4)
gives

$$\|S - \tilde{S}\|_{L^2(\Omega)}^2 \leq \mathfrak{C} \left(\|D - \tilde{D}\|_{H^1(\Omega)}^2 + \|\sigma_a - \tilde{\sigma}_a\|_{L^2(\Omega)}^2 \right)$$

337 where the constant \mathfrak{C} is in terms of C_{1ij} and C_2 . If we take S, D, σ_a to be the
 338 underlying ground-truth parameters and $\tilde{S}, \tilde{D}, \tilde{\sigma}_a$ the corresponding parameters in
 339 the presence of additive random uncertainty of mean zero, then $\mathbb{E}[\tilde{S}] = S$, $\mathbb{E}[\tilde{D}] = D$,
 340 $\mathbb{E}[\tilde{\sigma}_a] = \sigma_a$. The estimate provides a quantitative error bound on the variance of the
 341 bioluminescent source.

342 **5. Uncertainty Quantification with Discretized Diffusive Model.** In the
 343 previous section, we considered the impact of inaccurate (D, σ_a) using continuous
 344 PDE models. However, for the subsequent numerical simulation, the PDEs have to
 345 be discretized into finite dimensional discrete models. This motivates us to study a
 346 similar UQ problem based on the finite difference discretization of the PDE model.
 347 The analysis in this section provides a finite dimensional counterpart of the infinite
 348 dimensional UQ estimate (4.4), bridging the gap between the infinite dimensional
 349 analysis and the finite dimensional numerical experiments.

350 We will consider the discretization of three diffusion-type equations: the for-
 351 ward problem (1.6)-(1.7), the adjoint problem (2.1)-(2.2), and the internal data prob-
 352 lem (2.5) equipped with the zero Robin boundary condition. These problems need
 353 to be discretized in order to implement the reconstruction procedure outlined in
 354 Section 2. The discretization procedure requires numerical evaluation of the terms
 355 $\nabla \cdot D \nabla \phi_0$, $D \nabla \phi_0 \cdot \nabla \log \psi_0$, and $\sigma_a \phi_0$. The last term can be readily evaluated on a
 356 grid. In the following, we explain how to discretize the first two differential operators
 357 using the staggered grid scheme.

358 We take Ω to be a 2D domain to agree with the setup of the subsequent numerical
 359 experiments. The 2D coordinates are written as (x, y) . The problem in 3D can be
 360 considered likewise with an additional spatial variable. Let $\Delta x, \Delta y$ denote the grid
 361 size on the x -direction and y -direction, respectively. We will discretize the divergence-
 362 form diffusion operator using the staggered grid scheme, see Figure 1. The black
 363 dots are indexed by (i, j) , where $i = 1, 2, \dots, N_x$, $j = 1, 2, \dots, N_y$, white dots are
 364 indexed by $(i + \frac{1}{2}, j)$, where $i = 1, 2, \dots, N_x - 1$, $j = 1, 2, \dots, N_y$ and $(i, j + \frac{1}{2})$, where
 365 $i = 1, 2, \dots, N_x$, $j = 1, 2, \dots, N_y - 1$. For a function u , we use $u_{i,j}$ to represent an
 366 approximate value of $u(x_i, y_j)$, where $x_i = x_1 + (i - 1)\Delta x$ and $y_j = y_1 + (j - 1)\Delta y$
 367 are the coordinates of the grid points.

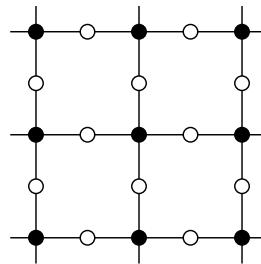


Fig. 1: The illustration of staggered grid scheme. The zero and second order terms
 are defined on the grid points (black dots), the first order terms and D are defined
 on the edges (white dots).

368 **5.1. Discretization with Isotropic Diffusion Coefficients..** We begin the
 369 discretization with an isotropic diffusion coefficient, that is, $D = D(x)$ is a scalar
 370 function.

371 **5.1.1. Discretization of the Forward Problem..** First, we consider dis-
 372 cretization of the forward problem (1.6)-(1.7). Using the staggered grid scheme, the
 373 operator $\nabla \cdot D \nabla u$ is discretized as

$$\begin{aligned}
 & [\nabla \cdot D \nabla u]_{i,j} \\
 &= [\partial_x D \partial_x u + \partial_y D \partial_y u]_{i,j} \\
 &\approx \frac{[D \partial_x u]_{i+\frac{1}{2},j} - [D \partial_x u]_{i-\frac{1}{2},j}}{\Delta x} + \frac{[D \partial_y u]_{i,j+\frac{1}{2}} - [D \partial_y u]_{i,j-\frac{1}{2}}}{\Delta y} \\
 &\approx \frac{D_{i+\frac{1}{2},j}[u_{i+1,j} - u_{i,j}] - D_{i-\frac{1}{2},j}[u_{i,j} - u_{i-1,j}]}{\Delta x^2} \\
 374 \quad (5.1) \quad &+ \frac{D_{i,j+\frac{1}{2}}[u_{i,j+1} - u_{i,j}] - D_{i,j-\frac{1}{2}}[u_{i,j} - u_{i,j-1}]}{\Delta y^2} \\
 &= \left[\frac{D_{i+\frac{1}{2},j}}{\Delta x^2} \right] u_{i+1,j} + \left[\frac{D_{i-\frac{1}{2},j}}{\Delta x^2} \right] u_{i-1,j} + \left[\frac{D_{i,j+\frac{1}{2}}}{\Delta y^2} \right] u_{i,j+1} + \left[\frac{D_{i,j-\frac{1}{2}}}{\Delta y^2} \right] u_{i,j-1} \\
 &\quad - \left[\frac{D_{i+\frac{1}{2},j}}{\Delta x^2} + \frac{D_{i-\frac{1}{2},j}}{\Delta x^2} + \frac{D_{i,j+\frac{1}{2}}}{\Delta y^2} + \frac{D_{i,j-\frac{1}{2}}}{\Delta y^2} \right] u_{i,j},
 \end{aligned}$$

375 where \approx denotes the staggered grid scheme approximation.

376 For the Robin boundary condition on the four boundaries (excluding the four cor-
 377 ners), it is simply $u \pm 2D\partial_x u$ on the right/left boundary, $u \pm 2D\partial_y u$ on the top/bottom
 378 boundary. For the four corner points, e.g. the bottom left corner (Figure 2), the out-
 379 going vector ν is chosen as $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$. For example,

$$\begin{aligned}
 & [u + \ell \nu \cdot D \nabla u]_{1,1} \\
 &= u_{1,1} - \frac{\sqrt{2}\ell}{2} [D \partial_x u]_{1+\frac{1}{2},1} - \frac{\sqrt{2}\ell}{2} [D \partial_y u]_{1,1+\frac{1}{2}} \\
 380 \quad (5.2) \quad &= u_{1,1} + \frac{\sqrt{2}\ell}{2} \frac{D_{1+\frac{1}{2},1}}{\Delta x} [u_{1,1} - u_{1,2}] + \frac{\sqrt{2}\ell}{2} \frac{D_{1,1+\frac{1}{2}}}{\Delta y} [u_{1,1} - u_{2,1}] \\
 &= \left[1 + \frac{\sqrt{2}\ell D_{1+\frac{1}{2},1}}{2\Delta x} + \frac{\sqrt{2}\ell D_{1,1+\frac{1}{2}}}{2\Delta y} \right] u_{1,1} - \frac{\sqrt{2}\ell D_{1+\frac{1}{2},1}}{2\Delta x} u_{1,2} - \frac{\sqrt{2}\ell D_{1,1+\frac{1}{2}}}{2\Delta y} u_{2,1}.
 \end{aligned}$$

