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ABSTRACT. We consider the reconstruction of the vertex weight in the discrete Gel’fand’s inverse
boundary spectral problem for the graph Laplacian. Given the boundary vertex weight and the edge
weight of the graph, we develop reconstruction procedures to recover the interior vertex weight from
the Neumann boundary spectral data on a class of finite, connected and weighted graphs. The proce-
dures are divided into two stages: the first stage reconstructs the Neumann-to-Dirichlet map for the
graph wave equation from the Neumann boundary spectral data, and the second stage reconstructs
the interior vertex weight from the Neumann-to-Dirichlet map using the boundary control method
adapted to weighted graphs. For the second stage, we identify a class of weighted graphs where the
unique continuation principle holds for the graph wave equation. The reconstruction procedures are
further turned into an algorithm, which is implemented and validated on several numerical examples
with quantitative performance reported.

1. INTRODUCTION AND MAIN RESULTS4

The Gel’fand’s inverse boundary spectral problem aims to determine a differential operator based5

on the knowledge of its boundary spectral data [25]. This problem arises in various scientific and6

engineering domains where understanding the internal structure of a system or material is crucial.7

In this paper, we are interested in the discrete Gel’fand’s inverse boundary spectral problem on com-8

binatorial graphs [14]. In the discrete formulation, traditional differential operators are substituted9

with difference operators, and traditional functions are substituted with functions defined on ver-10

tices. The problem thus involves reconstructing properties of combinatorial graphs from boundary11

spectral data. The analysis of this discrete problem serves as a foundational framework for finite12

difference and finite element analysis of numerical methods for solving the continuous Gel’fand’s13

inverse boundary spectral problem.14

We formulate the discrete Gel’fand’s inverse boundary spectral problem following the presenta-15

tion in [14]. A graph (Ḡ, E) consists of a set of vertices Ḡ and a set of edges E . The set of vertices16

admits a disjoint decomposition Ḡ = G ∪ ∂G, where G is called the set of interior vertices and ∂G17

the set of boundary vertices. The graph is finite if |Ḡ| and |E| are both finite, where | · | denotes the18

cardinality. Given two vertices x, y ∈ Ḡ, we say that x is a neighbor of y, denoted by x ∼ y , if19

there exists an edge connecting x and y. This edge is denoted by {x, y}. In this case, y is clearly20

a neighbor of x as well. The graph is undirected if the edges do not carry directions, that is, if21

{x, y} = {y, x}. The graph is weighted if there exists an edge weight function on the set of edges22

w : E −→ R+ (R+ denotes the set of positive real numbers) such that w(x, y) = w(y, x) > 0 for23

x ∼ y. By convention, if there is no edge between x and y, we set w(x, y) = w(y, x) = 0. We24

often use the simplified notation wx,y to represent the edge weight w(x, y) for brevity. The graph is25
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simple if there is at most one edge between any two vertices and no edge connects a vertex to itself.1

The graph is connected if any two vertices can be connected by a sequence of edges. In this paper,2

all the graphs are assumed to be finite, undirected, weighted, simple and connected.3

For x ∈ Ḡ, its degree, denoted by deg(x), is defined as the number of edges in E connecting it to4

its neighbors. Let u : Ḡ −→ R be a real-valued function. The graph Laplacian ∆G is defined as5

∆Gu(x) :=
1

µ(x)

∑
y∈Ḡ
y∼x

w(x, y)(u(y)− u(x)), x ∈ G. (1.1)

Here µ : Ḡ −→ R+ is a positive function on the set of vertices. We will refer to µ as the vertex6

weight and write µ(x) as µx for simplicity. This definition of the graph Laplacian includes several7

special cases that are of importance in graph theory. For instance, the combinatorial Laplacian8

corresponds to µ ≡ 1, while the normalized Laplacian corresponds to w ≡ 1 and µ(x) = deg(x).9

The Neumann boundary value of u is defined as10

∂νu(z) :=
1

µz

∑
x∈G
x∼z

w(x, z)(u(x)− u(z)), z ∈ ∂G. (1.2)

A function φ : Ḡ→ R is said to be harmonic if11

∆Gφ(x) = 0, x ∈ G.

Although the definition of ∆G involves µ, it is clear that the concept of harmonic functions is12

independent of µ. Denote by l2(G) the l2-space of real-valued functions equipped with the following13

inner product: for functions u, v : G −→ R,14

(u, v)G :=
∑
x∈G

µxu(x)v(x).

Similarly, denote by l2(∂G) the l2-space of real-valued functions equipped with the inner product15

(u, v)∂G :=
∑
z∈∂G

µzu(z)v(z)

for functions u, v : ∂G→ R.16

Definition 1.1 (Neumann boundary spectral data). For the Neumann eigenvalue problem17

−∆Gϕj(x) = λjϕj(x), x ∈ G,

∂νϕj|∂G = 0,
(1.3)

we say that ϕj with (ϕj, ϕj)G = 1 is a normalized Neumann eigenfunction associated to the Neu-18

mann eigenvalue λj . The collection of the eigenpairs {(λj ,ϕj|∂G)}|G|
j=1 is called the Neumann bound-19

ary spectral data.20

Remark 1.2. The graph Laplacian equipped with the homogeneous Neumann boundary condition21

is self-adjoint (see Lemma 3.1), hence all the Neumann eigenvalues are real, and the normalized22

Neumann eigenfunctions {ϕj(x) | x ∈ G}|G|
j=1 form an orthonormal basis of l2(G).23

The discrete Gel’fand inverse spectral problem concerns reconstruction of the interior vertex set24

G, the edge set E , and the weight functions w, µ from the Neumann boundary spectral data [14].25

However, it is worth noting that solving the discrete Gel’fand’s inverse problem on general graphs is26

not unique due to the existence of isospectral graphs, see [22,24,44]. In this article, we restrict our-27

selves to the following special case: Suppose the set of vertices Ḡ, the set of edges E , and the edge28
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weight function w are known. Given the Neumann boundary spectral data and the boundary vertex1

weight µ|∂G, what can be concluded regarding the interior vertex weight µ|G? In [14, Theorem 2],2

it is proved that µ can be uniquely determined under suitable assumptions on the graph, provided3

µ|∂G is known. However, this proof is non-constructive and does not yield explicit reconstruction.4

The main objective of this paper is to provide constructive procedures for identifying µ|G, enabling5

the derivation of an algorithm to numerically compute µ|G.6

Our constructive proof and algorithm are rooted in the boundary control method pioneered by7

Belishev [5], tailored for application to combinatorial graphs. An important step of the method8

links boundary spectral data with wave equations. Therefore, we pause here to formulate the graph9

wave equation following [14]. For a function u : N × Ḡ −→ R, we define the discrete first and10

second time derivatives as11

Dtu(t, x) =u(t+ 1, x)− u(t, x), t ∈ {0, 1, · · · }, x ∈ Ḡ,

Dttu(t, x) =u(t+ 1, x)− 2u(t, x) + u(t− 1, x), t ∈ {1, 2, · · · }, x ∈ Ḡ.

We will refer to the following equation as the graph wave equation:12

Dttu(t, x)−∆Gu(t, x) = 0, t ∈ {1, 2, · · · }, x ∈ G.

Our first goal is to prove a unique continuation result for the graph wave equation. To this end,13

we introduce some terminologies. Given any x, y ∈ Ḡ, their distance, denoted by d(x, y), is defined14

as the minimum number of edges that connect x and y via other vertices. For x ∈ Ḡ , its distance15

to the boundary ∂G is defined as16

d(x, ∂G) = min
z∈∂G

d(x, z), x ∈ Ḡ.

We say a vertex x ∈ Ḡ has level l if d(x, ∂G) = l. Obviously, l is an integer and 0 ≤ l ≤17

max
x∈G

d(x, ∂G). The collection of interior vertices of level l is denoted by18

Nl := {x ∈ G | d(x, ∂G) = l}.

For a subset of vertices Ω ⊂ Ḡ, the set

N (Ω) = {y ∈ Ḡ | x ∼ y, x ∈ Ω}
is called the neighborhood of Ω in Ḡ. If there exists y0 ∈ Ḡ such that y0 ∈ N (x)∩Nl+1 for x ∈ Nl,19

then y0 is called a next-level neighbor of x.20

The following assumption on the topology of Ḡ is critical for our proof of the unique continuation21

result.22

Assumption 1. (i) Every boundary vertex connects to a unique interior vertex.23

(ii) For each integer l with 1 ≤ l ≤ max
x∈G

d(x, ∂G), the set of vertices of level l admits the decom-24

position25

Nl =

kl⋃
r=1

N r
l for kl ∈ N+,

where kl ∈ N+ depends on l, and the sets N1
l and Nk

l are defined as26

N1
l : = {x ∈ Nl : |N (x) ∩Nl+1| ≤ 1},

Nk
l : =

{
x ∈ Nl : |N (x) ∩Nl+1| > 1, |N (x) ∩Nl+1 \

(
k−1⋃
r=1

N (N r
l )

)
| ≤ 1

}
, 2 ≤ k ≤ kl.
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Remark 1.3. Assumption 1(ii) means that every Nl consists of two types of vertices: the first type1

are those in N1
l , they have at most one next-level neighbor; the second type are those in Nk

l (k =2

2, . . . , kl), they may have multiple next-level neighbors but at most one of them is not a neighbor of3

any vertices in N1
l , . . . , N

k−1
l . This may be viewed as a type of “foliation condition” for the graph.4

Graphs that fulfill Assumption 1(ii) include a class of subgraphs of 2D regular tilings, see Example5

2.1, Example 2.3 and Example 2.5 in Section 2.6

It is worth noting that the decomposition in Assumption 1(ii) remains valid if any edge between7

two interior vertices of the same level is removed. This is because removal of such edges does not8

affect the level of any vertex or their next-level neighbors. This observation can be used to construct9

graphs that satisfy Assumption 1.10

The first main result of this paper is the following unique continuation property for the graph11

wave equation.12

Theorem 1.4. (Unique continuation theorem). Suppose Ḡ satisfies Assumption 1. If u(t, x) satisfies13

the graph wave equation with vanishing Dirichlet and Neumann data:14 {
Dttu(t, x)−∆Gu(t, x) = 0, (t, x) ∈ {−T + 1,−T + 2, · · · , T − 1} ×G,

u(t, z) = ∂νu(t, z) = 0, (t, z) ∈ {−T,−T + 1, · · · , T} × ∂G,

then15

u(t, x) = 0, (t, x) ∈ {−T + l − 1, · · · , T − l + 1} ×Nl (1.4)

for all l = 1, 2, . . . ,max
x∈G

d(x, ∂G). In particular, if T ≥ max
x∈G

d(x, ∂G), then

u(0, x) = Dtu(0, x) = 0

for all x ∈ G.16

Next, we consider the following initial boundary value problem for the graph wave equation:17 
Dttu(t, x)−∆Gu(t, x) = 0, (t, x) ∈ {1, 2, · · · , 2T − 1} ×G,

u(0, x) = 0, x ∈ Ḡ,

Dtu(0, x) = 0, x ∈ G,

∂νu(t, z) = f(t, z), (t, z) ∈ {0, 1, · · · , 2T} × ∂G,

(1.5)

where T > 0 is an integer and f ∈ l2({0, 1, · · · , 2T} × ∂G) is the Neumann data. Note that we18

must have f(0, z) = 0 when z ∈ ∂G, due to compatibility with the initial conditions. This initial19

boundary value problem clearly has a unique solution u = uf , thus we can define the Neumann-to-20

Dirichlet map (ND map):21

Λµf := uf
∣∣
{0,1,··· ,2T}×∂G

.

