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VERTEX WEIGHT RECONSTRUCTION IN THE GEL’FAND’S INVERSE PROBLEM
ON CONNECTED WEIGHTED GRAPHS

SONGSHUO LI, YIXTIAN GAO, RU GENG, AND YANG YANG

ABSTRACT. We consider the reconstruction of the vertex weight in the discrete Gel’fand’s inverse
boundary spectral problem for the graph Laplacian. Given the boundary vertex weight and the edge
weight of the graph, we develop reconstruction procedures to recover the interior vertex weight from
the Neumann boundary spectral data on a class of finite, connected and weighted graphs. The proce-
dures are divided into two stages: the first stage reconstructs the Neumann-to-Dirichlet map for the
graph wave equation from the Neumann boundary spectral data, and the second stage reconstructs
the interior vertex weight from the Neumann-to-Dirichlet map using the boundary control method
adapted to weighted graphs. For the second stage, we identify a class of weighted graphs where the
unique continuation principle holds for the graph wave equation. The reconstruction procedures are
further turned into an algorithm, which is implemented and validated on several numerical examples
with quantitative performance reported.

1. INTRODUCTION AND MAIN RESULTS

The Gel’fand’s inverse boundary spectral problem aims to determine a differential operator based
on the knowledge of its boundary spectral data [25]. This problem arises in various scientific and
engineering domains where understanding the internal structure of a system or material is crucial.
In this paper, we are interested in the discrete Gel’fand’s inverse boundary spectral problem on com-
binatorial graphs [14]. In the discrete formulation, traditional differential operators are substituted
with difference operators, and traditional functions are substituted with functions defined on ver-
tices. The problem thus involves reconstructing properties of combinatorial graphs from boundary
spectral data. The analysis of this discrete problem serves as a foundational framework for finite
difference and finite element analysis of numerical methods for solving the continuous Gel’fand’s
inverse boundary spectral problem.

We formulate the discrete Gel’fand’s inverse boundary spectral problem following the presenta-
tion in [14]. A graph (G, £) consists of a set of vertices G and a set of edges €. The set of vertices
admits a disjoint decomposition G = G U G, where G is called the set of interior vertices and G
the set of boundary vertices. The graph is finite if |G| and |€| are both finite, where | - | denotes the
cardinality. Given two vertices x,y € G, we say that z is a neighbor of y, denoted by = ~ y , if
there exists an edge connecting = and y. This edge is denoted by {z, y}. In this case, y is clearly
a neighbor of = as well. The graph is undirected if the edges do not carry directions, that is, if
{z,y} = {y,x}. The graph is weighted if there exists an edge weight function on the set of edges
w : €& — Ry (R denotes the set of positive real numbers) such that w(z,y) = w(y,z) > 0 for
x ~ y. By convention, if there is no edge between x and y, we set w(x,y) = w(y,x) = 0. We
often use the simplified notation w, , to represent the edge weight w(x, y) for brevity. The graph is
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simple if there is at most one edge between any two vertices and no edge connects a vertex to itself.
The graph is connected if any two vertices can be connected by a sequence of edges. In this paper,
all the graphs are assumed to be finite, undirected, weighted, simple and connected.

For x € G, its degree, denoted by deg(), is defined as the number of edges in £ connecting it to
its neighbors. Let u : G — R be a real-valued function. The graph Laplacian A is defined as

Acu(z) = %&;) S w(e,y)(uly) - u(@), z€G. (L.1)
yeG

Here ;1 : G — R, is a positive function on the set of vertices. We will refer to y as the vertex
weight and write p(x) as u, for simplicity. This definition of the graph Laplacian includes several
special cases that are of importance in graph theory. For instance, the combinatorial Laplacian
corresponds to p = 1, while the normalized Laplacian corresponds to w = 1 and u(x) = deg(x).
The Neumann boundary value of  is defined as

du(z) = 1 Zw(m, 2)(u(z) —u(z)), z€IG. (1.2)

fz zeG

A function ¢ : G — R is said to be harmonic if
Agp(x) =0, ze€d.

Although the definition of Ay involves p, it is clear that the concept of harmonic functions is
independent of . Denote by [%(G) the [?-space of real-valued functions equipped with the following
inner product: for functions u,v : G — R,

(u,v)g := Zuxu(x)v(x)
zeG
Similarly, denote by I?(0G) the [2-space of real-valued functions equipped with the inner product
(u,v)ac = Z pau(z)v(2)
z€0G
for functions u, v : 0G — R.

Definition 1.1 (Neumann boundary spectral data). For the Neumann eigenvalue problem
—Ago;(x) = N\jp;i(z), =€,
all¢j|8G = 07

we say that ¢; with (¢;, ¢;)c = 1 is a normalized Neumann eigenfunction associated to the Neu-

(1.3)

mann eigenvalue \;. The collection of the eigenpairs {(\}, ¢, ag)}ﬁl is called the Neumann bound-
ary spectral data.

Remark 1.2. The graph Laplacian equipped with the homogeneous Neumann boundary condition
is self-adjoint (see Lemma 3.1), hence all the Neumann eigenvalues are real, and the normalized

Neumann eigenfunctions {¢;(z) | x € G}Lill form an orthonormal basis of I*(G).

The discrete Gel’fand inverse spectral problem concerns reconstruction of the interior vertex set
G, the edge set £, and the weight functions w, ¢ from the Neumann boundary spectral data [14].
However, it is worth noting that solving the discrete Gel fand’s inverse problem on general graphs is
not unique due to the existence of isospectral graphs, see [22,24,44]. In this article, we restrict our-
selves to the following special case: Suppose the set of vertices G, the set of edges &£, and the edge
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weight function w are known. Given the Neumann boundary spectral data and the boundary vertex
weight 1i|sg, what can be concluded regarding the interior vertex weight | ? In [14, Theorem 2],
it is proved that ;4 can be uniquely determined under suitable assumptions on the graph, provided
t|ag is known. However, this proof is non-constructive and does not yield explicit reconstruction.
The main objective of this paper is to provide constructive procedures for identifying 1|q, enabling
the derivation of an algorithm to numerically compute |-

Our constructive proof and algorithm are rooted in the boundary control method pioneered by
Belishev [5], tailored for application to combinatorial graphs. An important step of the method
links boundary spectral data with wave equations. Therefore, we pause here to formulate the graph
wave equation following [14]. For a function v : N x G —> R, we define the discrete first and
second time derivatives as

Dyu(t,z) =u(t + 1,x) — u(t, x), tef{0,1,---},z €@,
Dyu(t,z) =u(t + 1,2) — 2u(t,z) + u(t — 1, x), te{1,2,---},z€dq.
We will refer to the following equation as the graph wave equation:
Dyu(t,z) — Agu(t,z) =0, te{l,2,---},z€q.

Our first goal is to prove a unique continuation result for the graph wave equation. To this end,
we introduce some terminologies. Given any x,y € G, their distance, denoted by d(z, y), is defined
as the minimum number of edges that connect = and ¥y via other vertices. For x € G , its distance
to the boundary OG is defined as

d(z,0G) = nin d(z,z), ze€G.

We say a vertex © € G has level | if d(z,0G) = [. Obviously, [ is an integer and 0 < [ <
max d(z,0G). The collection of interior vertices of level [ is denoted by
re

N ={zr e G|d(z,0G) =l}.
For a subset of vertices 2 C G, the set
N = {yeClany ze0)

is called the neighborhood of ) in G. If there exists yo € G such that iy € N'(z) NNy, forx € Ny,
then vy is called a next-level neighbor of x. B

The following assumption on the topology of (G is critical for our proof of the unique continuation
result.

Assumption 1. (i) Every boundary vertex connects to a unique interior vertex.
(ii) For each integer | with 1 <[ < max d(x,0G), the set of vertices of level | admits the decom-
[AS
position
ky

No=|JN  for ki eN,,

r=1
where k; € N, depends on |, and the sets N} and N are defined as
N :={x € N :|N(z) N Nyy| <1},

k—1
le = {ZE e N;: ’N(ZL‘) ﬂNl+1| > 1, |N(ZE)QN[+1\ (UN(N;)) | < 1}, 2<k<k.

r=1
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Remark 1.3. Assumption 1(ii) means that every N; consists of two types of vertices: the first type
are those in N}, they have at most one next-level neighbor; the second type are those in NF (k =
2, ..., k), they may have multiple next-level neighbors but at most one of them is not a neighbor of
any vertices in N}, . . ., le_l. This may be viewed as a type of “foliation condition” for the graph.
Graphs that fulfill Assumption 1(ii) include a class of subgraphs of 2D regular tilings, see Example
2.1, Example 2.3 and Example 2.5 in Section 2.

It is worth noting that the decomposition in Assumption 1(ii) remains valid if any edge between
two interior vertices of the same level is removed. This is because removal of such edges does not
affect the level of any vertex or their next-level neighbors. This observation can be used to construct
graphs that satisfy Assumption 1.

The first main result of this paper is the following unique continuation property for the graph
wave equation.

Theorem 1.4. (Unique continuation theorem). Suppose G satisfies Assumption 1. If u(t, x) satisfies
the graph wave equation with vanishing Dirichlet and Neumann data:

Dyu(t,x) — Agu(t,z) =0, (t,x)e{-T+1,-T+2,---,T—1} xG,
u(t, z) = dyu(t, z) =0, (t,z) e {-T,-T+1,---,T} x 0G,

then
u(t,z) =0, (t,x) e {-T+1—-1,--- ,T—1+1} x N, (1.4)
foralll =1,2,... , max d(x,0QG). In particular, if T > max d(x,0QG), then
Te Tre
u(0,2) = Dyu(0,2) =0
forall z € G.

Next, we consider the following initial boundary value problem for the graph wave equation:

Dyu(t,z) — Agu(t,x) =0, (t,z)e {1,2,---,2T —1} x G,

u(0,2) =0, x € G, (1.5)
DtU(O,I) = 0, €T € G,
du(t,z) = f(t, z), (t,2) € {0,1,--- ,2T} x 0G,

where T' > 0 is an integer and f € [*({0,1,---,2T} x OG) is the Neumann data. Note that we

must have f(0,z) = 0 when z € 0G, due to compatibility with the initial conditions. This initial
boundary value problem clearly has a unique solution v = u/, thus we can define the Neumann-to-
Dirichlet map (ND map):

oS
Aﬂf = |{0,1,---,2T}><6G'

Here, the subscript indicates that the ND map depends on the vertex weight p.
The second main result of this paper is an explicit formula to reconstruct the ND map from the
Neumann boundary spectral data.

