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Abstract. The paper studies an imaging problem in the diffusive ultrasound-modulated biolu-5
minescence tomography with partial boundary measurement in an anisotropic medium. Assuming6
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1. Introduction and Problem Formulation. Bioluminescence refers to pro-18

duction and emission of native light inside living organisms such as fireflies. Based on19

this phenomenon, Bio-Luminescence Tomography (BLT) is developed as a technology20

that utilizes bioluminescence sources as bio-medical indicators to image biological tis-21

sue. Specifically, biological entities or process components (e.g. bacteria, tumor cells,22

immune cells, or genes) are tagged in BLT with reporter genes that encode one of a23

number of light-generating enzymes (luciferases) [18]. By measuring the light gener-24

ated by the luciferin-luciferase reaction, BLT aims to image the spatial distribution25

of the internal bioluminescence sources.26

The Inverse Problem in Diffusive BLT. Let Ω represent the strongly scat-27

tering biological tissue. We will assume Ω is a bounded connected open subset of28

Rn with smooth boundar ∂Ω. The light propagates in a strongly-scattering medium29

as a diffuse wave [4]. The spatial photon density ϕ = ϕ(x) of the wave is modeled30

by the following time-independent diffusion equation with the Robin-type boundary31

condition [10]:32

−∇ ·D(x)∇ϕ(x) + σa(x)ϕ(x) = S(x) in Ω.(1.1)33

ϕ(x) + ℓν ·D(x)∇ϕ(x) = 0 on ∂Ω.(1.2)34

Here, D = D(x) is the diffusion coefficient, σa = σa(x) is the absorption coefficient,35

S = S(x) is the spatial distribution of the bio-luminescence source, ℓ is the extrapo-36

lation length, and ν is the unit outer normal vector field to ∂Ω. Henceforth, we will37

assume that the light intensity is measured only over a narrow band of frequencies,38

so that the diffusion coefficient D and the absorption coefficient σa are frequency-39

independent. The inverse problem in BLT can be stated as follows: given D(x) and40
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2 TIANYU YANG AND YANG YANG

σa(x), recover the internal source S(x) from the boundary photon density ϕ|Γ mea-41

sured on an open subset of the boundary Γ ⊂ ∂Ω.42

Ultrasound Modulation. The measurement in diffusive BLT alone is insuffi-43

cient to uniquely identify the bio-luminescence source. This is clear from the above44

formulation, as the inverse problem in BLT is a classical inverse source problem that is45

well known to lack unique solutions [26]. Diffusive BLT typically suffers from limited46

spatial resolution due to strong scattering of light in soft tissue. Various methods47

have been proposed to enhance the identifiability and spatial resolution of the bio-48

luminescence source. One of them [25] makes use of a focused ultrasound beam to49

modulate BLT and generate additional data. Here, ultrasound modulation means per-50

forming the usual BLT measurement while the medium undergoes a series of acoustic51

perturbation.52

In the literature, two distinct models have been proposed for ultrasound modula-53

tion. One involves modulation with spherical waves, as detailed in [2], where the dis-54

placement function from a short diverging spherical acoustic impulse is derived. This55

model finds application in the analysis of ultrasound modulation across electromag-56

netic tomography [2], diffuse optical tomography [1], and acousto-optic imaging [3].57

The other model involves modulation with plane waves, for which the displacement58

function is calculated in [9]. This model has been studied, for instance, in the analysis59

of ultrasound modulated bio-luminescence tomography [7, 10, 14], optical tomogra-60

phy [8, 12, 13, 15, 16, 30, 31], and acousto-electromagnetic imaging [6, 28, 29]. In this61

paper, we will assume plane-wave modulation.62

Suppose the incident plane wave is of the form cos(q · x+ φ) where q ∈ Rn is the63

wave vector and φ is the phase. The time scale of the acoustic field propagation is64

generally much greater than that of the optical field, hence the acoustic field can effec-65

tively modulate the optical field. Following [10], the effect of the acoustic modulation66

on the aforementioned optical parameters takes the form:67

Dε(x) := (1 + ε(2γ − 1) cos(q · x+ φ))D(x),(1.3)68

σa,ε(x) := (1 + ε(2γ + 1) cos(q · x+ φ))σa(x),(1.4)69

Sε(x) := (1 + ε cos(q · x+ φ))S(x),(1.5)70

where γ is the elasto-optical constant, 0 ≤ ε ≪ 1 is a small parameter related to the71

amplitude, frequency, time, density and acoustic wave speed [10].72

Inverse Problem in Diffusive Ultrasound Modulated BLT (UMBLT).73

In the presence of ultrasound modulation, the optical parameters and the biolumines-74

cence source are modulated according to (1.3)-(1.5). The diffusion equation for the75

modulated photon density ϕε reads76

−∇ ·Dε(x)∇ϕε(x) + σa,ε(x)ϕε(x) = Sε(x) in Ω.(1.6)77

ϕε + ℓν ·Dε∇ϕε = 0 on ∂Ω.(1.7)78

We will write D0, σa,0, ϕ0 for the quantities without modulation, that is, when ε = 0.79

The measurement in UMBLT is the modulated boundary photon density on an open80

subset of the boundary Γ ⊂ ∂Ω:81

(1.8) Λε,q,φ[S] := ϕε|Γ, for any q ∈ Rn, ε ≥ 0.82

We refer to the measurement as full data if Γ = ∂Ω and partial data if Γ ⊊ ∂Ω. Note83

that assuming such measurement, the modulated boundary photon current ν·Dε∇ϕε|Γ84
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UMBLT WITH PARTIAL DATA AND UNCERTAIN OPTICAL PARAMETERS 3

is readily known on Γ in view of the relation (1.7). Therefore, the inverse problem85

in UMBLT is to recover the bio-luminescence source S from the measurement (1.8),86

assuming D and σa are given.87

Literature Review. We briefly review the literature on mathematical inverse88

problems in BLT and UMBLT. In the diffusive regime (that is, the light propaga-89

tion is modeled by the diffusion equation), the BLT and UMBLT aim to recover90

the spatial distribution of the bioluminescent source, that is S(x) in (1.1) and S0(x)91

in (1.6), respectively. The diffusive BLT measures a single diffusion solution at the92

boundary. This type of boundary data has a lower dimension compared to that of93

the unknown source, resulting in an underdetermined inverse problem that gener-94

ally suffers from nonuniqueness unless a priori information is provided regarding the95

source [17, 26]. Various strategies have been proposed in the literature to address96

the under-determination in BLT. One of them utilizes the idea of ultrasound modu-97

lation, leading to the development of the UMBLT. The diffusive UMBLT measures a98

series of perturbed diffusion solutions at the boundary. Through asymptotic analysis99

and integration-by-parts techniques, this boundary data can be readily converted into100

equivalent internal data, resulting in a formally-determined inverse problems [10].101

In the transport regime (that is, the light propagation is modeled by the radia-102

tive transfer equation), the inverse problems in BLT and UMBLT seek to recover a103

bioluminescent source in the radiative transfer equation (RTE). The transport BLT104

measures angularly-resolved RTE solution at the boundary. The angular measurement105

provides additional information in contrast to diffusive BLT, making the transport106

