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Abstract: Regression analysis is commonly conducted in survey sampling.
However, existing methods fail when regression models vary across differ-
ent clusters of domains. In this paper, we propose a unified framework
to study the cluster-wise covariate effect under complex survey sampling
based on pairwise penalties, and the associated objective function is solved
by the alternating direction method of multipliers. Theoretical properties
of the proposed method are investigated under regularity conditions. Nu-
merical experiments demonstrate that the proposed method outperforms
its alternatives in terms of identifying the cluster structure and estimation
efficiency for both linear regression and logistic regression models. Ameri-
can Community Survey is used as an example to illustrate the advantages
of the proposed approach.
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1. Introduction

Regression models are commonly used in survey sampling to analyze the re-
lationship among different variables [13, 26, 36]. Traditional regression models
assume common regression coefficients across all domains, but this assumption
fails and leads to biased estimators if regression coefficients vary across different
clusters of domains. In this paper, we propose a probability-weighted clustered
coefficients (PCC) regression model to solve this problem under complex survey
sampling.
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A concave fusion approach was proposed to identify a cluster structure and
estimate model parameters with common regression coefficients but cluster-
specific intercepts [28]. Extension to models with clustered regression coeffi-
cient heterogeneity was investigated by [29]. Estimation accuracy of [28] can be
further improved by incorporating spatial information for areal data with re-
peated measures [49]. Various models with cluster-specific regression coefficients
were explored for different types of data, such as binary data [55], count data
[6], survival data [15], functional data [46, 52], Poisson process [47]; also see
[25, 54]. These works have shown the advantages of models with cluster-specific
regression coefficients when estimating population parameters. However, none
considers identifying a cluster structure of regression coefficients under complex
survey sampling. Under complex survey sampling, an empirical-likelihood based
method was proposed for variable selection under high dimensional setups [53],
but it cannot be used to identify cluster structures; also see [8, 45].

Hierarchical models are widely used in survey sampling and small area esti-
mation [36]. A multi-level Bayesian model was proposed by [21] for small area
estimation. A robust data-driven transformation technique was proposed by
[38], and a two-level linear regression model with random intercepts was used
to obtain a pseudopopulation [31]. [48] proposed new model-based estimators
using a linear mixed model with cluster-specific regression coefficients, where
random effects were considered in the model compared to [29] without random
effects. [23] proposed a model based on linear mixed models with heterogeneity
in regression coefficients and variance components. Also see [3, 7, 10, 16, 19, 41].
Generalized linear models with random effects were also proposed for categorical
responses [4, 18, 42, 51]. However, existing works did not incorporate sampling
weights. A two-level model with random cluster effects was proposed for popula-
tion mean estimation [34], and sampling weights are incorporated; also see [30].
Under complex survey sampling, a generalized linear regression model with ran-
dom effect was considered by [9]. The efficiency of existing works can be further
improved if we can successfully identify cluster structures, but none pursued in
this direction.

Under complex survey sampling, sampling weights are essential to guarantee
unbiased inference [33], and statistical efficiency can be improved by incorporat-
ing cluster structures. In this work, we consider a PCC regression model with the
smoothly clipped absolute deviation (SCAD) penalty [11] to identify the cluster
structure by the estimated regression coefficients. We use the alternating direc-
tion method of multipliers (ADMM) [5] to implement the proposed method. In
theory, we show that the oracle estimator, when the cluster structure is avail-
able, is a local minimizer of the objective function with probability approaching
one under regularity conditions. The asymptotic distribution of our estimator is
established accordingly. Theoretical properties are investigated under a general
model setup, so they apply to a wide range of situations, including linear and
logistic regression models.

The article is organized as follows. In Section 2, we propose the PCC re-
gression model incorporating sampling weights and introduce an ADMM-based
algorithm to solve the objective function. In Section 3, asymptotic properties of
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the proposed estimators are investigated under regularity conditions. Two simu-
lation studies are conducted to illustrate the advantage of the proposed method
for both linear and logistic regression models in Section 4. The proposed method
is applied to a real survey dataset in Section 5. Finally, a summary and conclu-
sion are provided in Section 6.

2. Methodology and algorithm

2.1. Basic setup

In this paper, we consider a finite population F = F1 ∪· · ·∪Fm of size N , where
{F1, . . . , Fm} are m mutually exclusive domains, Fi = {(yih, xih, zih) : h =
1, . . . , Ni} for i = 1, . . . , m, yih is the response of interest for hth element in the
ith domain, xih is a p-dimensional covariate vector associated with the domain-
specific part in the regression model, zih is a q-dimensional covariate vector with
respect to the population-level part, Ni is the size of Fi, and N =

∑m
i=1 Ni. In

this paper, we consider the following generalized linear regression model,

g {E(yih | xih, zih)} = xT
ihβ0

i + zT
ihη0 (i = 1, . . . , m; h = 1, . . . , Ni), (1)

where g(·) is a known link function, {β0
i : i = 1, . . . , m} are domain-specific

regression coefficients, and η0 is common for different domains. For example,
g(x) = x corresponds to a linear regression model, and g(x) = log{x/(1 − x)}
to a logistic regression model.