Theorem 1.5. Suppose G satisfies Assumption 1 (i), and suppose the set of vertices G and the set
of edges £ are known. Given the edge weight function w and the boundary vertex weight ji|sc,
the Neumann-to-Dirichlet map A, can be computed from the Neumann boundary spectral data
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{(\;, 95 ’ac;)}ﬁ‘l as follows:

|Gl ¢
o f o o . ) _ ,Ltzf(t, Z) ~
Auf(t,z) =uf(t, 2) = ;;ck(]‘(t +1—k), ¢;)ac0;(2) o) T (1.6)
whent =1,2,3,... Here x € G is the unique interior vertex that is connected to z € 0G, and the
coefficients cy, satisfies c; = 0, co = —1, and the recursive relation ¢, = (2 — \)cx_1 — C_2 for

k> 3.
Next, denote by M the vector space spanned by products of harmonic functions, that is,
M = span{pt|g : Agp = Agyy = 0in G}.

The third main result of the paper gives an explicit reconstruction formula to obtain the orthogonal
projection of y|s onto M from the ND map.

Theorem 1.6. Suppose G satisfies Assumption 1, and suppose the set of vertices G and the set
of edges E are known. Given the edge weight function w, the boundary vertex weight ji|sq, and
T > maxgeq d(x,0G), then the orthogonal projection of 1i|g onto M can be explicitly recon-
structed from the Neuman-to-Dirichlet map A,. Moreover, a reconstruction algorithm is derived in
Algorithm 1 in Section 6.

Note that Theorem 1.6 only ensures reconstruction of an orthogonal projection of 1|g. In order
to obtain the full interior vertex measure p|q, further conditions have to be imposed on GG and the
edge weight function w. Note that an edge weight function w : £ — R can be identified with a

point in the space R‘f‘ by indexing the edges in £.

Corollary 1.7. Let the set of vertices G and the set of edges € be known. Suppose G satisfies
% > |G|, and suppose there exists at least one edge weight function w such that M =
I2(Q), then M = 1*(G) holds for all edge weight functions w except for a set of measure zero in

]R'f'. Therefore, under the assumptions of Theorem 1.6 and Corollary 1.7, p|c can be explicitly
reconstructed from the Neuman-to-Dirichlet map A, for all edge weight functions except for a set

of measure zero in ]RE'. In this case, Algorithm 1 in Section 6 recovers .

Combining Theorem 1.5, Theorem 1.6 and Corollary 1.7, we see that the vertex weight p|s can
be constructed from the Neumann boundary spectral data for a class of graphs.

The Gel’fand’s inverse boundary spectral problem for partial differential operators in the con-
tinuum setting has been extensively investigated, e.g, in [1, 17, 20, 28, 30, 31, 34,37, 38,41]. In
particular, Belishev pioneered the boundary control method [5] which combined with the Tataru’s
unique continuation result [45] determines the differential operators in R". The method was further
extended by Belishev and Kurylev on manifolds to determine the isometry type of a Riemannian
manifold from the boundary spectral data [10]. The boundary control method for partial differential
operators has since been greatly generalized (e.g, see the survey [7]) and numerically implemented
(e.g [8,9,23,35,42,43,48]). The Gel’fand’s inverse boundary spectral problem is closely connected
to several other celebrated inverse problems for wave, heat and Schrodinger equations [33]. We refer
readers to the monograph [32] for a comprehensive introduction to the Gel’fand’s inverse boundary
spectral problem as well as its connections to other inverse problems.

The discrete Gel’fand’s inverse boundary spectral problem on combinatorial graphs is formulated
in [14]. Assuming the “two-points condition” (see [14] or Appendix A for the precise definition),
the authors of [14] proved that any two finite, strongly connected, weighted graphs that are spec-
trally isomorphic with a boundary isomorphism must be isomorphic as graphs. This establishes the
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6 LI, GAO, GENG, AND YANG

uniqueness result for determining the graph structure (including the vertices, edges and weights)
from the spectral data. However, the proof in [14] is non-constructive and it remains unclear how to
explicitly compute the graph structure. A major contribution of the current paper is the development
of an algorithm based on the boundary control method that reconstructs certain quantities on a class
of combinatorial graphs. We remark that the idea of the boundary control method has been adapted
to solve inverse problems on certain special graphs in the earlier literature, e.g, in recovering the
structures of planar trees [6, 11] as well as in detecting cycles in graphs [12].

Inverse spectral problems on graphs arise naturally in quantum physics. A class of graphs where
these problems are well-suited is quantum graphs. A quantum graph is a metric graph that carries
differential operators on the edges with appropriate conditions on the vertices. Inverse spectral
problems on quantum graphs usually aim at determining graph structures or differential operators
from spectral data, see e.g, [4,6,11,19,27,36,39,46,47,49]. Many other inverse problems that are
closely related to inverse spectral problems have also found the counterparts on graphs. Examples
include inverse problems recovering potential function and the geometry of the metric tree graph
from the dynamical Dirichlet-to-Neumann map in [3] and recovering a tree graph together with the
weights on its edges from the Dirichlet-to-Neumann matrix in [26]. Other examples include inverse
conductivity problems (e.g, [21]), inverse scattering problems (e.g, [2, 29]), and inverse interior
spectral problems (e.g, [15]).

This paper’s major contributions include:

e A reconstruction formula and an algorithm to compute the vertex weight 1. The uniqueness
of the vertex weight for a class of combinatorial graphs was previously addressed in [14],
but the provided proof is non-constructive and lacks explicit computational procedures. This
paper focuses specifically on reconstructing the vertex weight . We derive an explicit
reconstruction formula by converting the Neumann boundary spectral data to the Neumann-
to-Dirichlet map for the graph wave equation and then adapting Belishev’s boundary control
method to recover p. An algorithm is subsequently derived from this formula and validated
through multiple numerical experiments.

e New uniqueness result. A critical hypothesis for the uniqueness proof in [14, Theorem 2] is
the so-called “two-points condition” (see Appendix A), which imposes specific geometric
restrictions on graphs. Consequently, the uniqueness result in [14] applies only to graphs
that meet the two-points condition. This paper considers a different class of graphs, based
on Assumption 1, which to some extent can be viewed as a discrete “foliation condition”.
In Appendix A, we provide examples demonstrating that Assumption 1 is not a special case
of the two-points condition, and vice versa. This distinction ensures that the class of graphs
considered in this paper is not a subclass of those in [14]. Consequently, our reconstruction
formula also implies uniqueness for a new class of graphs that satisfies Assumption 1 but
not the two-points condition.

e Unique continuation for the graph wave equation. The unique continuation principle is a cru-
cial property of wave phenomena. For the continuum wave equation with time-independent
coefficients, this principle is established in Tataru’s celebrated work in [45]. In this paper,
we identify a class of graphs (see Assumption 1) and prove a discrete unique continuation
principle for the graph wave equation (see Theorem 1.4). This result plays a central role in
adapting the boundary control method to combinatorial graphs.

The paper is organized as follows: In Section 2, we prove the unique continuation principle The-
orem 1.4 and provide several concrete examples of planar graphs that satisfy Assumption 1. Section
3 is devoted to the proof of Theorem 1.5. In Section 4, we develop the discrete boundary control
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method and describe how to construct the orthogonal projection of the vertex weight on M, prov-
ing Theorem 1.6. Section 5 identifies a class of weighted graphs where the vertex weight can be
uniquely constructed for a generic set of edge weight functions, proving Corollary 1.7. The recon-
struction procedures are summarized and formulated as a numerical algorithm in Section 6. Finally,
the resulting algorithm is validated on numerical examples with the quantitative performance re-
ported in Section 7.

2. PROOF OF THEOREM 1.4

This section is devoted to the proof of the unique continuation principle in Theorem 1.4. We also
provide several graphs that satisfy Assumption 1. These graphs are subgraphs of 2D regular tilings.

Proof. We prove the claim (1.4) by inductionon/ =1,2,--- | max d(z,0G).
Te
Base Case: For the base step [ = 1, take any x € V;. There exists a boundary vertex z such that

x ~ z. Moreover, by Assumption 1 (i), x is the unique interior vertex connected to z. Applying
the Dirichlet condition u|{_T,___7T}X3G = (0 and Neumann condition 8,,u]{_T7___7T}XaG = 0 yields, at
z € 0G, that

1

0=0,u(t,z) = —w(z,2)u(t,z) for t € {-T,...,T}.
I

Hence, u(t,z) = 0 since p, > 0 and w(x, z) > 0. This proves the base case.
Induction Step: For the induction step, let /; be a positive integer with [ < max,c¢c d(x,0G)—1.
Suppose for all [ < [y, we have the inductive hypothesis

u(t,z) =0, (t,x)e{-T+I1—-1,---,T—1+1} xN,. (2.1)
It remains to prove the case [ = [; + 1, that is,
U(t,l')zo, (t7.17> e{_T+l17"' aT_ll}XNll-l-l'

To thisend, fixt € {—T +[;,--- ,T — I, } and consider an arbitrary y € N;,. We have u(t,y) = 0
and Dyu(t,y) = u(t+1,y) — 2u(t,y) + u(t — 1,y) = 0 due to the inductive hypothesis (2.1). The
wave equation at (¢, y) becomes

0 = Dyu(t,y) — Agu(t,y) = L Z w(z, y)u(t, ).

Y Z‘GNll_lUNllUNll_'_l
r~y

In the summation, we have u (¢, z) = 0 for z € N, _; UN;, because of the inductive hypothesis (2.1).
Hence,
Z w(z,y)u(t,z) =0. (2.2)
xGNlH_l
e~y
Using this identity, we will consider the decomposition y € N;, = N, 111 U, 121 U---UN, l]j“ , as stated
in Assumption 1 and sequentially prove u(¢,x) = 0 for all z € N}, 4.

Ify e N, 111 , there exists at most one = € N;, ;1 connected to y. If no such x exists, there is nothing
to prove. If such an x exists, the condition (2.2) reduces to w(x, y)u(t,z) = 0, hence u(t,z) = 0
since w(z,y) > 0. In other words, we have proved that u(t, z) = 0 for all z € N;, 11 N N(NV}).

Ify e N, l21 , then y may have multiple next-level neighbors 1, ..., zr, € N;, 1. However, at most
one of them, say 1, is not in (N} ). In the previous paragraph, we have already proved u(t, z5) =
-+« = u(t,zr,) = 0. Therefore, the condition (2.2) can be reduced to w(y, z1)u(t,z;) = 0, which
yields u(t, z1) = 0. In other words, we have proved that u(t,z) = 0 for all x € Ny, .1 " N(N?).
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In general, ify € NN, l’j (k=2,---, k), then y may have multiple next-level neighbors x4, - - - , xp,
k-1

€ Ny, 11 but at most one of them, say x1, is notin [ J A (NN} ). At this point, we have already proved
r=1

u(t,z2) = --- = u(t,xr,) = 0. Hence, condition (2.2) reduces to w(y, x;)u(t,z;) = 0 and conse-

quently u(t, ;) = 0. In other words, we have proved that u(t, z) = 0 for all z € N;, ;1 NN(N]).
This completes the proof that u(t, ) = 0 for all z € NV}, 1, because any such = must be connected
to a vertex y € NF for some k, that is, z € N;, 41 NN (N/) for some k. This argument holds for
any t € {—T +ly,--- ,T — I}, hence the induction step is proved.
Finally, if 7" > rileaécd(x, 0G),thenT—I1+1 > 1,hence {—1,0,1} C {-T+1—-1,--- ,T—1+1}.