BLT problem formally-determined (n = 2) or even overdetermined (n ≥ 3). In par-107

ticular, some uniqueness, stability, and reconstruction results have been obtained for108

the transport BLT problem in [11, 21, 22, 23, 35]. On the other hand, the trans-109

port UMBLT measures a series of perturbed RTE solutions at the boundary. This110

boundary data can be likewise converted into internal data, resulting in an inverse111

source problem with internal functional data for the RTE [5]. Several uniqueness and112

stability results have been established in [7, 14]113

Contribution of the Paper. The paper proposes a reconstructive source imag-114

ing procedure for diffusive UMBLT in optically anisotropic media with partial data115

and uncertain optical parameters. Within the framework of mathematical theory of116

diffusive UMBLT, the major contributions include:117

• Reconstruction in Optically Anisotropic Media. Optically anisotropic ma-118

terials have different optical properties depending on the direction of light119

propagation within them. This is in contrast to optically isotropic materials,120

where the optical properties remain the same regardless of direction. A re-121

construction procedure for diffusive UMBLT has been obtained in optically122

isotropic media [10]. In Section 2, we follow the idea of the proof in [10] and123

generalize it to optically anisotropic media. The study provides a more com-124

prehensive understanding of diffusive UMBLT imaging in optically complex125

media.126

• Reconstruction with Partial Data. In practical situations, it is common to127

have access only to partial or incomplete measurements due to limitations in128

sensing devices or environmental factors. Consequently, our study extends129

to source imaging in diffusive UMBLT when data is solely attainable at par-130

tial boundary. Our results encompasses the refinement of the reconstruction131

procedure to accommodate partial data, thereby furnishing a theoretical un-132

derpinning for source imaging with limited data acquisition, see Theorem 3.2.133
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• Uncertainty Quantification from the PDE Perspective. Our reconstruction134

procedure, with full or partial data, hinges essentially on prior knowledge135

of optical parameters, notably the diffusion coefficient and the absorption136

coefficient. As a result, it is paramount to understand the consequence of137

inaccuracies within these optical parameters on the source imaging process.138

One method to quantify such a consequence involves assessing the discrepan-139

cies between PDE solutions [27, 33]. In this paper, we take this perspective to140

investigate the source imaging problem in UMBLT. We derive a quantitative141

uncertainty estimate using the PDE theory of second-order elliptic equations,142

see Theorem 4.2. The estimate demonstrates how the variance of the source143

is linked to the variance of the optical parameters.144

• Discrete Formulation for Diffusive UMBLT. The diffusive UMBLT model is145

further discretized using the staggered grid scheme to yield a discrete model.146

This discrete formulation serves two purposes: on the one hand, it provides147

a finite dimensional formulation of the source imaging problem in UMBLT;148

on the other hand, it facilitates the subsequent numerical implementation149

and validation of the diffusive model. Our analysis is further extended to150

this discrete model: we prove that the finite-dimensional formulation is well151

posed, adapt the reconstructive procedure to the discrete model, and derive152

a discrete estimate to quantify the impact of uncertain optical parameters on153

the discrete source imaging process, see Theorem 5.4.154

Paper Organization. The paper is structured as follows. In Section 2, we de-155

rive internal data from the boundary measurement in UMBLT assuming plan-wave156

modulation, and propose the reconstruction procedure with full data in anisotropic157

media. This reconstruction procedure is generalized in Section 3 to the situation where158

only partial boundary measurement is available. Section 4 establishes an uncertainty159

quantification estimate for the reconstruction procedure. Section 5 discretizes the160

diffusion equation using the staggered grid scheme to result in a discrete formulation161

of the UMBLT inverse problem. A discrete reconstruction procedure is derived along162

with a discrete uncertainty quantification estimate. Section 6 is devoted to the im-163

plementation of the reconstruction procedure as well as quantitative validation using164

numerical examples.165

2. Reconstruction with Full Data. Throughout the paper, the following hy-166

potheses are made regarding the anisotropic diffusion coefficient D(x) and the ab-167

sorption coefficient σa(x):168

H1 D(x) is a matrix-valued function and D(x) = I near ∂Ω. Here, I is the169

identity matrix.170

H2 σa ∈ Cα(Ω), Dij ∈ C1,α(Ω) where Ck,α is the Hölder space of order k with171

exponent α ∈ (0, 1).172

H3 D(x) is positive definite for all x ∈ Ω, that is, there exists a constant λ > 0173

such that174
1

λ
|ξ|2 ≥ ξ⊤D(x)ξ ≥ λ|ξ|2 a.e. on Ω175

holds for any ξ ∈ Rn.176

H4 σa ≥ 0 a.e. on Ω.177

Under these hypotheses, we will derive a reconstructive procedure to recover the in-178

ternal source S, provided the anisotropic diffusion coefficient D(x) and the absorption179

coefficient σa(x) are given. The idea is similar to the proof in [10] in spirit, but is180

This manuscript is for review purposes only.



UMBLT WITH PARTIAL DATA AND UNCERTAIN OPTICAL PARAMETERS 5

generalized to anisotropic D(x). Recall that the full boundary measurement means181

Γ = ∂Ω.182

Consider the adjoint problem to (1.6)-(1.7) with ε = 0 and a prescribed Robin183

boundary condition g:184

−∇ ·D(x)∇ψ(x) + σa(x)ψ(x) = 0 in Ω.(2.1)185

ψ + ℓν ·D∇ψ = g on ∂Ω.(2.2)186

Note that the adjoint solution ψ can be computed, as D, σa and g are known. We187

multiply (1.6) by ψ, multiple (2.1) by ϕε, then integrate their difference by parts over188

Ω to obtain189

(2.3) −1

ℓ

∫
∂Ω

gϕε ds =

∫
Ω

(Dε −D0)∇ϕε · ∇ψ + (σa,ε − σa,0)ϕεψ − ψSε dx,190

where the boundary integral are computed using the boundary conditions (1.7) and191

(2.2). Expand both sides in ε using (1.3)-(1.5) and equate the O(ε)-terms to obtain192

(2.4)

−1

ℓ

∫
∂Ω

g
∂ϕε

∂ε
|ε=0 ds =

∫
Ω

[(2γ − 1)D∇ϕ0 · ∇ψ + (2γ + 1)σaϕ0ψ − ψS)] cos(q · x+ φ) dx.193

As the left hand side is known from the measurement (1.8), so is the right hand side.194

By varying the modulation parameters q and φ, one can recover the Fourier transform195

of the following function:196

(2.5) Hψ := (2γ − 1)D∇ϕ0 · ∇ψ + (2γ + 1)σaϕ0ψ − ψS.197

If we choose a specific adjoint solution ψ0 such that ψ0 ≥ c > 0 for some constant c,198

then dividing both sides by ψ0 and substituting S by the equation (1.6) with ε = 0199

give the following PDE200

(2.6) Fψ0
:=

Hψ0

ψ0
= ∇ ·D∇ϕ0 + (2γ − 1)D∇ϕ0 · ∇ logψ0 + 2γσaϕ0.201

This is a second order elliptic PDE for ϕ0 with known coefficients, which can be solved202

along with the boundary condition (1.7) with ε = 0 to yield ϕ0. Finally, the source S203

can be computed from (1.1).204

It remains to show the existence of the positive adjoint solution ψ0. To see this,205

note that there are suitable Dirichlet boundary conditions such that a positive solution206

ψ0 ≥ c > 0 exists by the maximum principle. One can take the corresponding Robin207

data g = ψ0 + ℓν ·D∇ψ0 to ensure the solution of (2.1)-(2.2) is ψ0.208

3. Reconstruction with Partial Data. In this section, we aim to extend the209

reconstruction procedure in Section 2 to the partial data case where the boundary210

measurement is made only on an open subset Γ ⊊ ∂Ω. A careful examination of211

the proof suggests that the following modifications are necessary in order to adapt212

the idea: (1). the left hand side of (2.3) must be computable in order to obtain the213

internal data Hψ from the right hand side. In the partial data case, ϕε is known only214

on Γ, this restriction requires the choice of the adjoint boundary condition g to vanish215

on ∂Ω\Γ, that is, g|∂Ω\Γ = 0. (2). A critical ingredient in the proof with full data216

is the existence of a positive adjoint solution ψ0 > 0. In the partial data case, we217

need to show the existence of a positive adjoint solution ψ0 > 0 with the additional218
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constraint g|∂Ω\Γ = 0. Once the second modification is verified, the reconstructive219

procedure in Section 2 would apply to the partial data case as well.220

The main part of this section is devoted to proving the existence of a positive221