Here, the subscript indicates that the ND map depends on the vertex weight µ.22

The second main result of this paper is an explicit formula to reconstruct the ND map from the23

Neumann boundary spectral data.24

Theorem 1.5. Suppose Ḡ satisfies Assumption 1 (i), and suppose the set of vertices Ḡ and the set25

of edges E are known. Given the edge weight function w and the boundary vertex weight µ|∂G,26

the Neumann-to-Dirichlet map Λµ can be computed from the Neumann boundary spectral data27
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{(λj, ϕj

∣∣
∂G

)}|G|
j=1 as follows:1

Λµf(t, z) = uf (t, z) =

|G|∑
j=1

t∑
k=1

ck(f(t+ 1− k), ϕj)∂Gϕj(z)−
µzf(t, z)

w(x, z)
, x ∼ z (1.6)

when t = 1, 2, 3, . . . Here x ∈ G is the unique interior vertex that is connected to z ∈ ∂G, and the2

coefficients ck satisfies c1 = 0, c2 = −1, and the recursive relation ck = (2 − λk)ck−1 − ck−2 for3

k ≥ 3.4

Next, denote by M the vector space spanned by products of harmonic functions, that is,

M := span{φψ|G : ∆Gφ = ∆Gψ = 0 in G}.
The third main result of the paper gives an explicit reconstruction formula to obtain the orthogonal5

projection of µ|G onto M from the ND map.6

Theorem 1.6. Suppose Ḡ satisfies Assumption 1, and suppose the set of vertices Ḡ and the set7

of edges E are known. Given the edge weight function w, the boundary vertex weight µ|∂G, and8

T ≥ maxx∈G d(x, ∂G), then the orthogonal projection of µ|G onto M can be explicitly recon-9

structed from the Neuman-to-Dirichlet map Λµ. Moreover, a reconstruction algorithm is derived in10

Algorithm 1 in Section 6.11

Note that Theorem 1.6 only ensures reconstruction of an orthogonal projection of µ|G. In order12

to obtain the full interior vertex measure µ|G, further conditions have to be imposed on G and the13

edge weight function w. Note that an edge weight function w : E −→ R+ can be identified with a14

point in the space R|E|
+ by indexing the edges in E .15

Corollary 1.7. Let the set of vertices Ḡ and the set of edges E be known. Suppose Ḡ satisfies16
|∂G|(|∂G|+1)

2
≥ |G|, and suppose there exists at least one edge weight function w such that M =17

l2(G), then M = l2(G) holds for all edge weight functions w except for a set of measure zero in18

R|E|
+ . Therefore, under the assumptions of Theorem 1.6 and Corollary 1.7, µ|G can be explicitly19

reconstructed from the Neuman-to-Dirichlet map Λµ for all edge weight functions except for a set20

of measure zero in R|E|
+ . In this case, Algorithm 1 in Section 6 recovers µ|G.21

Combining Theorem 1.5, Theorem 1.6 and Corollary 1.7, we see that the vertex weight µ|G can22

be constructed from the Neumann boundary spectral data for a class of graphs.23

The Gel’fand’s inverse boundary spectral problem for partial differential operators in the con-24

tinuum setting has been extensively investigated, e.g, in [1, 17, 20, 28, 30, 31, 34, 37, 38, 41]. In25

particular, Belishev pioneered the boundary control method [5] which combined with the Tataru’s26

unique continuation result [45] determines the differential operators in Rn. The method was further27

extended by Belishev and Kurylev on manifolds to determine the isometry type of a Riemannian28

manifold from the boundary spectral data [10]. The boundary control method for partial differential29

operators has since been greatly generalized (e.g, see the survey [7]) and numerically implemented30

(e.g [8,9,23,35,42,43,48]). The Gel’fand’s inverse boundary spectral problem is closely connected31

to several other celebrated inverse problems for wave, heat and Schrödinger equations [33]. We refer32

readers to the monograph [32] for a comprehensive introduction to the Gel’fand’s inverse boundary33

spectral problem as well as its connections to other inverse problems.34

The discrete Gel’fand’s inverse boundary spectral problem on combinatorial graphs is formulated35

in [14]. Assuming the “two-points condition” (see [14] or Appendix A for the precise definition),36

the authors of [14] proved that any two finite, strongly connected, weighted graphs that are spec-37

trally isomorphic with a boundary isomorphism must be isomorphic as graphs. This establishes the38
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uniqueness result for determining the graph structure (including the vertices, edges and weights)1

from the spectral data. However, the proof in [14] is non-constructive and it remains unclear how to2

explicitly compute the graph structure. A major contribution of the current paper is the development3

of an algorithm based on the boundary control method that reconstructs certain quantities on a class4

of combinatorial graphs. We remark that the idea of the boundary control method has been adapted5

to solve inverse problems on certain special graphs in the earlier literature, e.g, in recovering the6

structures of planar trees [6, 11] as well as in detecting cycles in graphs [12].7

Inverse spectral problems on graphs arise naturally in quantum physics. A class of graphs where8

these problems are well-suited is quantum graphs. A quantum graph is a metric graph that carries9

differential operators on the edges with appropriate conditions on the vertices. Inverse spectral10

problems on quantum graphs usually aim at determining graph structures or differential operators11

from spectral data, see e.g, [4, 6, 11, 19, 27, 36, 39, 46, 47, 49]. Many other inverse problems that are12

closely related to inverse spectral problems have also found the counterparts on graphs. Examples13

include inverse problems recovering potential function and the geometry of the metric tree graph14

from the dynamical Dirichlet-to-Neumann map in [3] and recovering a tree graph together with the15

weights on its edges from the Dirichlet-to-Neumann matrix in [26]. Other examples include inverse16

conductivity problems (e.g, [21]), inverse scattering problems (e.g, [2, 29]), and inverse interior17

spectral problems (e.g, [15]).18

This paper’s major contributions include:19

• A reconstruction formula and an algorithm to compute the vertex weight µ. The uniqueness20

of the vertex weight for a class of combinatorial graphs was previously addressed in [14],21

but the provided proof is non-constructive and lacks explicit computational procedures. This22

paper focuses specifically on reconstructing the vertex weight µ. We derive an explicit23

reconstruction formula by converting the Neumann boundary spectral data to the Neumann-24

to-Dirichlet map for the graph wave equation and then adapting Belishev’s boundary control25

method to recover µ. An algorithm is subsequently derived from this formula and validated26

through multiple numerical experiments.27

• New uniqueness result. A critical hypothesis for the uniqueness proof in [14, Theorem 2] is28

the so-called “two-points condition” (see Appendix A), which imposes specific geometric29

restrictions on graphs. Consequently, the uniqueness result in [14] applies only to graphs30

that meet the two-points condition. This paper considers a different class of graphs, based31

on Assumption 1, which to some extent can be viewed as a discrete “foliation condition”.32

In Appendix A, we provide examples demonstrating that Assumption 1 is not a special case33

of the two-points condition, and vice versa. This distinction ensures that the class of graphs34

considered in this paper is not a subclass of those in [14]. Consequently, our reconstruction35

formula also implies uniqueness for a new class of graphs that satisfies Assumption 1 but36

not the two-points condition.37

• Unique continuation for the graph wave equation. The unique continuation principle is a cru-38

cial property of wave phenomena. For the continuum wave equation with time-independent39

coefficients, this principle is established in Tataru’s celebrated work in [45]. In this paper,40

we identify a class of graphs (see Assumption 1) and prove a discrete unique continuation41

principle for the graph wave equation (see Theorem 1.4). This result plays a central role in42

adapting the boundary control method to combinatorial graphs.43

The paper is organized as follows: In Section 2, we prove the unique continuation principle The-44

orem 1.4 and provide several concrete examples of planar graphs that satisfy Assumption 1. Section45

3 is devoted to the proof of Theorem 1.5. In Section 4, we develop the discrete boundary control46
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method and describe how to construct the orthogonal projection of the vertex weight on M , prov-1

ing Theorem 1.6. Section 5 identifies a class of weighted graphs where the vertex weight can be2

uniquely constructed for a generic set of edge weight functions, proving Corollary 1.7. The recon-3

struction procedures are summarized and formulated as a numerical algorithm in Section 6. Finally,4

the resulting algorithm is validated on numerical examples with the quantitative performance re-5

ported in Section 7.6

2. PROOF OF THEOREM 1.47

This section is devoted to the proof of the unique continuation principle in Theorem 1.4. We also8

provide several graphs that satisfy Assumption 1. These graphs are subgraphs of 2D regular tilings.9

Proof. We prove the claim (1.4) by induction on l = 1, 2, · · · ,max
x∈G

d(x, ∂G).10

Base Case: For the base step l = 1, take any x ∈ N1. There exists a boundary vertex z such that11

x ∼ z. Moreover, by Assumption 1 (i), x is the unique interior vertex connected to z. Applying12

the Dirichlet condition u|{−T,...,T}×∂G = 0 and Neumann condition ∂νu|{−T,...,T}×∂G = 0 yields, at13

z ∈ ∂G, that14

0 = ∂νu(t, z) =
1

µz

w(x, z)u(t, x) for t ∈ {−T, . . . , T}.

Hence, u(t, x) = 0 since µz > 0 and w(x, z) > 0. This proves the base case.15

Induction Step: For the induction step, let l1 be a positive integer with l1 ≤ maxx∈G d(x, ∂G)−1.16

Suppose for all l ≤ l1, we have the inductive hypothesis17

u(t, x) = 0, (t, x) ∈ {−T + l − 1, · · · , T − l + 1} ×Nl. (2.1)

It remains to prove the case l = l1 + 1, that is,18

u(t, x) = 0, (t, x) ∈ {−T + l1, · · · , T − l1} ×Nl1+1.

To this end, fix t ∈ {−T + l1, · · · , T − l1} and consider an arbitrary y ∈ Nl1 . We have u(t, y) = 019

and Dttu(t, y) = u(t+ 1, y)− 2u(t, y) + u(t− 1, y) = 0 due to the inductive hypothesis (2.1). The20

wave equation at (t, y) becomes21

0 = Dttu(t, y)−∆Gu(t, y) = − 1

µy

∑
x∈Nl1−1∪Nl1

∪Nl1+1
x∼y

w(x, y)u(t, x).

In the summation, we have u(t, x) = 0 for x ∈ Nl1−1∪Nl1 because of the inductive hypothesis (2.1).22

Hence,23 ∑
x∈Nl1+1

x∼y

w(x, y)u(t, x) = 0. (2.2)

Using this identity, we will consider the decomposition y ∈ Nl1 = N1
l1
∪N2

l1
∪ · · · ∪Nkl1

l1
, as stated24

in Assumption 1 and sequentially prove u(t, x) = 0 for all x ∈ Nl1+1.25

If y ∈ N1
l1

, there exists at most one x ∈ Nl1+1 connected to y. If no such x exists, there is nothing26

to prove. If such an x exists, the condition (2.2) reduces to w(x, y)u(t, x) = 0, hence u(t, x) = 027

since w(x, y) > 0. In other words, we have proved that u(t, x) = 0 for all x ∈ Nl1+1 ∩N (N1
l1
).28

If y ∈ N2
l1

, then y may have multiple next-level neighbors x1, . . . , xL2 ∈ Nl1+1. However, at most29

one of them, say x1, is not in N (N1
l1
). In the previous paragraph, we have already proved u(t, x2) =30

· · · = u(t, xL2) = 0. Therefore, the condition (2.2) can be reduced to w(y, x1)u(t, x1) = 0, which31

yields u(t, x1) = 0. In other words, we have proved that u(t, x) = 0 for all x ∈ Nl1+1 ∩N (N2
l1
).32
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In general, if y ∈ Nk
l1

(k = 2, · · · , kl1), then y may have multiple next-level neighbors x1, · · · , xLk
1

∈Nl1+1 but at most one of them, say x1, is not in
k−1⋃
r=1

N (N r
l1
). At this point, we have already proved2

u(t, x2) = · · · = u(t, xLk
) = 0. Hence, condition (2.2) reduces to w(y, x1)u(t, x1) = 0 and conse-3

quently u(t, x1) = 0. In other words, we have proved that u(t, x) = 0 for all x ∈ Nl1+1 ∩N (Nk
l1
).4

This completes the proof that u(t, x) = 0 for all x ∈ Nl1+1, because any such xmust be connected5

to a vertex y ∈ Nk
l1

for some k, that is, x ∈ Nl1+1 ∩ N (Nk
l1
) for some k. This argument holds for6

any t ∈ {−T + l1, · · · , T − l1}, hence the induction step is proved.7

Finally, if T ≥ max
x∈G

d(x, ∂G), then T−l+1 ≥ 1, hence {−1, 0, 1} ⊂ {−T+l−1, · · · , T−l+1}.8

For any x ∈ G, let l be its level (1 ≤ l ≤ max
x∈G

d(x, ∂G)), then9

(0, x), (1, x) ∈ {−T + l − 1, · · · , T − l + 1} ×Nl.