381 This discretization gives rise to a linear system with the unknowns $u_{i,j}$. In order to
 382 make this linear system explicit, we introduce the index function $\mathcal{I}(i, j) := (i-1)N_y + j$
 383 and use $(i, j) \sim (i', j')$ to mean that the (i', j') -point is a neighbor of (i, j) -point.
 384 Denote by I the set of interior points, by B the set of non-corner boundary points,
 385 and by B_c the set of four corner points. According to the scheme (5.1) and (5.2), the
 386 forward problem (1.6)-(1.7) is discretized to yield the linear system

387 $\mathbf{L}\phi_0 = \mathbf{s}$

388 where ϕ_0 consists of the vectorized values of the forward solution ϕ_0 at black dots

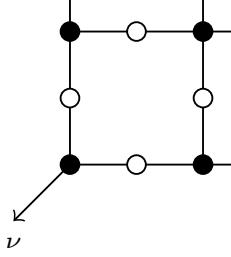


Fig. 2: The outgoing vector at the corner

389 such that $\phi_{0\mathcal{I}(i,j)} = \phi_0(x_i, y_j)$.

(5.3)

$$390 \quad \mathbf{L}_{\mathcal{I}(i,j), \mathcal{I}(i',j')} = \begin{cases} \sum_{(\tilde{i},\tilde{j}) \sim (i,j)} \frac{D_{\frac{i+\tilde{i}}{2}, \frac{j+\tilde{j}}{2}}}{|i-\tilde{i}|\Delta x^2 + |j-\tilde{j}|\Delta y^2} + \sigma_{i,j}, & (i',j') = (i,j), (i,j) \in I \\ -\frac{D_{\frac{i+i'}{2}, \frac{j+j'}{2}}}{|i-i'|\Delta x^2 + |j-j'|\Delta y^2}, & (i',j') \sim (i,j), (i,j) \in I \\ 1 + \ell \sum_{I \ni (\tilde{i},\tilde{j}) \sim (i,j)} \frac{D_{\frac{i+\tilde{i}}{2}, \frac{j+\tilde{j}}{2}}}{|i-\tilde{i}|\Delta x + |j-\tilde{j}|\Delta y}, & (i',j') = (i,j), (i,j) \in B \\ -\ell \frac{D_{\frac{i+i'}{2}, \frac{j+j'}{2}}}{|i-i'|\Delta x + |j-j'|\Delta y}, & I \ni (i',j') \sim (i,j) \in B, \\ 1 + \frac{\sqrt{2}\ell}{2} \sum_{(\tilde{i},\tilde{j}) \sim (i,j)} \frac{D_{\frac{i+\tilde{i}}{2}, \frac{j+\tilde{j}}{2}}}{|i-\tilde{i}|\Delta x + |j-\tilde{j}|\Delta y}, & (i',j') = (i,j), (i,j) \in B_c, \\ -\frac{\sqrt{2}\ell}{2} \frac{D_{\frac{i+i'}{2}, \frac{j+j'}{2}}}{|i-i'|\Delta x + |j-j'|\Delta y}, & (i',j') \sim (i,j), (i,j) \in B_c, \\ 0 & \text{others} \end{cases}$$

$$391 \quad (5.4) \quad \mathbf{s}_{\mathcal{I}(i,j)} = \begin{cases} S_{i,j}, & (i,j) \in I, \\ 0, & (i,j) \in B \cup B_c. \end{cases}$$

392 Before discussing further properties of the matrix \mathbf{L} , we recall the definition of
 393 some special matrices. Given a square matrix $A = (A_{kl})$, its k -th row is said to be
 394 *weakly diagonally dominant (WDD)* if $|A_{kk}| \geq \sum_{l \neq k} |A_{kl}|$, and the matrix A is said
 395 to be WDD if all the rows are WDD. Likewise, its k -th row is said to be *strictly*
 396 *diagonally dominant (SDD)* if \geq is replaced by a strict inequality $>$, and the matrix
 397 A is said to be SDD if all the rows are SDD.

398 DEFINITION 5.1. A square matrix $A = (A_{kl})$ is said to be *weakly chained diagonally dominant (WCDD)* if

400 • A is WDD.
 401 • For each row k that is not SDD, there exists k_1, k_2, \dots, k_p such that $A_{kk_1},$
 402 $A_{k_1 k_2}, \dots, A_{k_{p-1} k_p}, A_{k_p l}$ are nonzero and the row $A_{l,:}$ is SDD.

403 PROPOSITION 5.2. \mathbf{L} is a WCDD matrix.

Proof. First, we show \mathbf{L} is WDD. As $D > 0$, $\sigma_a \geq 0$ everywhere, all the off-diagonal terms (see Row 2, 4, 6, 7 in (5.3)) are non-positive and all the diagonal

terms (see Row 1, 3, 5 in (5.3)) are non-negative. It suffices to show that

$$\mathbf{L}_{\mathcal{I}(i,j),\mathcal{I}(i,j)} \geq \sum_{(i',j') \neq (i,j)} -\mathbf{L}_{\mathcal{I}(i,j),\mathcal{I}(i',j')}.$$

404 Move all the terms in this inequality to the left side. It suffices to show that any row
405 sum of \mathbf{L} is non-negative. This is obvious from the definition of \mathbf{L} in (5.3), where the
406 row sum of the $\mathcal{I}(i, j)$ -th row is $\sigma_{i,j}$ when $(i, j) \in I$, and the row sum of the $\mathcal{I}(i, j)$ -th
407 row is 1 when $(i, j) \in B \cup B_c$. This proves that \mathbf{L} is WDD. Moreover, the analysis
408 shows that the $\mathcal{I}(i, j)$ -th row is SDD when $(i, j) \in B \cup B_c$.

409 Next, we show the chain condition. If the $\mathcal{I}(i, j)$ -th row is not SDD, then $(i, j) \in I$.
410 As the finite difference grid is connected, there exist $(i_1, j_1), \dots, (i_p, j_p)$ such that
411 $(i_p, j_p) \in B \cup B_c$ and $(i, j) \sim (i_1, j_1) \sim \dots \sim (i_p, j_p)$. Notice that the definition of \mathbf{L}
412 has the property that $\mathbf{L}_{\mathcal{I}(i,j),\mathcal{I}(i',j')} < 0$ for $(i, j) \sim (i', j')$ (see Row 2,4,6 in (5.3)), we
413 conclude the entries $\mathbf{L}_{\mathcal{I}(i,j),\mathcal{I}(i_1,j_1)}, \dots, \mathbf{L}_{\mathcal{I}(i_{p-1},j_{p-1}),\mathcal{I}(i_p,j_p)}$ are all negative, and the
414 row $\mathbf{L}_{\mathcal{I}(i_p,j_p),:}$ is SDD since $(i_p, j_p) \in B \cup B_c$. \square

415 **PROPOSITION 5.3** ([34]). *WCDD matrices are invertible.*

416 As a result, the discretized forward problem admits a unique solution $\phi_0 = \mathbf{L}^{-1}\mathbf{s}$.

417 **5.1.2. Discretization of the Adjoint Problem..** The adjoint problem(2.1),
418 (2.2) takes a similar form as the forward problem, except that the source g is imposed
419 on the boundary. Therefore, the adjoint problem can be discretized likewise to yield
420 a linear system

$$421 \quad \mathbf{L}\psi = \mathbf{g}$$

422 where \mathbf{L} is the same finite difference matrix defined in (5.3), ψ consists of the vector-
423 ized values of the adjoint solution ψ at black dots such that $\psi_{\mathcal{I}(i,j)} = \psi(x_i, y_j)$, and
424

$$425 \quad (5.5) \quad \mathbf{g}_{\mathcal{I}(i,j)} = \begin{cases} 0, & (i, j) \in I, \\ g(x_i, y_j), & (i, j) \in B \cup B_c. \end{cases}$$