solution to the adjoint problem (2.1)-(2.2) with g|∂Ω\Γ = 0. Instead of directly con-222

structing a positive adjoint solution, we consider the following adjoint equation with223

mixed boundary conditions:224

−∇ ·D(x)∇ψ(x) + σa(x)ψ(x) = 0 in Ω.(3.1)225

ψ + ℓν ·D∇ψ = 0 on ∂Ω \ Γ.(3.2)226

ψ = f on Γ.(3.3)227

Once we find a positive solution ψ to this mixed boundary value problem, we can228

simply take g = (ψ+ℓν ·D∇ψ)|∂Ω in the adjoint problem (2.1)-(2.2), then the adjoint229

solution is ψ > 0.230

The following result ensures the well-posedness of the mixed boundary value prob-231

lem.232

Proposition 3.1 ([32, Theorem 1]). Assume that233

σa ∈ Cα(Ω), Dij ∈ C1,α(Ω), f ∈ C(Γ) ∩ L∞(Γ),234

then (3.1)-(3.3) has a unique solution ψ ∈ C2(Ω \ Γ) ∩ C0(Ω)235

Theorem 3.2. Supppose the hypotheses H1-H4 hold. If the Dirichlet boundary236

condition f ∈ C(Γ)∩L∞(Γ) is positive, then the mixed boundary value problem (3.1)-237

(3.3) admits a unique solution ψ ∈ C2(Ω \ Γ) ∩ C0(Ω) which is positive on Ω.238

Proof. By Proposition 3.1, the mixed boundary value problem has a unique so-
lution ψ ∈ C2(Ω \ Γ) ∩ C0(Ω). Suppose ψ takes negative values on Ω, the weak
maximum principle [20, Section 6.4 Theorem 2] claims that the minimum is achieved
on the boundary ∂Ω. Since ψ|Γ > 0, the minimum must be achieved at a point
x0 ∈ ∂Ω \ Γ, that is, ψ(x0) = infx∈Ω ψ < 0. According to the Robin boundary
condition (3.2), we have

∂νψ(x0) = ν ·D∇ψ(x0) = −1

ℓ
ψ(x0) > 0

where the first equality holds since D(x) = I near ∂Ω. This contradicts that x0 is a239

global minimum of ψ over Ω. Therefore, ψ ≥ 0 on Ω.240

If ψ achieves the zero minimum at an interior point, that is, ψ(x) = 0 for some241

x ∈ Ω, the strong maximum principle [20, Section 6.4 Theorem 4] forces ψ ≡ constant242

in Ω. In view of the Robin boundary condition on ∂Ω\Γ, we have ψ ≡ 0, contradicting243

that ψ|Γ = f > 0. Therefore, ψ > 0 in Ω.244

It remains to show ψ|∂Ω > 0, or more precisely, ψ|∂Ω\Γ > 0 since ψ|Γ = f > 0.
Suppose otherwise, that is, there exists x0 ∈ ∂Ω \ Γ such that ψ(x0) = infx∈Ω ψ = 0.
Applying the Hopf Lemma [20, Section 6.4 Lemma 3(ii)] to −ψ shows that ∂νψ(x0) <
0, then

ψ(x0) + ℓν ·D∇ψ(x0) = ℓ∂νψ(x0) < 0,

contradicting the boundary condition on ∂Ω\Γ. Therefore, we must have ψ|∂Ω\Γ > 0.245

Combining all the cases, we see that ψ is a positive solution on the compact set246

Ω, hence has a positive lower bound. This completes the proof.247
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Remark 3.3. Theorem 3.2 ensures the existence of a positive adjoint solution ψ >248

0 with partial data, then we can reconstruct the source S using the same process as249

for the full data case.250

4. Uncertainty Quantification with Continuous Diffusive Model. The251

reconstructive procedures in Section 2 and Section 3 rely essentially on accurate prior252

knowledge of the optical coefficients (D,σ) to solve the elliptic equation (2.6) (along253

with boundary conditions) for ϕ0. The underlying rationale is that these optical co-254

efficients can be measured in advance using other imaging modalities such as optical255

tomography [4]. Practically, the imaging process in these additional modalities in-256

evitably introduces inaccuracy to the optical coefficients, which in turn will impact257

the UMBLT reconstructions. In the subsequent two sections, we aim to quantify258

the impact to the reconstruction of the bio-luminescence source S that is due to the259

inaccuracy of the optical coefficients, using the continuous and discretized models260

respectively.261

Let (D,σa) be the underlying true optical coefficients, and (D̃, σ̃a) be the opti-262

cal coefficients that are reconstructed through additional imaging modalities before263

performing UMBLT. Observe that (D̃, σ̃a) do not play a role in the derivation of the264

internal data: This is because the boundary integral on the left hand side of (2.3)265

remains the same, thus we can derive Hψ as before. Hereafter, we will assume the266

internal data Hψ has been accurately extracted, and focus on quantifying the uncer-267

tainty of the reconstructed source S. The full data case and partial data case will268

be handled in one shot, since the reconstruction process are identical once a suitable269

positive adjoint solution ψ0 > 0 is chosen.270

We record a regularity result for the diffusion equation with Robin boundary271

conditions. Here, W s,∞(Ω) and Hs(Ω) denotes the L∞-based and L2-based Sobolev272

spaces of order s ∈ R, respectively.273

Proposition 4.1 ([19, Theorem 2.4]). Suppose D is uniformly elliptic, Dij ∈274

W 1,∞(Ω), A ∈ L∞(Ω;Rn) is a vector field, and 0 ≤ σa ∈ L∞(Ω) a.e. For S ∈ L2(Ω)275

and g ∈ H
1
2 (∂Ω), the following boundary value problem276

−∇ ·D(x)∇ϕ(x) +A(x) · ∇ϕ(x) + σa(x)ϕ(x) = S(x) in Ω.(4.1)277

ϕ+ ℓν ·D∇ϕ = g on ∂Ω.(4.2)278

admits a unique solution ϕ ∈ H2(Ω) with the estimate279

(4.3) ∥ϕ∥H2(Ω) ≤ C(∥S∥L2(Ω) + ∥g∥
H

1
2 (∂Ω)

)280

where C is a constant independent of ϕ.281

We have the following global uncertainty quantification (UQ) estimate for the282

diffusive UMBLT reconstruction.283

Theorem 4.2. Suppose all optical coefficients and solutions satisfy284

∥Dij∥W 1,∞(Ω), ∥D̃ij∥W 1,∞(Ω) ≤ CD, ∥ϕ∥W 2,∞(Ω), ∥ϕ̃∥W 2,∞(Ω) ≤ Cϕ,285

∥ψ∥W 2,∞(Ω), ∥ψ̃∥W 2,∞(Ω) ≤ Cψ, ∥σa∥L∞(Ω), ∥σ̃a∥L∞(Ω) ≤ Cσ,286

ψ, ψ̃ ≥ cψ > 0,287
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where CD, Cϕ, Cψ, Cσ, cψ are constants, and 0 is not eigenvalue of the following op-288

erators equipped with the zero Robin boundary condition:289

∇ ·D∇+ (2γ − 1)D∇ logψ · ∇+ 2γσa, ∇ · D̃∇+ (2γ − 1)D̃∇ log ψ̃ · ∇+ 2γσ̃a,290

then we can find constants C1ij , C2 > 0 such that291

(4.4) ∥S − S̃∥L2(Ω) ≤
∑
i≤j

C1ij∥(D − D̃)ij∥H1(Ω) + C2∥σa − σ̃a∥L2(Ω)292

Proof. Let ϕ and ϕ̃ solve the diffusion equations

S = −∇ · [D∇ϕ] + σaϕ, S̃ = −∇ · [D̃∇ϕ̃] + σ̃aϕ̃,

respectively. Subtract these equations to get

S − S̃ = −∇ · [(D − D̃)∇ϕ]−∇ · [D̃∇(ϕ− ϕ̃)] + (σa − σ̃a)ϕ+ σ̃a(ϕ− ϕ̃).