In (1), {β0
i : i = 1, . . . , m} may not be distinct across different domains,

and clustering elements with the same domain-specific regression coefficient can
effectively improve estimation efficiency. Among {β0

i : i = 1, . . . , m}, assume
there are K mutually different cluster-specific regression coefficients {αk : k =
1, . . . , K}, and denote Gk = {i : βi = αk, 1 ≤ i ≤ m} to the domain index
set associated with αk. In practice, we neither know Gk nor K in advance, and
we are interested in identifying the partition Ĝ and the number of clusters K̂,
where Ĝ = {Ĝ1, . . . , ĜK̂}, Ĝk = {i : β̂i = α̂k, 1 ≤ i ≤ m}, and β̂i and α̂k are
estimated regression coefficients; see Section 2.2 for details.

If the finite population F were available, the loss function would be

LN (η, β) =
m∑

i=1
WiLi(η, β),

where β =
(
βT

1 , . . . , βT
m

)T, Wi = Ni/N , Li(η, β) = N−1
i

∑Ni

h=1 Lih(η, β), and
Lih(η, β) is a loss function corresponding to the hth element in the ith domain.
For example, Lih(η, β) = 1

2 (yih − zT
ihη − xT

ihβi)2 corresponds to a linear regres-
sion model, and Lih(η, β) = −yih

(
zT

ihη + xT
ihβi

)
+log

{
exp(zT

ihη + xT
ihβi) + 1

}
to a logistic regression model.

However, F is never fully observable in practice due to time and budget con-
straints. Instead, we can only observe a probability sample. Let n0 =

∑m
i=1 ni

be the sample size, where ni is the size with respect to the ith domain. Denote
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δih as a sampling indicator with δih = 1 if the hth element in the ith domain is
observed and δih = 0 otherwise, and let πih be the associated inclusion probabil-
ity. Then, a probability-weighted loss function is Lω(η, β) =

∑m
i=1 WiL̂i(η, β),

where L̂i(η, β) = N−1
i

∑Ni

h=1 δihπ−1
ih Lih(η, β). It can be shown that Lω(η, β) is

design-unbiased for LN (η, β) [14]. To estimate the domain-specific regression co-
efficients {βi : i = 1, . . . , m} and identify the cluster structure G = {G1, . . . , GK},
we consider the following objective function,

Qω(η, β) = mLω(η, β) +
∑

1≤i<j≤m

pγ (‖βi − βj‖ , λ) , (2)

where pγ (·, λ) is a penalty function imposed on all distinct pairs of βi and βj

with i �= j, γ is a fixed constant, and λ ≥ 0 is a tuning parameter. In this paper,
we use the SCAD penalty with the following form:

pγ(t, λ) = λ

∫ |t|

0
min {1, (γ − x/λ)+/(γ − 1)} dx, (3)

and the tuning parameter is determined by a BIC criterion; see Section 2.2
for details. Following a practical rule [28, 29, 49], we fix γ to be 3. There are
also other options for the penalty function, such as the minimax concave penalty
(MCP) [50]. [28] compared different penalty functions and concluded that SCAD
and MCP perform similarly, and they are better than an L1 penalty.

2.2. Algorithm

In this section, we use an ADMM-based algorithm to minimize the objective
function (2). First, we fix the tuning parameter λ and show the algorithm to
minimize (2). Details regarding the selection of λ are relegated to the end of
this section.

Let ζij = βi − βj be the slack parameter associated with βi and βj . Then,
the optimization problem is equivalent to minimizing

Qω(η, β, ζ) = mLω(η, β) +
∑

1≤i<j≤m

pγ (‖ζij‖ , λ) , (4)

subject to βi − βj − ζij = 0, 1 ≤ i < j ≤ m,

where ζ =
(
ζT

ij , 1 ≤ i < j ≤ m
)T. The constrained objective function (4) can be

further formatted as below based on augmented Lagrangian:

Q(η, β, ζ, v) = Qω(η, β, ζ) +
∑
i<j

〈vij , βi − βj − ζij〉 + ϑ

2
∑
i<j

‖βi − βj − ζij‖2
,

(5)

where 〈a, b〉 is the inner product of vectors a and b, v =
(
vT

ij , 1 ≤ i < j ≤ m
)T

are Lagrange multipliers, and ϑ > 0 is a tuning parameter for the penalty. In
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this paper, we fix ϑ = 1 following [29]. Then, we use an iterative algorithm to
update β, η, ζ and v.

Denote (β(r), η(r), ζ(r), v(r)) as the values at the rth iteration, and they can
be updated as(

η(r+1), β(r+1)
)

= arg min
η,β

Q
(

η, β, ζ(r), v(r)
)

, (6)

ζ(r+1) = arg min
ζ

Q
(

η(r+1), β(r+1), ζ, v(r)
)

, (7)

v
(r+1)
ij = v

(r)
ij + ϑ

(
β

(r+1)
i − β

(r+1)
j − ζ

(r+1)
ij

)
. (8)

For a classical linear regression model, we can derive closed forms for η(r+1)

and β(r+1) by adding sampling weights to the algorithm in [49]; see Appendix A.1
for details. When a logistic regression model is considered, we derive a new algo-
rithm based on the Newton-Raphson method based on [55]; see Appendix A.2
for details.