426 **5.1.3. Discretization of the Internal Data Problem..** It remains to dis-
427 cretize the internal data problem (2.5) along with the zero Robin boundary condi-
428 tion. This requires discretizing an operator of the form $D\nabla u \cdot \nabla v = D\nabla v \cdot \nabla u$. The

429 staggered grid scheme gives

$$\begin{aligned}
& [D\nabla v \cdot \nabla u]_{i,j} \\
& \approx \frac{[D\partial_x u \partial_x v]_{i+\frac{1}{2},j} + [D\partial_x u \partial_x v]_{i-\frac{1}{2},j}}{2} + \frac{[D\partial_y u \partial_y v]_{i,j+\frac{1}{2}} + [D\partial_y u \partial_y v]_{i,j-\frac{1}{2}}}{2} \\
& \approx \frac{[D\partial_x v]_{i+\frac{1}{2},j}[u_{i+1,j} - u_{i,j}] + [D\partial_x v]_{i-\frac{1}{2},j}[u_{i,j} - u_{i-1,j}]}{2\Delta x} \\
& \quad + \frac{[D\partial_y v]_{i,j+\frac{1}{2}}[u_{i,j+1} - u_{i,j}] + [D\partial_y v]_{i,j-\frac{1}{2}}[u_{i,j} - u_{i,j-1}]}{2\Delta y} \\
430 \quad (5.6) \quad & = \left[\frac{D_{i+\frac{1}{2},j}[v_{i+1,j} - v_{i,j}]}{2\Delta x^2} \right] u_{i+1,j} + \left[\frac{D_{i-\frac{1}{2},j}[v_{i-1,j} - v_{i,j}]}{2\Delta x^2} \right] u_{i-1,j} \\
& + \left[\frac{D_{i,j+\frac{1}{2}}[v_{i,j+1} - v_{i,j}]}{2\Delta y^2} \right] u_{i,j+1} + \left[\frac{D_{i,j-\frac{1}{2}}[v_{i,j-1} - v_{i,j}]}{2\Delta y^2} \right] u_{i,j-1} \\
& - \left[\frac{D_{i+\frac{1}{2},j}[v_{i+1,j} - v_{i,j}]}{2\Delta x^2} + \frac{D_{i-\frac{1}{2},j}[v_{i-1,j} - v_{i,j}]}{2\Delta x^2} \right. \\
& \quad \left. + \frac{D_{i,j+\frac{1}{2}}[v_{i,j+1} - v_{i,j}]}{2\Delta y^2} + \frac{D_{i,j-\frac{1}{2}}[v_{i,j-1} - v_{i,j}]}{2\Delta y^2} \right] u_{i,j},
\end{aligned}$$

431 The discretization of (2.5) becomes

$$432 \quad \mathbf{A}_{\psi_0} \phi_0 = \mathbf{h}_{\psi_0}$$

433 where ϕ_0 consists of the vectorized values of the forward solution ϕ_0 at black dots

434 such that $\phi_{0\mathcal{I}(i,j)} = \phi(x_i, y_j)$, and

$$435 \quad (5.7) \quad (\mathbf{A}_\psi)_{\mathcal{I}(i,j), \mathcal{I}(i',j')} = \begin{cases} -\sum_{(\tilde{i},\tilde{j}) \sim (i,j)} \frac{D_{\frac{i+\tilde{i}}{2}, \frac{j+\tilde{j}}{2}} [\psi_{i,j} + \frac{2\gamma-1}{2} [\psi_{i,\tilde{j}} - \psi_{i,j}]]}{|i-\tilde{i}|\Delta x^2 + |j-\tilde{j}|\Delta y^2} + 2\gamma\sigma_{i,j}\psi_{i,j}, & (i',j') = (i,j), (i,j) \in I \\ \frac{D_{\frac{i+i'}{2}, \frac{j+j'}{2}} [\psi_{i,j} + \frac{2\gamma-1}{2} [\psi_{i',j'} - \psi_{i,j}]]}{|i-i'|\Delta x^2 + |j-j'|\Delta y^2}, & (i',j') \sim (i,j), (i,j) \in I \\ 1 + \ell \sum_{I \ni (\tilde{i},\tilde{j}) \sim (i,j)} \frac{D_{\frac{i+\tilde{i}}{2}, \frac{j+\tilde{j}}{2}}}{|i-\tilde{i}|\Delta x + |j-\tilde{j}|\Delta y}, & (i',j') = (i,j), (i,j) \in B \\ -\ell \frac{D_{\frac{i+i'}{2}, \frac{j+j'}{2}}}{|i-i'|\Delta x + |j-j'|\Delta y}, & I \ni (i',j') \sim (i,j) \in B, \\ 1 + \frac{\sqrt{2}\ell}{2} \sum_{(\tilde{i},\tilde{j}) \sim (i,j)} \frac{D_{\frac{i+\tilde{i}}{2}, \frac{j+\tilde{j}}{2}}}{|i-\tilde{i}|\Delta x + |j-\tilde{j}|\Delta y}, & (i',j') = (i,j), (i,j) \in B_c, \\ -\frac{\sqrt{2}\ell}{2} \frac{D_{\frac{i+i'}{2}, \frac{j+j'}{2}}}{|i-i'|\Delta x + |j-j'|\Delta y}, & (i',j') \sim (i,j), (i,j) \in B_c, \\ 0 & \text{others} \end{cases}$$

$$436 \quad (5.8) \quad (\mathbf{h}_\psi)_{\mathcal{I}(i,j)} = \begin{cases} (H_\psi)_{i,j}, & (i,j) \in I, \\ 0, & (i,j) \in B \cup B_c. \end{cases}$$

437 **5.1.4. Discrete Uncertainty Quantification Estimate..** Parallel to Theorem 4.2, we derive the following UQ estimate for the discretized model. Note that the 438 uncertainties of the optical parameters (D, σ_a) are implicitly encoded in the difference 439 $\tilde{\mathbf{L}} - \mathbf{L}$ and $\tilde{\mathbf{A}}_{\phi_0} - \mathbf{A}_{\phi_0}$.

441 THEOREM 5.4. Suppose 0 is not an eigenvalue of \mathbf{A}_{ψ_0} and $\tilde{\mathbf{A}}_{\tilde{\psi}_0}$ for some $\psi_0 > 0$
442 and $\tilde{\psi}_0 > 0$, then

443 (5.9) $\|\tilde{\mathbf{s}} - \mathbf{s}\|_2 \leq \|\mathbf{h}_{\phi_0}\|_2 (\|\mathbf{A}_{\psi_0}^{-1}\|_2 \|\tilde{\mathbf{L}} - \mathbf{L}\|_2 + \|\tilde{\mathbf{L}}\|_2 \|\tilde{\mathbf{A}}_{\tilde{\phi}_0}^{-1}\|_2 \|\mathbf{A}_{\phi_0}^{-1}\|_2 \|\tilde{\mathbf{A}}_{\tilde{\phi}_0} - \mathbf{A}_{\phi_0}\|_2).$