Taking the L2-norms on both sides, we have293

(4.5)

∥S − S̃∥L2(Ω)

≤ ∥∇ · [(D − D̃)∇ϕ]∥L2(Ω) + ∥∇ · [D̃∇(ϕ− ϕ̃)]∥L2(Ω)

+ ∥(σa − σ̃a)ϕ∥L2(Ω) + ∥σ̃a(ϕ− ϕ̃)∥L2(Ω)

≤
∑
ij

∥∂jϕ∥L∞(Ω)∥∂i(D − D̃)ij∥L2(Ω) +
∑
ij

∥∂ijϕ∥L∞(Ω)∥(D − D̃)ij∥L2(Ω)

+
∑
ij

∥∂iD̃ij∥L∞(Ω)∥∂j(ϕ− ϕ̃)∥L2(Ω) +
∑
ij

∥D̃ij∥L∞(Ω)∥∂ij(ϕ− ϕ̃)∥L2(Ω)

+ ∥ϕ∥L∞(Ω)∥σa − σ̃a∥L2(Ω) + ∥σ̃a∥L∞(Ω)∥ϕ− ϕ̃∥L2(Ω)

≤c1∥ϕ− ϕ̃∥H2(Ω) +
∑
i≤j

c2ij∥(D − D̃)ij∥H1(Ω) + c3∥σa − σ̃a∥L2(Ω)

294

where the constants c1, c2ij , c3 > 0 can be made explicit as follows:295

c1 =

√√√√∥σ̃a∥2L∞(Ω) +
∑
j

[∑
i

∥∂iD̃ij∥L∞(Ω)

]2

+ 4
∑
i<j

∥D̃ij∥2L∞(Ω) +
∑
i

∥D̃ii∥2L∞(Ω)296

c2ij =
√

4∥∂ijϕ∥2L∞(Ω) +
(
∥∂iϕ∥L∞(Ω) + ∥∂jϕ∥L∞(Ω)

)2
(i < j)297

c2ii =
√

∥∂iiϕ∥2L∞(Ω) + ∥∂iϕ∥2L∞(Ω)298

c3 = ∥ϕ∥L∞(Ω)299

In order to estimate the term ∥ϕ − ϕ̃∥H2(Ω), we turn to the second order elliptic300

equations generated from the internal data Hψ = Hψ̃:301

Fψ =
Hψ

ψ
= (2γ − 1)D∇ϕ · ∇ logψ + 2γσaϕ+∇ ·D∇ϕ302

Fψ̃ =
Hψ

ψ̃
= (2γ − 1)D̃∇ϕ̃ · ∇ log ψ̃ + 2γσ̃aϕ̃+∇ · D̃∇ϕ̃.303
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Subtracting these equations gives304

−∇ · D̃∇[ϕ− ϕ̃]− 2γσ̃a(ϕ− ϕ̃)− (2γ − 1)D̃∇(ϕ− ϕ̃) · ∇ logψ

=
Hψ

ψψ̃
(ψ − ψ̃) + (2γ − 1)(D − D̃)∇ϕ · ∇ logψ

+ (2γ − 1)D̃∇ϕ̃ · (∇ logψ −∇ log ψ̃) + 2γ(σa − σ̃a)ϕ+∇ · [D − D̃]∇ϕ,

305

This is a second order elliptic equation for ϕ− ϕ̃ with zero Robin boundary condition,306

we have the following regularity estimate by Proposition 4.1:307

(4.6)

∥ϕ− ϕ̃∥H2(Ω)

≤C
(∥∥∥∥Hψ

ψψ̃
(ψ − ψ̃)

∥∥∥∥
L2(Ω)

+ |2γ − 1|∥(D − D̃)∇ϕ · ∇ logψ∥L2(Ω)

+ |2γ − 1|∥D̃∇ϕ̃ · (∇ logψ −∇ log ψ̃)∥L2(Ω) + ∥∇ · [D − D̃]∇ϕ∥L2(Ω)

+ |2γ|∥(σa − σ̃a)ϕ∥L2(Ω)

)
≤C

(∥Hψ∥L∞(Ω)

c2ψ
∥ψ − ψ̃∥L2(Ω) +

∑
ij

∥∂jϕ∥L∞(Ω)∥∂i(D − D̃)ij∥L2(Ω)

+ |2γ − 1|
∑
ij

∥D̃ij∥L∞(Ω)∥∂j ϕ̃∥L∞(Ω)∥∂i(logψ − log ψ̃)∥L2(Ω)

+ |2γ − 1|
∑
ij

∥∂i logψ∥L∞(Ω)∥∂jϕ∥L∞(Ω)∥(D − D̃)ij∥L2(Ω)

+
∑
ij

∥∂ijϕ∥L∞(Ω)∥(D − D̃)ij∥L2(Ω) + |2γ|∥ϕ∥L∞(Ω)∥σa − σ̃a∥L2(Ω)

)
≤c4∥ψ − ψ̃∥H1(Ω) +

∑
i≤j

c5ij∥(D − D̃)ij∥H1(Ω) + c6∥σa − σ̃a∥L2(Ω)

308

where in the last inequality, we used the upper bound309

∥∂i logψ∥L∞(Ω) ≤
1

cψ
∥∂iψ∥L∞(Ω)310

and311

∥∂i(logψ − log ψ̃)∥L2(Ω)

≤ 1

c2ψ
∥ψ∂iψ̃ − ψ̃∂iψ∥L2(Ω) =

1

c2ψ
∥(ψ − ψ̃)∂iψ̃ − ψ̃∂i(ψ − ψ̃)∥L2(Ω)

≤ 1

c2ψ
∥∂iψ̃∥L∞(Ω)∥ψ − ψ̃∥L2(Ω) +

1

c2ψ
∥ψ̃∥L∞(Ω)∥∂i(ψ − ψ̃)∥L2(Ω)

312

The constants c4, c5ij , c6 > 0 are defined as313

c4 =
C|2γ − 1|

c2ψ

∑
i

∑
j

∥D̃ij∥L2(Ω)∥∂jϕ∥L∞(Ω)∥ψ̃∥L∞(Ω)

2

314

+

∥Hψ∥L∞(Ω)

|2γ − 1|
+
∑
ij

∥D̃ij∥L2(Ω)∥∂jϕ∥L∞(Ω)∥∂iψ̃∥L∞(Ω)

2
1
2

315
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c5ij =C ·
((

2∥∂ijϕ∥L∞(Ω) +
|2γ − 1|
cψ

∥∂iψ∥L∞(Ω)∥∂jϕ∥L∞(Ω) +
|2γ − 1|
cψ

∥∂jψ∥L∞(Ω)∥∂iϕ∥L∞(Ω)

)2

316

+
(
∥∂iϕ∥L∞(Ω) + ∥∂jϕ∥L∞(Ω)

)2

) 1
2

(i < j)317

c5ii =C ·

√(
∥∂iiϕ∥L∞(Ω) +

|2γ − 1|
cψ

∥∂iψ∥L∞(Ω)∥∂iϕ∥L∞(Ω)

)2

+ ∥∂iϕ∥2
L∞(Ω)

318

c6 =|2γ|C · ∥ϕ∥L∞(Ω)319

It remains to estimate the term ∥ψ − ψ̃∥H1(Ω). Let us consider the adjoint equa-320

tions321

(4.7)
−∇ ·D∇ψ + σaψ = 0,

−∇ · D̃∇ψ̃ + σ̃aψ̃ = 0.
322

Subtract these two equations to get323

(4.8) −∇ · D̃∇(ψ − ψ̃) + σ̃a(ψ − ψ̃) = ∇ · (D − D̃)∇ψ − (σa − σ̃a)ψ324

This is a second order elliptic equation for ψ − ψ̃ with the zero Robin boundary325

condition. Again, by the elliptic regularity result Proposition 4.1, we have326

(4.9)