To update ζij , it is equivalent to minimizing

ϑ

2

∥∥∥κ(r)
ij − ζij

∥∥∥2
+ pγ (‖ζij‖ , λ) , (9)

where κ
(r+1)
ij = (β(r+1)

i − β
(r+1)
j ) + ϑ−1v

(r)
ij . For the SCAD penalty, we have

ζ
(r+1)
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(κ(r+1)

ij , λ/ϑ) if
∥∥∥κ(r+1)

ij

∥∥∥ ≤ λ + λ/ϑ,

S
(

κ
(r+1)
ij ,γλ/(γ−1)ϑ

)
1−1/(γ−1)ϑ if λ + λ/ϑ <

∥∥∥κ(r+1)
ij

∥∥∥ ≤ γλ,

κ
(r+1)
ij if

∥∥∥κ(r+1)
ij

∥∥∥ > γλ,

(10)

where γ > 1 + 1/ϑ, and S(w, t) = (1 − t/‖w‖)+w with (t)+ = t if t > 0 and 0
otherwise.

Algorithm 1 summarizes the estimation procedure.

Algorithm 1 The ADMM algorithm.
Require: : Initialize β(0), ζ(0) and v(0)

1: for r = 0, 1, 2, . . . do
2: Obtain β(r+1) and η(r+1) by solving (6).
3: Obtain ζ(r+1) by (10).
4: Obtain v(r+1) by (8).
5: if convergence criterion is met then
6: Stop and get the estimates
7: else
8: r = r + 1
9: end if

10: end for

To find reasonable initial values, we set pγ(‖βi − βj‖ ; λ) = λ ‖βi − βj‖ with
a small value for λ. Then, let the solution to (2) be the initial values for β(0)
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and ζ(0). For a classical linear regression model, the problem becomes a type of
ridge regression [29]. For a logistic regression model, estimates can be obtained
by [55]. Then, set ζ

(0)
ij = β

(0)
i − β

(0)
j and v(0) = 0.

Denote the solution as

(η̂, β̂) = arg min
η∈Rq,β∈Rmp

Qω(η, β), (11)

and ζ̂ij = β̂i−β̂j . If ζ̂ij = 0, we conclude that the ith and jth domains are in the
same cluster. Then, the corresponding estimated partition Ĝ and the estimated
number of clusters K̂ are identified automatically.

Remark 1. The convergence criterion used is the same as that in [28] and [49]
based on the primal residual r(r+1) = Aβ(r+1) − ζ(r+1). We stop the algorithm
if
∥∥r(r+1)

∥∥ < ε, where ε is a small positive number.

The tuning parameter λ is selected based on modified BIC [44], which is
widely used in clustered coefficient regression models [28, 49]. Based on the
weighted loss function discussed in [27, 43], the proposed PCC method selects
the tuning parameter λ by minimizing

BIC(λ) = l̂(η̂λ, β̂λ) + Cm
log n0

n0

{
K̂(λ)p

}
, (12)

where (η̂λ, β̂λ) are the optimal estimators given λ, and Cm is a positive number
depending on the number of domains m. In our paper, we set Cm = log(mp+q)
as in [29]. l̂(η̂, β̂) = log(Lω(η̂, β̂)) for linear regression models and l̂(η̂, β̂) =
2Lω(η̂, β̂) for logistic regression models.

3. Theoretical properties

Recall that Gk is the domain index set for the kth cluster with cardinality |Gk|.
Denote ñk =

∑
i∈Gk

ni as the number of observations in Gk, and n0 =
∑m

i=1 ni

as the sample size. Let W̃ = (wik) be an m ×K matrix, where wik = 1 if i ∈ Gk

and 0 otherwise. Define an mp × Kp matrix W = W̃ ⊗ Ip, where Ip is a p × p
identity matrix, and ⊗ is the Kronecker product. Let α = (αT

1 , . . . , αT
K)T be

the cluster-specific regression parameters. Then, we have β = W α if the true
cluster information is available.

For simplicity, denote LG
ih (η, α) = Lih (η, W α), LG

i (η, α) = Li (η, W α),
L̂G

i (η, α) = L̂i (η, W α), and LG
ω(η, α) = Lω(η, W α). Let

(
ηηη0, α0) be the true

parameters, and its oracle estimator, the one when the true cluster information
is known, is obtained by

(η̂or, α̂or) = arg min
(η,α)∈Θ

LG
ω(η, α)

= arg min
(η,α)∈Θ

Lω(η, W α) = arg min
(η,α)∈Θ

m∑
i=1

WiN
−1
i

Ni∑
h=1

δihπ−1
ih Lih (η, W α) ,

(13)
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and β̂or = W α̂or, where Θ is the parameter space.
More notations are needed to discuss the theoretical properties of the pro-

posed method. Let SN (η, α) =
∑m

i=1 WiN
−1
i

∑Ni

h=1 Sih (η, α) be the score func-
tion, where Sih (η, α) = ∂LG

ih (η, α) /∂(ηT, αT)T is with respect to the hth el-
ement in the ith domain. Let Ŝw(η, α) =

∑m
i=1 WiŜi(η, α) be the sample-level

score function, where Ŝi(η, α) = N−1
i

∑Ni

h=1 δihπ−1
ih Sih (η, α). It can be shown

that Ŝw(η, α) is design-unbiased for SN (η, α). Given the cluster information,
the oracle estimator (η̂or, α̂or) solves

Ŝω(η, α) = ∂LG
ω(η, α)/∂(ηT, αT)T =

m∑
i=1

WiŜi(η, α) = 0.