444 Proof. Under the assumption, the matrix \mathbf{A}_{ψ_0} is invertible for some $\psi_0 > 0$. We
445 can represent $\phi_0 = \mathbf{A}_{\psi_0}^{-1} \mathbf{h}_{\psi_0}$, then $\mathbf{s} = \mathbf{L} \phi_0 = \mathbf{L} \mathbf{A}_{\psi_0}^{-1} \mathbf{h}_{\psi_0}$. Therefore,

$$\begin{aligned}
446 \quad (5.10) \quad \|\tilde{\mathbf{s}} - \mathbf{s}\|_2 &= \|(\tilde{\mathbf{L}} \tilde{\mathbf{A}}_{\tilde{\phi}_0}^{-1} - \mathbf{L} \mathbf{A}_{\phi_0}^{-1}) \mathbf{h}_{\phi_0}\|_2 \\
&\leq \|\tilde{\mathbf{L}} \tilde{\mathbf{A}}_{\tilde{\phi}_0}^{-1} - \mathbf{L} \mathbf{A}_{\phi_0}^{-1}\|_2 \|\mathbf{h}_{\phi_0}\|_2 \\
&\leq (\|(\tilde{\mathbf{L}} - \mathbf{L}) \mathbf{A}_{\phi_0}^{-1}\|_2 + \|\tilde{\mathbf{L}} (\tilde{\mathbf{A}}_{\tilde{\phi}_0}^{-1} - \mathbf{A}_{\phi_0}^{-1})\|_2) \|\mathbf{h}_{\phi_0}\|_2 \\
&\leq (\|\tilde{\mathbf{L}} - \mathbf{L}\|_2 \|\mathbf{A}_{\phi_0}^{-1}\|_2 + \|\tilde{\mathbf{L}}\|_2 \|\tilde{\mathbf{A}}_{\tilde{\phi}_0}^{-1} - \mathbf{A}_{\phi_0}^{-1}\|_2) \|\mathbf{h}_{\phi_0}\|_2
\end{aligned}$$

447 where $\|\cdot\|_2$ denotes the vector/matrix 2-norm. Using the relation $A^{-1} - B^{-1} =$
448 $A^{-1}(B - A)B^{-1}$, we obtain the desired estimate. \square

449 **5.2. Discretization with Anisotropic Diffusion Coefficients..** When D is
450 anisotropic, i.e., a symmetric positive definite matrix-valued function, the operators
451 $\nabla \cdot D \nabla$ and $D \nabla v \cdot \nabla$ can be discretized as follows

452 $[\nabla \cdot D \nabla u]_{i,j} = \frac{[(D \nabla u)_1]_{i+\frac{1}{2},j} - [(D \nabla u)_1]_{i-\frac{1}{2},j}}{\Delta x} + \frac{[(D \nabla u)_2]_{i,j+\frac{1}{2}} - [(D \nabla u)_2]_{i,j-\frac{1}{2}}}{\Delta y}$

453 $[D \nabla v \cdot \nabla u]_{i,j} = \frac{[(D \nabla v)_1 \partial_x u]_{i+\frac{1}{2},j} + [(D \nabla v)_2 \partial_x u]_{i-\frac{1}{2},j}}{2} + \frac{[(D \nabla v)_2 \partial_y u]_{i,j+\frac{1}{2}} + [(D \nabla v)_1 \partial_y u]_{i,j-\frac{1}{2}}}{2}$

where $(D \nabla u)_1$ (resp. $(D \nabla u)_2$) denotes the first (resp. second) component of the vector $D \nabla u$. The discretization now differs from the isotropic case. This is because for an isotropic D

$$(D \nabla u)_1 = D \partial_x u, \quad (D \nabla u)_2 = D \partial_y u$$

which only requires $[\partial_x u]_{i+\frac{1}{2},j}$ and $[\partial_y u]_{i,j+\frac{1}{2}}$ in the staggered grid. However, for an anisotropic D :

$$(D \nabla u)_1 = D_{11} \partial_x u + D_{12} \partial_y u, \quad (D \nabla u)_2 = D_{21} \partial_x u + D_{22} \partial_y u$$

454 which requires two additional terms $[\partial_x u]_{i,j+\frac{1}{2}}$ and $[\partial_y u]_{i+\frac{1}{2},j}$. These additional terms
455 can be discretized as follows:

456 $[\partial_y u]_{i+\frac{1}{2},j} = \frac{[\partial_y u]_{i,j} + [\partial_y u]_{i+1,j}}{2} = \frac{u_{i+1,j+1} + u_{i,j+1} - u_{i,j-1} - u_{i+1,j-1}}{4 \Delta y},$

457 $[\partial_x u]_{i,j+\frac{1}{2}} = \frac{[\partial_x u]_{i,j} + [\partial_x u]_{i,j+1}}{2} = \frac{u_{i+1,j+1} + u_{i+1,j} - u_{i-1,j} - u_{i-1,j+1}}{4 \Delta x},$

458 see [24] for the detail. This discretization results in a matrix \mathbf{L} . The rest of the
459 analysis is similar provided \mathbf{L} is invertible, and we can obtain Theorem 5.4 as well.

460 **6. Numerical Experiment.** In this section, we demonstrate numerical experiments to validate the reconstruction procedure and quantify the impact of inaccurate
461 optical coefficients (D, σ_a) to the source recovery. We will restrict the discussion in
462 this section to isotropic D for the ease of notations.

464 **6.1. Uncertainty Generation.** We will utilize the generalized Polynomial Chaos■
 465 Expansion (PCE) to facilitate generation of uncertainty. PCE approximates a well-
 466 behaved random variable using a series of polynomials under certain probability dis-
 467 tribution. Specifically, let $(X, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\xi(\omega)$ be a random
 468 variable (where $\omega \in X$ is a sample) with probability density function $p(t)$. Suppose a
 469 deterministic ground-truth $u = u(x)$ is given, then the uncertainty generated by PCE
 470 takes the form

471 (6.1)
$$u(x, \xi(\omega)) = \sum_{k=0}^{\infty} u_k(x) \Phi_k(\xi(\omega)), \quad (x, \omega) \in \Omega \times X$$

472 where $u_k(x)$'s are the coefficients, u_0 is the ground truth, $\Phi_0 = 1$, Φ_k 's are orthogonal
 473 polynomials, that is,

474
$$\int_{\mathbb{R}} \Phi_i(t) \Phi_j(t) p(t) dt = \delta_{ij}.$$

475 For the numerical experiments, ξ is chosen to be uniformly distributed on the sample
 476 space $X = [-1, 1]$; Φ_k 's are the Legendre polynomials on $[-1, 1]$; the PCE is truncated
 477 at $k = K_c$. Then

478
$$\mathbb{E}[u] = u_0, \quad \text{Var}[u] = \sum_{k=1}^{K_c} u_k^2.$$

479 In the subsequent numerical experiments, we inject uncertainties into the optical
 480 coefficients (D, σ_a) based on the following process:

481 (1) Generate the coefficients $u_{Dk}, u_{\sigma_a k}$ using the truncated Fourier series in x :

$$u_{Dk} = \sum_{\|\mathbf{n}\|_{\infty}=k} c_{1\mathbf{n}} \sin(\pi \mathbf{n} \cdot x) + c_{2\mathbf{n}} \cos(\pi \mathbf{n} \cdot x),$$

$$u_{\sigma_a k} = \sum_{\|\mathbf{n}\|_{\infty}=k} c_{3\mathbf{n}} \sin(\pi \mathbf{n} \cdot x) + c_{4\mathbf{n}} \cos(\pi \mathbf{n} \cdot x).$$

482 Here $\mathbf{n} \in \mathbb{Z}^n$, the Fourier coefficients $c_{1\mathbf{n}}, c_{2\mathbf{n}}, c_{3\mathbf{n}}, c_{4\mathbf{n}}$ are independently chosen
 483 from the uniform distributions on $[-1, 1]$. Once generated, they are fixed so that
 484 the coefficients $u_{Dk}, u_{\sigma_a k}$ are deterministic.