Forany x € G, let [ beits level (1 <[ < max d(x,0G)), then
xe

0,2),1,z) e{-T+1—-1,--- , T —1+1} x N;.

By (1.4), we have u(0,x) = u(1,z) = 0 and D;(0,z) = u(1,z) — u(0,z) = 0.
U

In the rest of this section, we provide some examples that satisfy Assumption 1 and the condi-
tion % > |G|. The latter condition is motivated by the discussion in Remark 5.3. These
examples are special subgraphs obtained from regular tilings in R?.

Let m, n be finite integers. We make the identification R? ~ C so that the coordinates of vertices
can be represented using complex numbers. In each example, we obtain a domain D,, ,, by trans-
lating a fundamental domain Dy along two linearly independent directions 7, U5, respectively. The

vertices in Dy are translated to obtain the set of interior vertices G.

Example 2.1. The graph R, ,, with m,n > 2.
Take v, = 1+0iand vy = 0+i. Let Dy C R? be the rectangular domain with the set of 4 vertices
Go:={1+1,2+1,1+ 21,2+ 2i}. Define

D= | (Do+jth + ki),

0<j<m—2
0<k<n—2

with j, k € N. The set of interior vertices is

G= |J (Go+jii+ ki),

0<j<m—2
0<k<n—2

where the corresponding set of boundary vertices is
0 = (9G), U (9G) R U (9G) 5 U (9G)r,
with
(0G) L, :={kviy | 1 <k <n}, (0G)g :={(m+ 1)t + kv | 1 <k < n},
(0G)p :={jti |1<j<m},  (0G)p:={jti + (n+ 1)t | 1 <j<m}.
Note that the corner vertices 0 + 0i, (m + 1) + 01, 0+ (n + 1)i, (m + 1) + (n + 1)i are not

included in OG. The edge set £ is defined by assigning an edge to any pair of vertices in G that is of
Euclidean distance 1, where any two boundary vertices are not connected. This graph is denoted by
R, n, where m,n indicate the number of interior vertices along the directions Uy, Us, respectively.

As an example, R, 3 is illustrated in Fig. 1.
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O O O O
O O O O O O
O boundary vertex
O O © O @ interior vertex in N{
O interior vertex in Ny
O O O O O O
. O O O O

FIGURE 1. The graph Ry 3.

Lemma 2.2. For any integers m,n > 2, the graph R,, ,, satisfies Assumption 1 and % >

|G-

Proof. For1 <[ < max d(z,0G), the set N; in R,,, , is
xe

N ={lty + (I + k)b |0<k<n-—20+1}
U{m+1-0D0+(+k)th|0<k<n-20+1}
U{(l+ )t +1tp |1 <j<m—2l}
U{(l+)ti+(n+1—=Dth |1<j<m-—2l}.

The decomposition of N is trivial as N; = N}'. For each vertex respectively in the above four
subsets of /V;, there exists a boundary vertex closest to it in (0G)r, (0G)g, (0G)p and (0G)r re-
spectively.

To show the relation between the boundary and interior vertices, simply notice that |0G| = 2(m-+
n) and |G| :mn,thus%:(m—i-n)(Qm—i-Qn%—l) > mn = |G]. O

Example 2.3. The graph T, ,, with m,n > 2.

Take 17 =1+ 0i, Uy = % + ‘/751. Let Dy C R? be the triangular domain with the set of 3 vertices
(;0 = {51‘+'ﬁé,261‘+'ﬁé,ia +—26§}.l)qﬁne

Dpwi= | (Do+jti + ki),

0<j<m—2
0<k<n—2

where j, k € N. The set of interior vertices is

(;I:: L_J ((;0'+*jia +*k{a)7

0<j<m—2
0<k<n—2
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The set of boundary vertices is 0G := (0G) U (0G)g U (0G) g U (0G)r with

(0G), :={kviy | 1 <k <n}, (0G)g :={(m+ 1)) + kv | 1 <k < n},

(0G)g :={jv1 | 1 <j<m}, 0G)r ={jti+ (n+ 1)y | 1 < j<m}.
The definition of the edge set £ is as follows: an edge is assigned to any pair of vertices in G
of Euclidean distance 1, where every boundary vertex in OG connects to an interior vertex in G
whose coordinates differ by vectors vy or V. This graph is denoted by T, ,,, where m,n indicate the

number of interior vertices along the directions vy, Us, respectively. As an example, Tg 4 is illustrated
in Fig. 2.

O boundary vertex
@ interior vertex in Nj

@ interior vertex in N12

@ interior vertex in Nf

© interior vertex in Ny

FIGURE 2. The graph T§ 4.

4 12619G1+1)

Lemma 2.4. For any integers m,n > 2, the graph T, ,, satisfies Assumption I an
|Gl.

Proof. For1 <[ < max d(x,0G), the set N, in T}, ,, is
xe

Nl :{lﬁl + (l + k)UQ ‘ 0 S k S n— 2l + 1} = {Io,xl, cee ,‘Tn,QZJrl}

U{m =T+ 1)+ (1 + k)t |0<k<n—204+1} :={yo,y1, " s Yn—21+1}

U{(l+ )+l |1 <j<m—=2l}:={m, " Yma}

U{(l+)th+(n—=1+1D)0 |1 <j<m=20} ={m, T2}
For each vertex respectively in the above four subsets of /V;, there exists a boundary vertex closest
to it in (0G)y, (0G)g, (0G)p and (OG)r respectively. The above z,, Y., V., 7, when r € N are
numbers of the vertices in the sets.

Let integer p > 2. The decomposition of V; is
Nll ={20, %1, Tn—2141, Y0, Yn—20, Yn—20415 V1> Tm—21 }»
N[p :{l’p, Tpn—204+2—p; Yp—1, Yn—2l—p+1 | p S n — 2l +2— p}
U {fypa 7m72l+27p7 Tp—15s Tm—21—p+1 ’ p S m — 2l + 2 — p}, D Z 2.

To show the relation between the boundary and interior vertices, simply notice that |0G| = 2(m-+
n) and |G| = mn, thus PAUTED — (1) 4 p)(2m 4 20 + 1) > mn = |G]. O



B S CS R V)

GEL’FAND’S INVERSE PROBLEM ON CONNECTED WEIGHTED GRAPHS 11

Example 2.5. The graph H.,, ,, where m,n > 1 and m is odd.
Let w = % + ‘/751, then w% = 1, where 6 is the power of w. Take T, = 3w’ = 3404, Uy = 0+ V/3i.

Let Dy C R? be the hexagon domain with the set of 6 vertices Gy := {W°, wh w? w3 Wl W}
Define
Dm,n = U (DO +]771 + kUQ),
0<j< Mot
0<k<n-1

where j, k € N. The set of interior vertices is

G= |J (Go+jii+ ki),
0<j< et
0<k<n—1

The set of boundary vertices is 0G := (0G) U (0G)g U (0G) g U (0G), where

3(m—1)
2

(0G), ={kth+2w* |0<k<n-—1}, (0G)g:= {k172+ +2[0§k§n—1},

-1
(0G)B ::{j171+2w4,j171+2w4+2|ogj§ m2 }7

—1
(0G) 7 ::{j171+(n—1)272+2w2,j171+(n—1)172+2w2—|—2|0§j§m2 }

The edge set & is defined by assigning an edge to any pair of vertices in G that is of Euclidean
distance 1, where any two boundary vertices are not connected. This graph is denoted by H,, ,,
where m, n indicate the number of hexagons on the border along the directions Uy, Uy, respectively.
As an example, Hs 4 and its vertices decomposition are shown in Fig. 3.

Lemma 2.6. For any integers m,n > 1 and m is odd, the graph H,, ,, satisfies Assumption I and
I8GI(IZGI+1) > |G.

Proof. Let1 <1< maé(d(x,aG) —1.
e
For l mod 4 = 1, the set N; in H,, ,, is

[—1 [—1
Nz:{ 1 ¥+ ( 5 +k)172+w3]0§k§n—l}::{$0,$1,"'7$nl}

3(m—1) 1—1 -1
U{(m ) _ o+ ( +/€)172+w0|0§/€§n—l}3—{?/0;?117"'79”—1}

[—1 N -1, [—1 . [—1, om—1
U{(—+j)vl+ 5 02+w4,(T+j)vl+ 5 U2+w5|0§j§T}

[—1 [+1 —1
- )?72+w1|0§j§m7

-1 I+1, . .
U{(—+])vl~|—(n— )v2+w2,(T +J)th + (n —

15 For each vertex respectively in the above four subsets of /V;, there exists a boundary vertex closest
16 toitin (OG), (0G)g, (0G)p, (0G)r respectively. The decomposition of N, is

Nll :Nl \ {.T17.T2, e 7xn—l—17 y17y27 Tt 7yn—l—1}7
Nlp—H :{xmxn—l—p»yp: yn—l—p | p S m—1-— p}a p € N-l-'

b
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O boundary vertex

O interior vertex in Nl1

@ interior vertex in IV, 12

- - interior vertex in IVq
interior vertex in Ny
interior vertex in N3

- - interior vertex in Ny

FIGURE 3. The graph Hs 4.

1 For [ mod 4 = 2, the set N; in H,, ,, is

4 2

J3m-1) 1-2 +(1—2
2 L 2

[—2 [—2
Nl:{ 171+( +k)172+w2]0§k§n—l}

+k)172+w|0§k§n—l}

2 _ N
02+W07(T +7)v1 +

[—2

-2 -2 om—=1-1
U{(T+j)vl+ v2+2w0|0§j§T}

4 2 4

[—2 l l —1-1
U{(—+j)171+(n——)172+w°,(—+j)171+(n—§)ﬁz+2w°|0§j§mT}.