Denote Ii(η, α) = N−1
i

∑Ni

h=1 Iih (η, α) to be the information matrix for the
ith domain, where Iih (η, α) = −∂Sih (η, α) /∂(ηT, αT). It can be shown that
Îi(η, α) = N−1

i

∑Ni

h=1 δihπ−1
ih Iih (η, α) is design-unbiased for Ii (η, α).

The following conditions are required to derive the asymptotic properties of
the proposed PCC method.

(C1) The number of clusters K, and the dimensions of covariates p and q are
fixed. There exists a positive constant C1 such that

max{Ni : i = 1, . . . , m}/ min{Ni : i = 1, . . . , m} < C1,

max{ni : i = 1, . . . , m}/ min{ni : i = 1, . . . , m} < C1,

max{ñk : k = 1, . . . , K}/ min{ñk : k = 1, . . . , K} < C1.

(C2) The parameter space Θ is compact, containing
(
η0, α0) as an interior

point. For (η, α) ∈ Θ, LG
ih (η, α) is convex, twice continuously differen-

tiable with respect to (η, α) and E{|LG
ih (η, α)|} < ∞ for i = 1, . . . , m and

h = 1, . . . , Ni. Furthermore,
(
η0, α0) uniquely minimizes E{LG

ih (η, α)}.
(C3) For (η, α) ∈ Θ, V {LG

ω (η, α) |F} → 0 in probability as m → ∞, where
V {LG

ω (η, α) |F} is the variance of LG
ω (η, α) conditional on the finite pop-

ulation F .
(C4) A central limit theorem holds for the weighted score function Ŝω(η0, α0),

n
1/2
0 Ŝω(η0, α0) → N

(
0, Σ
(
η0, α0))

in distribution as n0 → ∞ with respect to the model (1) and the sampling
mechanism, where Σ

(
η0, α0) is positively definitive.

(C5) There exists a compact set B ⊂ Θ, such that Îω(η, α) converges to I(η, α)
in probability with respect to the model (1) and the sampling mechanism
uniformly over B as n0 → ∞, where Îω(η, α) =

∑m
i=1 WiÎi(η, α), I(η, α)

is the limit of
∑m

i=1 WiE{Ii (η, α)} as m → ∞, and I(η0, α0) is invertible.
(C6) There exist two positive constants C2, C3 such that C2 < Nin

−1
i πih < C3

for i = 1, . . . , m, h = 1, . . . , Ni almost surely.
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(C7) Denote ργ(t) = λ−1pγ(t, λ) as the scaled penalty function. The function
ργ(t) is symmetric, non-decreasing, concave on [0, ∞), and ργ(0) = 0.
The value of ργ(t) is a constant for t ≥ aλ and some constant a > 0.
Its derivative ρ′

γ(t) exists and is continuous except for a finite number of
values of t, and ρ′

γ(0+) = 1.
(C8) Denote y = (y11, . . . , y1,Ni , . . . , ym,1, . . . , ym,Nm)T and μ(η0, α0) as the

expected value vector of y. The conditional distribution of y given co-
variates belongs to the canonical exponential family. For any vector a
and x > 0, P (|aT {y − μ(η0, α0)

}
| > ‖a‖x) ≤ 2 exp(−c1x2), where

0 < c1 < ∞.
(C9) There exists a positive constant cx < ∞ such that maxi,h,l |xih,l| ≤ cx for

l = 1, . . . , p and maxi,h,l |zih,l| ≤ cx for l = 1, . . . , q.

Condition (C1) contains some regularity assumptions for the model setup,
and we can show that Wi � m−1 and mni � n0 for i = 1, . . . , m, where an � bn

is equivalent to an = O(bn) and bn = O(an). The asymptotic orders of Wi

and ni are required to guarantee the convergence rate in Condition (C4). By
Conditions (C2) and (C3), the convexity of LG

ih (η, α) and the pointwise con-
vergence of V {LG

ω (η, α) |F} guarantee LG
ω (η, α) →

∑m
i=1 WiE{LG

i (η, α)} in
probability uniformly with respect to the model (1) and the sampling mecha-
nism; see Theorem 10.8 of [37] for details. Such uniform convergence guarantees
the consistency of the proposed estimators; see Theorem 2.1 of [32] for details.
The twice-continuously differentiable property of LG

ih (η, α) guarantees that the
weighted score function Ŝi(η, α) is continuously differentiable, so the mean value
theorem applies. Condition (C4) assumes a central limit theorem for Ŝω(η, α),
which is used to derive the asymptotic properties of the oracle estimator and
can be verified under general complex sampling designs; see Section C for de-
tails of Poisson sampling and stratified multistage cluster sampling. In Condition
(C5), the convergence of Îω(η, α) is used to derive the limiting distribution of
(η̂or, α̂or) [1, Theorem 4.1.2]. Condition (C6) is a regularity condition about
inclusion probabilities, and it is used to establish the convergence rate of the
estimating equation; see Theorem 1.3.3 of [13] for details. Conditions (C7)–(C9)
are common assumptions for penalized regression in high-dimensional settings
[29, 12].

Remark 2. Under the assumption m → ∞, our theoretical results apply as long
as that domain sizes are of the same order, including the case where they are
bounded. The analysis can be easily extended to the scenario where m is bounded
but the domain sizes diverge at the same rate. Besides, we implicitly consider a
stratified single-stage sampling design in this paper; see Appendix C.2 for a brief
discussion under stratified multistage cluster sampling.