485 (2) Randomly generate ξ from the uniform distribution on $[-1, 1]$, then construct the
 486 uncertainties u_D, u_{σ_a} according to (6.1) with $k = 1, 2, \dots, 10$:

487
$$u_D := \sum_{k=1}^{10} u_{Dk} \Phi_k(\xi(\omega)), \quad u_{\sigma_a} := \sum_{k=1}^{10} u_{\sigma_a k} \Phi_k(\xi(\omega))$$

488 Note that $\mathbb{E}[u_D] = \mathbb{E}[u_{\sigma_a}] = 0$.

489 (3) Once the uncertainties are generated, we rescale the uncertainties based on pre-
 490 scribed relative uncertainty levels e_D, e_{σ_a} to construct the optical coefficients with
 491 uncertainty $(\tilde{D}, \tilde{\sigma}_a)$ as follows:

492 (6.2)
$$\tilde{D} := D + \frac{u_D e_D}{\|u_D\|_{H^1}} \|D\|_{H^1},$$

$$\tilde{\sigma}_a := \sigma_a + \frac{u_{\sigma_a} e_{\sigma_a}}{\|u_{\sigma_a}\|_{L^2}} \|\sigma_a\|_{L^2}.$$

492 The impact of the inaccuracy in the optical coefficients will be quantitatively
 493 measured by the relative standard deviation defined as follows:

$$494 \quad (6.3) \quad \mathcal{E}_S := \frac{\sqrt{\mathbb{E}[\|\tilde{S} - S\|_{L^2}^2]}}{\|S\|_{L^2}}, \quad \mathcal{E}_D := \frac{\sqrt{\mathbb{E}[\|\tilde{D} - D\|_{H^1}^2]}}{\|D\|_{H^1}}, \quad \mathcal{E}_{\sigma_a} := \frac{\sqrt{\mathbb{E}[\|\tilde{\sigma}_a - \sigma_a\|_{L^2}^2]}}{\|\sigma_a\|_{L^2}}.$$

495 Note that $\mathcal{E}_D = e_D$ and $\mathcal{E}_{\sigma_a} = e_{\sigma_a}$ are precisely the relative uncertainty levels that
 496 are used to define $(\tilde{D}, \tilde{\sigma}_a)$ in (6.2). This justifies that the relative standard deviation
 497 is a reasonable quantity to measure the uncertainty. In the following, we will specify
 498 various uncertainty levels e_D, e_{σ_a} and plot \mathcal{E}_S versus them, see Figure 7 and Figure 12.

499 **6.2. Numerical Implementation..** We choose the 2D computational domain
 500 $\Omega = [-1, 1]^2$. The diffusion equation is solved using the staggered grid scheme outlined
 501 in Section 5. To avoid the inverse crime, the forward problem is solved on a fine mesh
 502 with step size $h = \frac{1}{200}$, while the inverse problem is solved on a coarse mesh with step
 503 size $h = \frac{1}{100}$ using re-sampled data.

504 A challenge in the numerical simulation is ensuring that the adjoint solution ψ_0
 505 is strictly positive. Although it is proved in Theorem 3.2 that ψ_0 has a positive lower
 506 bound, named $c_\psi > 0$ in Theorem 4.2, the constant c_ψ can be quite small in the
 507 numerical implementation (especially when g is partly vanishing on $\partial\Omega$), resulting
 508 in numerical instability. To mitigate this issue, we choose to solve the adjoint equa-
 509 tion (2.1) not with the Robin boundary condition (2.2), but instead with a Dirichlet
 510 boundary condition to generate ψ_0 , and then name the resulting Robin boundary
 511 condition as g . The advantage of this trick is that the Dirichlet condition, with the
 512 help of the Maximum Principle, guarantees that the constant $c_\psi > 0$ is not too close
 513 to 0. However, the trick makes it difficult to ensure that g vanishes on a desired part
 514 of $\partial\Omega$. Given that the estimate in Theorem 4.2 takes a similar form for full data and
 515 partial data, we will apply the trick at the cost of restricting the subsequent numerical
 516 experiments to only the full data case.

517 With the help of the trick, we numerically calculate the noise-free ϕ_0 and ψ_0
 518 using ground truth S and (D, σ_a) . Once we have ϕ_0 and ψ_0 , we calculate the internal
 519 data H_{ψ_0} through (2.5). Note that the internal data is derived from the boundary
 520 measurement, hence is independent of the uncertainty on the optical coefficients.

521 **Experiment 1** In this experiment, we consider the case that the optical coeffi-
 522 cients can be represented using low-frequency Fourier basis. We choose

$$523 \quad D = \cos^2(x + 2y) - 3\sin^2(3x - 4y) + 5, \quad \sigma_a = \cos^2(5x) + \sin^2(5y) + 1,$$

524 and the source S to be the Shepp-Logan phantom, see Figure 3.

525 Using the ground-truth (D, σ_a) , we generate the uncertainties according to (6.2)
 526 to obtain 1000 samples of inaccurate optical coefficients $(\tilde{D}, \tilde{\sigma}_a)$. Set $\Delta D := \tilde{D} - D$
 527 and $\Delta\sigma_a = \tilde{\sigma}_a - \sigma_a$. We implemented the reconstruction procedure 1000 times to plot
 528 the distribution of $\|\Delta S\|_{L^2}$ versus $\|\Delta D\|_{H^1}$ and $\|\Delta\sigma_a\|_{L^2}$, see Figure 4. It is clear
 529 that for fixed $\|\Delta D\|_{H^1}$, $\|\Delta S\|_{L^2}$ is more concentrated compared to fixed $\|\Delta\sigma_a\|_{L^2}$,
 530 suggesting that the uncertainty in \tilde{D} has larger impact to the reconstruction than
 531 the uncertainty in $\tilde{\sigma}_a$. Moreover, the distribution of the scatter plot suggests that
 532 $\|\Delta S\|_{L^2}$ is locally Lipschitz stable with respect to $\|\Delta D\|_{H^1}$ for small ΔD , agreeing
 533 with the estimates in Theorem 4.2 and Theorem 5.4. One of the reconstructions is
 534 illustrated in Figure 5, and the average of the 1000 reconstructed sources is illustrated
 535 in Figure 6. We see that the averaged \tilde{S} is close to the ground truth S . This can

536 be understood as follows. Let us view $S = \mathcal{S}[D, \sigma_a]$ as a nonlinear functional of
 537 (D, σ_a) . When small perturbations $(\delta D, \delta \sigma_a)$ are added, the response perturbation
 538 $\delta S \approx d\mathcal{S}(\delta D, \delta \sigma_a)$ depends almost linearly on $(\delta D, \delta \sigma_a)$ where $d\mathcal{S}$ is the Frechét
 539 derivative. Hence $\mathbb{E}[S] \approx d\mathcal{S}(\mathbb{E}[\delta D], \mathbb{E}[\delta \sigma_a]) = 0$.

540 To better understand the relations between \mathcal{E}_S versus \mathcal{E}_D (resp. \mathcal{E}_S versus \mathcal{E}_{σ_a}),
 541 we take $\Delta \sigma_a = 0$ (resp. $\Delta D = 0$) and add $e_D = 2\%, 4\%, 6\%, 8\%, 10\%$ of random noise
 542 to D (resp. $e_{\sigma_a} = 2\%, 4\%, 6\%, 8\%, 10\%$ of random noise to σ_a). The plots are shown
 543 in Figure 7. We observe that \mathcal{E}_S depends linearly or superlinearly on \mathcal{E}_D and \mathcal{E}_{σ_a} , and
 544 the same level of relative uncertainty on D has larger impact than on σ_a . Note that
 545 the plotted curves are nonlinear because the constant factors C_{1ij}, C_2 in Theorem 4.2
 546 also depend on $(\tilde{D}, \tilde{\sigma}_a)$.