∥ψ − ψ̃∥H1(Ω)

≤C(∥∇ · [(D − D̃)∇ψ]∥L2(Ω) + ∥(σa − σ̃a)ψ∥L2(Ω))

≤C
(∑

ij

∥∂jψ∥L∞(Ω)∥∂i(D − D̃)ij∥L2(Ω) +
∑
ij

∥∂ijψ∥L∞(Ω)∥(D − D̃)ij∥L2(Ω)

+ ∥ψ∥L∞(Ω)∥(σa − σ̃a)∥L2(Ω)

)
≤
∑
i≤j

c7ij∥(D − D̃)ij∥H1(Ω) + c8∥σa − σ̃a∥L2(Ω)

327

with constants c7ij , c8 > 0, where328

c7ij = C ·
√(

∥∂iψ∥L∞(Ω) + ∥∂jψ∥L∞(Ω)

)2
+ 4∥∂ijψ∥2L∞(Ω) (i < j)329

c7ii = C ·
√

∥∂iψ∥2L∞(Ω) + ∥∂iiψ∥2L∞(Ω)330

c8 = C · ∥ψ∥L∞(Ω)331

Combining (4.5) (4.6) and (4.9), we conclude that332

(4.10) ∥S − S̃∥L2(Ω) ≤
∑
i≤j

C1ij∥(D − D̃)ij∥H1(Ω) + C2∥σ − σ̃∥L2(Ω),333

with C1ij = c1c4c7ij + c1c5ij + c2ij and C2 = c1c4c8 + c1c6 + c3. Note that all the334

constants in this proof are explicit, except for the constant C that comes from the335

estimate of elliptic regularity.336

Remark 4.3. Theorem 4.2 can be interpreted as follows. Squaring estimate (4.4)
gives

∥S − S̃∥2L2(Ω) ≤ C
(
∥D − D̃∥2H1(Ω) + ∥σa − σ̃a∥2L2(Ω)

)
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where the constant C is in terms of C1ij and C2. If we take S,D, σa to be the337

underlying ground-truth parameters and S̃, D̃, σ̃a the corresponding parameters in338

the presence of additive random uncertainty of mean zero, then E[S̃] = S, E[D̃] = D,339

E[σ̃a] = σa. The estimate provides a quantitative error bound on the variance of the340

bioluminescent source.341

5. Uncertainty Quantification with Discretized Diffusive Model. In the342

previous section, we considered the impact of inaccurate (D,σa) using continuous343

PDE models. However, for the subsequent numerical simulation, the PDEs have to344

be discretized into finite dimensional discrete models. This motivates us to study a345

similar UQ problem based on the finite difference discretization of the PDE model.346

The analysis in this section provides a finite dimensional counterpart of the infinite347

dimensional UQ estimate (4.4), bridging the gap between the infinite dimensional348

analysis and the finite dimensional numerical experiments.349

We will consider the discretization of three diffusion-type equations: the for-350

ward problem (1.6)-(1.7), the adjoint problem (2.1)-(2.2), and the internal data prob-351

lem (2.5) equipped with the zero Robin boundary condition. These problems need352

to be discretized in order to implement the reconstruction procedure outlined in353

Section 2. The discretization procedure requires numerical evaluation of the terms354

∇ ·D∇ϕ0, D∇ϕ0 · ∇ logψ0, and σaϕ0. The last term can be readily evaluated on a355

grid. In the following, we explain how to discretize the first two differential operators356

using the staggered grid scheme.357

We take Ω to be a 2D domain to agree with the setup of the subsequent numerical358

experiments. The 2D coordinates are written as (x, y). The problem in 3D can be359

considered likewise with an additional spatial variable. Let ∆x, ∆y denote the grid360

size on the x-direction and y-direction, respectively. We will discretize the divergence-361

form diffusion operator using the staggered grid scheme, see Figure 1. The black362

dots are indexed by (i, j), where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, white dots are363

indexed by (i+ 1
2 , j), where i = 1, 2, . . . , Nx− 1, j = 1, 2, . . . , Ny and (i, j+ 1

2 ), where364

i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny − 1. For a function u, we use ui,j to represent an365

approximate value of u(xi, yj), where xi = x1 + (i − 1)∆x and yj = y1 + (j − 1)∆y366

are the coordinates of the grid points.367

Fig. 1: The illustration of staggered grid scheme. The zero and second order terms
are defined on the grid points (black dots), the first order terms and D are defined
on the edges (white dots).
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5.1. Discretization with Isotropic Diffusion Coefficients.. We begin the368

discretization with an isotropic diffusion coefficient, that is, D = D(x) is a scalar369

function.370

5.1.1. Discretization of the Forward Problem.. First, we consider dis-371

cretization of the forward problem (1.6)-(1.7). Using the staggered grid scheme, the372

operator ∇ ·D∇ is discretized as373

(5.1)

[∇ ·D∇u]i,j
=[∂xD∂xu+ ∂yD∂yu]i,j

≈
[D∂xu]i+ 1

2 ,j
− [D∂xu]i− 1

2 ,j

∆x
+

[D∂yu]i,j+ 1
2
− [D∂yu]i,j− 1

2

∆y

≈
Di+ 1

2 ,j
[ui+1,j − ui,j ]−Di− 1

2 ,j
[ui,j − ui−1,j ]

∆x2

+
Di,j+ 1

2
[ui,j+1 − ui,j ]−Di,j− 1

2
[ui,j − ui,j−1]

∆y2

=

[
Di+ 1

2 ,j

∆x2

]
ui+1,j +

[
Di− 1

2 ,j

∆x2

]
ui−1,j +

[
Di,j+ 1

2

∆y2

]
ui,j+1 +

[
Di,j− 1

2

∆y2

]
ui,j−1

−
[
Di+ 1

2 ,j

∆x2
+
Di− 1

2 ,j

∆x2
+
Di,j+ 1

2

∆y2
+
Di,j− 1

2

∆y2

]
ui,j ,

374

where ≈ denotes the staggered grid scheme approximation.375

For the Robin boundary condition on the four boundaries (excluding the four cor-376

ners), it is simply u±2D∂xu on the right/left boundary, u±2D∂yu on the top/bottom377

boundary. For the four corner points, e.g. the bottom left corner (Figure 2), the out-378

going vector ν is chosen as (−
√
2
2 ,−

√
2
2 ). For example,379

(5.2)

[u+ ℓν ·D∇u]1,1

=u1,1 −
√
2ℓ

2
[D∂xu]1+ 1

2 ,1
−

√
2ℓ

2
[D∂yu]1,1+ 1

2

=u1,1 +

√
2ℓ

2

D1+ 1
2 ,1

∆x
[u1,1 − u1,2] +

√
2ℓ

2

D1,1+ 1
2

∆y
[u1,1 − u2,1]

=

[
1 +

√
2ℓD1+ 1

2 ,1

2∆x
+

√
2ℓD1,1+ 1

2

2∆y

]
u1,1 −

√
2ℓD1+ 1

2 ,1

2∆x
u1,2 −

√
2ℓD1,1+ 1

2

2∆y
u2,1.