The following Theorem 1 and Theorem 2 show theoretical properties of the
oracle estimator in (13).

Theorem 1. Under Conditions (C1)–(C3), we have (η̂or, α̂or) →
(
η0, α0) in

probability as m → ∞ with respect to the model (1) and the sampling mechanism.
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Theorem 2. Under Conditions (C1)–(C5), we have

n
1/2
0

((
η̂or − η0)T ,

(
α̂or − α0)T)T

→ N (0, Σ) (14)

in distribution as m → ∞ with respect to the model (1) and the sampling
mechanism, where Σ = I

(
η0, α0)−1 Σ

(
η0, α0)I

(
η0, α0)−1, and I(η, α) =∑m

i=1 WiE{Ii (η, α)}.

The proofs of Theorems 1–2 are relegated to Appendices B.1–B.2, respec-
tively. Theorem 1 and Theorem 2 assume the cluster structure is known and
consider the theoretical properties of the oracle estimator. Theorem 1 shows the
consistency of ηor and αor, and Theorem 2 establishes the corresponding limit-
ing distribution. Theorems 1–2 show that the oracle estimator can converge to
the true parameters in a rate of

√
n0.

Let b = mini∈Gk,j∈Gk′ ,k �=k′
∥∥β0

i − β0
j

∥∥ = mink �=k′
∥∥α0

k − α0
k′

∥∥ be the minimal
difference between two distinct cluster-specific regression parameters. Theorem 3
establishes theoretical properties of our proposed estimator in (11).

Theorem 3. Under Conditions (C1)–(C9), suppose b > aλ for some con-
stant a, λ → 0 and n

1/2
0 λ → ∞ as m → ∞. Then, there exists a local min-

imizer (η̂T, β̂T) of the objective function Qω(η, β) such that P{(η̂T, β̂T) =
((η̂or)T, (β̂or)T)} → 1.

The proof of Theorem 3 is in Appendix B.3. The theoretical properties are
investigated under complex survey sampling, which is different from the existing
studies. Theorem 3 implies that the true cluster structure can be recovered with
probability approaching 1, and that the estimated number of clusters K̂ satisfies
P (K̂ = K) → 1 under complex survey sampling.

Let α̂ be the distinct cluster vectors of β̂. According to Theorem 2 and
Theorem 3, we have the following result.

Corollary 1. Suppose the conditions in Theorem 3 hold, we have

n
1/2
0

((
η̂ − η0)T ,

(
α̂ − α0)T)T

→ N (0, Σ)

in distribution as m → ∞.

When λ satisfies the conditions in Theorem 3, and the cluster structure is
recovered with probability approaching 1, Corollary 1 gives the support for
conducting statistical inferences for α̂.

4. Simulation studies

In this section, we conduct simulation studies to evaluate the performance of the
proposed PCC method. We focus on the performance of identifying the cluster
information and only consider cases without the global regression coefficient η.
We consider two types of models: linear regression models in Section 4.1 and
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logistic regression models in Section 4.2, and compare the proposed PCC method
with the one without using sampling weights, referred to as the “Clustered
Coefficients (CC)” method.

To evaluate the cluster performance of the proposed PCC method, we report
the estimated cluster number K̂ and the adjusted Rand index (ARI) [35]. ARI
measures the degree of agreement between two partitions; the largest value is 1.
A larger ARI value indicates a better cluster performance. We report the average
K̂ and ARI across 1 000 simulations, along with standard deviation values in the
parentheses. To evaluate the estimation accuracy of β, we report the average
root mean square error (RMSE), which is defined as(

1
m

m∑
i=1

∥∥∥β̂i − βi

∥∥∥2
)1/2

.

4.1. Linear regression models

In this section, we consider a linear regression model with regression coefficient
heterogeneity. We generate a finite population {(xih, yih) : i = 1, . . . , m, h =
1, . . . , H} with m = 100 and H = 300 by

yih = xT
ihβi + εih,

where xih = (1, xih)T, xih ∼ N(0, 1) independently, and conditionally on xih,
εih is independently generated from N(0, σ2

ih) with σih = exp(0.5|xT
ihβi|). As-

sume that there are three true clusters, denoted as G1, G2 and G3. The cluster
parameters are βi = (−1, −1)T for i ∈ G1, βi = (0.5, 0.5)T for i ∈ G2 and
βi = (2, 2)T for i ∈ G3. Each domain has an equal probability of being assigned
to one of these three clusters.

We conduct Poisson sampling to generate samples from the finite population
with expected sample size ni = 10, ni = 30 and ni = 50. For i ∈ G1 and
i ∈ G3, we conduct Poisson sampling with unequal inclusion probabilities, setting
πih ∝ exp(0.3xih) for i ∈ G1, and πih ∝ exp(0.7xih) for i ∈ G3. For i ∈ G2, We
conduct Poisson sampling with equal inclusion probabilities.

Table 1 and Figure 1 summarize the results of the linear regression model.
For ni = 10, the proposed PCC method has a larger ARI than the CC method.
A similar observation occurs when ni = 30, with the proposed PCC method
having the average cluster number closer to the true number of clusters. As ni

increases, both methods have larger ARI values, indicating a better identification
of cluster structures. From the results in Figure 1, we can also observe that
compared with the CC method, the proposed PCC method provides better
estimation accuracy, as indicated by smaller RMSE values.