2 For each vertex respectively in the above four subsets of V;, there exists a boundary vertex closest
3 toitin (0G)z, (0G)g, (0G) s, (OG)r respectively. The decomposition of N; is N; = N}
4 For [ mod 4 = 3, the set N; in H,, ,, is

-3 -3
le{ 0t (— +k)172+w|1§k§n—l}:Z{%--w%—l}

U{?)(m—l) -3 -3

- o+ (5

- . +k>62+w2!1§k§n—l}:={ﬁ,---,Tn-z}

[—3 . -3 -3 . 1—=3. om—1
U (T+])U1+ 5 Uz—i-w,(T—i-j)vl—i- 5 vg+w+2|0§]§T

-3 -1 iy
Vi +w'+2]0<j< 0

e -1 _ o
U{(—+J)U1+(n— 5 )U2+W57(T+J)Ul+(n—

2

b
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1 For each vertex respectively in the above four subsets of /V;, there exists a boundary vertex closest
2 toitin (0G)y, (0G)r, (0G)g, (OG)r, respectively. The decomposition of 1V, is

Nll :Nl \ {717 oy Yn=1T1, aTn—l}a
Nlp+l :{’}/p?’}/nflfpan?Tnflfp ’ D S m — 1 _p}a p S N+.
3 For l mod 4 = 0, the set N; in H,, ,, is

[—4 [—4
Nl:{ 1 U1+ ( 5 +k)172—|—2w|1§k:§n—l}

3(m—1 -4 [ -4 .
{(2 ) _ U ( 5 +k)v2+2w2\1§k§n—l}
[ -4 -4 l—4 . 1—4, ._om—=1+1
U{(T+j) + 5 U2+2w,(T+])U1+ 5 U2+2M+1’OSJST}
-4 l . s =4 l . 5
U (T—i—j)vl+(n—§+1)vg+2w,(T+])v1+(n—§+1)v2+2w +1
|0§j§m_Tl+1}.

For each vertex respectively in the above four subsets of /V;, there exists a boundary vertex closest
toitin (0GQ)r, (0G)r, (0G) 5, (0G)r respectively. The decomposition of N; is N; = N}
Ifl = max d(z,0G), take N; = N}.
Te

7 To show the relation between the boundary and interior vertices, simply notice that |0G| = 2(m+
n+1)and |G| = (m+1)(2n+1), thus % = (m+n+1)(2m+2n+3) > (m+1)(2n+1) =
|G]. 0

10 3. PROOF OF THEOREM 1.5

11 We prove Theorem 1.5, which gives an explicit formula to represent the ND map in terms of the
12 Neumann boundary spectral data.

13 The following Green’s formula is proved in [14, Lemma 2.1].
14 Lemma 3.1. (Green’s formula). Let u1, us : G — R be two real-valued functions on G. Then
(u1, Agug)a — (u2, Agur)a = (uz, Oyur)ac — (U1, Ouz)aq-

(t) onto

15 Foreachj =1,2,...,
16 the Neumann eigenfunction gbj is denoted by

a;(t) := ¢Jg—z,um (t,x)p;j(x), t=0,1,2,---.
el

17 These scalar orthogonal projections can be explicitly computed from the Neumann boundary spec-
18 tral data as follows.

19 Lemma 3.2. Fort =1,2,3,..., we have
aj(t) = c(f(1),05)aa + ci—1(f(2), d5)ac + - - + ca(f(t — 1), 05)ac + c1(f(t), #5)aa, (B.1)
20 where the constants ¢y, are defined recursively by ¢; = 0, co = —1, and ¢, = (2 — \j)Cr—1 — Cr—2

21 for k > 3.
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Proof. Apply Dy, to a; to get
Dyay(t) = (Dyu’ (t), ¢;)c

= (Agu! (1), ¢)a
= (W (1), Aggj)a — (f(1), 95)ac

= — (Wl (1), \j¢5)a — (f(1), 95)oc

= —Xja;(t) — (f(1), ¢5)ac
where the second equality follows from the wave equation, the third equality is derived from the
Green’s formula in Lemma 3.1 with d,¢; = 0, and the final equality from the definition of a;(t).

This is a finite difference equation for a; (t), which, using the definition of Dy, can be defined by
the inductive relation

a;(t+1) = (2= Aj)a;(t) — a;(t = 1) = (f(t), &;)ac-
The initial conditions are given by
a;(0) = (u/(0),65)¢ = 0, a;(1) = (u! (1), ¢)c =0,

which are derived from the initial conditions of the function u/. We now prove the validity of
formula (3.1) by induction.

The base case t = 1 is true since ¢; = 0. For the inductive step, suppose that the formula (3.1)
has been proved for all positive integers less than or equal to ¢, then

aj(t —1) =1 (f(1), ¢5)ac + -+ + (A = 2)(f(t = 3), ¢)ac — (f(t — 2), ¢5)ac,
aj(t) =c(f(1), ¢5)ac + -+ (N = 2)(f(t = 2), ¢5)oc — (f(t = 1), d))oc-
Insert these representations into the inductive relation to get
aj(t+1) = (2= Aj)a;(t) — a;(t = 1) = (f(t), &;)oc
= (2= N)ee =) (1), 0))aa + -+ (=(2 = X)* + D)(f(t = 2), 95)ac
— (2= ) (f(t = 1), 85)ac — (f(t), $5)oc-
This completes the proof. U

Now, we prove Theorem 1.5.

Proof of Theorem 1.5. As {¢;(x),x € G}le:‘1 forms an orthonormal basis of I?(G), we can write

|G| G|

ul () =D (W (1), ¢))adi() = D a;(t)g;(z), = €G.

i=1 j=1
As each boundary vertex z € 0G is connected to a unique interior vertex x € (7, using the definition
of O,u(z) in (1.2), we get

£t 2) = Ol (1, 2) = ~w(o, ) (! (8, 2) — ! (£, 2)).

fhz
Solving for the Dirichlet data of the wave solution from this relation, we can obtain
le]
sz(taz) sz(taz)
Auf(t,2) =l (t,2) = o/ (t,2) - o) Z%(@%(@ T w2 T~ 2 t>1.

Jj=1
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Theorem 1.5 is proved by substituting the expression for a;(¢) into the summation given in equation
(3.1). O

4. THE RECONSTRUCTION PROCEDURE

In this section, we introduce a discrete version of the boundary control method. Additionally,
using this method, we will demonstrate the reconstruction procedure for the interior vertex weight.

4.1. Calculating Inner Products of Waves. When x serves as the spatial component of the func-
tion u(t, z), we simply denote u(¢, x) as u(t). For a function u(t, x), we introduce the time reversal
operator:

X1, T—1} x 0G) — *({1,--- , T — 1} x 0Q),
Ru(t) = u(T —t), te{l,---, T —1}.

Similarly, we introduce another operator:

7 P({0,1,---,2T} x 0G) — P({1,--- , T — 1} x 0G),
Fu(t) = 7iu(t+1+2j), te{l,---, T —1}.

J=0

Define Pr : [2({0,--- ,2T} x 0G) — I*({1,--- , T — 1} x OG) as the truncation operator, while
the adjoint operator Py : I>({1,--- ,T—1}x9G) — *({0,- - - , 2T} x @) is an extension operator.
The values of P on {0, 7,7 + 1,--- ,2T} x OG are extended by zero. Define the Dirichlet trace
operator by Tpu(t) = u(t)|se and the Neumann trace operator by 7y u(t) = d,u(t)|ac, respectively.

For functions vy, vy @ {1,---,T — 1} x 0G — R, define the inner product on the boundary
[2-space I*({1,--- , T — 1} x 9G) as follows:

-1 71
(v1,v2) 1, T-1}x0G = Z(Ul(t)wz(t))ac = Z [z ZM(@ z)va(t, 2).
t=1 2€0G t=1

Here, for z € OG, the values i, are known.
The following is a discrete counterpart of the generalized Blagovescenskii identity ( [48]). The
original Blagovescenskii identity is proved in ( [13]).

Lemma 4.1. Let u/ be the solution of (1.5), and let v € I>({0, -+ ,2T} x G) be the solution of the
equation

Dyv(t,x) — Agu(t,z) =0, (t,z) e {1,2,---,2T —1} x G,
then
(Uf<T)a v(T))g = (PT<A,uf)7 /TNU){L-~,T—1}xaG —(Prf, fTDU){l,m,T—uxaG-
Proof. Set

I(t,s) = (u!(t),v(s))q, t,s€N, t s>0.
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Using equation (1.5) and the Green’s formula, we get

(D — Das)I(t,5) =(Dyu! (t),0(s))a — (u! (1), Dssv(s))a
=(Agu! (t),v(s))a — (u! (t), Agu(s))a
=(u! (1), 0,0(s))oc — (v(s), ! ())ac
=(Auf(t), Tvo(s))ac — (Tpu(s), f(t))ag, st > 1.

Let us denote the right hand side by F'(t, s), i.e.,
F(t,s) := (Auf(8), Tvo(s))aa — (Tov(s), f(t))ac-
Using the definition of Dy and D, the relation can be written as
It+1,s)=—I(t—1,s)+I(t,s+1)+I(t,s—1)+ F(t,s), t,s>1 4.1)

On the other hand, the initial conditions for u/ are v/ (0, ) = 0 for € G and D,u/(0,x) = 0 for
z € (. Hence,

100, s) =(u/ (0),v(s))e se€{0,1,---,2T},

=0 4.2)
I(1,8) =D,I(0,5) + 1(0,s) = (D! (0),v(s))g + 1(0,8) =0, s€{0,1,---,2T}.

Consequently, we obtain a recursive relationship for I(¢, s) with initial conditions. The solution to
this recursive relationship is given by

t—1 t—i—1
I(t,s) =) > Fli,s—t+i+1+2j), t>2 s>1. (4.3)
i=1 j=0

This solution can be proved by induction. Indeed, when ¢ = 2, we have from (4.1) and (4.2) that
I1(2,s) = —=1(0,s) + I(1,s+ 1)+ I(1,s — 1)+ F(1,s) = F(1, s),
which agrees with the solution formula (4.3). This establishes the base case.

For the inductive step, suppose the solution formula (4.3) holds for all £ < k for some positive
integers k > 2. Considering the case ¢ = k£ + 1 and using the recursive relation, we can get

Ik+1,s)=—I(k—1,8)+ I(k,s+ 1)+ I(k,s—1)+ F(k,s)

k—2 k—i—2 k—1 k—i—1
=—> "N FPlis—k+i+2+2)+ > > Fli,s—k+i+2+2j)
=1 j=0 i=1 j=0
k—1 k—i—1
+3 N Fli,s—k+i+2j)+ F(k,s)
i=1 j=0

1:—11+IQ—|—]3+F(]€,3).
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1 Notice that
k—2
L=I+Y Fli,s—k+i+2+2))jmpio1+ F(i,5 — k+i+ 2+ 2j)|ime—1,=0

=1
k—2

=L+ Y Fli,s+k—i)+F(k—15+1)
=1
k—1

=L+ Fli,s+k—1i),
i=1

2 hence,

Ik+1,s)=—-I1+ I+ I3+ F(k,s)

k—1
=L+ Y F(i,s+k—i)+F(k,s)

i=1

k—1 k—i—1 k—1
= Fi,s—k+i+2j)+ Y F(i,s+k—i)+F(k,s)
=1 7=0 i=1
k—1 —i—1
:Z( Fzs—k+i—|—2j)+F(i,8—k—|—i+2j)]j:k_i>—I—F(k,s)
i=1 j=
k— 1<k; i

F(i s—k+z+2])> F(i,s — k414 27)|i=k,j=0
1

O

( J

’L

F(z s—k+i+2j),

I
Mw

-
I

1 j5=0

3 which agrees with the solution formula (4.3) with ¢t = k& + 1. This completes the induction.
4 Finally, by substituting ¢ = s = 7" into (4.3), we obtain the following expression

(W (T),0(T))e =I(T,T)

T—-1T—-i—1

:Z Z (i,i +1+25)

=, (A f (@), Tvoli + 14 24))ac — (Tpv(i + 1 4 2j), f(i))ac]

= ‘_ (A, f(1), _Z_ nu(i 4+ 1+ 27))ac — (f(9), _Z_ (i + 14 27))ac
= 3 (A f @), F el — (1), Frov(0)ac)

=(Pr(Auf), o), r—1yxac — (Prf, ZTpv)q,.. 7-1}xoG-
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Lemma 4.1 shows that (u/(T'),v(T))g can be expressed by the ND map A,,. Next, we approxi-
mate the wave on interior vertices at time 7.