Remark 6.1. If X is a random variable and f is a nonlinear function, it is generally not true that $\mathbb{E}f(X) \neq f(\mathbb{E}(X))$. For example, if we choose a uniformly distributed random variable $X \sim U(-1, 1)$ and a nonlinear function $f_\alpha(x) := |x|^\alpha$ ($0 < \alpha < 1$). Then $\mathbb{E}[X] = 0$, hence $f_\alpha(\mathbb{E}[X]) = f_\alpha(0) = 0$. But

$$0 < \mathbb{E}[f_\alpha(X)] = \frac{1}{2} \int_{-1}^1 |x|^\alpha \, dx = \frac{1}{\alpha + 1} < 1$$

547 and $\mathbb{E}[f_\alpha(X)]$ monotonically increases to 1 as $\alpha \rightarrow 0+$.

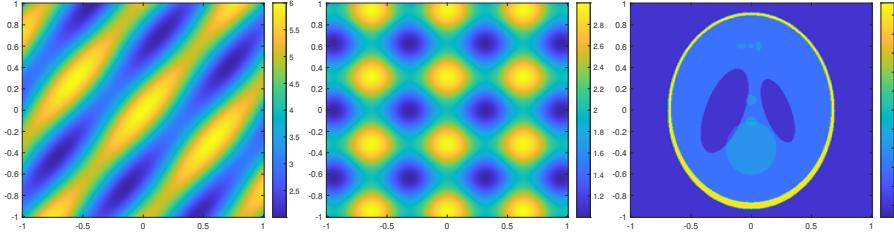


Fig. 3: Left: Diffusion coefficient D . Middle: Absorption coefficient σ_a . Right: Shepp-Logan Source S .

548 **Experiment 2** In this experiment, we consider the case that the optical coefficients
 549 can not be represented using the low frequency Fourier basis. We choose

$$550 \quad D = 3 - \max\{|x|, |y|\}, \quad \sigma_a = \frac{3}{2} - \frac{1}{2} \operatorname{sgn} \left(x^2 + y^2 - \frac{4}{5} \right),$$

551 and we choose the source S to be the Shepp-Logan phantom, see Figure 8. We choose
 552 the relative uncertainty level at 10% and run 1000 reconstructions to plot the distribution of $\|\tilde{S} - S\|_{L^2}$ versus $\|\tilde{D} - D\|_{H^1}$ and $\|\tilde{\sigma}_a - \sigma_a\|_{L^2}$, see Figure 9. One of
 553 the reconstructions is illustrated in Figure 10, and the average of 1000 reconstructed
 554 sources is illustrated in Figure 11. For the relation between the relative standard de-
 555 viations, we fix D and σ_a respectively and add 2%, 4%, 6%, 8%, 10% Gaussian random
 556 noise to another optical coefficient. The relations are shown in Figure 12. Again, we
 557 observe that uncertainties in D have larger impact to the reconstruction than that
 558 in σ_a . We also observe that the averaging process reduces the uncertainty in the
 559 reconstruction. The impact \mathcal{E}_S also depends linearly or superlinearly on \mathcal{E}_D and \mathcal{E}_{σ_a} .
 560

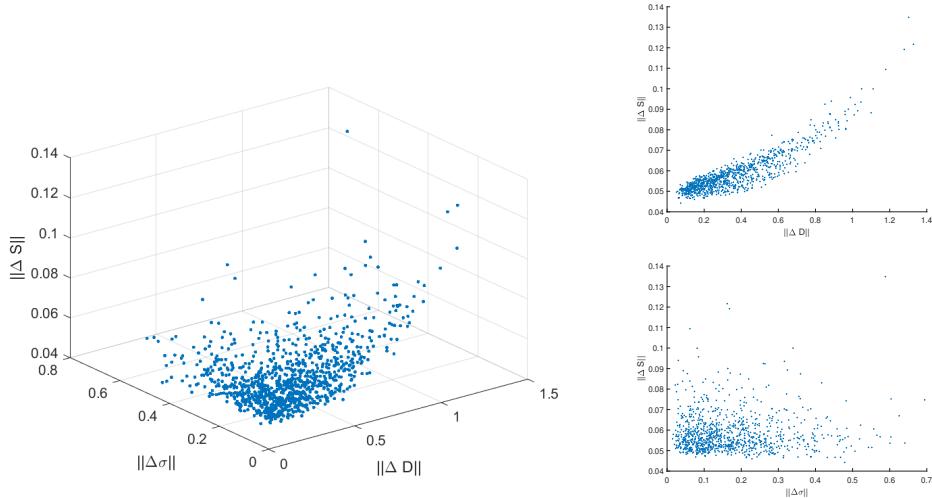


Fig. 4: The distribution of the error with respect to the inaccuracies in optical coefficients

561 *Remark 6.2.* In Figure 9, the plot $\|\Delta S\|$ versus $\|\Delta D\|$ has two branches. This
562 is because the plot shows the relation between the norms. As a simple example, let
563 $y = (x + 1)^2$, $x \in \mathbb{R}$. The same branches appear if we plot $|y|$ versus $|x|$.

564 **7. Conclusion.** The paper has presented a novel approach to addressing the
565 imaging problem in ultrasound-modulated bioluminescence tomography (UMBTLT)
566 within an anisotropic medium, focusing on scenarios with partial boundary measure-
567 ments and uncertainty optical coefficients. By leveraging the plane-wave modulation
568 assumption, we effectively transformed the imaging problem into an inverse problem
569 with internal data, facilitating a robust reconstruction procedure for recovering the
570 bioluminescent source. The study further enhanced this reconstruction process by in-
571 tegrating an uncertainty quantification estimate, ensuring a rigorous assessment of the
572 reconstruction's robustness. The practical applicability of the proposed methodology
573 was strengthened through the discretization of the diffusive model using the stag-
574 gered grid scheme, leading to a discrete formulation of the UMBLT inverse problem.
575 This allowed for the development of a corresponding discrete reconstruction pro-
576 cedure, along with a discrete uncertainty quantification estimate. The effectiveness
577 and reliability of these methods were demonstrated through comprehensive numerical
578 examples, underscoring the potential of the approach in practical scenarios.

579 REFERENCES

580 [1] H. AMMARI, E. BOSSY, J. GARNIER, L. NGUYEN, AND L. SEPPECHER, *A reconstruction algo-*
581 *rithm for ultrasound-modulated diffuse optical tomography*, Proc. Amer. Math. Soc., 142
582 (2014), pp. 3221–3236.
583 [2] H. AMMARI, E. BOSSY, J. GARNIER, AND L. SEPPECHER, *Acousto-electromagnetic tomography*,
584 SIAM Journal on Applied Mathematics, 72 (2012), pp. 1592–1617.
585 [3] H. AMMARI, L. NGUYEN, AND L. SEPPECHER, *Reconstruction and stability in acousto-optic*
586 *imaging for absorption maps with bounded variation*, J. Functional Analysis, 267 (2014),
587 pp. 4361–4398.
588 [4] S. R. ARRIDGE AND J. C. SCHOTLAND, *Optical tomography: forward and inverse problems*,

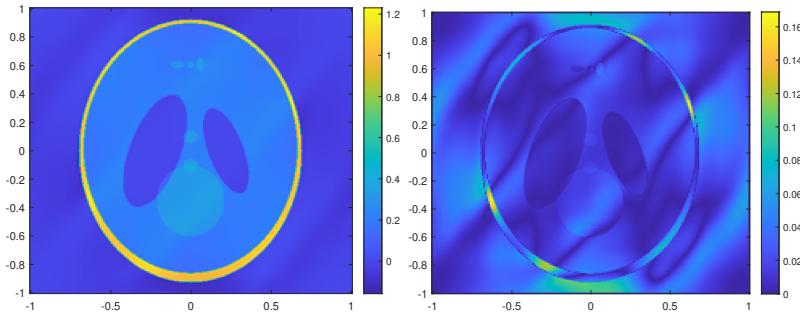


Fig. 5: Reconstructed source \tilde{S} and its error under 10% Gaussian random noise.