4.2. Logistic regression models

In this section, we consider a logistic regression model with regression coefficient
heterogeneity. We generate a finite population {(xih, yih) : i = 1, . . . , m, h =
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Table 1

Summary of K̂ and average ARI for the linear regression model based on 1 000 simulations,
along with standard deviations in the parentheses. CC and PCC represent the methods

without and with sampling weights, respectively.

K̂ ARI
CC PCC CC PCC

ni = 10 5.04(1.111) 3.40(0.582) 0.94(0.043) 0.99(0.02)
ni = 30 5.00(0.816) 3.07(0.282) 0.94(0.048) 1(0.015)
ni = 50 5.13(0.695) 3.06(0.248) 0.95(0.045) 1(0.01)

Fig 1. RMSE of β̂i for the linear regression model based on 1 000 simulations with expected
sample size ni = 10 (left), ni = 30 (middle) and ni = 50 (right).

1, . . . , H} with m = 100 and H = 300 by

yih ∼ Bernoulli(pih)

independently with logit(pih) = xT
ihβi where xih = (1, xih)T, xih is simulated

from Uniform(−2,2), and logit(x) = log x − log(1 − x) for x ∈ (0, 1). As in the
preceding section, we assume there are 3 true clusters, denoted as G1, G2 and
G3. The cluster parameters are βi = (−1, 0.5)T for i ∈ G1, βi = (0.5, 1.5)T for
i ∈ G2 and βi = (2, −0.5)T for i ∈ G3. We still conduct Poisson sampling to
generate samples from the finite population with expected sample size ni = 10,
ni = 30 and ni = 50. For i ∈ G1 and i ∈ G3, we conduct Poisson sampling with
unequal inclusion probabilities and set πih ∝ exp(0.3xih +0.5yih) for i ∈ G1, and
πih ∝ exp(0.7xih + 0.5yih) for i ∈ G3. For i ∈ G2, we conduct Poisson sampling
with equal inclusion probabilities.

Table 2 shows the results for K̂ and ARI, and Figure 2 shows the results for
RMSE. It can be seen that when the ni = 10, the local sample size is not large,
both methods cannot identify the cluster structure well, but the performance of
the proposed PCC method is better. When local sample sizes increase to ni = 30,
both methods have better results, and the proposed PCC method outperforms
the CC method in terms of larger ARI and smaller RMSE values. When ni = 50,
both methods have similar ARI values, but the estimated number of clusters in
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Fig 2. RMSE of β̂i for the logistic regression model based on 1 000 simulations with expected
sample size ni = 10 (left), ni = 30 (middle) and ni = 50 (right).

PCC is closer to the truth number of clusters, and PCC also has smaller RMSE
values.

Table 2

Summary of K̂ and average ARI for the logistic regression model based on 1 000
simulations, along with standard deviations in the parentheses. CC and PCC represent the

methods without and with sampling weights, respectively.

K̂ ARI
CC PCC CC PCC

ni = 10 4.46(1.013) 3.76(0.899) 0.26(0.135) 0.36(0.093)
ni = 30 2.85(1.011) 3.92(0.939) 0.63(0.137) 0.84(0.108)
ni = 50 3.65(0.806) 3.20(0.46) 0.95(0.072) 0.95(0.045)

We also consider three additional examples where the datasets are not simu-
lated from the true models in Appendix D. In example 1, we simulate data from
linear mixed models. We find that when the variance of random effects is large,
our PCC can capture the random effects using clustered fixed effects, while CC
cannot. In example 2 and example 3, we simulate data from linear regression
models with an additional logarithm scale effect. The results show that a large
sample size is needed to recover the cluster structure accurately when this addi-
tional effect is large. Our proposed PCC still performs better than CC without
sampling weights.

5. Application

In this section, we apply the proposed PCC method to the American Com-
munity Survey (ACS), which is a demographics survey program conducted by
the U.S. Census Bureau. This program regularly collects information previously
contained only in the long form of the decennial census, such as ancestry, citizen-
ship, educational attainment, income, language proficiency, migration, disability,
employment, and housing characteristics.
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The Public Use Microdata Sample (PUMS) files are publicly available data
at both individual and household levels. The most detailed unit of geography
contained in the PUMS files is the Public Use Microdata Area (PUMA). PUMA
contains special non-overlapping areas that partition each state into contiguous
geographic units containing roughly 100 000 people at the time of their creation.
In this section, we use the household level PUMS data and model the relation-
ship between the logarithm of the monthly gross rent and the logarithm of the
household income across 43 PUMAs in Minnesota based on ACS 2021 data. In
this dataset, the number of observations in each PUMA ranges from 26 to 163.

We consider the following model,

yih = β0,i + β1,ixih + εih,

where yih is the logarithm of the monthly gross rent for the hth household in the
ith PUMA, and xih is the logarithm of household income for the hth household
in the ith PUMA. We assume there exists coefficient heterogeneity.