Define a linear operator W : [2({1,--- ,T—1} x 9G) — [*(G) whichis h — ut"(T,z), x €
G. It maps the Neumann boundary value to the solution of equation (1.5) attime t = 7" and = € G.
Denote its adjoint operator by W*.

4.2. Calculating W*W. Let A, r be the restricted ND map, for h € I*({1,--- , T — 1} x 9G),
A, rh = Pr(A,Prh) = ut"

{1, T—1}x0G-
The Blagovescenskii’s identity was proposed in [13]. Let us give the following discrete version.

Proposition 4.2. Let hy, hy € 1?({1,2,---, T} x 0G), and u"", uFr"2 be the solution of (1.5)
with Neumann boundary values Pjhy, Pyhy € 12({0,1,- -+, 2T} x OG) respectively. Then, we can
obtain

(uw"™(T), u"T"(T))g = (Why, Wha)a = (hy, W*Wha){1,... 7-1}x6c
= (h1, (N0 Z F Pr — 7N Pr)ha) 12, m—13x0G-
Proof. As Tpu®t"2 = A, Pihy, TnufT? = Pfhs, by Lemma 4.1 we have
(u"T(T), u""*(T)) g = (Pr(AuPrhy), 7 Prha)qa,.. m-1yxoc — (h, 7 NuPrho) o . ro1yxoc

= (Aprhi, Z Prho)aa,.. r—1yxoc — (b1, £ NuPrha) o, m—1yxoG
= (h1, A, v 7 Prha)pa.. 7-1yxoc — (h1, £ N Prha) o m-1yxoc-

The adjoint is A}, = ZA, % ( see Appendix B for the calculation). Thus,
(" (T), uP#(T)) = (1, (BN F P~ J NPi)ha) 1 m-yoc.
On the other hand, the definition of the operator W implies
(WP (), a2 (1)) = (Wh, Wha)g = (b, W*Wha) 1, 1306
Since hq, hs are arbitrary, we can conclude that
WW = ZN,+Z% 7 Pr — 7N\,Pr. (4.4)
O

The next proposition presents an explicit formula for computing the action of the operator W * on
any harmonic function ¢.

Proposition 4.3. For h € 1*({1,2,--- , T} x 0Q), let u*™" be the solution of equation (1.5) with
the Neumann boundary value P;h € 1>({0,1,--- 2T} x 9G). If ¢(z) is an arbitrary harmonic
function, then

(W"T(T),0) = (hy (BN TR F TN = F D)) (1,2, 11} x0G-
Therefore,
W'e = (#Nu1R I ™5 = J 7). (4)
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Proof. Wetake f = Pph,v = ¢ inLemma4.1 and use the fact that A}, . = Z\, 7% (see Appendix
B) to get

("t (T), @) Pr(AuPrh), Zne) 12, m-1yxoc — (b, ZTD9) 12, 7-1)x0G
A;L,T}% /TNQO){LQ,..- T—1}x8G — (h, /TDSO>{1,2,~~,T—1}><8G
hy N2 ZTNe) (12, m-13x06 — (hy ZTD@) (12, 7-1}x00
= (h, (%AH,T%/TN - /TD)W){LQ,.-,T—l}xaG-

On the other hand, the definition of W gives
(u"T(T), 0)a = (Wh,@)a = (h, W) 2. 11} x00-
As h is arbitrary, we conclude that the action of W* on a harmonic function (z) is

W*QO = (%AM,T%/TN — /TD)(,O.

o=
=
=

g

4.3. Solving the Boundary Control Equation. We aim to determine the existence of a function
h € I2({1,---,T — 1} x 0G) such that Wh = u't"(T, x) holds for x € G. In fact, we need to
verify that IV is surjective.

Proposition 4.4. Suppose the graph satisfies Assumption 1. If T > max d(z,0G), then W is
[AS

surjective.

Proof. Note that W is a linear operator between finite dimensional vector spaces. It remains to show
that its adjoint operator W* is injective.
Given any g € [?(G), we have (see Appendix B for the derivation)

W+*g =wv(t, 2)
with (¢,2) € {1,2,--- , T — 1} x G, where v satisfies

Dyv(t,z) — Agu(t,z) =0, (t,z) € {1,2,---,T—1} x G,

v(T,z) =0, z e G,

4.6
Daw(T—1,2) = g(x),  2€G, 0
Ou(t,z) =0, (t,2) €{0,1,--- , T} x OG.

Introduce V' (t) := v(T — t). Then V solves
DuV(t,x) — AV (t,z) =0, (t,x)e{1,2,---,T -1} xG,

V(0,z) =0, z € QG,
DV (0,2) = —g(x), req,
o,V (t,z) =0, (t,z) € {0,1,--- T} x 0G.

Let V,44(t, ) be the odd extension of V (¢, z) with respect to ¢, that is

—V(t,z), te{-T,-T+1,---,—1},

Voua(?) = {V(t,:c), te{0,1,---,T}.
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By construction, V,44(t, ) clearly satisfies the wave equation for ¢ > 0 and t < 0. For t = 0, we
use V,q4(0,2) = 0 to get

DyVoad(0, ) — AgVoaa(0, 2) =Voga(1, 2) — 2Voaq(0, 7) + Voaa(—1,7) — AgVoaa(0, x)
=V(1l,z) —V(1,x)
=0.
Therefore, V,44(t, ) satisfies

Dtt‘/odd(tvx) - AG‘/Odd(t7x) = 07 (t,l’) € {_T + ]-7 e 7T - ]-} X G7

Vodd(O,m) = O, T € G,
Dt‘/;)dd(ovx) = _g($)7 HANS G7
au‘/;dd(ta Z) = 07 (ta Z) € {_T7 tee 7T} x 0G.

If W*g(x) = 0 for z € G, then V,44(t,2z) = 0 for (¢t,2) € {-T,---,T} x 0G. By the unique
continuation property in Theorem 1.4, we have

DV (0,z) = DiVoaa(0,2) = —g(x) = 0

for every x € G when T' > max d(x,0G). Therefore, W* is injective, which implies that W is
surjective. O
Proposition 4.5. Suppose the graph satisfies Assumption 1 and T’ > max d(xz,0G). For any har-
monic function 1), the boundary Neumann data given by

ho = (W*W)TW*y 4.7
satisfies ult (T, x) = 1 (z) for x € G. Here -T denotes the pseudo-inverse.
Proof. If T > max d(z,0G), we know that W : I2({1,--- ,T — 1} x 9G) — [*(G) is surjective

by Proposition 4.4. Hence, the equation u”7"(T') = W h = v admits solutions. It remains to prove
the explicit formula (4.7).
Define a quadratic functional F by

F(h) = u"T(T) = 9lIE = [IWh = vlIE
= (Wh,Wh)g = 2(Wh,¥)c + [[4]Z
= (R, W*Wh) (12, 7-13x06 — 2(h, W*§) (12, 7-13x06 + ||
The gradient and Hessian matrix of F are
F'(h) =2W*Wh —2W*,  F"'(h) = 2W*W.

Since the Hessian matrix is positive semi-definite, the function F is convex. Consequently, a local
minimum of F is also a global minimum. To find a local minimum, we set F'(h) = 0 to obtain the
normal equation

W*Why = W*i.
This is an under-determined linear system, and its minimum norm least squares solution is given
by (4.7). O

Note that W*W, and W*1) can be computed explicitly from the ND map using Proposition 4.2
and Proposition 4.3. Therefore, the formula (4.7) provides an explicit construction of a boundary
control.



20

21
22

23
24

GEL’FAND’S INVERSE PROBLEM ON CONNECTED WEIGHTED GRAPHS 21

4.4. Constructing ;.. Define

M = span{py|q : @, € I*(G), Agp(z) = Ag(z) =0, = € G}, (4.8)

that is, M is the span of all the products of harmonic function on GG. Note that as p,, > 0 for each
x € @, the concept of harmonic functions is independent of the weight 1, and so is M.
Let us give the proof of Theorem 1.6.

Proof. Given two harmonic functions ¢(x) and () on the graph, we can find a boundary control
ho such that uf7"0 (T') = ¢ by applying Proposition 4.5. Consequently, the following identity holds:

Zuxw(x)w(x) = (¥, ) = (UP%hO(T)a v)c = (Who,0)a = (ho, W*0) (12, 7-13x0G-  (4.9)
zeG
The right-hand side can be explicitly calculated using Proposition 4.3. The left-hand side represents
the inner product of i with the product ). By varying the harmonic functions v, p, we can
compute the orthogonal projection of g onto the space M. U

5. UNIQUENESS AND RECONSTRUCTION

The proof only reconstructs the orthogonal projection of 1 € [*(G) on the subspace M C [*(G)
but not y itself. General speaking, M # [*(G), see the discussion below. This is in contrast to
the well-known fact that the products of (continuum) harmonic functions on a bounded open set
Q C R™ (n > 2) is dense in L?(Q2) [18]. However, we can identify some sufficient conditions so
that M = [?(G) for a generic class of edge weight functions.

Let us index all the vertices x € G so that the interior vertices are indexed by w1, . . ., 7| and the
boundary vertices by z|G+1, - - ., ¥|g. Let ¢ solve the boundary value problem
AcoW(z) =0forz € G,  ¢D|yg = 6V (5.1)

where 61 is a function on OG such that

5(1) _ 1 on $‘G|+j,
0 on aG\{fL‘mHj}.

This boundary value problem admits a unique solution, see Lemma C.1. Denote the space
H :=span{eW) € I*(G):j=1,2,...,]|0G|}.
Lemma 5.1. H is the space of harmonic functions on G.