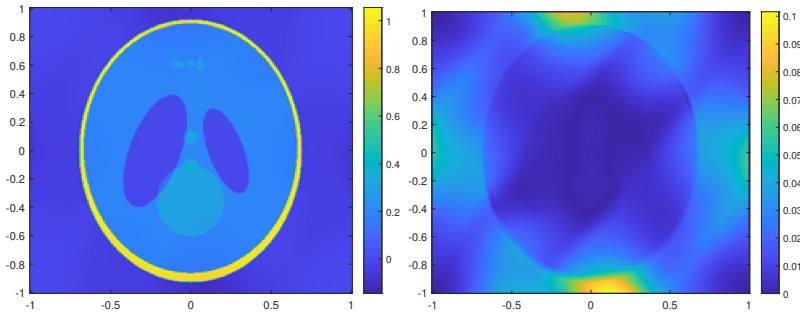


Fig. 6: Averaged reconstructed source \tilde{S} and its error under 10% Gaussian random noise.

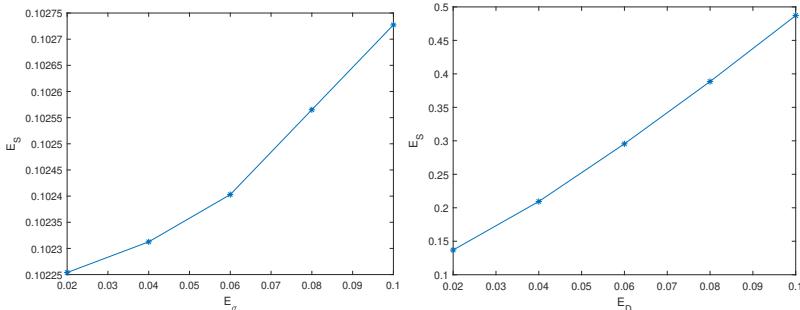


Fig. 7: Left: \mathcal{E}_S versus \mathcal{E}_{σ_a} . Right: \mathcal{E}_S versus \mathcal{E}_D .

589 Inverse problems, 25 (2009), p. 123010.
 590 [5] G. BAL, *Hybrid inverse problems and internal functionals*, Inside Out II, MSRI Publications,
 591 60 (2012), pp. 325–368.
 592 [6] G. BAL, *Cauchy problem for ultrasound-modulated eit*, Analysis & PDE, 6 (2013), pp. 751–775.
 593 [7] G. BAL, F. J. CHUNG, AND J. C. SCHOTLAND, *Ultrasound modulated bioluminescence tomography*
 594 *and controllability of the radiative transport equation*, SIAM Journal on Mathematical
 595 Analysis, 48 (2016), pp. 1332–1347.
 596 [8] G. BAL AND S. MOSKOW, *Local inversions in ultrasound-modulated optical tomography*, Inverse
 597 Problems, 30 (2014), p. 025005.
 598 [9] G. BAL AND J. C. SCHOTLAND, *Inverse scattering and acousto-optic imaging*, Physical review
 599 letters, 104 (2010), p. 043902.
 600 [10] G. BAL AND J. C. SCHOTLAND, *Ultrasound-modulated bioluminescence tomography*, Physical

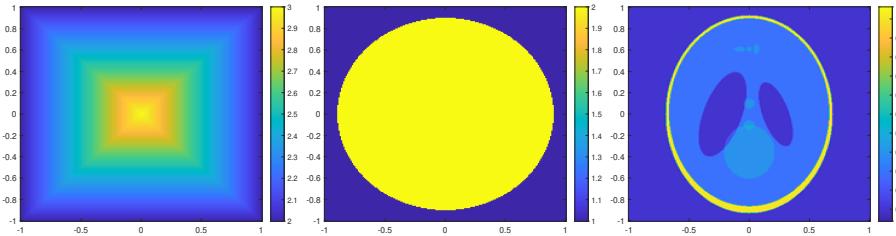


Fig. 8: Left: Diffusion coefficient D . Middle: Absorption coefficient σ_a . Right: Shepp-Logan Source

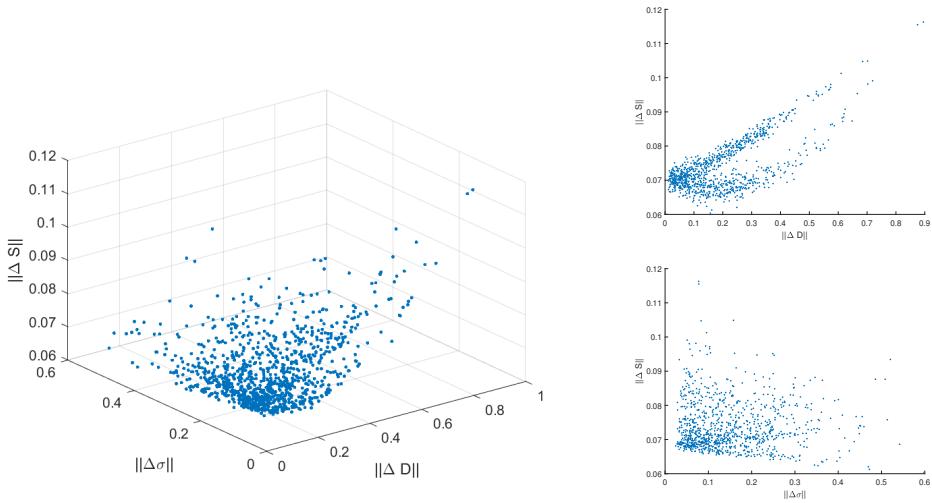


Fig. 9: The distribution of the error $\|\Delta S\|$ with respect to the inaccuracies $\|\Delta D\|$ and $\|\Delta \sigma_a\|$.

Review E, 89 (2014), p. 031201.

[11] G. BAL AND A. TAMASAN, *Inverse source problems in transport equations*, SIAM journal on mathematical analysis, 39 (2007), pp. 57–76.

[12] F. CHUNG, J. HOSKINS, AND J. SCHOTLAND, *A transport model for multi-frequency acousto-optic tomography*, Inv. Prob., 36 (2020), p. 064004.

[13] F. CHUNG AND J. SCHOTLAND, *Inverse transport and acousto-optic imaging*, SIAM. J. Math. Anal., 49 (2017), pp. 4704–4721.

[14] F. CHUNG, T. YANG, AND Y. YANG, *Ultrasound modulated bioluminescence tomography with a single optical measurement*, Inverse Problems, 37 (2020), p. 015004.

[15] F. J. CHUNG, J. G. HOSKINS, AND J. C. SCHOTLAND, *Coherent acousto-optic tomography with diffuse light*, Optics Letters, 45 (2020), pp. 1623–1626.