Tables 3–4 provide the estimated regression coefficients in different clusters
with standard error in the parenthesis for the CC and PCC methods, respec-
tively. By the CC method, all PUMAs are divided into three clusters. All clus-
ters have positive estimates of β1. This result implies that the monthly gross is
expected to increase as the household income increases in all clusters. Among
these three clusters, the second cluster has the largest β̂1. By using the proposed
PCC method, four clusters are identified with different estimated regression co-
efficients. The estimated coefficients also show a positive relationship between
household income and gross rent, which is the strongest in the third cluster,
followed by the second cluster, and then the fourth cluster. Table 5 presents
a contingency table that displays the number of PUMAs in each cluster. The
PUMAs in CC(1) are mainly divided into two clusters by the proposed PCC
method. From the estimates in Table 4, it can be seen that the estimated regres-
sion coefficients of PCC(1) and PCC(2) are quite different, which indicates that
it is more reasonable to have two clusters when considering sampling weights.
Furthermore, the PUMAs in CC(3) are separated into PCC(3) and PCC(4),
which have different estimates for β̂0.

Table 3

Summary of estimated regression coefficients by the CC method.
cluster 1 2 3

β̂0 −0.387(0.023) −0.003(0.029) 0.347(0.023)
β̂1 0.283(0.022) 0.62(0.03) 0.439(0.023)

Table 4

Summary of estimated coefficients by the proposed PCC method.
cluster 1 2 3 4

β̂0 −0.292(0.032) −0.456(0.033) 0.112(0.021) 0.479(0.035)
β̂1 0.201(0.03) 0.395(0.035) 0.57(0.021) 0.353(0.036)
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Table 5

The number of PUMAs in each cluster for the CC method and the proposed PCC method.
CC(i) represents the ith cluster in the CC method, where i = 1, 2, 3. PCC(j) represents the

jth cluster in the proposed PCC method, where j = 1, 2, 3, 4.
cluster PCC(1) PCC(2) PCC(3) PCC(4)
CC(1) 7 5 1 0
CC(2) 0 2 8 0
CC(3) 0 0 8 12

6. Summary and conclusion

In this paper, we propose a unified framework (PCC) to estimate regression
coefficients as well as identify the cluster structure for domains simultaneously
under complex survey sampling. Theoretical properties of the proposed PCC
method are investigated under regularity conditions without assuming an ex-
plicit form for the model. We also developed algorithms for linear regression and
logistic regression models. In the simulation study, the proposed PCC method
is compared with a CC method under the setup of a linear regression model
and a logistic regression model, and the results demonstrate the importance of
sampling weights in identifying the cluster structure under complex survey sam-
pling. Future research can explore new estimators based on probability weighted
clustered coefficient regression models for different types of survey data, such as
continuous data, binary data, and count data.

Appendix A: Computation

In this section, the detailed algorithms for updating β and η are introduced. In
Section A.1, updates of β and η for linear regression models are described. In
Section A.2, updates of β and η for logistic regression models are described.

A.1. Linear regression models

In linear regression model, η and β are updated by the minimizing

f(β, η) =
∥∥∥Ω1/2(y − Zη − Xβ)

∥∥∥2
+ ϑ
∥∥∥Aβ − δ(r) + ϑ−1v(r)

∥∥∥2
,

where

y = (y11, . . . , y1n1 , . . . , ym1, . . . , ym,nm)T

Z = (z11, . . . , z1n1 , . . . , zm1, . . . , zm,nm)T

X = diag (X1, · · · , Xm)
Ω = m diag(W1/N1π−1

11 , . . . W1/N1π1n1 , . . . , Wm/Nmπ−1
m1, . . . , Wm/Nmπ−1

mnm
)

where Xi = (xi1, . . . , xi,ni)
T, A = D ⊗ Ip with an m(m − 1)/2 × m matrix

D = {(ei − ej) : 1 ≤ i < j ≤ m}T, ⊗ is the Kronecker product, Ip is a p × p
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identity matrix, and ei is an m×1 vector with ith element 1 and other elements 0.
Then, the solutions for β and η are

β(r+1)

=
(
XTQZ,ΩX + ϑATA

)−1 [
XTQZ,Ωy + ϑ vec

{(
H(r) − ϑ−1Υ(r)

)
D
}]

,

η(r+1) =
(
ZTΩΠ−1Z

)−1
ZTΩΠ−1

(
y − Xβ(r+1)

)
,

where QZ,Ω = Ω − ΩZ(ZTΩZ)−1ZTΩ, H(r) = {ζ
(r)
ij , 1 ≤ i < j ≤ m} and

Υ(r) = {v
(r)
ij : 1 ≤ i < j ≤ m}. H(r) and Υ(r) are two matrices with dimension

p × m(m − 1)/2.

A.2. Logistic regression models

When updating η and β, consider the following objective function,

f (η, β) = Lω(η, β) + 1
2ν‖Aβ − δ(r) + ν−1v(r)‖2,

where

Lω(η, β) = −m

m∑
i=1

ni∑
h=1

Wi

Ni

1
πih

(
yih(zT

ihη + xT
ihβi) − log(1 + ezT

ihη+xT
ihβi)
)

.