By (1.4), we have u(0, x) = u(1, x) = 0 and Dt(0, x) = u(1, x)− u(0, x) = 0.10

□11

In the rest of this section, we provide some examples that satisfy Assumption 1 and the condi-12

tion |∂G|(|∂G|+1)
2

≥ |G|. The latter condition is motivated by the discussion in Remark 5.3. These13

examples are special subgraphs obtained from regular tilings in R2.14

Let m,n be finite integers. We make the identification R2 ≃ C so that the coordinates of vertices15

can be represented using complex numbers. In each example, we obtain a domain Dm,n by trans-16

lating a fundamental domain D0 along two linearly independent directions v⃗1, v⃗2, respectively. The17

vertices in D0 are translated to obtain the set of interior vertices G.18

Example 2.1. The graph Rm,n with m,n ≥ 2.19

Take v⃗1 = 1+0i and v⃗2 = 0+i. LetD0 ⊂ R2 be the rectangular domain with the set of 4 vertices20

G0 := {1 + i, 2 + i, 1 + 2i, 2 + 2i}. Define21

Dm,n :=
⋃

0≤j≤m−2
0≤k≤n−2

(D0 + jv⃗1 + kv⃗2),

with j, k ∈ N. The set of interior vertices is22

G :=
⋃

0≤j≤m−2
0≤k≤n−2

(G0 + jv⃗1 + kv⃗2),

where the corresponding set of boundary vertices is23

∂G := (∂G)L ∪ (∂G)R ∪ (∂G)B ∪ (∂G)T ,

with24

(∂G)L :={kv⃗2 | 1 ≤ k ≤ n}, (∂G)R := {(m+ 1)v⃗1 + kv⃗2 | 1 ≤ k ≤ n},
(∂G)B :={jv⃗1 | 1 ≤ j ≤ m}, (∂G)T := {jv⃗1 + (n+ 1)v⃗2 | 1 ≤ j ≤ m}.

Note that the corner vertices 0 + 0i, (m + 1) + 0i, 0 + (n + 1)i, (m + 1) + (n + 1)i are not25

included in ∂G. The edge set E is defined by assigning an edge to any pair of vertices in Ḡ that is of26

Euclidean distance 1, where any two boundary vertices are not connected. This graph is denoted by27

Rm,n, where m,n indicate the number of interior vertices along the directions v⃗1, v⃗2, respectively.28

As an example, R4,3 is illustrated in Fig. 1.29
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(0,0)

FIGURE 1. The graph R4,3.

Lemma 2.2. For any integers m,n ≥ 2, the graph Rm,n satisfies Assumption 1 and |∂G|(|∂G|+1)
2

≥1

|G|.2

Proof. For 1 ≤ l ≤ max
x∈G

d(x, ∂G), the set Nl in Rm,n is3

Nl = {lv⃗1 + (l + k)v⃗2 | 0 ≤ k ≤ n− 2l + 1}
∪ {(m+ 1− l)v⃗1 + (l + k)v⃗2 | 0 ≤ k ≤ n− 2l + 1}
∪ {(l + j)v⃗1 + lv⃗2 | 1 ≤ j ≤ m− 2l}
∪ {(l + j)v⃗1 + (n+ 1− l)v⃗2 | 1 ≤ j ≤ m− 2l} .

The decomposition of Nl is trivial as Nl = N1
l . For each vertex respectively in the above four4

subsets of Nl, there exists a boundary vertex closest to it in (∂G)L, (∂G)R, (∂G)B and (∂G)T re-5

spectively.6

To show the relation between the boundary and interior vertices, simply notice that |∂G| = 2(m+7

n) and |G| = mn, thus |∂G|(|∂G|+1)
2

= (m+ n)(2m+ 2n+ 1) ≥ mn = |G|. □8

Example 2.3. The graph Tm,n with m,n ≥ 2.9

Take v⃗1 = 1 + 0i, v⃗2 = 1
2
+

√
3
2
i. Let D0 ⊂ R2 be the triangular domain with the set of 3 vertices10

G0 := {v⃗1 + v⃗2, 2v⃗1 + v⃗2, v⃗1 + 2v⃗2}. Define11

Dm,n :=
⋃

0≤j≤m−2
0≤k≤n−2

(D0 + jv⃗1 + kv⃗2),

where j, k ∈ N. The set of interior vertices is12

G :=
⋃

0≤j≤m−2
0≤k≤n−2

(G0 + jv⃗1 + kv⃗2),
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The set of boundary vertices is ∂G := (∂G)L ∪ (∂G)R ∪ (∂G)B ∪ (∂G)T with1

(∂G)L :={kv⃗2 | 1 ≤ k ≤ n}, (∂G)R := {(m+ 1)v⃗1 + kv⃗2 | 1 ≤ k ≤ n},
(∂G)B :={jv⃗1 | 1 ≤ j ≤ m}, (∂G)T := {jv⃗1 + (n+ 1)v⃗2 | 1 ≤ j ≤ m}.

The definition of the edge set E is as follows: an edge is assigned to any pair of vertices in Ḡ2

of Euclidean distance 1, where every boundary vertex in ∂G connects to an interior vertex in G3

whose coordinates differ by vectors v⃗1 or v⃗2. This graph is denoted by Tm,n, wherem,n indicate the4

number of interior vertices along the directions v⃗1, v⃗2, respectively. As an example, T6,4 is illustrated5

in Fig. 2.6

(0,0)

FIGURE 2. The graph T6,4.

Lemma 2.4. For any integers m,n ≥ 2, the graph Tm,n satisfies Assumption 1 and |∂G|(|∂G|+1)
2

≥7

|G|.8

Proof. For 1 ≤ l ≤ max
x∈G

d(x, ∂G), the set Nl in Tm,n is9

Nl ={lv⃗1 + (l + k)v⃗2 | 0 ≤ k ≤ n− 2l + 1} := {x0, x1, · · · , xn−2l+1}
∪ {(m− l + 1)v⃗1 + (l + k)v⃗2 | 0 ≤ k ≤ n− 2l + 1} := {y0, y1, · · · , yn−2l+1}
∪ {(l + j)v⃗1 + lv⃗2 | 1 ≤ j ≤ m− 2l} := {γ1, · · · , γm−2l}
∪ {(l + j)v⃗1 + (n− l + 1)v⃗2 | 1 ≤ j ≤ m− 2l} := {τ1, · · · , τm−2l}.

For each vertex respectively in the above four subsets of Nl, there exists a boundary vertex closest10

to it in (∂G)L, (∂G)R, (∂G)B and (∂G)T respectively. The above xr, yr, γr, τr when r ∈ N are11

numbers of the vertices in the sets.12

Let integer p ≥ 2. The decomposition of Nl is13

N1
l ={x0, x1, xn−2l+1, y0, yn−2l, yn−2l+1, γ1, τm−2l},

Np
l ={xp, xn−2l+2−p, yp−1, yn−2l−p+1 | p ≤ n− 2l + 2− p}

∪ {γp, γm−2l+2−p, τp−1, τm−2l−p+1 | p ≤ m− 2l + 2− p}, p ≥ 2.

To show the relation between the boundary and interior vertices, simply notice that |∂G| = 2(m+14

n) and |G| = mn, thus |∂G|(|∂G|+1)
2

= (m+ n)(2m+ 2n+ 1) ≥ mn = |G|. □15
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Example 2.5. The graph Hm,n, where m,n ≥ 1 and m is odd.1

Let ω = 1
2
+

√
3
2
i, then ω6 = 1, where 6 is the power of ω. Take v⃗1 = 3ω6 = 3+0i, v⃗2 = 0+

√
3i.2

Let D0 ⊂ R2 be the hexagon domain with the set of 6 vertices G0 := {ω0, ω1, ω2, ω3, ω4, ω5}.3

Define4

Dm,n :=
⋃

0≤j≤m−1
2

0≤k≤n−1

(D0 + jv⃗1 + kv⃗2),

where j, k ∈ N. The set of interior vertices is5

G :=
⋃

0≤j≤m−1
2

0≤k≤n−1

(G0 + jv⃗1 + kv⃗2),

The set of boundary vertices is ∂G := (∂G)L ∪ (∂G)R ∪ (∂G)B ∪ (∂G)T , where6

(∂G)L :=
{
kv⃗2 + 2ω3 | 0 ≤ k ≤ n− 1

}
, (∂G)R :=

{
kv⃗2 +

3(m− 1)

2
+ 2 | 0 ≤ k ≤ n− 1

}
,

(∂G)B :=

{
jv⃗1 + 2ω4, jv⃗1 + 2ω4 + 2 | 0 ≤ j ≤ m− 1

2

}
,

(∂G)T :=

{
jv⃗1 + (n− 1)v⃗2 + 2ω2, jv⃗1 + (n− 1)v⃗2 + 2ω2 + 2 | 0 ≤ j ≤ m− 1

2

}
.

The edge set E is defined by assigning an edge to any pair of vertices in Ḡ that is of Euclidean7

distance 1, where any two boundary vertices are not connected. This graph is denoted by Hm,n,8

where m,n indicate the number of hexagons on the border along the directions v⃗1, v⃗2, respectively.9

As an example, H3,4 and its vertices decomposition are shown in Fig. 3.10

Lemma 2.6. For any integers m,n ≥ 1 and m is odd, the graph Hm,n satisfies Assumption 1 and11
|∂G|(|∂G|+1)

2
≥ |G|.12

Proof. Let 1 ≤ l ≤ max
x∈G

d(x, ∂G)− 1.13

For l mod 4 = 1, the set Nl in Hm,n is14

Nl =

{
l − 1

4
v⃗1 + (

l − 1

2
+ k)v⃗2 + ω3 | 0 ≤ k ≤ n− l

}
:= {x0, x1, · · · , xn−l}

∪
{
3(m− 1)

2
− l − 1

4
v⃗1 + (

l − 1

2
+ k)v⃗2 + ω0 | 0 ≤ k ≤ n− l

}
:= {y0, y1, · · · , yn−l}

∪
{
(
l − 1

4
+ j)v⃗1 +

l − 1

2
v⃗2 + ω4, (

l − 1

4
+ j)v⃗1 +

l − 1

2
v⃗2 + ω5 | 0 ≤ j ≤ m− l

2

}
∪
{
(
l − 1

4
+ j)v⃗1 + (n− l + 1

2
)v⃗2 + ω2, (

l − 1

4
+ j)v⃗1 + (n− l + 1

2
)v⃗2 + ω1 | 0 ≤ j ≤ m− l

2

}
.

For each vertex respectively in the above four subsets of Nl, there exists a boundary vertex closest15

to it in (∂G)L, (∂G)R, (∂G)B, (∂G)T respectively. The decomposition of Nl is16

N1
l =Nl \ {x1, x2, · · · , xn−l−1, y1, y2, · · · , yn−l−1},

Np+1
l ={xp, xn−l−p, yp, yn−l−p | p ≤ m− 1− p}, p ∈ N+.
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(0,0)

FIGURE 3. The graph H3,4.

For l mod 4 = 2, the set Nl in Hm,n is1

Nl =

{
l − 2

4
v⃗1 + (

l − 2

2
+ k)v⃗2 + ω2 | 0 ≤ k ≤ n− l

}
∪
{
3(m− 1)

2
− l − 2

4
v⃗1 + (

l − 2

2
+ k)v⃗2 + ω | 0 ≤ k ≤ n− l

}
∪
{
(
l − 2

4
+ j)v⃗1 +

l − 2

2
v⃗2 + ω0, (

l − 2

4
+ j)v⃗1 +

l − 2

2
v⃗2 + 2ω0 | 0 ≤ j ≤ m− l − 1

2

}
∪
{
(
l − 2

4
+ j)v⃗1 + (n− l

2
)v⃗2 + ω0, (

l − 2

4
+ j)v⃗1 + (n− l

2
)v⃗2 + 2ω0 | 0 ≤ j ≤ m− l − 1

2

}
.

For each vertex respectively in the above four subsets of Nl, there exists a boundary vertex closest2

to it in (∂G)L, (∂G)R, (∂G)B, (∂G)T respectively. The decomposition of Nl is Nl = N1
l .3

For l mod 4 = 3, the set Nl in Hm,n is4

Nl =

{
l − 3

4
v⃗1 + (

l − 3

2
+ k)v⃗2 + ω | 1 ≤ k ≤ n− l

}
:= {γ1, · · · , γn−l}

∪
{
3(m− 1)

2
− l − 3

4
v⃗1 + (

l − 3

2
+ k)v⃗2 + ω2 | 1 ≤ k ≤ n− l

}
:= {τ1, · · · , τn−l}

∪
{
(
l − 3

4
+ j)v⃗1 +

l − 3

2
v⃗2 + ω, (

l − 3

4
+ j)v⃗1 +

l − 3

2
v⃗2 + ω + 2 | 0 ≤ j ≤ m− l

2

}
∪
{
(
l − 3

4
+ j)v⃗1 + (n− l − 1

2
)v⃗2 + ω5, (

l − 3

4
+ j)v⃗1 + (n− l − 1

2
)v⃗2 + ω5 + 2 | 0 ≤ j ≤ m− l

2

}
.
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For each vertex respectively in the above four subsets of Nl, there exists a boundary vertex closest1

to it in (∂G)L, (∂G)R, (∂G)B, (∂G)T , respectively. The decomposition of Nl is2

N1
l =Nl \ {γ1, · · · , γn−l, τ1, · · · , τn−l},

Np+1
l ={γp, γn−l−p, τp, τn−l−p | p ≤ m− 1− p}, p ∈ N+.