Proof. 1tis clear that any fungtion in H, as a linear combination of harmonic functions, is harmonic.
Conversely, suppose ¢ € [?(G) is an arbitrary harmonic function. Define
0G|

2= ¢ra)e? €H
j=1

Then ¢ is a harmonic function and @|sc = Z‘jaﬁ‘ o(216147)0Y) = ¢lag. We conclude ¢ = @ by

Lemma C.1, hence ¢ € H. U
Using the indices, we can vectorize functions on G’ias follows: A function u € [?(G) can be
identified with a vector @ = (u(z1), ..., u(z,q))" € R via
U

P(G)3u+ii:= (ﬁ G) e Rl x RIGI (5.2)
oG
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The vectorized space of harmonic functions is
H :=span{@¥) e RI% . j =1,2.....|8G|}.
The vectorized space of products of harmonic functions on G is
M= span{gB(Gj) O eRIG . jE=12,. |aG|} (5.3)

where © is the Hadamard product between two vectors.
Using the indices, the graph Laplacian Ag : G — G is identified with a block matrix

[Ac] = ([Acal, [Acac]) € RIEIE]

where [Agg] € RIGXIG [Ag ] € RICXI9G] Then @ € RIS is a vectorized harmonic function if
and only if [Ag]@ = 0. The discussion along with the rank-nullity relation leads to the following
conclusion:

Lemma 5.2.
H =ker[Ag] and dim H + rank[Ag] = |G].

The discussion in the rest of this section adapts ideas from [16]. Let us construct a matrix H using

@9 © %) as columns, where j < k,and j,k = 1,...,|dG|. It is evident that H € RIGIx (2EIZELEL
and the range of H is M. Moreover, the following three statements are equivalent:

(1) M =1*G).

(2) M =Rl

(3) rank(H) = |G|.

Remark 5.3. Since the rank of a matrix cannot exceed the number of columns, a necessary condition
for rank(H) = |G| is that % > |G/|. This condition requires the graph to have sufficient
boundary vertices relative to the interior vertices.

Note that the entries in H depend on the edge weight function w, , € ]le‘, since the definition of
A¢ involves w, ,. We have the following alternatives for rank(H) with respect to w,,,,.

Proposition 5.4. If the graph satisfies
occurs:

(1) there is no edge weight function w,, € R‘f' such that rank(H) = |G|,
(2) rank(H) = |G| for all edge weight functions w,,, € R'f' except for a set of measure zero.

Proof. Let ( be an arbitrary selection of |G| columns from H. Observe that
rank(H) = |G| ifand only if 3§ such that det(H. ) # 0,

or equivalently,
rank(H) < |G| ifandonlyif det(H.3) =0, Vp.
We will use the fact that for a fixed 3, det(H. 3) is a real analytic function of w, ,, see Lemma C.2.
If det(H. g) is the zero function for all 3, that is, if det(H. g) = 0 regardless of w,, for all /3,
then there is no edge weight function such that rank(H) = |G| holds, accounting for Case (1). On
the other hand, if there exists 5 such that det(H. ) is not the zero function, that is det(H. 5) # 0,
then it is a non-trivial real analytic function of w, ,, hence the zeros

Sy = {w,, € RIE: det(H. 5) = 0}
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form a set of measure zero [40]. The collection of edge weight functions that ensure rank(H) < |G|
is

{we,, € RE: rank(H) < |G|}
={w,, € R'f' cdet(H. 5) =0, V5}

=55
B

This is a finite intersection of sets of measure zero, hence is also of measure zero.
O

We remark that Case (1) in Proposition 5.4 can indeed occur. Here is an example.

Example 5.5. For the graph in Fig. 4, |0G| = |G| = 2. It is easy to see that the graph sat-
isfies Assumption 1 and w =3 > |G| =2 Forz,xy € Gand 2,29 € 0G, matrix
H. ;i -jec = [Aa}GAgﬁc];’i ® [Aa}GAgﬁg]:’j, where 1 < i,j < |0G| and H is independent on
vertex weight. H is obviously a |G| x |0G|* matrix. In this case,

2 2
H _ 1 wxl,z1 wxlyzl wxl,ZQ wml»zlwxlyzﬁ wCCLZQ
- 2 2 )
(w:vl,z1 + wxl,zg> wml,zl wiUl,Zl w$1722 wﬂcl,zlwxhzz wzl,zg

and rank(H) =1 < |G| = 2.

21

O boundary vertex

O © interior vertex in Ny

T1 T2 Q© interior vertex in Ny

22
FIGURE 4. An example where no weight function w, , can make rank(H) = |G|.

6. RECONSTRUCTION ALGORITHM

In this section, we implement the reconstruction procedure and validate it using numerical exam-
ples. Here, the reconstruction procedure is summarized in Algorithm 1.

To implement the algorithm, we will index the vertices so that functions on graphs can be iden-
tified with vectors, and linear operators on graphs can be identified with matrices. Recall that the
vertices of (7 are ordered in the way that the interior vertices are indexed by z, . .. , 7| and the
boundary vertices by z|g|41, - - -, |g- For a spatial function u € I2(G), it is vectorized as in (5.2).
For a spatiotemporal function f(¢,z) witht = 0,1,2,...,T and x € G, we follow the lexicograph-
ical order to identify
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Algorithm 1: Reconstruction Algorithm of the interior vertex weight.

Input: Time reversal operator %, operator ¢, truncation operator Pr, boundary vertex weight
€]
j=1J"

1: Calculate the ND map A, from the Neumann boundary spectral data by
1G] ¢

A f(tz) = ul (t, 2) = chk(f(t+ 1— k), 6;)ac0;(z) — pf(t, 2)

j=1 k=1 w(w,z)

tt|oc: and the Neumann boundary spectral data {(\;, ¢;|ac)

T~ Z,

fort > 1, where ¢; = 0,¢ = —1,and ¢, = (2 — \j)cp—1 — cx—o for integer k > 3 (see (1.6)).
2: Calculate the operator W*W = ZA\, +Z# 7 P — Z A\, Py (see (4.4)).
3: Calculate the operator W* operating on a harmonic function %) on a graph
W*gD = (@Ap,T%/TN — /TD>QO (see (45))
4: Solve hg from W*W hy = W*y, where 1 is a harmonic function on the graph (see (4.7)).
5: Construct the harmonic functions ¢)(z) and ¢(x) on the graph to reconstruct | from

(WD), p)o = (0, 9)o = 3 mat(@)ple) = (ho, W) ua,- roiyxoc  (see (49)).

z€G

6: return /iq.

Output: The interior vertex weight, u|g;

where * denotes the adjoint, which is the transpose for a real vector. Using such an ordering, linear
operators can be identified with matrices. For instance, the ND map A, is realized as an ND matrix
via the following identification

A, 12({0,1,...,2T} x 0G) — 12({0,1,...,2T} x 9G) ¢ [A,] € RIOCICTHx[0GICTH)

where we use the square parenthesis [-] to indicate matrix representations of linear operators.

The algorithm is implemented in the following steps.

Step 1: Assemble the Discrete Neumann-to-Dirichlet matrix. Given the Neumann boundary
spectral data, the ND matrix can be readily calculated by following the formula presented in (1.6).
See Fig. 5 for an example of the ND matrix.

Step 2: Calculate the matrix [I7*17]. Using the ordering of the vertices, the operators

X 1P ({1, T -1} x 0G) — ({1, ,T — 1} x 9G),

JPH{0,1,--- 2T} x 0G) — P({1,--- , T — 1} x 9G),

Pr:?({0,--- 2T} x 0G) — *({1,--- , T — 1} x 9G),
are represented by the matrices

%] € RIOGIT-1)x19GI(T-1) [ 7] e RIOGIT-1)x]0G|(2T+1) [Pr] € RIOGIT—1)x|6GI2T+1)

The matrix representation of the adjoint operator P;. is the transpose matrix [Pr]*. Following (1.6),
the matrix [W*W] is computed as the matrix product:

(WW] = (AR 1P = LATIANIP] € RPEITxiacia=), (6.1)

Step 3: Calculate the matrix [J/*]. Using the ordering of the vertices in G and the vector-
ization (5.2), the matrix representations of the Dirichlet trace operator 7 and the Neumann trace
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Structure of ND map

FIGURE 5. The structure of the ground-truth ND map [A,,] for the graph R,, , when m =
10,n = 9,|0G| = 38, T = 9. Blank space represents zero element. Blue areas represent
nonzero values.

operator TN are
[rp] = (O I) € ROGXIG 1] = 7p - [Ag] € RIPGIXIG]

where O € RIP¢IXICG1 s the zero matrix, I € RIP¢IXI9C1 js the identity matrix, and - denotes matrix
multiplication. [Ag] € RIIXIG is the matrix form of a continuation operator of the graph Laplace
A that its domain of definition is extended from G to G. Following (4.5), we have

(W] = ()Ml Z) I ) Jorir @ 7x) = [ Z)(Drga @ 7p) € RIVGITTDXETRIIC - (6.2)

where Irp,; € RCT+HD*ETH1) ig the identity matrix, and ® denotes the matrix tensor product. The

tensor product is needed as 7p, Ty are spatial operators while the other operators are spatiotemporal.
Step 4: Calculate the Boundary Control /4. For any harmonic function 1), the boundary control
ho € RIPGIT=Dx1 i5 oiven by Proposition 4.5:

ho = [WWIT W) (1141 ® ), (6.3)

where 1o741 € R?TH! denotes the vector of all one’s, that is, 1o741 = (1,1,...,1)T. Again, the
tensor product is needed to turn a spatial function into a spatiotemporal one.
Step 5: Solve for /i;. Based on (4.9), it remains to solve the linear system

(e © el fic = h[W*)(lar & &) (6.4)
for various vectorized harmonic functions @ and . Note that there is a total of (|G| — rank(Ag))
distinct harmonic functions in G by Lemma 5.2. This results in a linear system, whose reduced row
echelon form is calculated using the MATLAB command ‘rref’ in order to obtain fig.

7. NUMERICAL EXPERIMENTS

In this section, we validate the algorithm using several numerical examples in MATLAB™. We
will use two types of discrepancy metrics to measure the difference between quantities. The first
step of the algorithm requires construction of the ND map, which is represented by a matrix. We
will use the Frobenius relative norm error (FRNE)

ITAL] — [AL)l7

FRNE =
A7

* 100%
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to quantify the discrepancy between matrices. Here, [A,,] denotes the ground truth ND map and [A/ ]
denotes the reconstructed ND map based on the algorithm. For the vertex weight, it is vectorized in
the calculation, and the reconstruction accuracy is quantified by the absolute error

Error := |, — fi,],
as well as the Ly-relative norm error (LoRNE)

e ~ ez, 100,
172l

where /i, denotes the ground truth and /i/, denotes the reconstruction.

LyoRNE :=

7.1. Experiment 1: the graph R,, ,. In this experiment, we set the following parameters: m =
10,n = 9,|0G| = 38,|G| = 90,T = 9, w,, = 0.25, and the ground-truth vertex weight is
oy = deg(z) forall z € G.