380

This discretization gives rise to a linear system with the unknowns ui,j . In order to381

make this linear system explicit, we introduce the index function I(i, j) := (i−1)Ny+j382

and use (i, j) ∼ (i′, j′) to mean that the (i′, j′)-point is a neighbor of (i, j)-point.383

Denote by I the set of interior points, by B the set of non-corner boundary points,384

and by Bc the set of four corner points. According to the scheme (5.1) and (5.2), the385

forward problem (1.6)-(1.7) is discretized to yield the linear system386

Lϕ0 = s387

where ϕ0 consists of the vectorized values of the forward solution ϕ0 at black dots388
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ν

Fig. 2: The outgoing vector at the corner

such that ϕ0I(i,j) = ϕ0(xi, yj).389

(5.3)

LI(i,j),I(i′,j′) =



∑
(̃i,j̃)∼(i,j)

D i+ĩ
2
,
j+j̃
2

|i−ĩ|∆x2+|j−j̃|∆y2 + σi,j , (i′, j′) = (i, j), (i, j) ∈ I

−
D i+i′

2
,
j+j′

2

|i−i′|∆x2+|j−j′|∆y2 , (i′, j′) ∼ (i, j), (i, j) ∈ I

1 + ℓ
∑
I∋(̃i,j̃)∼(i,j)

D i+ĩ
2
,
j+j̃
2

|i−ĩ|∆x+|j−j̃|∆y , (i′, j′) = (i, j), (i, j) ∈ B

−ℓ
D i+i′

2
,
j+j′

2

|i−i′|∆x+|j−j′|∆y , I ∋ (i′, j′) ∼ (i, j) ∈ B,

1 +
√
2ℓ
2

∑
(̃i,j̃)∼(i,j)

D i+ĩ
2
,
j+j̃
2

|i−ĩ|∆x+|j−j̃|∆y , (i′, j′) = (i, j), (i, j) ∈ Bc,

−
√
2ℓ
2

D i+i′
2

,
j+j′

2

|i−i′|∆x+|j−j′|∆y , (i′, j′) ∼ (i, j), (i, j) ∈ Bc,

0 others

390

(5.4) sI(i,j) =

{
Si,j , (i, j) ∈ I,

0, (i, j) ∈ B ∪Bc.
391

Before discussing further properties of the matrix L, we recall the definition of392

some special matrices. Given a square matrix A = (Akl), its k-th row is said to be393

weakly diagonally dominant (WDD) if |Akk| ≥
∑
l ̸=k |Akl|, and the matrix A is said394

to be WDD if all the rows are WDD. Likewise, its k-th row is said to be strictly395

diagonally dominant (SDD) if ≥ is replaced by a strict inequality >, and the matrix396

A is said to be SDD if all the rows are SDD.397

Definition 5.1. A square matrix A = (Akl) is said to be weakly chained diago-398

nally dominant (WCDD) if399

• A is WDD.400

• For each row k that is not SDD, there exists k1, k2, . . . , kp such that Akk1 ,401

Ak1k2 , . . . , Akp−1kp , Akpl are nonzero and the row Al,: is SDD.402

Proposition 5.2. L is a WCDD matrix.403

Proof. First, we show L is WDD. As D > 0, σa ≥ 0 everywhere, all the off-
diagonal terms (see Row 2, 4, 6, 7 in (5.3)) are non-positive and all the diagonal
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terms (see Row 1, 3, 5 in (5.3)) are non-negative. It suffices to show that

LI(i,j),I(i,j) ≥
∑

(i′,j′)̸=(i,j)

−LI(i,j),I(i′,j′).

Move all the terms in this inequality to the left side. It suffices to show that any row404

sum of L is non-negative. This is obvious from the definition of L in (5.3), where the405

row sum of the I(i, j)-th row is σi,j when (i, j) ∈ I, and the row sum of the I(i, j)-th406

row is 1 when (i, j) ∈ B ∪ Bc. This proves that L is WDD. Moreover, the analysis407

shows that the I(i, j)-th row is SDD when (i, j) ∈ B ∪Bc.408

Next, we show the chain condition. If the I(i, j)-th row is not SDD, then (i, j) ∈ I.409

As the finite difference grid is connected, there exist (i1, j1), . . . , (ip, jp) such that410

(ip, jp) ∈ B ∪ Bc and (i, j) ∼ (i1, j1) ∼ · · · ∼ (ip, jp). Notice that the definition of L411

has the property that LI(i,j),I(i′,j′) < 0 for (i, j) ∼ (i′, j′) (see Row 2,4,6 in (5.3)), we412

conclude the entries LI(i,j),I(i1,j1), . . . , LI(ip−1,jp−1),I(ip,jp) are all negative, and the413

row LI(ip,jp),: is SDD since (ip, jp) ∈ B ∪Bc.414

Proposition 5.3 ([34]). WCDD matrices are invertible.415

As a result, the discretized forward problem admits a unique solution ϕ0 = L−1s.416

5.1.2. Discretization of the Adjoint Problem.. The adjoint problem(2.1),417

(2.2) takes a similar form as the forward problem, except that the source g is imposed418

on the boundary. Therefore, the adjoint problem can be discretized likewise to yield419

a linear system420

Lψ = g421

where L is the same finite difference matrix defined in (5.3), ψ consists of the vector-422

ized values of the adjoint solution ψ at black dots such that ψI(i,j) = ψ(xi, yj), and423

424

(5.5) gI(i,j) =

{
0, (i, j) ∈ I,

g(xi, yj), (i, j) ∈ B ∪Bc.
425

5.1.3. Discretization of the Internal Data Problem.. It remains to dis-426

cretize the internal data problem (2.5) along with the zero Robin boundary condi-427

tion. This requires discretizing an operator of the form D∇u · ∇v = D∇v · ∇u. The428
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staggered grid scheme gives429

(5.6)

[D∇v · ∇u]i,j

≈
[D∂xu∂xv]i+ 1

2 ,j
+ [D∂xu∂xv]i− 1

2 ,j

2
+

[D∂yu∂yv]i,j+ 1
2
+ [D∂yu∂yv]i,j− 1

2

2

≈
[D∂xv]i+ 1

2 ,j
[ui+1,j − ui,j ] + [D∂xv]i− 1

2 ,j
[ui,j − ui−1,j ]

2∆x

+
[D∂yv]i,j+ 1

2
[ui,j+1 − ui,j ] + [D∂yv]i,j− 1

2
[ui,j − ui,j−1]

2∆y

=

[
Di+ 1

2 ,j
[vi+1,j − vi,j ]

2∆x2

]
ui+1,j +

[
Di− 1

2 ,j
[vi−1,j − vi,j ]

2∆x2

]
ui−1,j

+

[
Di,j+ 1

2
[vi,j+1 − vi,j ]

2∆y2

]
ui,j+1 +

[
Di,j− 1

2
[vi,j−1 − vi,j ]

2∆y2

]
ui,j−1

−

[
Di+ 1

2 ,j
[vi+1,j − vi,j ]

2∆x2
+
Di− 1

2 ,j
[vi−1,j − vi,j ]

2∆x2

+
Di,j+ 1

2
[vi,j+1 − vi,j ]

2∆y2
+
Di,j− 1

2
[vi,j−1 − vi,j ]

2∆y2

]
ui,j ,

430

The discretization of (2.5) becomes431

Aψ0ϕ0 = hψ0432

where ϕ0 consists of the vectorized values of the forward solution ϕ0 at black dots433

such that ϕ0I(i,j) = ϕ(xi, yj), and434

(5.7)

(Aψ)I(i,j),I(i′,j′) =



−
∑

(̃i,j̃)∼(i,j)

D i+ĩ
2
,
j+j̃
2

[ψi,j+
2γ−1

2 [ψĩ,j̃−ψi,j ]]

|i−ĩ|∆x2+|j−j̃|∆y2 + 2γσi,jψi,j , (i′, j′) = (i, j), (i, j) ∈ I

D i+i′
2

,
j+j′

2

[ψi,j+
2γ−1

2 [ψi′,j′−ψi,j ]]

|i−i′|∆x2+|j−j′|∆y2 , (i′, j′) ∼ (i, j), (i, j) ∈ I

1 + ℓ
∑
I∋(̃i,j̃)∼(i,j)

D i+ĩ
2
,
j+j̃
2

|i−ĩ|∆x+|j−j̃|∆y , (i′, j′) = (i, j), (i, j) ∈ B

−ℓ
D i+i′

2
,
j+j′

2

|i−i′|∆x+|j−j′|∆y , I ∋ (i′, j′) ∼ (i, j) ∈ B,

1 +
√
2ℓ
2

∑
(̃i,j̃)∼(i,j)