For l mod 4 = 0, the set Nl in Hm,n is3

Nl =

{
l − 4

4
v⃗1 + (

l − 4

2
+ k)v⃗2 + 2ω | 1 ≤ k ≤ n− l

}
∪
{
3(m− 1)

2
− l − 4

4
v⃗1 + (

l − 4

2
+ k)v⃗2 + 2ω2 | 1 ≤ k ≤ n− l

}
∪
{
(
l − 4

4
+ j)v⃗1 +

l − 4

2
v⃗2 + 2ω, (

l − 4

4
+ j)v⃗1 +

l − 4

2
v⃗2 + 2ω + 1 | 0 ≤ j ≤ m− l + 1

2

}
∪
{
(
l − 4

4
+ j)v⃗1 + (n− l

2
+ 1)v⃗2 + 2ω5, (

l − 4

4
+ j)v⃗1 + (n− l

2
+ 1)v⃗2 + 2ω5 + 1

| 0 ≤ j ≤ m− l + 1

2

}
.

For each vertex respectively in the above four subsets of Nl, there exists a boundary vertex closest4

to it in (∂G)L, (∂G)R, (∂G)B, (∂G)T respectively. The decomposition of Nl is Nl = N1
l .5

If l = max
x∈G

d(x, ∂G), take Nl = N1
l .6

To show the relation between the boundary and interior vertices, simply notice that |∂G| = 2(m+7

n+1) and |G| = (m+1)(2n+1), thus |∂G|(|∂G|+1)
2

= (m+n+1)(2m+2n+3) ≥ (m+1)(2n+1) =8

|G|. □9

3. PROOF OF THEOREM 1.510

We prove Theorem 1.5, which gives an explicit formula to represent the ND map in terms of the11

Neumann boundary spectral data.12

The following Green’s formula is proved in [14, Lemma 2.1].13

Lemma 3.1. (Green’s formula). Let u1, u2 : Ḡ→ R be two real-valued functions on Ḡ. Then14

(u1,∆Gu2)G − (u2,∆Gu1)G = (u2, ∂νu1)∂G − (u1, ∂νu2)∂G.

For each j = 1, 2, . . . , |∂G|, the scalar orthogonal projection of the wave time solution uf (t) onto15

the Neumann eigenfunction ϕj is denoted by16

aj(t) := (uf (t), ϕj)G =
∑
x∈G

µxu
f (t, x)ϕj(x), t = 0, 1, 2, · · · .

These scalar orthogonal projections can be explicitly computed from the Neumann boundary spec-17

tral data as follows.18

Lemma 3.2. For t = 1, 2, 3, . . . , we have19

aj(t) = ct(f(1), ϕj)∂G + ct−1(f(2), ϕj)∂G + · · ·+ c2(f(t− 1), ϕj)∂G + c1(f(t), ϕj)∂G, (3.1)

where the constants ck are defined recursively by c1 = 0, c2 = −1, and ck = (2 − λj)ck−1 − ck−220

for k ≥ 3.21
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Proof. Apply Dtt to aj to get1

Dttaj(t) = (Dttu
f (t), ϕj)G

= (∆Gu
f (t), ϕj)G

= (uf (t),∆Gϕj)G − (f(t), ϕj)∂G

= −(uf (t), λjϕj)G − (f(t), ϕj)∂G

= −λjaj(t)− (f(t), ϕj)∂G,

where the second equality follows from the wave equation, the third equality is derived from the2

Green’s formula in Lemma 3.1 with ∂νϕj = 0, and the final equality from the definition of aj(t).3

This is a finite difference equation for aj(t), which, using the definition of Dtt, can be defined by4

the inductive relation5

aj(t+ 1) = (2− λj)aj(t)− aj(t− 1)− (f(t), ϕj)∂G.

The initial conditions are given by6

aj(0) = (uf (0), ϕj)G = 0, aj(1) = (uf (1), ϕj)G = 0,

which are derived from the initial conditions of the function uf . We now prove the validity of7

formula (3.1) by induction.8

The base case t = 1 is true since c1 = 0. For the inductive step, suppose that the formula (3.1)9

has been proved for all positive integers less than or equal to t, then10

aj(t− 1) =ct−1(f(1), ϕj)∂G + · · ·+ (λj − 2)(f(t− 3), ϕj)∂G − (f(t− 2), ϕj)∂G,

aj(t) =ct(f(1), ϕj)∂G + · · ·+ (λj − 2)(f(t− 2), ϕj)∂G − (f(t− 1), ϕj)∂G.

Insert these representations into the inductive relation to get11

aj(t+ 1) = (2− λj)aj(t)− aj(t− 1)− (f(t), ϕj)∂G

= ((2− λj)ct − ct−1)(f(1), ϕj)∂G + · · ·+ (−(2− λj)
2 + 1)(f(t− 2), ϕj)∂G

− (2− λj)(f(t− 1), ϕj)∂G − (f(t), ϕj)∂G.

This completes the proof. □12

Now, we prove Theorem 1.5.13

Proof of Theorem 1.5. As {ϕj(x), x ∈ G}|G|
j=1 forms an orthonormal basis of l2(G), we can write14

uf (t, x) =

|G|∑
j=1

(uf (t), ϕj)Gϕj(x) =

|G|∑
j=1

aj(t)ϕj(x), x ∈ G.

As each boundary vertex z ∈ ∂G is connected to a unique interior vertex x ∈ G, using the definition15

of ∂νu(z) in (1.2), we get16

f(t, z) = ∂νu
f (t, z) =

1

µz

w(x, z)(uf (t, x)− uf (t, z)).

Solving for the Dirichlet data of the wave solution from this relation, we can obtain17

Λµf(t, z) = uf (t, z) = uf (t, x)− µzf(t, z)

w(x, z)
=

|G|∑
j=1

aj(t)ϕj(z)−
µzf(t, z)

w(x, z)
, x ∼ z, t ≥ 1.
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Theorem 1.5 is proved by substituting the expression for aj(t) into the summation given in equation1

(3.1). □2

4. THE RECONSTRUCTION PROCEDURE3

In this section, we introduce a discrete version of the boundary control method. Additionally,4

using this method, we will demonstrate the reconstruction procedure for the interior vertex weight.5

4.1. Calculating Inner Products of Waves. When x serves as the spatial component of the func-6

tion u(t, x), we simply denote u(t, x) as u(t). For a function u(t, x), we introduce the time reversal7

operator:8

R : l2 ({1, · · · , T − 1} × ∂G) 7−→ l2({1, · · · , T − 1} × ∂G),

Ru(t) := u(T − t), t ∈ {1, · · · , T − 1}.

Similarly, we introduce another operator:9

J : l2({0, 1, · · · , 2T} × ∂G) 7−→ l2({1, · · · , T − 1} × ∂G),

J u(t) :=
T−t−1∑
j=0

u(t+ 1 + 2j), t ∈ {1, · · · , T − 1}.

Define PT : l2({0, · · · , 2T}× ∂G) 7→ l2({1, · · · , T − 1}× ∂G) as the truncation operator, while10

the adjoint operator P ∗
T : l2({1, · · · , T−1}×∂G) 7→ l2({0, · · · , 2T}×∂G) is an extension operator.11

The values of P ∗
T on {0, T, T + 1, · · · , 2T} × ∂G are extended by zero. Define the Dirichlet trace12

operator by τDu(t) = u(t)|∂G and the Neumann trace operator by τNu(t) = ∂νu(t)|∂G, respectively.13

For functions v1, v2 : {1, · · · , T − 1} × ∂G −→ R, define the inner product on the boundary14

l2-space l2({1, · · · , T − 1} × ∂G) as follows:15

(v1, v2){1,··· ,T−1}×∂G :=
T−1∑
t=1

(v1(t), v2(t))∂G =
∑
z∈∂G

µz

T−1∑
t=1

v1(t, z)v2(t, z).

Here, for z ∈ ∂G, the values µz are known.16

The following is a discrete counterpart of the generalized Blagovescenskii identity ( [48]). The17

original Blagovescenskii identity is proved in ( [13]).18

Lemma 4.1. Let uf be the solution of (1.5), and let v ∈ l2({0, · · · , 2T}× Ḡ) be the solution of the19

equation20

Dttv(t, x)−∆Gv(t, x) = 0, (t, x) ∈ {1, 2, · · · , 2T − 1} ×G,

then21

(uf (T ), v(T ))G = (PT (Λµf),J τNv){1,··· ,T−1}×∂G − (PTf,J τDv){1,··· ,T−1}×∂G.

Proof. Set22

I(t, s) := (uf (t), v(s))G, t, s ∈ N, t, s ≥ 0.
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Using equation (1.5) and the Green’s formula, we get1

(Dtt −Dss)I(t, s) =(Dttu
f (t), v(s))G − (uf (t), Dssv(s))G

=(∆Gu
f (t), v(s))G − (uf (t),∆Gv(s))G

=(uf (t), ∂νv(s))∂G − (v(s), ∂νu
f (t))∂G

=(Λµf(t), τNv(s))∂G − (τDv(s), f(t))∂G, s, t ≥ 1.

Let us denote the right hand side by F (t, s), i.e.,2

F (t, s) := (Λµf(t), τNv(s))∂G − (τDv(s), f(t))∂G.

Using the definition of Dtt and Dss, the relation can be written as3

I(t+ 1, s) = −I(t− 1, s) + I(t, s+ 1) + I(t, s− 1) + F (t, s), t, s ≥ 1 (4.1)

On the other hand, the initial conditions for uf are uf (0, x) = 0 for x ∈ Ḡ and Dtu
f (0, x) = 0 for4

x ∈ G. Hence,5

I(0, s) =(uf (0), v(s))G = 0, s ∈ {0, 1, · · · , 2T},
I(1, s) =DtI(0, s) + I(0, s) = (Dtu

f (0), v(s))G + I(0, s) = 0, s ∈ {0, 1, · · · , 2T}.
(4.2)

Consequently, we obtain a recursive relationship for I(t, s) with initial conditions. The solution to6

this recursive relationship is given by7

I(t, s) =
t−1∑
i=1

t−i−1∑
j=0

F (i, s− t+ i+ 1 + 2j), t ≥ 2, s ≥ 1. (4.3)

This solution can be proved by induction. Indeed, when t = 2, we have from (4.1) and (4.2) that8

I(2, s) = −I(0, s) + I(1, s+ 1) + I(1, s− 1) + F (1, s) = F (1, s),

which agrees with the solution formula (4.3). This establishes the base case.9

For the inductive step, suppose the solution formula (4.3) holds for all t ≤ k for some positive10

integers k ≥ 2. Considering the case t = k + 1 and using the recursive relation, we can get11

I(k + 1, s) =− I(k − 1, s) + I(k, s+ 1) + I(k, s− 1) + F (k, s)

=−
k−2∑
i=1

k−i−2∑
j=0

F (i, s− k + i+ 2 + 2j) +
k−1∑
i=1

k−i−1∑
j=0

F (i, s− k + i+ 2 + 2j)

+
k−1∑
i=1

k−i−1∑
j=0

F (i, s− k + i+ 2j) + F (k, s)

:=− I1 + I2 + I3 + F (k, s).
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Notice that1

I2 = I1 +
k−2∑
i=1

F (i, s− k + i+ 2 + 2j)|j=k−i−1 + F (i, s− k + i+ 2 + 2j)|i=k−1,j=0

= I1 +
k−2∑
i=1

F (i, s+ k − i) + F (k − 1, s+ 1)

= I1 +
k−1∑
i=1

F (i, s+ k − i),

hence,2

I(k + 1, s) = −I1 + I2 + I3 + F (k, s)

= I3 +
k−1∑
i=1

F (i, s+ k − i) + F (k, s)

=
k−1∑
i=1

k−i−1∑
j=0

F (i, s− k + i+ 2j) +
k−1∑
i=1

F (i, s+ k − i) + F (k, s)

=
k−1∑
i=1

(
k−i−1∑
j=0

F (i, s− k + i+ 2j) + F (i, s− k + i+ 2j)|j=k−i

)
+ F (k, s)

=
k−1∑
i=1

(
k−i∑
j=0

F (i, s− k + i+ 2j)

)
+ F (i, s− k + i+ 2j)|i=k,j=0

=
k∑

i=1

k−i∑
j=0

F (i, s− k + i+ 2j),

which agrees with the solution formula (4.3) with t = k + 1. This completes the induction.3

Finally, by substituting t = s = T into (4.3), we obtain the following expression4

(uf (T ), v(T ))G =I(T, T )

=
T−1∑
i=1

T−i−1∑
j=0

F (i, i+ 1 + 2j)

=
T−1∑
i=1

T−i−1∑
j=0

[(Λµf(i), τNv(i+ 1 + 2j))∂G − (τDv(i+ 1 + 2j), f(i))∂G]

=
T−1∑
i=1

[
(Λµf(i),

T−i−1∑
j=0

τNv(i+ 1 + 2j))∂G − (f(i),
T−i−1∑
j=0

τDv(i+ 1 + 2j))∂G

]

=
T−1∑
i=1

[(Λµf(i),J τNv(i))∂G − (f(i),J τDv(i))∂G]

=(PT (Λµf),J τNv){1,··· ,T−1}×∂G − (PTf,J τDv){1,··· ,T−1}×∂G.