Case 1.1: No Noise. We implement Algorithm 1 without noise to validate its efficacy. The
first step of the algorithm assembles the discrete ND map using the Neumann boundary spectral
data following (1.6). This can be done with high precision. In fact, let A, be the ground-truth ND
map, and A}, be the reconstructed ND map using the Neumann boundary spectral data. The FRNE
between them is 5.9501 x 10~ 13%.

When solving the equation (6.3), the matrix [W*W] is ill conditioned, see Fig. 6 for its singular
values. We employ the truncated SVD regularization along with the ‘Isqminnorm’ command in
MATLAB to find the minimum norm solution as fzg. When solving the linear equations (6.4),
we find that rank(Ag) = 90. By Lemma 5.2, we conclude the vectorized space of harmonic
functions H has dimension |G| — rank(A¢) = 38. In this case, from MATLAB, there are 128
linearly independent vectors of the form ¢ ® ¢ with &, 2/1 € H. Here, we use these 128 linearly
independent vectors as columns to construct the matrix [Fg © ¢G] in order to solve (6.4). However,
the matrix [Jg © ﬁg] is again ill conditioned, as is shown in Fig. 6, so we apply the truncated SVD
regularization to find the minimum norm solution. The reconstruction and the errors are shown in
Fig. 7.

Singular values of [W*W]| Slngular V(Llueb of [Z c @ wp]

30 T T T T T T 0.25

25

20

0.05
5
0

0 50 100 150 200 250 300 0 10 20 30 40 50 60 70 80 90

FIGURE 6. Experiment 1: The singular values of [W*W] and [@g ® 1¢]. The minimum
singular values are 1.3448 * 10715 and 2.5176 * 10~?, respectively.

Case 1.2: Gaussian Noise. Next, we validate the stability of the algorithm by adding Gaussian
noise to the Neumann boundary spectral data. The noisy spectral data in use is of the form ((1 +
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Ground truth o, Reconstructed 1, Error
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FIGURE 7. Experiment 1: The ground-truth p, the reconstructed 1, and the absolute error.
LoRNE = 1.0983 x 10~4%.

)N, (1+¢)p; |ag)|jG:‘1, where ¢’s are the normalized Neumann eigenfunctions and ¢ ~ N(0,0) is a

zero mean Gaussian random variable/vector. We choose o € [0.1%, 0.2%, 0.5%)] in the experiment,
respectively.

In the presence of noise, the FRNEs for reconstructing A, are 0.086344%, 0.17%, 3.23%, re-
spectively; the FRNEs for reconstructing [IW*1/] are 8.5562 1072%, 0.16% , 4.78%, respectively.
When applying the truncated SVD to solve (6.3), the thresholds for singular value truncation are
0.003, 0.005, and 0.007, respectively. When applying the truncated SVD to solve (6.4), the thresh-
olds for singular value truncation are 0.001, 0.001, and 0.003, respectively. Here, different empirical
thresholds are taken to achieve optimal results. The reconstruction y!, and the absolute errors are
shown in Fig.8, where the LoRNEs are 12.6%, 12.76%, 17.75% respectively.

7.2. Experiment 2 : the graph 7, ,,. In this experiment, we set the following parameters: m =
10,n = 9,]0G| = 38,|G| = 90,T = 9, w,, = 3(deg(x) + deg(y)), and the ground-truth vertex
weight is p1, = 1+ 0.5sin(z) + 0.5cos(z) forall x = 1,2, --- ,|G].

Case 2.1: No Noise. We implement Algorithm 1 without noise to validate its efficacy. The
FRNE between the reconstructed ND map A/, using the Neumann boundary spectral data and the
ground truth ND map A, is 3.3222 x 10~ '2%.

When solving the equation (6.3), the matrix [W*W] is ill conditioned, see Fig. 9 for its singular
values. We employ the truncated SVD regularization along with the ‘lsqminnorm’ command in
MATLAB to find the minimum norm solution as EO. When solving the linear equations (6.4), we
find that rank(Ag) = 90. By Lemma 5.2, we conclude the vectorized space of harmonic functions
H has dimension |G| — rank(Ag) = 38. In this case, from MATLAB, there are 128 linearly
independent vectors of the form cﬁ@ﬁ with &, J € H. We use these 128 linearly independent vectors
as columns to construct the matrix [ ® 1] in order to solve (6.4). However, the matrix [F¢ ® U¢]
is again ill conditioned, as is shown in Fig. 9, so we apply the truncated SVD regularization to find
the minimum norm solution. The reconstruction and the error are shown in Fig. 10.

Case 2.2: Gaussian Noise. The noisy spectral data in use is of the form ((1 + £)X;, (1 +

G . . . .
€>¢j|ag)‘j:|1, where ¢’s are the normalized Neumann eigenfunctions and ¢ ~ N(0,0) is a zero

mean Gaussian random variable/vector. We choose o € [0.1%,0.2%,0.5%] in the experiment,
respectively.

In the presence of noise, the FRNES for reconstructing A, are FRNEs are 0.46%, 0.94%, 2.01%,
respectively; the FRNEs for reconstructing [W*W1] are 0.38%, 0.8%, 1.02%, respectively. When
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Ground truth i, Reconstructed 1/, 0.1% random noises Error, 0.1% random noises
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FIGURE 8. Experiment 1: Reconstructions and absolute errors in the presence of 0.1%,
0.2% and 0.5% Gaussian random noise. The LoyRNEs are equal to 12.6%, 12.76% and
17.75% respectively. For comparison, we set the same color bar for the ground truth and the
reconstruction.
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FIGURE 9. Experiment 2: The singular values of [W*W] and [3¢ © v¢]. The minimum
singular values are 4.2386 * 10~'% and 1.1704  10~7, respectively.

1 applying the truncated SVD to solve (6.3), the thresholds for singular value truncation are 0.001,
2 0.005, and 0.003, respectively. When applying the truncated SVD to solve (6.4), the thresholds
3 for singular value truncation are 0.001,0.001, and 0.003, respectively. Here, different empirical
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Ground truth 1, Reconstructed p), Error 0?
000000000 J
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FIGURE 10. Experiment 2: The ground-truth s, the reconstructed y/, and the absolute
errors. LoRNE = 2.3817 % 1077 %.

1 thresholds are taken to achieve optimal results. The reconstruction y/, and the absolute errors are
2 shown in Fig. 11, where the LoRNEs are 27.81%, 28.17% and 32.98%, respectively.

Ground truth p, Reconstructed 4, 0.1% random noises Error, 0.1% random noises

FIGURE 11. Experiment 2: Reconstructions and absolute errors in the presence of 0.1%,
0.2% and 0.5% Gaussian random noise. The LoRNE are equal to 27.81%, 28.17% and
32.98% respectively. For comparison, we set the same color bar for the ground truth value
and the reconstructed value.
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7.3. Experiment 3 : the graph 1, ,,. In this experiment, we set the following parameteres: m =
9,n = 4,]0G| = 28,|G| = 90,T = 9, w,,, = 3(deg(x) + deg(y)) and the ground-truth vertex
weight is i, = 1 forall z € G.

Case 3.1: No Noise. We implement Algorithm 1 without noise to validate its efficacy. The
FRNE between the reconstructed ND map A/, using the Neumann boundary spectral data and the
ground truth ND map A, is 5.3689 x 10~ '3%.

When solving the equation (6.3), the matrix [W*W] is ill conditioned, see Fig. 12 for its singular
values. We employ the truncated SVD regularization along with the ‘Isgminnorm’ command in
MATLAB to find the minimum norm solution as EO. When solve the linear equations (6.4), we find
that rank(Ag) = 90. By Lemma 5.2, we conclude the vectorized space of harmonic functions H has
dimension |G| — mnk(Ag) = 28. In this case, from MATLAB, there are 118 linearly independent
vectors of the form ¢ ©® w with ¢, 1/1 € H. Here, we use these 118 linearly independent vectors as
columns to construct the matrix [Fg © wg] in order to solve (6.4). However, the matrix [Fg ® @DG] is
again ill conditioned, as is shown in Fig. 12, so we apply the truncated SVD regularization to find
the minimum norm solution. The reconstruction and the errors are shown in Fig. 13.

Singular values of [W*W] Singular values of [Fg ® 9]
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FIGURE 12. Experiment 3: The singular values of [W*W] and [ ® v¢]. The minimum
singular values are 3.7372 % 10715 and 1.1152 x 10~8, respectively.
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FIGURE 13. Experiment 3: The ground-truth p,, the reconstructed y/, and the errors.
LoRNE = 7.7674 + 1078%.

Case 3.2: Gaussian Noise. The noisy spectral data in use is of the form ((1 + o)A, (1 +

5)¢]|@G)‘ | , where ¢’s are the normalized Neumann eigenfunctions and ¢ ~ N(0,0) is a zero
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mean Gaussian random variable/vector. We choose o € [0.1%,0.2%,0.5%)] in the experiment,
respectively.

In the presence of noise, the FRNESs for reconstructing A, are 0. 12%, 0.23%, 0.67%, respectively;
the FRNEs for reconstructing [W*W] are 8.8772%1072%, 0.17%, 0.47%, respectively. When apply-
ing the truncated SVD to solve (6.3), the thresholds for singular value truncation are 0.001, 0.005,
and 0.003, respectively. When applying the truncated SVD to solve (6.4), the thresholds for singular
value truncation are 0.001,0.001, and 0.003, respectively. Here, different empirical thresholds are
taken to achieve optimal results. The reconstruction y!, and the absolute errors are shown in Fig.
14, where the LoRNEs are 14.59%, 16.38% and 24.89% respectively.

Ground truth g, Reconstructed 4/, 0.1% random noises Error, 0.1% random noises
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FIGURE 14. Experiment 3: Reconstructions and absolute errors in the presence of 0.1%,
0.2% and 0.5% Gaussian random noise. The LoRNEs are equal to 14.59%, 16.38% and
24.89% respectively. For comparison, we set the same color bar for the ground truth value
and the reconstructed value.

APPENDIX A.

In this article, we proved that the Neumann boundary spectral data determines (in a constructive
way) the interior vertex weight under Assumption 1. On the other hand, the same conclusion is given
in [14] with different assumptions on graphs. This appendix compares the two types of assumptions
with the goal of highlighting their difference. In particular, we show that neither of the assumptions
implies the other. As a result, our assumption identifies a novel class of graphs for which the discrete
Gel’fand’s inverse spectral problem can be solved.
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Recall some definitions and results in [14]. Let G be a finite graph with boundary. Let G be the
set of interior vertices of G. A subset of these vertices is denoted by X C G . A vertex © € X is
called an extreme vertex of X with respect to OG if there exists a boundary vertex zy € 0G such that

d < in d :
(.fL', ZU) yEr)Ifl,ln;éx (y7 ZO)
In other words, z is the unique nearest vertex in X to 2.
The major assumption on the graph in [14] is the following two conditions:

(1) Any two interior vertices that are connected to the same boundary vertex are also connected
to each other.