D i+ĩ
2
,
j+j̃
2

|i−ĩ|∆x+|j−j̃|∆y , (i′, j′) = (i, j), (i, j) ∈ Bc,

−
√
2ℓ
2

D i+i′
2

,
j+j′

2

|i−i′|∆x+|j−j′|∆y , (i′, j′) ∼ (i, j), (i, j) ∈ Bc,

0 others

435

(5.8) (hψ)I(i,j) =

{
(Hψ)i,j , (i, j) ∈ I,

0, (i, j) ∈ B ∪Bc.
436

5.1.4. Discrete Uncertainty Quantification Estimate.. Parallel to Theo-437

rem 4.2, we derive the following UQ estimate for the discretized model. Note that the438

uncertainties of the optical parameters (D,σa) are implicitly encoded in the difference439

L̃− L and Ãϕ̃0
−Aϕ0 .440
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Theorem 5.4. Suppose 0 is not an eigenvalue of Aψ0 and Ãψ̃0
for some ψ0 > 0441

and ψ̃0 > 0, then442

(5.9) ∥s̃− s∥2 ≤∥hϕ0∥2(∥A−1
ψ0

∥2∥L̃− L∥2 + ∥L̃∥2∥Ã−1

ϕ̃0
∥2∥A−1

ϕ0
∥2∥Ãϕ̃0

−Aϕ0∥2).443

Proof. Under the assumption, the matrix Aψ0 is invertible for some ψ0 > 0. We444

can represent ϕ0 = A−1
ψ0

hψ0
, then s = Lϕ0 = LA−1

ψ0
hψ0 . Therefore,445

(5.10)

∥s̃− s∥2 =∥(L̃Ã−1

ϕ̃0
− LA−1

ϕ0
)hϕ0∥2

≤∥L̃Ã−1

ϕ̃0
− LA−1

ϕ0
∥2∥hϕ0∥2

≤(∥(L̃− L)A−1
ϕ0

∥2 + ∥L̃(Ã−1

ϕ̃0
−A−1

ϕ0
)∥2)∥hϕ0∥2

≤(∥L̃− L∥2∥A−1
ϕ0

∥2 + ∥L̃∥2∥Ã−1

ϕ̃0
−A−1

ϕ0
∥2)∥hϕ0∥2

446

where ∥ · ∥2 denotes the vector/matrix 2-norm. Using the relation A−1 − B−1 =447

A−1(B −A)B−1, we obtain the desired estimate.448

5.2. Discretization with Anisotropic Diffusion Coefficients.. When D is449
anisotropic, i.e, a symmetric positive definite matrix-valued function, the operators450
∇ ·D∇ and D∇v · ∇ can be discretized as follows451

[∇ ·D∇u]i,j =
[(D∇u)1]i+1

2
,j

− [(D∇u)1]i− 1
2
,j

∆x
+

[(D∇u)2]i,j+1
2
− [(D∇u)2]i,j− 1

2

∆y
452

[D∇v · ∇u]i,j =
[(D∇v)1∂xu]i+1

2
,j

+ [(D∇v)2∂xu]i− 1
2
,j

2
+

[(D∇v)2∂yu]i,j+1
2
+ [(D∇v)2∂yu]i,j− 1

2

2
453

where (D∇u)1 (resp. (D∇u)2) denotes the first (resp. second) component of the
vector D∇u. The discretization now differs from the isotropic case. This is because
for an isotropic D

(D∇u)1 = D∂xu, (D∇u)2 = D∂yu

which only requires [∂xu]i+ 1
2 ,j

and [∂yu]i,j+ 1
2
in the staggered grid. However, for an

anisotropic D:

(D∇u)1 = D11∂xu+D12∂yu, (D∇u)2 = D21∂xu+D22∂yu

which requires two additional terms [∂xu]i,j+ 1
2
and [∂yu]i+ 1

2 ,j
. These additional terms454

can be discretized as follows:455

[∂yu]i+ 1
2 ,j

=
[∂yu]i,j + [∂yu]i+1,j

2
=
ui+1,j+1 + ui,j+1 − ui,j−1 − ui+1,j−1

4∆y
,456

[∂xu]i,j+ 1
2
=

[∂xu]i,j + [∂xu]i,j+1

2
=
ui+1,j+1 + ui+1,j − ui−1,j − ui−1,j+1

4∆x
,457

see [24] for the detail. This discretization results in a matrix L. The rest of the458

analysis is similar provided L is invertible, and we can obtain Theorem 5.4 as well.459

6. Numerical Experiment. In this section, we demonstrate numerical experi-460

ments to validate the reconstruction procedure and quanfity the impact of inaccurate461

optical coefficients (D,σa) to the source recovery. We will restrict the discussion in462

this section to isotropic D for the ease of notations.463
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6.1. Uncertainty Generation. We will utilize the generalized Polynomial Chaos464

Expansion (PCE) to facilitate generation of uncertainty. PCE approximates a well-465

behaved random variable using a series of polynomials under certain probability dis-466

tribution. Specifically, let (X,F ,P) be a probability space, and let ξ(ω) be a random467

variable (where ω ∈ X is a sample) with probability density function p(t). Suppose a468

deterministic ground-truth u = u(x) is given, then the uncertainty generated by PCE469

takes the form470

(6.1) u(x, ξ(ω)) =
∞∑
k=0

uk(x)Φk(ξ(ω)), (x, ω) ∈ Ω×X471

where uk(x)’s are the coefficients, u0 is the ground truth, Φ0 = 1, Φk’s are orthogonal472

polynomials, that is,473 ∫
R
Φi(t)Φj(t)p(t) dt = δij .474

For the numerical experiments, ξ is chosen to be uniformly distributed on the sample475

space X = [−1, 1]; Φk’s are the Legendre polynomials on [−1, 1]; the PCE is truncated476

at k = Kc. Then477

E[u] = u0, Var[u] =

Kc∑
k=1

u2k.478

In the subsequent numerical experiments, we inject uncertainties into the optical479

coefficients (D,σa) based on the following process:480

(1) Generate the coefficients uDk, uσak using the truncated Fourier series in x:

uDk =
∑

∥n∥∞=k

c1n sin(πn · x) + c2n cos(πn · x),

uσak =
∑

∥n∥∞=k

c3n sin(πn · x) + c4n cos(πn · x).

Here n ∈ Zn, the Fourier coefficients c1n, c2n, c3n, c4n are independently chosen481

from the uniform distributions on [−1, 1]. Once generated, they are fixed so that482

the coefficients uDk, uσak are deterministic.483

(2) Randomly generate ξ from the uniform distribution on [−1, 1], then construct the484

uncertainties uD, uσa according to (6.1) with k = 1, 2, . . . , 10:485

uD :=
10∑
k=1

uDkΦk(ξ(ω)), uσa :=
10∑
k=1

uσakΦk(ξ(ω))486

Note that E[uD] = E[uσa ] = 0.487

(3) Once the uncertainties are generated, we rescale the uncertainties based on pre-488

scribed relative uncertainty levels eD, eσa to construct the optical coefficients with489

uncertainty (D̃, σ̃a) as follows:490

(6.2)

D̃ := D +
uDeD
∥uD∥H1

∥D∥H1 ,

σ̃a := σa +
uσaeσa
∥uσa∥L2

∥σa∥L2 .
491
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The impact of the inaccuracy in the optical coefficients will be quantitatively492

measured by the relative standard deviation defined as follows:493

(6.3) ES :=

√
E[∥S̃ − S∥2L2 ]

∥S∥L2

, ED :=

√
E[∥D̃ −D∥2H1 ]

∥D∥H1

, Eσa :=

√
E[∥σ̃a − σa∥2L2 ]