□5
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Lemma 4.1 shows that (uf (T ), v(T ))G can be expressed by the ND map Λµ. Next, we approxi-1

mate the wave on interior vertices at time T .2

Define a linear operatorW : l2({1, · · · , T−1}×∂G) 7−→ l2(G) which is h 7−→ uP
∗
T h(T, x), x ∈3

G. It maps the Neumann boundary value to the solution of equation (1.5) at time t = T and x ∈ G.4

Denote its adjoint operator by W ∗.5

4.2. Calculating W ∗W . Let Λµ,T be the restricted ND map, for h ∈ l2({1, · · · , T − 1} × ∂G),6

Λµ,Th := PT (ΛµP
∗
Th) = uP

∗
T h|{1,··· ,T−1}×∂G.

The Blagoveščenskiı̆’s identity was proposed in [13]. Let us give the following discrete version.7

Proposition 4.2. Let h1, h2 ∈ l2({1, 2, · · · , T} × ∂G), and uP
∗
T h1 , uP

∗
T h2 be the solution of (1.5)8

with Neumann boundary values P ∗
Th1, P

∗
Th2 ∈ l2({0, 1, · · · , 2T}× ∂G) respectively. Then, we can9

obtain10

(uP
∗
T h1(T ), uP

∗
T h2(T ))G = (Wh1,Wh2)G = (h1,W

∗Wh2){1,2,··· ,T−1}×∂G

= (h1, (RΛµ,TRJ P ∗
T − JΛµP

∗
T )h2){1,2,··· ,T−1}×∂G.

Proof. As τDuP
∗
T h2 = ΛµP

∗
Th2, τNuP

∗
T h2 = P ∗

Th2, by Lemma 4.1 we have11

(uP
∗
T h1(T ), uP

∗
T h2(T ))G = (PT (ΛµP

∗
Th1),J P ∗

Th2){1,2,··· ,T−1}×∂G − (h1,JΛµP
∗
Th2){1,2,··· ,T−1}×∂G

= (Λµ,Th1,J P ∗
Th2){1,2,··· ,T−1}×∂G − (h1,JΛµP

∗
Th2){1,2,··· ,T−1}×∂G

= (h1,Λ
∗
µ,TJ P ∗

Th2){1,2,··· ,T−1}×∂G − (h1,JΛµP
∗
Th2){1,2,··· ,T−1}×∂G.

The adjoint is Λ∗
µ,T = RΛµ,TR ( see Appendix B for the calculation). Thus,12

(uP
∗
T h1(T ), uP

∗
T h2(T ))G = (h1, (RΛµ,TRJ P ∗

T − JΛµP
∗
T )h2){1,2,··· ,T−1}×∂G.

On the other hand, the definition of the operator W implies13

(uP
∗
T h1(T ), uP

∗
T h2(T ))G = (Wh1,Wh2)G = (h1,W

∗Wh2){1,2,··· ,T−1}×∂G.

Since h1, h2 are arbitrary, we can conclude that14

W ∗W = RΛµ,TRJ P ∗
T − JΛµP

∗
T . (4.4)

□15

The next proposition presents an explicit formula for computing the action of the operator W ∗ on16

any harmonic function φ.17

Proposition 4.3. For h ∈ l2({1, 2, · · · , T} × ∂G), let uP
∗
T h be the solution of equation (1.5) with18

the Neumann boundary value P ∗
Th ∈ l2({0, 1, · · · , 2T} × ∂G). If φ(x) is an arbitrary harmonic19

function, then20

(uP
∗
T h(T ), φ)G = (h, (RΛµ,TRJ τN − J τD)φ){1,2,··· ,T−1}×∂G.

Therefore,21

W ∗φ = (RΛµ,TRJ τN − J τD)φ. (4.5)
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Proof. We take f = P ∗
Th, v = φ in Lemma 4.1 and use the fact that Λ∗

µ,T = RΛµ,TR (see Appendix1

B) to get2

(uP
∗
T h(T ), φ)G = (PT (ΛµP

∗
Th),J τNφ){1,2,··· ,T−1}×∂G − (h,J τDφ){1,2,··· ,T−1}×∂G

= (Λµ,Th,J τNφ){1,2,··· ,T−1}×∂G − (h,J τDφ){1,2,··· ,T−1}×∂G

= (h,Λ∗
µ,TJ τNφ){1,2,··· ,T−1}×∂G − (h,J τDφ){1,2,··· ,T−1}×∂G

= (h, (RΛµ,TRJ τN − J τD)φ){1,2,··· ,T−1}×∂G.

On the other hand, the definition of W gives3

(uP
∗
T h(T ), φ)G = (Wh,φ)G = (h,W ∗φ){1,2,··· ,T−1}×∂G.

As h is arbitrary, we conclude that the action of W ∗ on a harmonic function φ(x) is4

W ∗φ = (RΛµ,TRJ τN − J τD)φ.

□5

4.3. Solving the Boundary Control Equation. We aim to determine the existence of a function6

h ∈ l2({1, · · · , T − 1} × ∂G) such that Wh = uP
∗
T h(T, x) holds for x ∈ G. In fact, we need to7

verify that W is surjective.8

Proposition 4.4. Suppose the graph satisfies Assumption 1. If T ≥ max
x∈G

d(x, ∂G), then W is9

surjective.10

Proof. Note thatW is a linear operator between finite dimensional vector spaces. It remains to show11

that its adjoint operator W ∗ is injective.12

Given any g ∈ l2(G), we have (see Appendix B for the derivation)13

W ∗g = v(t, z)

with (t, z) ∈ {1, 2, · · · , T − 1} × ∂G, where v satisfies14 
Dttv(t, x)−∆Gv(t, x) = 0, (t, x) ∈ {1, 2, · · · , T − 1} ×G,

v(T, x) = 0, x ∈ Ḡ,

Dtv(T − 1, x) = g(x), x ∈ G,

∂νv(t, z) = 0, (t, z) ∈ {0, 1, · · · , T} × ∂G.

(4.6)

Introduce V (t) := v(T − t). Then V solves15 
DttV (t, x)−∆GV (t, x) = 0, (t, x) ∈ {1, 2, · · · , T − 1} ×G,

V (0, x) = 0, x ∈ Ḡ,

DtV (0, x) = −g(x), x ∈ G,

∂νV (t, z) = 0, (t, z) ∈ {0, 1, · · · , T} × ∂G.

Let Vodd(t, x) be the odd extension of V (t, x) with respect to t, that is16

Vodd(t) =

{
−V (t, x), t ∈ {−T,−T + 1, · · · ,−1},
V (t, x), t ∈ {0, 1, · · · , T}.
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By construction, Vodd(t, x) clearly satisfies the wave equation for t > 0 and t < 0. For t = 0, we1

use Vodd(0, x) = 0 to get2

DttVodd(0, x)−∆GVodd(0, x) =Vodd(1, x)− 2Vodd(0, x) + Vodd(−1, x)−∆GVodd(0, x)

=V (1, x)− V (1, x)

=0.

Therefore, Vodd(t, x) satisfies3 
DttVodd(t, x)−∆GVodd(t, x) = 0, (t, x) ∈ {−T + 1, · · · , T − 1} ×G,

Vodd(0, x) = 0, x ∈ Ḡ,

DtVodd(0, x) = −g(x), x ∈ G,

∂νVodd(t, z) = 0, (t, z) ∈ {−T, · · · , T} × ∂G.

If W ∗g(x) = 0 for x ∈ G, then Vodd(t, z) = 0 for (t, z) ∈ {−T, · · · , T} × ∂G. By the unique4

continuation property in Theorem 1.4, we have5

DtV (0, x) = DtVodd(0, x) = −g(x) = 0

for every x ∈ G when T ≥ max
x∈G

d(x, ∂G). Therefore, W ∗ is injective, which implies that W is6

surjective. □7

Proposition 4.5. Suppose the graph satisfies Assumption 1 and T ≥ max
x∈G

d(x, ∂G). For any har-8

monic function ψ, the boundary Neumann data given by9

h0 = (W ∗W )†W ∗ψ (4.7)

satisfies uP
∗
T h0(T, x) = ψ(x) for x ∈ G. Here ·† denotes the pseudo-inverse.10

Proof. If T ≥ max
x∈G

d(x, ∂G), we know that W : l2({1, · · · , T − 1} × ∂G) 7−→ l2(G) is surjective11

by Proposition 4.4. Hence, the equation uP ∗
T h(T ) = Wh = ψ admits solutions. It remains to prove12

the explicit formula (4.7).13

Define a quadratic functional F by14

F(h) := ∥uP ∗
T h(T )− ψ∥2G = ∥Wh− ψ∥2G

= (Wh,Wh)G − 2(Wh,ψ)G + ∥ψ∥2G
= (h,W ∗Wh){1,2,··· ,T−1}×∂G − 2(h,W ∗ψ){1,2,··· ,T−1}×∂G + ∥ψ∥2G.

The gradient and Hessian matrix of F are15

F ′(h) = 2W ∗Wh− 2W ∗ψ, F ′′(h) = 2W ∗W.

Since the Hessian matrix is positive semi-definite, the function F is convex. Consequently, a local16

minimum of F is also a global minimum. To find a local minimum, we set F ′(h) = 0 to obtain the17

normal equation18

W ∗Wh0 = W ∗ψ.

This is an under-determined linear system, and its minimum norm least squares solution is given19

by (4.7). □20

Note that W ∗W , and W ∗ψ can be computed explicitly from the ND map using Proposition 4.221

and Proposition 4.3. Therefore, the formula (4.7) provides an explicit construction of a boundary22

control.23
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4.4. Constructing µ. Define1

M = span{φψ|G : φ, ψ ∈ l2(Ḡ),∆Gφ(x) = ∆Gψ(x) = 0, x ∈ G}, (4.8)

that is, M is the span of all the products of harmonic function on G. Note that as µx > 0 for each2

x ∈ G, the concept of harmonic functions is independent of the weight µ, and so is M .3

Let us give the proof of Theorem 1.6.4

Proof. Given two harmonic functions ψ(x) and φ(x) on the graph, we can find a boundary control5

h0 such that uP ∗
T h0(T ) = ψ by applying Proposition 4.5. Consequently, the following identity holds:6 ∑

x∈G

µxψ(x)φ(x) = (ψ, φ)G = (uP
∗
T h0(T ), φ)G = (Wh0, φ)G = (h0,W

∗φ){1,2,··· ,T−1}×∂G. (4.9)

The right-hand side can be explicitly calculated using Proposition 4.3. The left-hand side represents7

the inner product of µ with the product ψφ. By varying the harmonic functions ψ, φ, we can8

compute the orthogonal projection of µ|G onto the space M . □9

5. UNIQUENESS AND RECONSTRUCTION10

The proof only reconstructs the orthogonal projection of µ ∈ l2(G) on the subspace M ⊂ l2(G)11

but not µ itself. General speaking, M ̸= l2(G), see the discussion below. This is in contrast to12

the well-known fact that the products of (continuum) harmonic functions on a bounded open set13

Ω ⊂ Rn (n ≥ 2) is dense in L2(Ω) [18]. However, we can identify some sufficient conditions so14

that M = l2(G) for a generic class of edge weight functions.15

Let us index all the vertices x ∈ Ḡ so that the interior vertices are indexed by x1, . . . , x|G| and the16

boundary vertices by x|G|+1, . . . , x|Ḡ|. Let φ(j) solve the boundary value problem17

∆Gφ
(j)(x) = 0 for x ∈ G, φ(j)|∂G = δ(j) (5.1)

where δ(j) is a function on ∂G such that18

δ(j) =

{
1 on x|G|+j,

0 on ∂G\{x|G|+j}.

This boundary value problem admits a unique solution, see Lemma C.1. Denote the space19

H := span{φ(j) ∈ l2(Ḡ) : j = 1, 2, . . . , |∂G|}.

Lemma 5.1. H is the space of harmonic functions on Ḡ.20

Proof. It is clear that any function inH , as a linear combination of harmonic functions, is harmonic.
Conversely, suppose φ ∈ l2(Ḡ) is an arbitrary harmonic function. Define

φ̃ :=

|∂G|∑
j=1

φ(x|G|+j)φ
(j) ∈ H.