(2) (Two-points condition) Any subset X with | X| > 2 has at least two extreme vertices with
respect to 0G.

Note that Condition (1) is void when a graph satisfies our Assumption 1(z). Condition (2) is re-
ferred to as the two-points condition in [14]. Moreover, the following criterion provides sufficient
conditions for a graph to satisfy the two-points condition, see [14, Proposition 1.8].

Lemma A.1. ( [14, Proposition 1.8]) If there exists a function g : G — R that satisfies the following
conditions:

(i) |g(x) —g(y)| < 1whenx ~y;
(ii) for every x € G, there is exactly one vertex y, € N (x) such that g(y1) — g(x) = 1, and there
is exactly one vertex y, € N(x) such that g(y2) — g(x) =
(iii) for every z € OG, there is at most one vertex y3 € N (z
is at most one vertex yy € N (z) such that g(y,) — g(z) =

) such that g(ys) — g(2) = 1, and there

then the graph is said to satisfy the two-points condition.

We provide two specific graphs to show that the two sets of assumptions are different. First,
there exist graphs that satisfy our Assumption 1 but not the two-points condition, see Fig. 15(a).
This graph satisfies Assumption 1 because every vertex has no more than one next-level neighbor.
However, the subset X = {z,y} has just one extreme vertex = with respect to OG. Any path
between vertex y and a boundary vertex must contain z. Therefore, y cannot be the unique nearest
vertex in X to any boundary vertex.

On the other hand, there also exist graphs that satisfy the two-points condition but not our As-
sumption 1, see Fig. 15(b). For ease of notation, we constructed a Cartesian coordinate system in
which the origin is marked, and the vertices are represented by the coordmates (4,k) € Z*. This
graph satisfies the two-points condition because the function g(j, k) = 3 + k defined on G satisfies
all the conditions in Lemma A.1. To demonstrate that it does not satlsfy Assumption 1, note that

where
Ni ={(1,0),(1,3),(4,1),(4,5),(2,0),(3,0),(3,5)}, N/ ={(1, 1)}
Recall the definition of N} in Assumption 1, we find that (2,3), (4,2) &€ N7, because their next-

level neighbors are respectively (2,2), (3, 3) and (3, 2), (4, 3), none of which belong to N'( N} UN?).
Therefore, the decomposition in Assumption 1 does not hold for this graph.

APPENDIX B.

We compute some adjoint operators in this appendix. First, the linear operator
W:({1,---, T -1} x 0G) — I*(Q), h—s u™"(T, ), v € G
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FIGURE 15. (a) A graph satisfies Assumption 1 but not the two-points condition. (b) A
graph satisfies the two-points condition but not Assumption 1.

is introduced in Section 4. It maps the Neumann boundary values to the solution of equation (1.5)
attimet =T and x € G.

Lemma B.1. The adjoint W* is given by

W*g =wv(t, 2), (t,z) e {1,2,--- T — 1} x G

where v satisfies the following problem:

Dyv(t,z) — Agu(t,z) =0, (t,z) € {1,2,---,T—1} x G,

v(T,z) =0, z € G,
Dw(T —1,z) = g(x), x €@,
dyu(t,z) =0, (t,2) €{0,1,--- , T} x OG.

Proof. Let u be the solution of (1.5). As v satisfies the graph wave equation above, we have

0= Zur Z (Dyv(t,z) — Agu(t, z))u(t, x)

zeG t=1
—ZMxZDttUtHU (t,z) Zuxz (t,x)Agu(t, x)
zeG t=1 zeG t=1

= Il — ]2.
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For I, using the definition of the operators D; and D,;, we can obtain

L = Zuxz (t+1,2)u (t:U—QZuxZ (t, x)u(t, x) —i—ZuxZ (t—1,2)u(t, z)

zeG t=1 zeG t=1 zeG t=1
=3 e Y _(o(t,x)ult — 1,2) = 20(t, 2)u(t, z) + v(t, 2)ult + 1, z))
zeG t=1
+ Zu$(—v(1, 2)u(0,z) + (T, 2)u(T — 1,2) + v(0, x)u(l,z) — (T — 1, z)u(T, x))
zeCG
=30 Y elta)Dyu(ta) + Y pgla)u(T. x),
€@ t=1 el

where we have used the fact that (0, z) = u(1,2) = 0, v(T,z) = 0and v(T — 1,2) = —g(z) for
z € G.
For I, we compute it using Lemma 3.1:

Z'%Z (t,x)Agu(t,z) + Z ,uzi: (v(t, z)0,u(t, z) — u(t, 2)0,v(t, 2))

zelG t=1 2€0G =1
—1

—Z,uxz (t,x)Agul(t, ) +Z,uZZv
ze@ t= 2€0G t=1

where we have used the boundary conditions d,v(t, z) = 0 and d,u(t, z) = f for z € 9G.
As I; — I, = 0 and the first terms of I; and I, are identical, we conclude:

> uzz (t,2)f(t,2) = D pag(@)u = (u(T),9)e = (W], g)c.

z€0G t=1 zeG

The proof is complete when we observe that the left hand side is exactly (f, U){l,--- T—1}x0G-
Il

B.1. Calculate the map A, ;. Next, we derive the adjoint to the operator A, 7 introduced in Sec-
tion 4. Recall that

AM,Th = PT(A“PI*JL) = up%h|{17...7T_1}X3G
forh € *({1,--- , T — 1} x 9G).
Lemma B.2. The adjoint A, 1 is given by
N7 =FN 1% .
Proof. Let u be the solution of (1.5) and v be the solution of

Dyv(t,z) — Agu(t,z) =0, (t,x)e{l,---,T -1} xG,
v(T'—1,2) =0, z € G,

Dw(T —1,z) =0, z € G,

Oyu(t,z) = g(t, 2), (t,z) € {0,--- , T} x OG.
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1 Using Lemma 3.1, we obtain the equation

0= Z,uxz (Dyv(t,z) — Agu(t, z))u(t, x)

zeG t=1
—ZMIZDttvtx (t,x) ZMIZAGUtx (t,z)
el t=1 zeG t=1
—ZMZ Ju(t — 1, ) — 2u(t, x)u(t, z) + v(t, z)u(t + 1, z))
el t=
+ Zu uw(0,z) +v(T,z)u(T — 1,z) + v(0,z)u(l,z) — v(T — 1,2)u(T, x))
zelG

- Z i z_: vAgu + Z [z i(@l,v(t, 2)u(t, z) — v(t, 2)0,ul(t, 2))

zeG t=1 z€0G t=1
-1
—Z,umz x)(Dyu(t, ) — Agu(t, x) Zuzz (Ov(t, z)u(t, z) — v(t, z)0,u(t, 2))
el t=1 2€0G t=1
T-1 T-1
- Z MzZQ(A;L,Tf) - Z szv(taz)f (B.1)
z€0G t=1 z€0G t=1

2 On the other hand, consider U that satisfies the following problem
DyU(t,z) — AgU(t,z) =0, (t,x)e{l,---, T -1} x G,

U(0,z) =0, r € G,
DU(0,x) =0, x €@,
OU(t,z) =Ry(t,2), (t,z) €{0,---, T} x 0G.

3 Then, ZU = v, since they solve the initial boundary value problem. We conclude

ANy rRg = RU|(,.. r-13x06) = V|{1, T-1}x0G-

4 Substitute this relation into equation (B.1) to get

0= 1y ghurf) = > 1) [RN 1Ry

z€0G t=1 2€0G t=1
= (A,u,Tfa g){l, ,T—1}x0G — <f7 %AM,T%g){I,W ,T—1}x0G
for all f, g. This completes the proof.

7 APPENDIX C.

C.1. Matrix form of the graph Laplacian operator A.. In this appendix, we use the matrix form

of the graph Laplacian to prove a few auxiliary results. As usual, we index the interior vertices by
10 1,22, -+, x| and the boundary vertices by 2 |G| 11, Z|G|+2, " * - ; T|G O G. Recall that in Section 5,
11 the graph Laplacian A : G — G is identified with a block matrix

[Ad] = ([Accl, [Agac]) € REXIE where [Agg] € RICXIE [Ag aa] € RIEXIOG]
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Then, the graph Laplacian operator A can be written as matrix form as follows

- 2 w@y)
yeG
Y~z w(z1,72) o w(z1,26|) o wnrg)
Py Haq Haq Hazq
= X w(z2.y)
yeG
w(ze,21) y~To o w(z2,T|G)) o w(z2g)) )
Hzo Hzy Hzy Hao = (AG,G : AG,@G) ’
- Zf w(l\c|,y)
yeG
w(z|g),@1) wzigea) Y6 oL wEee)
adle] adtel el adle]
where
- Z_ w(x17y> U)(CCl,ZCQ) UJ(SCl,I‘GO
1 yeG
—_— Yy~xy
Mz
Y1 w(zg, r1) = > w(xa,y) - w(x2, T)c))
Hax yEG
Aco = 2 . grpa ’
1 . . .
Hayg| w(r|g), 1) w(@ie,r2) 0 — >0 w(zg,y)
yeG
Uaddle]
and
1
Moy w(zy, Tigy1) o w(a, 56'|(‘;|)
Py w(rs, Tig141) 0 w(T, Tq)
Agoc = : :
1 _
o) e TEn) o w(Tie) Tie)
Since the edge weight function w(-, -) is symmetric, the resulting matrix A ¢ is also symmetric.

Lemma C.1. Let (G, &) be a connected graph. For any function g : 0G — R, the boundary value

6 problem

Acp(z) =0 for x€ G, ploc=y
has a unique solution ¢ : G — R.

Proof. Using the vectorization @ = (F|g, §)* and the matrix [Ag] = ([Ac.cl, [Ac.ac]), the bound-
ary value problem is equivalent to the homogeneous linear system

([Acel, [Acoc] ) ( SOJYG ) =0.
Since the matrix [A¢ ] is non-singular [21, Lemma 3.8], the linear system admits a unique solution

Bla = —[Acc] ' [Acac]T-
]

Lemma C.2. Let 5 be an arbitrary selection of |G| columns from H. If det(H.g) # 0, then
det(H. g) is a real analytic function of {w,,} € RE'.



GEL’FAND’S INVERSE PROBLEM ON CONNECTED WEIGHTED GRAPHS 37

Proof. Using the cofactor formula, each entry of [Ag ]! is a rational function of {w, ,} € ]R'f‘
(since det[Ag ] is a polynomial of the entries). Recall that for polynomials A;(a) and Ay(a) # 0

ﬁ;gzg are analytic on any connected subset of RI€I,

Since A¢ ¢ is invertible, the functions det(H. 4) are real analytic with respect to {w,,} € R/, O

when a € RI¢!, rational functions of the form
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