∥σa∥L2

.494

Note that ED = eD and Eσa = eσa are precisely the relative uncertainty levels that495

are used to define (D̃, σ̃a) in (6.2). This justifies that the relative standard deviation496

is a reasonable quantity to measure the uncertainty. In the following, we will specify497

various uncertainty levels eD, eσa and plot ES versus them, see Figure 7 and Figure 12.498

6.2. Numerical Implementation.. We choose the 2D computational domain499

Ω = [−1, 1]2. The diffusion equation is solved using the staggered grid scheme outlined500

in Section 5. To avoid the inverse crime, the forward problem is solved on a fine mesh501

with step size h = 1
200 , while the inverse problem is solved on a coarse mesh with step502

size h = 1
100 using re-sampled data.503

A challenge in the numerical simulation is ensuring that the adjoint solution ψ0504

is strictly positive. Although it is proved in Theorem 3.2 that ψ0 has a positive lower505

bound, named cψ > 0 in Theorem 4.2, the constant cψ can be quite small in the506

numerical implementation (especially when g is partly vanishing on ∂Ω), resulting507

in numerical instability. To mitigate this issue, we choose to solve the adjoint equa-508

tion (2.1) not with the Robin boundary condition (2.2), but instead with a Dirichlet509

boundary condition to generate ψ0, and then name the resulting Robin boundary510

condition as g. The advantage of this trick is that the Dirichlet condition, with the511

help of the Maximum Principle, guarantees that the constant cψ > 0 is not too close512

to 0. However, the trick makes it difficult to ensure that g vanishes on a desired part513

of ∂Ω. Given that the estimate in Theorem 4.2 takes a similar form for full data and514

partial data, we will apply the trick at the cost of restricting the subsequent numerical515

experiments to only the full data case.516

With the help of the trick, we numerically calculate the noise-free ϕ0 and ψ0517

using ground truth S and (D,σa). Once we have ϕ0 and ψ0, we calculate the internal518

data Hψ0 through (2.5). Note that the internal data is derived from the boundary519

measurement, hence is independent of the uncertainty on the optical coefficients.520

Experiment 1 In this experiment, we consider the case that the optical coeffi-521

cients can be represented using low-frequency Fourier basis. We choose522

D = cos2(x+ 2y)− 3 sin2(3x− 4y) + 5, σa = cos2(5x) + sin2(5y) + 1,523

and the source S to be the Shepp-Logan phantom, see Figure 3.524

Using the ground-truth (D,σa), we generate the uncertainties according to (6.2)525

to obtain 1000 samples of inaccurate optical coefficients (D̃, σ̃a). Set ∆D := D̃ −D526

and ∆σa = σ̃a−σa. We implemented the reconstruction procedure 1000 times to plot527

the distribution of ∥∆S∥L2 versus ∥∆D∥H1 and ∥∆σa∥L2 , see Figure 4. It is clear528

that for fixed ∥∆D∥H1 , ∥∆S∥L2 is more concentrated compared to fixed ∥∆σa∥L2 ,529

suggesting that the uncertainty in D̃ has larger impact to the reconstruction than530

the uncertainty in σ̃a. Moreover, the distribution of the scatter plot suggests that531

∥∆S∥L2 is locally Lipschitz stable with respect to ∥∆D∥H1 for small ∆D, agreeing532

with the estimates in Theorem 4.2 and Theorem 5.4. One of the reconstructions is533

illustrated in Figure 5, and the average of the 1000 reconstructed sources is illustrated534

in Figure 6. We see that the averaged S̃ is close to the ground truth S. This can535
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be understood as follows. Let us view S = S[D,σa] as a nonlinear functional of536

(D,σa). When small perturbations (δD, δσa) are added, the response perturbation537

δS ≈ dS(δD, δσa) depends almost linearly on (δD, δσa) where dS is the Frechét538

derivative. Hence E[S] ≈ dS(E[δD],E[δσa]) = 0.539

To better understand the relations between ES versus ED (resp. ES versus Eσa),540

we take ∆σa = 0 (resp. ∆D = 0) and add eD = 2%, 4%, 6%, 8%, 10% of random noise541

to D (resp. eσa = 2%, 4%, 6%, 8%, 10% of random noise to σa). The plots are shown542

in Figure 7. We observe that ES depends linearly or superlinearly on ED and Eσa , and543

the same level of relative uncertainty on D has larger impact than on σa. Note that544

the plotted curves are nonlinear because the constant factors C1ij , C2 in Theorem 4.2545

also depend on (D̃, σ̃a).546

Remark 6.1. IfX is a random variable and f is a nonlinear function, it is generally
not true that Ef(X) ̸= f(E(X)). For example, if we choose a uniformly distributed
random variable X ∼ U (−1, 1) and a nonlinear function fα(x) := |x|α (0 < α < 1).
Then E[X] = 0, hence fα(E[X]) = fα(0) = 0. But

0 < E[fα(X)] =
1

2

∫ 1

−1

|x|α dx =
1

α+ 1
< 1

and E[fα(X)] monotonically increases to 1 as α→ 0+.547
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Fig. 3: Left: Diffusion coefficient D. Middle: Absorption coefficient σa. Right: Shepp-
Logan Source S.

Experiment 2 In this experiment, we consider the case that the optical coeffi-548

cients can not be represented using the low frequency Fourier basis. We choose549

D = 3−max{|x|, |y|}, σa =
3

2
− 1

2
sgn

(
x2 + y2 − 4

5

)
,550

and we choose the source S to be the Shepp-Logan phantom, see Figure 8. We choose551

the relative uncertainty level at 10% and run 1000 reconstructions to plot the dis-552

tribution of ∥S̃ − S∥L2 versus ∥D̃ − D∥H1 and ∥σ̃a − σa∥L2 , see Figure 9. One of553

the reconstructions is illustrated in Figure 10, and the average of 1000 reconstructed554

sources is illustrated in Figure 11. For the relation between the relative standard de-555

viations, we fix D and σa respectively and add 2%, 4%, 6%, 8%, 10% Gaussian random556

noise to another optical coefficient. The relations are shown in Figure 12. Again, we557

observe that uncertainties in D have larger impact to the reconstruction than that558

in σa. We also observe that the averaging process reduces the uncertainty in the559

reconstruction. The impact ES also depends linearly or superlinearly on ED and Eσa .560
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Fig. 4: The distribution of the error with respect to the inaccuracies in optical coef-
ficients

Remark 6.2. In Figure 9, the plot ∥∆S∥ versus ∥∆D∥ has two branches. This561

is because the plot shows the relation between the norms. As a simple example, let562

y = (x+ 1)2, x ∈ R. The same branches appear if we plot |y| versus |x|.563

7. Conclusion. The paper has presented a novel approach to addressing the564

imaging problem in ultrasound-modulated bioluminescence tomography (UMBLT)565

within an anisotropic medium, focusing on scenarios with partial boundary measure-566

ments and uncertainty optical coefficients. By leveraging the plane-wave modulation567

assumption, we effectively transformed the imaging problem into an inverse problem568

with internal data, facilitating a robust reconstruction procedure for recovering the569

bioluminescent source. The study further enhanced this reconstruction process by in-570

tegrating an uncertainty quantification estimate, ensuring a rigorous assessment of the571

reconstruction’s robustness. The practical applicability of the proposed methodology572

was strengthened through the discretization of the diffusive model using the stag-573

gered grid scheme, leading to a discrete formulation of the UMBLT inverse problem.574

This allowed for the development of a corresponding discrete reconstruction proce-575

dure, along with a discrete uncertainty quantification estimate. The effectiveness576

and reliability of these methods were demonstrated through comprehensive numerical577

examples, underscoring the potential of the approach in practical scenarios.578
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Fig. 10: Reconstructed source S̃ and its error under 10% Gaussian random noise.
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Fig. 11: Averaged reconstructed source S̃ and its error under 10% Gaussian random
noise.
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