Then φ̃ is a harmonic function and φ̃|∂G =
∑|∂G|

j=1 φ(x|G|+j)δ
(j) = φ|∂G. We conclude φ = φ̃ by21

Lemma C.1, hence φ ∈ H . □22

Using the indices, we can vectorize functions on Ḡ as follows: A function u ∈ l2(Ḡ) can be23

identified with a vector u⃗ = (u(x1), . . . , u(x|Ḡ|))
T ∈ R|Ḡ| via24

l2(Ḡ) ∋ u↔ u⃗ :=

(
u⃗G

u⃗∂G

)
∈ R|G| × R|∂G|. (5.2)



22 LI, GAO, GENG, AND YANG

The vectorized space of harmonic functions is

H⃗ := span{φ⃗(j) ∈ R|Ḡ| : j = 1, 2, . . . , |∂G|}.
The vectorized space of products of harmonic functions on G is1

M⃗ := span
{
φ⃗
(j)
G ⊙ φ⃗

(k)
G ∈ R|G| : j, k = 1, 2, . . . , |∂G|

}
(5.3)

where ⊙ is the Hadamard product between two vectors.2

Using the indices, the graph Laplacian ∆G : Ḡ→ G is identified with a block matrix3

[∆G] = ([∆G,G], [∆G,∂G]) ∈ R|G|×|Ḡ|,

where [∆G,G] ∈ R|G|×|G|, [∆G,∂G] ∈ R|G|×|∂G|. Then φ⃗ ∈ R|Ḡ| is a vectorized harmonic function if4

and only if [∆G]φ⃗ = 0. The discussion along with the rank-nullity relation leads to the following5

conclusion:6

Lemma 5.2.
H⃗ = ker[∆G] and dim H⃗ + rank[∆G] = |Ḡ|.

The discussion in the rest of this section adapts ideas from [16]. Let us construct a matrix H using7

φ⃗
(j)
G ⊙ φ⃗

(k)
G as columns, where j ≤ k, and j, k = 1, . . . , |∂G|. It is evident that H ∈ R|G|× |∂G|(|∂G|+1)

28

and the range of H is M⃗ . Moreover, the following three statements are equivalent:9

(1) M = l2(G).10

(2) M⃗ = R|G|.11

(3) rank(H) = |G|.12

Remark 5.3. Since the rank of a matrix cannot exceed the number of columns, a necessary condition13

for rank(H) = |G| is that |∂G|(|∂G|+1)
2

≥ |G|. This condition requires the graph to have sufficient14

boundary vertices relative to the interior vertices.15

Note that the entries in H depend on the edge weight function wx,y ∈ R|E|
+ , since the definition of16

∆G involves wx,y. We have the following alternatives for rank(H) with respect to wx,y.17

Proposition 5.4. If the graph satisfies |∂G|(|∂G|+1)
2

≥ |G|, then exactly one of the following cases18

occurs:19

(1) there is no edge weight function wx,y ∈ R|E|
+ such that rank(H) = |G|;20

(2) rank(H) = |G| for all edge weight functions wx,y ∈ R|E|
+ except for a set of measure zero.21

Proof. Let β be an arbitrary selection of |G| columns from H. Observe that

rank(H) = |G| if and only if ∃ β such that det(H:,β) ̸= 0,

or equivalently,
rank(H) < |G| if and only if det(H:,β) = 0, ∀β.

We will use the fact that for a fixed β, det(H:,β) is a real analytic function of wx,y, see Lemma C.2.22

If det(H:,β) is the zero function for all β, that is, if det(H:,β) ≡ 0 regardless of wx,y for all β,
then there is no edge weight function such that rank(H) = |G| holds, accounting for Case (1). On
the other hand, if there exists β such that det(H:,β) is not the zero function, that is det(H:,β) ̸≡ 0,
then it is a non-trivial real analytic function of wx,y, hence the zeros

Sβ := {wx,y ∈ R|E|
+ : det(H:,β) = 0}
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form a set of measure zero [40]. The collection of edge weight functions that ensure rank(H) < |G|1

is2

{wx,y ∈ R|E|
+ : rank(H) < |G|}

={wx,y ∈ R|E|
+ : det(H:,β) = 0, ∀β}

=
⋂
β

Sβ.

This is a finite intersection of sets of measure zero, hence is also of measure zero.3

□4

We remark that Case (1) in Proposition 5.4 can indeed occur. Here is an example.5

Example 5.5. For the graph in Fig. 4, |∂G| = |G| = 2. It is easy to see that the graph sat-6

isfies Assumption 1 and |∂G|(|∂G|+1)
2

= 3 > |G| = 2. For x1, x2 ∈ G and z1, z2 ∈ ∂G, matrix7

H:,i+(j−1)|∂G| = [∆−1
G,G∆G,∂G]:,i ⊙ [∆−1

G,G∆G,∂G]:,j , where 1 ≤ i, j ≤ |∂G| and H is independent on8

vertex weight. H is obviously a |G| × |∂G|2 matrix. In this case,9

H =
1

(wx1,z1 + wx1,z2)
2

(
w2

x1,z1
wx1,z1wx1,z2 wx1,z1wx1,z2 w2

x1,z2

w2
x1,z1

wx1,z1wx1,z2 wx1,z1wx1,z2 w2
x1,z2

)
,

and rank(H) = 1 < |G| = 2.10

FIGURE 4. An example where no weight function wx,y can make rank(H) = |G|.

6. RECONSTRUCTION ALGORITHM11

In this section, we implement the reconstruction procedure and validate it using numerical exam-12

ples. Here, the reconstruction procedure is summarized in Algorithm 1.13

To implement the algorithm, we will index the vertices so that functions on graphs can be iden-14

tified with vectors, and linear operators on graphs can be identified with matrices. Recall that the15

vertices of Ḡ are ordered in the way that the interior vertices are indexed by x1, . . . , x|G| and the16

boundary vertices by x|G|+1, . . . , x|Ḡ|. For a spatial function u ∈ l2(Ḡ), it is vectorized as in (5.2).17

For a spatiotemporal function f(t, x) with t = 0, 1, 2, . . . , T and x ∈ Ḡ, we follow the lexicograph-18

ical order to identify19

f ↔ f⃗ := (f(0, ·), f(1, ·), · · · , f(T, ·))∗,
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Algorithm 1: Reconstruction Algorithm of the interior vertex weight.

Input: Time reversal operator R, operator J , truncation operator PT , boundary vertex weight
µ|∂G and the Neumann boundary spectral data {(λj, ϕj|∂G)|G|

j=1}.

1: Calculate the ND map Λµ from the Neumann boundary spectral data by

Λµf(t, z) = uf (t, z) =

|G|∑
j=1

t∑
k=1

ck(f(t+ 1− k), ϕj)∂Gϕj(z)−
µzf(t, z)

w(x, z)
, x ∼ z,

for t ≥ 1, where c1 = 0, c2 = −1, and ck = (2− λj)ck−1 − ck−2 for integer k ≥ 3 (see (1.6)).
2: Calculate the operator W ∗W = RΛµ,TRJ P ∗

T − JΛµP
∗
T (see (4.4)).

3: Calculate the operator W ∗ operating on a harmonic function ψ on a graph

W ∗φ = (RΛµ,TRJ τN − J τD)φ (see (4.5)).

4: Solve h0 from W ∗Wh0 = W ∗ψ, where ψ is a harmonic function on the graph (see (4.7)).
5: Construct the harmonic functions ψ(x) and φ(x) on the graph to reconstruct µ|G from

(uP
∗
T h0(T ), φ)G = (ψ, φ)G =

∑
x∈G

µxψ(x)φ(x) = (h0,W
∗φ){1,2,··· ,T−1}×∂G (see (4.9)).

6: return µ|G.

Output: The interior vertex weight, µ|G;

where ∗ denotes the adjoint, which is the transpose for a real vector. Using such an ordering, linear1

operators can be identified with matrices. For instance, the ND map Λµ is realized as an ND matrix2

via the following identification3

Λµ : l2({0, 1, . . . , 2T} × ∂G) → l2({0, 1, . . . , 2T} × ∂G) ↔ [Λµ] ∈ R|∂G|(2T+1)×|∂G|(2T+1)

where we use the square parenthesis [·] to indicate matrix representations of linear operators.4

The algorithm is implemented in the following steps.5

Step 1: Assemble the Discrete Neumann-to-Dirichlet matrix. Given the Neumann boundary6

spectral data, the ND matrix can be readily calculated by following the formula presented in (1.6).7

See Fig. 5 for an example of the ND matrix.8

Step 2: Calculate the matrix [W ∗W ]. Using the ordering of the vertices, the operators9

R :l2 ({1, · · · , T − 1} × ∂G) 7−→ l2({1, · · · , T − 1} × ∂G),

J :l2({0, 1, · · · , 2T} × ∂G) 7−→ l2({1, · · · , T − 1} × ∂G),

PT :l2({0, · · · , 2T} × ∂G) 7−→ l2({1, · · · , T − 1} × ∂G),

are represented by the matrices10

[R] ∈ R|∂G|(T−1)×|∂G|(T−1), [J ] ∈ R|∂G|(T−1)×|∂G|(2T+1), [PT ] ∈ R|∂G|(T−1)×|∂G|(2T+1).

The matrix representation of the adjoint operator P ∗
T is the transpose matrix [PT ]

∗. Following (1.6),11

the matrix [W ∗W ] is computed as the matrix product:12

[W ∗W ] = [R][Λµ,T ][R][J ][P ∗
T ]− [J ][Λµ][P

∗
T ] ∈ R|∂G|(T−1)×|∂G|(T−1). (6.1)

Step 3: Calculate the matrix [W ∗]. Using the ordering of the vertices in Ḡ and the vector-13

ization (5.2), the matrix representations of the Dirichlet trace operator τD and the Neumann trace14
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FIGURE 5. The structure of the ground-truth ND map [Λµ] for the graph Rm,n when m =
10, n = 9, |∂G| = 38, T = 9. Blank space represents zero element. Blue areas represent
nonzero values.

operator τN are1

[τD] = (O I) ∈ R|∂G|×|Ḡ|, [τN ] = τD · [∆Ḡ] ∈ R|∂G|×|Ḡ|,

where O ∈ R|∂G|×|G| is the zero matrix, I ∈ R|∂G|×|∂G| is the identity matrix, and · denotes matrix2

multiplication. [∆Ḡ] ∈ R|Ḡ|×|Ḡ| is the matrix form of a continuation operator of the graph Laplace3

∆G that its domain of definition is extended from G to Ḡ. Following (4.5), we have4

[W ∗] = [R][Λµ,T ][R][J ](I2T+1 ⊗ τN)− [J ](I2T+1 ⊗ τD) ∈ R|∂G|(T−1)×(2T+1)|Ḡ|, (6.2)

where I2T+1 ∈ R(2T+1)×(2T+1) is the identity matrix, and ⊗ denotes the matrix tensor product. The5

tensor product is needed as τD, τN are spatial operators while the other operators are spatiotemporal.6

Step 4: Calculate the Boundary Control h⃗0. For any harmonic function ψ⃗, the boundary control7

h⃗0 ∈ R|∂G|(T−1)×1 is given by Proposition 4.5:8

h⃗0 = [W ∗W ]†[W ∗](12T+1 ⊗ ψ⃗), (6.3)

where 12T+1 ∈ R2T+1 denotes the vector of all one’s, that is, 12T+1 = (1, 1, . . . , 1)T . Again, the9

tensor product is needed to turn a spatial function into a spatiotemporal one.10

Step 5: Solve for µ⃗G. Based on (4.9), it remains to solve the linear system11

[φ⃗G ⊙ ψ⃗G]
∗µ⃗G = h⃗∗0[W

∗](12T+1 ⊗ φ⃗) (6.4)

for various vectorized harmonic functions φ⃗ and ψ⃗. Note that there is a total of (|Ḡ| − rank(∆G))12

distinct harmonic functions in G by Lemma 5.2. This results in a linear system, whose reduced row13

echelon form is calculated using the MATLAB command ‘rref’ in order to obtain µ⃗G.14

7. NUMERICAL EXPERIMENTS15

In this section, we validate the algorithm using several numerical examples in MATLABTM. We
will use two types of discrepancy metrics to measure the difference between quantities. The first
step of the algorithm requires construction of the ND map, which is represented by a matrix. We
will use the Frobenius relative norm error (FRNE)

FRNE =
∥[Λµ]− [Λ′

µ]∥F
∥[Λµ]∥F

∗ 100%
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to quantify the discrepancy between matrices. Here, [Λµ] denotes the ground truth ND map and [Λ′
µ]1

denotes the reconstructed ND map based on the algorithm. For the vertex weight, it is vectorized in2

the calculation, and the reconstruction accuracy is quantified by the absolute error3