[16] F. J. CHUNG AND J. C. SCHOTLAND, *Inverse transport and acousto-optic imaging*, SIAM Journal on Mathematical Analysis, 49 (2017), pp. 4704–4721.

[17] W. CONG, G. WANG, D. KUMAR, Y. LIU, M. JIANG, L. V. WANG, E. A. HOFFMAN, G. McLENNAN, P. B. MCCRAY, J. ZABNER, ET AL., *Practical reconstruction method for bioluminescence tomography*, Optics Express, 13 (2005), pp. 6756–6771.

[18] C. H. CONTAG AND M. H. BACHMANN, *Advances in *in vivo* bioluminescence imaging of gene expression*, Annual review of biomedical engineering, 4 (2002), pp. 235–260.

[19] H. DONG AND Z. LI, *On the $w\sqrt{p}$ estimate for oblique derivative problem in lipschitz domains*, International Mathematics Research Notices, 2022 (2022), pp. 3602–3635.

[20] L. C. EVANS, *Partial differential equations*, American Mathematical Society, Providence, R.I.,

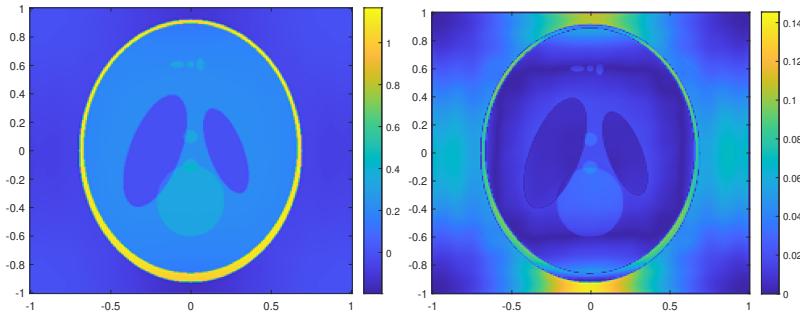


Fig. 10: Reconstructed source \tilde{S} and its error under 10% Gaussian random noise.

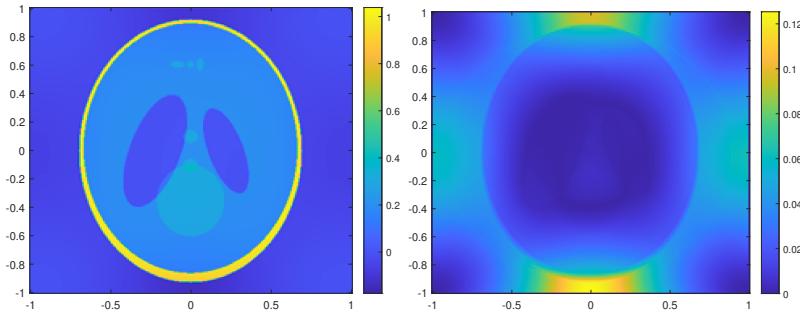


Fig. 11: Averaged reconstructed source \tilde{S} and its error under 10% Gaussian random noise.

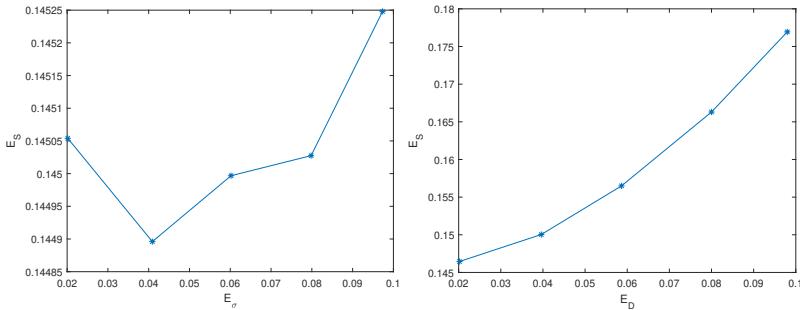


Fig. 12: Left: \mathcal{E}_S versus \mathcal{E}_{σ_a} . Right: \mathcal{E}_S versus \mathcal{E}_D .

622 2010.

623 [21] H. FUJIWARA, K. SADIQ, AND A. TAMASAN, *A fourier approach to the inverse source problem in*
624 *an absorbing and anisotropic scattering medium*, Inverse Problems, 36 (2019), p. 015005.

625 [22] H. FUJIWARA, K. SADIQ, AND A. TAMASAN, *Numerical reconstruction of radiative sources in*
626 *an absorbing and nondiffusing scattering medium in two dimensions*, SIAM Journal on
627 Imaging Sciences, 13 (2020), pp. 535–555.

628 [23] H. FUJIWARA, K. SADIQ, AND A. TAMASAN, *A source reconstruction method in two dimensional*
629 *radiative transport using boundary data measured on an arc*, Inverse Problems, 37 (2021),
630 p. 115005.

631 [24] S. GÜNTER, Q. YU, J. KRÜGER, AND K. LACKNER, *Modelling of heat transport in magnetised*
632 *plasmas using non-aligned coordinates*, Journal of Computational Physics, 209 (2005),
633 pp. 354–370.

634 [25] N. T. HUYNH, B. R. HAYES-GILL, F. ZHANG, AND S. P. MORGAN, *Ultrasound modulated imaging*
 635 *of luminescence generated within a scattering medium*, Journal of biomedical optics,
 636 18 (2013), p. 020505.

637 [26] V. ISAKOV, *Inverse source problems*, no. 34, American Mathematical Soc., 1990.

638 [27] R.-Y. LAI, K. REN, AND T. ZHOU, *Inverse transport and diffusion problems in photoacoustic*
 639 *imaging with nonlinear absorption*, SIAM Journal on Applied Mathematics, 82 (2022),
 640 pp. 602–624.

641 [28] W. LI, J. C. SCHOTLAND, Y. YANG, AND Y. ZHONG, *An acousto-electric inverse source problem*,
 642 SIAM Journal on Imaging Sciences, 14 (2021), pp. 1601–1616.

643 [29] W. LI, J. C. SCHOTLAND, Y. YANG, AND Y. ZHONG, *Inverse source problem for acoustically-*
 644 *modulated electromagnetic waves*, SIAM Journal on Applied Mathematics, 83 (2023),
 645 pp. 418–435.

646 [30] W. LI, Y. YANG, AND Y. ZHONG, *A hybrid inverse problem in the fluorescence ultrasound mod-*
 647 *ulated optical tomography in the diffusive regime*, SIAM Journal on Applied Mathematics, 79
 648 (2019), pp. 356–376.

649 [31] W. LI, Y. YANG, AND Y. ZHONG, *Inverse transport problem in fluorescence ultrasound mod-*
 650 *ulated optical tomography with angularly averaged measurements*, Inverse Problems, 36
 651 (2020), p. 025011.

652 [32] G. M. LIEBERMAN, *Mixed boundary value problems for elliptic and parabolic differential equa-*
 653 *tions of second order*, Journal of Mathematical Analysis and Applications, 113 (1986),
 654 pp. 422–440.

655 [33] K. REN AND S. VALLÉLIAN, *Characterizing impacts of model uncertainties in quantitative pho-*
 656 *toacoustics*, SIAM/ASA Journal on Uncertainty Quantification, 8 (2020), pp. 636–667.

657 [34] P. SHIVAKUMAR AND K. H. CHEW, *A sufficient condition for nonvanishing of determinants*,
 658 Proceedings of the American mathematical society, (1974), pp. 63–66.

659 [35] P. STEFANOV AND G. UHLMANN, *An inverse source problem in optical molecular imaging*,
 660 Analysis & PDE, 1 (2008), pp. 115–126.