Error := |µ⃗x − µ⃗′
x|,

as well as the L2-relative norm error (L2RNE)4

L2RNE :=
∥µ⃗x − µ⃗′

x∥2
∥µ⃗x∥2

∗ 100%,

where µ⃗x denotes the ground truth and µ⃗′
x denotes the reconstruction.5

7.1. Experiment 1: the graph Rm,n. In this experiment, we set the following parameters: m =6

10, n = 9, |∂G| = 38, |G| = 90, T = 9, wx,y = 0.25, and the ground-truth vertex weight is7

µx = deg(x) for all x ∈ Ḡ.8

Case 1.1: No Noise. We implement Algorithm 1 without noise to validate its efficacy. The9

first step of the algorithm assembles the discrete ND map using the Neumann boundary spectral10

data following (1.6). This can be done with high precision. In fact, let Λµ be the ground-truth ND11

map, and Λ′
µ be the reconstructed ND map using the Neumann boundary spectral data. The FRNE12

between them is 5.9501 ∗ 10−13%.13

When solving the equation (6.3), the matrix [W ∗W ] is ill conditioned, see Fig. 6 for its singular14

values. We employ the truncated SVD regularization along with the ‘lsqminnorm’ command in15

MATLAB to find the minimum norm solution as h⃗0. When solving the linear equations (6.4),16

we find that rank(∆G) = 90. By Lemma 5.2, we conclude the vectorized space of harmonic17

functions H⃗ has dimension |Ḡ| − rank(∆G) = 38. In this case, from MATLAB, there are 12818

linearly independent vectors of the form φ⃗ ⊙ ψ⃗ with φ⃗, ψ⃗ ∈ H⃗ . Here, we use these 128 linearly19

independent vectors as columns to construct the matrix [φ⃗G ⊙ ψ⃗G] in order to solve (6.4). However,20

the matrix [φ⃗G ⊙ ψ⃗G] is again ill conditioned, as is shown in Fig. 6, so we apply the truncated SVD21

regularization to find the minimum norm solution. The reconstruction and the errors are shown in22

Fig. 7.23
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FIGURE 6. Experiment 1: The singular values of [W ∗W ] and [φ⃗G ⊙ ψ⃗G]. The minimum
singular values are 1.3448 ∗ 10−15 and 2.5176 ∗ 10−9, respectively.

Case 1.2: Gaussian Noise. Next, we validate the stability of the algorithm by adding Gaussian24

noise to the Neumann boundary spectral data. The noisy spectral data in use is of the form
(
(1 +25
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FIGURE 7. Experiment 1: The ground-truth µx, the reconstructed µ′x and the absolute error.
L2RNE = 1.0983 ∗ 10−4%.

ε)λj, (1+ε)ϕj|∂G
)|G|
j=1

, where ϕ’s are the normalized Neumann eigenfunctions and ε ∼ N (0, σ) is a1

zero mean Gaussian random variable/vector. We choose σ ∈ [0.1%, 0.2%, 0.5%] in the experiment,2

respectively.3

In the presence of noise, the FRNEs for reconstructing Λµ are 0.086344%, 0.17%, 3.23%, re-4

spectively; the FRNEs for reconstructing [W ∗W ] are 8.5562 ∗ 10−2%, 0.16% , 4.78%, respectively.5

When applying the truncated SVD to solve (6.3), the thresholds for singular value truncation are6

0.003, 0.005, and 0.007, respectively. When applying the truncated SVD to solve (6.4), the thresh-7

olds for singular value truncation are 0.001, 0.001, and 0.003, respectively. Here, different empirical8

thresholds are taken to achieve optimal results. The reconstruction µ′
x and the absolute errors are9

shown in Fig.8, where the L2RNEs are 12.6%, 12.76%, 17.75% respectively.10

7.2. Experiment 2 : the graph Tm,n. In this experiment, we set the following parameters: m =11

10, n = 9, |∂G| = 38, |G| = 90, T = 9, wx,y = 1
2
(deg(x) + deg(y)), and the ground-truth vertex12

weight is µx = 1 + 0.5 sin(x) + 0.5 cos(x) for all x = 1, 2, · · · , |Ḡ|.13

Case 2.1: No Noise. We implement Algorithm 1 without noise to validate its efficacy. The14

FRNE between the reconstructed ND map Λ′
µ using the Neumann boundary spectral data and the15

ground truth ND map Λµ is 3.3222 ∗ 10−12%.16

When solving the equation (6.3), the matrix [W ∗W ] is ill conditioned, see Fig. 9 for its singular17

values. We employ the truncated SVD regularization along with the ‘lsqminnorm’ command in18

MATLAB to find the minimum norm solution as h⃗0. When solving the linear equations (6.4), we19

find that rank(∆G) = 90. By Lemma 5.2, we conclude the vectorized space of harmonic functions20

H⃗ has dimension |Ḡ| − rank(∆G) = 38. In this case, from MATLAB, there are 128 linearly21

independent vectors of the form φ⃗⊙ψ⃗ with φ⃗, ψ⃗ ∈ H⃗ . We use these 128 linearly independent vectors22

as columns to construct the matrix [φ⃗G⊙ ψ⃗G] in order to solve (6.4). However, the matrix [φ⃗G⊙ ψ⃗G]23

is again ill conditioned, as is shown in Fig. 9, so we apply the truncated SVD regularization to find24

the minimum norm solution. The reconstruction and the error are shown in Fig. 10.25

Case 2.2: Gaussian Noise. The noisy spectral data in use is of the form
(
(1 + ε)λj, (1 +26

ε)ϕj|∂G
)|G|
j=1

, where ϕ’s are the normalized Neumann eigenfunctions and ε ∼ N (0, σ) is a zero27

mean Gaussian random variable/vector. We choose σ ∈ [0.1%, 0.2%, 0.5%] in the experiment,28

respectively.29

In the presence of noise, the FRNEs for reconstructing Λµ are FRNEs are 0.46%, 0.94%, 2.01%,30

respectively; the FRNEs for reconstructing [W ∗W ] are 0.38%, 0.8%, 1.02%, respectively. When31
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FIGURE 8. Experiment 1: Reconstructions and absolute errors in the presence of 0.1%,
0.2% and 0.5% Gaussian random noise. The L2RNEs are equal to 12.6%, 12.76% and
17.75% respectively. For comparison, we set the same color bar for the ground truth and the
reconstruction.
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FIGURE 9. Experiment 2: The singular values of [W ∗W ] and [φ⃗G ⊙ ψ⃗G]. The minimum
singular values are 4.2386 ∗ 10−15 and 1.1704 ∗ 10−7, respectively.

applying the truncated SVD to solve (6.3), the thresholds for singular value truncation are 0.001,1

0.005, and 0.003, respectively. When applying the truncated SVD to solve (6.4), the thresholds2

for singular value truncation are 0.001, 0.001, and 0.003, respectively. Here, different empirical3
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FIGURE 10. Experiment 2: The ground-truth µx, the reconstructed µ′x and the absolute
errors. L2RNE = 2.3817 ∗ 10−7%.

thresholds are taken to achieve optimal results. The reconstruction µ′
x and the absolute errors are1

shown in Fig. 11, where the L2RNEs are 27.81%, 28.17% and 32.98%, respectively.2

FIGURE 11. Experiment 2: Reconstructions and absolute errors in the presence of 0.1%,
0.2% and 0.5% Gaussian random noise. The L2RNE are equal to 27.81%, 28.17% and
32.98% respectively. For comparison, we set the same color bar for the ground truth value
and the reconstructed value.
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7.3. Experiment 3 : the graph Hm,n. In this experiment, we set the following parameteres: m =1

9, n = 4, |∂G| = 28, |G| = 90, T = 9, wx,y = 1
2
(deg(x) + deg(y)) and the ground-truth vertex2

weight is µx = 1 for all x ∈ Ḡ.3

Case 3.1: No Noise. We implement Algorithm 1 without noise to validate its efficacy. The4

FRNE between the reconstructed ND map Λ′
µ using the Neumann boundary spectral data and the5

ground truth ND map Λµ is 5.3689 ∗ 10−13%.6

When solving the equation (6.3), the matrix [W ∗W ] is ill conditioned, see Fig. 12 for its singular7

values. We employ the truncated SVD regularization along with the ‘lsqminnorm’ command in8

MATLAB to find the minimum norm solution as h⃗0. When solve the linear equations (6.4), we find9

that rank(∆G) = 90. By Lemma 5.2, we conclude the vectorized space of harmonic functions H⃗ has10

dimension |Ḡ| − rank(∆G) = 28. In this case, from MATLAB, there are 118 linearly independent11

vectors of the form φ⃗ ⊙ ψ⃗ with φ⃗, ψ⃗ ∈ H⃗ . Here, we use these 118 linearly independent vectors as12

columns to construct the matrix [φ⃗G⊙ ψ⃗G] in order to solve (6.4). However, the matrix [φ⃗G⊙ ψ⃗G] is13

again ill conditioned, as is shown in Fig. 12, so we apply the truncated SVD regularization to find14

the minimum norm solution. The reconstruction and the errors are shown in Fig. 13.15
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FIGURE 12. Experiment 3: The singular values of [W ∗W ] and [φ⃗G ⊙ ψ⃗G]. The minimum
singular values are 3.7372 ∗ 10−15 and 1.1152 ∗ 10−8, respectively.

FIGURE 13. Experiment 3: The ground-truth µx, the reconstructed µ′x and the errors.
L2RNE = 7.7674 ∗ 10−8%.

Case 3.2: Gaussian Noise. The noisy spectral data in use is of the form
(
(1 + ε)λj, (1 +16

ε)ϕj|∂G
)|G|
j=1

, where ϕ’s are the normalized Neumann eigenfunctions and ε ∼ N (0, σ) is a zero17
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mean Gaussian random variable/vector. We choose σ ∈ [0.1%, 0.2%, 0.5%] in the experiment,1

respectively.2

In the presence of noise, the FRNEs for reconstructing Λµ are 0.12%, 0.23%, 0.67%, respectively;3

the FRNEs for reconstructing [W ∗W ] are 8.8772∗10−2%, 0.17%, 0.47%, respectively. When apply-4

ing the truncated SVD to solve (6.3), the thresholds for singular value truncation are 0.001, 0.005,5

and 0.003, respectively. When applying the truncated SVD to solve (6.4), the thresholds for singular6

value truncation are 0.001, 0.001, and 0.003, respectively. Here, different empirical thresholds are7

taken to achieve optimal results. The reconstruction µ′
x and the absolute errors are shown in Fig.8

14, where the L2RNEs are 14.59%, 16.38% and 24.89% respectively.9

FIGURE 14. Experiment 3: Reconstructions and absolute errors in the presence of 0.1%,
0.2% and 0.5% Gaussian random noise. The L2RNEs are equal to 14.59%, 16.38% and
24.89% respectively. For comparison, we set the same color bar for the ground truth value
and the reconstructed value.

APPENDIX A.10

In this article, we proved that the Neumann boundary spectral data determines (in a constructive11

way) the interior vertex weight under Assumption 1. On the other hand, the same conclusion is given12

in [14] with different assumptions on graphs. This appendix compares the two types of assumptions13

with the goal of highlighting their difference. In particular, we show that neither of the assumptions14

implies the other. As a result, our assumption identifies a novel class of graphs for which the discrete15

Gel’fand’s inverse spectral problem can be solved.16
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Recall some definitions and results in [14]. Let G be a finite graph with boundary. Let G be the1

set of interior vertices of G. A subset of these vertices is denoted by X ⊂ G . A vertex x ∈ X is2

called an extreme vertex of X with respect to ∂G if there exists a boundary vertex z0 ∈ ∂G such that3

d(x, z0) < min
y∈X, y ̸=x

d(y, z0).

In other words, x is the unique nearest vertex in X to z0.4

The major assumption on the graph in [14] is the following two conditions:5

(1) Any two interior vertices that are connected to the same boundary vertex are also connected6

to each other.7

(2) (Two-points condition) Any subset X with |X| ≥ 2 has at least two extreme vertices with8

respect to ∂G.9

Note that Condition (1) is void when a graph satisfies our Assumption 1(i). Condition (2) is re-10

ferred to as the two-points condition in [14]. Moreover, the following criterion provides sufficient11

conditions for a graph to satisfy the two-points condition, see [14, Proposition 1.8].12

Lemma A.1. ( [14, Proposition 1.8]) If there exists a function g : Ḡ→ R that satisfies the following13

conditions:14

(i) |g(x)− g(y)| ≤ 1 when x ∼ y;15

(ii) for every x ∈ G, there is exactly one vertex y1 ∈ N (x) such that g(y1)− g(x) = 1, and there16

is exactly one vertex y2 ∈ N (x) such that g(y2)− g(x) = −1;17

(iii) for every z ∈ ∂G, there is at most one vertex y3 ∈ N (z) such that g(y3)− g(z) = 1, and there18

is at most one vertex y4 ∈ N (z) such that g(y4)− g(z) = −1,19

then the graph is said to satisfy the two-points condition.20

We provide two specific graphs to show that the two sets of assumptions are different. First,21

there exist graphs that satisfy our Assumption 1 but not the two-points condition, see Fig. 15(a).22

This graph satisfies Assumption 1 because every vertex has no more than one next-level neighbor.23

However, the subset X = {x, y} has just one extreme vertex x with respect to ∂G. Any path24

between vertex y and a boundary vertex must contain x. Therefore, y cannot be the unique nearest25

vertex in X to any boundary vertex.26

On the other hand, there also exist graphs that satisfy the two-points condition but not our As-27

sumption 1, see Fig. 15(b). For ease of notation, we constructed a Cartesian coordinate system in28

which the origin is marked, and the vertices are represented by the coordinates (j, k) ∈ Z2. This29

graph satisfies the two-points condition because the function g(j, k) = j
2
+ k defined on Ḡ satisfies30

all the conditions in Lemma A.1. To demonstrate that it does not satisfy Assumption 1, note that31

N1 = N1
1 ∪N2

1 ∪ {(2, 3), (4, 2)}
where32

N1
1 = {(1, 0), (1, 3), (4, 1), (4, 5), (2, 0), (3, 0), (3, 5)}, N2

1 = {(1, 1)}.
Recall the definition of N3

1 in Assumption 1, we find that (2, 3), (4, 2) ̸∈ N3
1 , because their next-33

level neighbors are respectively (2, 2), (3, 3) and (3, 2), (4, 3), none of which belong to N (N1
1∪N2

1 ).34

Therefore, the decomposition in Assumption 1 does not hold for this graph.35

APPENDIX B.36

We compute some adjoint operators in this appendix. First, the linear operator37

W : l2({1, · · · , T − 1} × ∂G) 7−→ l2(G), h 7−→ uP
∗
T h(T, x), x ∈ G
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(a)

(0,0)

(2,3)

(4,2)

(b)

FIGURE 15. (a) A graph satisfies Assumption 1 but not the two-points condition. (b) A
graph satisfies the two-points condition but not Assumption 1.

is introduced in Section 4. It maps the Neumann boundary values to the solution of equation (1.5)1

at time t = T and x ∈ G.2

Lemma B.1. The adjoint W ∗ is given by3

W ∗g = v(t, z), (t, z) ∈ {1, 2, · · · , T − 1} × ∂G

where v satisfies the following problem:4


Dttv(t, x)−∆Gv(t, x) = 0, (t, x) ∈ {1, 2, · · · , T − 1} ×G,

v(T, x) = 0, x ∈ Ḡ,

Dtv(T − 1, x) = g(x), x ∈ G,

∂νv(t, z) = 0, (t, z) ∈ {0, 1, · · · , T} × ∂G.

Proof. Let u be the solution of (1.5). As v satisfies the graph wave equation above, we have5

0 =
∑
x∈G

µx

T−1∑
t=1

(Dttv(t, x)−∆Gv(t, x))u(t, x)

=
∑
x∈G

µx

T−1∑
t=1

Dttv(t, x)u(t, x)−
∑
x∈G

µx

T−1∑
t=1

u(t, x)∆Gv(t, x)

:= I1 − I2.
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For I1, using the definition of the operators Dt and Dtt, we can obtain1

I1 =
∑
x∈G

µx

T−1∑
t=1

v(t+ 1, x)u(t, x)− 2
∑
x∈G

µx

T−1∑
t=1

v(t, x)u(t, x) +
∑
x∈G

µx

T−1∑
t=1

v(t− 1, x)u(t, x)

=
∑
x∈G

µx

T−1∑
t=1

(v(t, x)u(t− 1, x)− 2v(t, x)u(t, x) + v(t, x)u(t+ 1, x))

+
∑
x∈G

µx(−v(1, x)u(0, x) + v(T, x)u(T − 1, x) + v(0, x)u(1, x)− v(T − 1, x)u(T, x))

=
∑
x∈G

µx

T−1∑
t=1

v(t, x)Dttu(t, x) +
∑
x∈G

µxg(x)u(T, x),

where we have used the fact that u(0, x) = u(1, x) = 0, v(T, x) = 0 and v(T − 1, x) = −g(x) for2

x ∈ G.3

For I2, we compute it using Lemma 3.1:4

I2 =
∑
x∈G

µx

T−1∑
t=1

v(t, x)∆Gu(t, x) +
∑
z∈∂G

µz

T−1∑
t=1

(v(t, z)∂νu(t, z)− u(t, z)∂νv(t, z))

=
∑
x∈G

µx

T−1∑
t=1

v(t, x)∆Gu(t, x) +
∑
z∈∂G

µz

T−1∑
t=1

v(t, z)f(t, z),

where we have used the boundary conditions ∂νv(t, z) = 0 and ∂νu(t, z) = f for z ∈ ∂G.5

As I1 − I2 = 0 and the first terms of I1 and I2 are identical, we conclude:6 ∑
z∈∂G

µz

T−1∑
t=1

v(t, z)f(t, z) =
∑
x∈G

µxg(x)u(T, x) = (u(T ), g)G = (Wf, g)G.

The proof is complete when we observe that the left hand side is exactly (f, v){1,··· ,T−1}×∂G.7

□8

B.1. Calculate the map Λ∗
µ,T . Next, we derive the adjoint to the operator Λµ,T introduced in Sec-9

tion 4. Recall that10

Λµ,Th := PT (ΛµP
∗
Th) = uP

∗
T h|{1,··· ,T−1}×∂G

for h ∈ l2({1, · · · , T − 1} × ∂G).11

Lemma B.2. The adjoint Λ∗
µ,T is given by12

Λ∗
µ,T = RΛµ,TR.

Proof. Let u be the solution of (1.5) and v be the solution of13 
Dttv(t, x)−∆Gv(t, x) = 0, (t, x) ∈ {1, · · · , T − 1} ×G,

v(T − 1, x) = 0, x ∈ Ḡ,

Dtv(T − 1, x) = 0, x ∈ G,

∂νv(t, z) = g(t, z), (t, z) ∈ {0, · · · , T} × ∂G.
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Using Lemma 3.1, we obtain the equation1

0 =
∑
x∈G

µx

T−1∑
t=1

(Dttv(t, x)−∆Gv(t, x))u(t, x)

=
∑
x∈G

µx

T−1∑
t=1

Dttv(t, x)u(t, x)−
∑
x∈G

µx

T−1∑
t=1

∆Gv(t, x)u(t, x)

=
∑
x∈G

µx

T−1∑
t=1

(v(t, x)u(t− 1, x)− 2v(t, x)u(t, x) + v(t, x)u(t+ 1, x))

+
∑
x∈G

µx(−v(1, x)u(0, x) + v(T, x)u(T − 1, x) + v(0, x)u(1, x)− v(T − 1, x)u(T, x))

−
∑
x∈G

µx

T−1∑
t=1

v∆Gu+
∑
z∈∂G

µz

T−1∑
t=1

(∂νv(t, z)u(t, z)− v(t, z)∂νu(t, z))

=
∑
x∈G

µx

T−1∑
t=1

v(t, x)(Dttu(t, x)−∆Gu(t, x)) +
∑
z∈∂G

µz

T−1∑
t=1

(∂νv(t, z)u(t, z)− v(t, z)∂νu(t, z))

=
∑
z∈∂G

µz

T−1∑
t=1

g(Λµ,Tf)−
∑
z∈∂G

µz

T−1∑
t=1

v(t, z)f. (B.1)

On the other hand, consider U that satisfies the following problem2 
DttU(t, x)−∆GU(t, x) = 0, (t, x) ∈ {1, · · · , T − 1} ×G,

U(0, x) = 0, x ∈ Ḡ,

DtU(0, x) = 0, x ∈ G,

∂νU(t, z) = Rg(t, z), (t, z) ∈ {0, · · · , T} × ∂G.

Then, RU = v, since they solve the initial boundary value problem. We conclude3

RΛµ,TRg = R(U |{1,··· ,T−1}×∂G) = v|{1,··· ,T−1}×∂G.

Substitute this relation into equation (B.1) to get4

0 =
∑
z∈∂G

µz

T−1∑
t=1

g(Λµ,Tf)−
∑
z∈∂G

µz

T−1∑
t=1

fRΛµ,TRg

= (Λµ,Tf, g){1,··· ,T−1}×∂G − (f,RΛµ,TRg){1,··· ,T−1}×∂G

for all f, g. This completes the proof.5

□6

APPENDIX C.7

C.1. Matrix form of the graph Laplacian operator ∆G. In this appendix, we use the matrix form8

of the graph Laplacian to prove a few auxiliary results. As usual, we index the interior vertices by9

x1, x2, · · · , x|G| and the boundary vertices by x|G|+1, x|G|+2, · · · , x|Ḡ| on Ḡ. Recall that in Section 5,10

the graph Laplacian ∆G : Ḡ→ G is identified with a block matrix11

[∆G] = ([∆G,G], [∆G,∂G]) ∈ R|G|×|Ḡ|, where [∆G,G] ∈ R|G|×|G|, [∆G,∂G] ∈ R|G|×|∂G|.
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Then, the graph Laplacian operator ∆G can be written as matrix form as follows1 

−
∑
y∈Ḡ
y∼x1

w(x1,y)

µx1

w(x1,x2)
µx1

· · · w(x1,x|G|)

µx1
· · · w(x1,x|Ḡ|)

µx1

w(x2,x1)
µx2

−
∑
y∈Ḡ
y∼x2

w(x2,y)

µx2
· · · w(x2,x|G|)

µx2
· · · w(x2,x|Ḡ|)

µx2...
...

...
...

w(x|G|,x1)

µx|G|

w(x|G|,x2)

µx|G|
· · ·

−
∑
y∈Ḡ

y∼x|G|

w(x|G|,y)

µx|G|
· · · w(x|G|,x|Ḡ|)

µx|G|


:=
(
∆G,G

... ∆G,∂G

)
,

where2

∆G,G =


1

µx1
1

µx2

. . .
1

µx|G|





−
∑
y∈Ḡ
y∼x1

w(x1, y) w(x1, x2) · · · w(x1, x|G|)

w(x2, x1) −
∑
y∈Ḡ
y∼x2

w(x2, y) · · · w(x2, x|G|)

...
...

...
w(x|G|, x1) w(x|G|, x2) · · · −

∑
y∈Ḡ

y∼x|G|

w(x|G|, y)


,

and3

∆G,∂G =


1

µx1
1

µx2

. . .
1

µx|G|



w(x1, x|G|+1) · · · w(x1, x|Ḡ|)
w(x2, x|G|+1) · · · w(x2, x|Ḡ|)

...
...

w(x|G|, x|G|+1) · · · w(x|G|, x|Ḡ|)

 .

Since the edge weight function w(·, ·) is symmetric, the resulting matrix ∆G,G is also symmetric.4

Lemma C.1. Let (Ḡ, E) be a connected graph. For any function g : ∂G → R, the boundary value5

problem6

∆Gφ(x) = 0 for x ∈ G, φ|∂G = g

has a unique solution φ : Ḡ→ R.7

Proof. Using the vectorization φ⃗ = (φ⃗|G, g⃗)T and the matrix [∆G] = ([∆G,G], [∆G,∂G]), the bound-8

ary value problem is equivalent to the homogeneous linear system9 (
[∆G,G], [∆G,∂G]

)( φ⃗|G
g⃗

)
= 0.

Since the matrix [∆G,G] is non-singular [21, Lemma 3.8], the linear system admits a unique solution

φ⃗|G = −[∆G,G]
−1[∆G,∂G ]⃗g.

□10

Lemma C.2. Let β be an arbitrary selection of |G| columns from H. If det(H:,β) ̸= 0, then11

det(H:,β) is a real analytic function of {wx,y} ∈ R|E|
+ .12
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Proof. Using the cofactor formula, each entry of [∆G,G]
−1 is a rational function of {wx,y} ∈ R|E|

+1

(since det[∆G,G] is a polynomial of the entries). Recall that for polynomials A1(a) and A2(a) ̸= 02

when a ∈ R|E|, rational functions of the form A1(a)
A2(a)

are analytic on any connected subset of R|E|.3

Since ∆G,G is invertible, the functions det(H:,β) are real analytic with respect to {wx,y} ∈ R|E|
+ . □4
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