Let W = diag (w1, . . . , wm), where wi = mWi

Ni
(πi1,, . . . , πi,ni). Denote μih =

exp(zT
ihη+xT

ihβi)
1+exp(zT

ihη+xT
ihβi) , μ (η, β) = (μih, i = 1 . . . , m, h = 1, . . . ni), and

V = diag (μ (η, β) (1 − μ (η, β))). Based on the Newton-Raphson algorithm,
we can get updates η(r+1) and β(r+1) at sth inner step as below,

β(r+1,s+1)

=β(r+1,s)+(
XTW V X + νATA

)−1(
XTW

(
y − μ

(
η(r+1,s), β(r+1,s)

))
− νAT

(
Aβ(r+1,s) − δ(r) + ν−1v(r)

))
,

and

η(r+1,s+1) = η(r+1,s) +
(
ZTW V Z

)−1
ZTW

(
y − μ

(
η(r+1,s), β(r+1,s)

))
.

Appendix B: Proofs of theoretical results

B.1. Proof of Theorem 1

The proof of Theorem 1 follows Theorem 2.1 in [32]. In this paper, we provide
detailed proof of Theorem 1.
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Recall that LG
N (η, α) =

∑m
i=1 WiN

−1
i

∑Ni

h=1 LG
i (η, α), where LG

i1 (η, α) is
the loss function for the first element in the ith unit. By Condition (C2) and
the weak law of large numbers, we have

LG
N (η, α) −

m∑
i=1

WiE{LG
i1 (η, α)} → 0

in probability with respect to the joint distribution of {(yih, xih, zih) : i =
1, . . . , m; h = 1, . . . , Ni}. Since E{LG

ω (η, α) |F} = LG
N (η, α), it follows from

Condition (C3) that, for (η, α) ⊂ Θ,

LG
ω (η, α) − LG

N (η, α) → 0

in probability with respect to the sampling mechanism as m → ∞. Applying
Theorem 2 of [17], we can show that

LG
ω (η, α) −

m∑
i=1

WiE{LG
i1 (η, α)} → 0 (15)

as m → ∞ in probability with respect to the super-population model and the
sampling mechanism uniformly over Θ, where Θ is the overall parameter space.

Since (η̂or, α̂or) = arg min
(η,α)∈Θ

LG
ω(η, α), we have

LG
ω (η̂or, α̂or) ≤ LG

ω(η0, α0).

By the uniform convergence in (15) over Θ, for any ε > 0, we have∣∣∣∣LG
ω(η, α) −

m∑
i=1

WiE{LG
i1(η, α)}

∣∣∣∣ < ε/10

for sufficiently large m with probability approaching to 1 with respect to the
super-population model and the sampling mechanism. More specifically, we have
the following two results

m∑
i=1

WiE{LG
i1(η, α)} < LG

ω(η, α) + ε/10, (16)

LG
ω(η, α) <

m∑
i=1

WiE{LG
i1(η, α)} + ε/10. (17)

For any open set O containing
(
η0, α0) as an interior point, OC ∩ Θ is

compact. Since E{LG
i1 (η, α)} is continuous, by extreme value theorem, we have

min(η,α)∈(OC∩Θ) LG
ω(η, α) exists.

By Condition (C2), E{LG
i1 (η, α)} is uniquely minimized at the true param-

eter
(
η0, α0). We have

min
(η,α)∈(OC ∩Θ)

m∑
i=1

WiE{LG
i1(η, α)} >

m∑
i=1

WiE{LG
i1(η0, α0)}.
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Denote ε = min(η,α)∈(OC ∩Θ)
∑m

i=1 WiE{LG
i1 (η, α)}−

∑m
i=1 WiE{LG

i1
(
η0, α0)}.

By (16) and (17), we have

min
(η,α)∈(OC∩Θ)

LG
ω(η, α) ≥ min

(η,α)∈(OC∩Θ)

m∑
i=1

WiE{LG
i1 (η, α)} − ε/10

=
m∑

i=1
WiE{LG

i1
(
η0, α0)} + ε − ε/10

> LG
ω(η0, α0) + 8ε/10

> LG
ω(η0, α0)

≥ LG
ω (η̂or, α̂or) .

This shows that (η̂or, α̂or) /∈
(
OC ∩ Θ

)
, which also means (η̂or, α̂or) ∈ O

with probability approaching 1. Since O is arbitrary, we can conclude that
(η̂or, α̂or) is consistent for

(
η0, α0) by letting O be small enough. This com-

pletes the proof of Theorem 1.

B.2. Proof of Theorem 2

In Theorem 1, we have shown that(
η̂or

α̂or

)
→
(

η0

α0

)
in probability as m → ∞ with respect to superpopulation model and sampling
mechanism. By Condition (C2), Ŝω(η, α) is continuously differentiable. Based
on the definition of the oracle estimator, we have Ŝω(η̂or, α̂or) = 0.

By mean value theorem, there exists (η†, α†) on the segment joining (η̂or, α̂or)
and (η0, α0) such that

Ŝω(η0, α0) = − ∂

∂(ηT, αT)T Ŝω(η†, α†)
{(

(η̂or)T, (α̂or)T)T −
(
(η0)T, (α0)T)T}

= Îω(η†, α†)
{(

(η̂or)T, (α̂or)T)T −
(
(η0)T, (α0)T)T} .

By Condition (C5) and Theorem 1, we have

I
(
η0, α0)−1

Îω(η†, α†) → I (18)

in probability with respect to the super-population model and sampling mech-
anism. Then,

n
1/2
0 I

(
η0, α0)−1

Iω(η†, α†)
{

(η̂or)T, (α̂or)T − ((η0)T, (α0)T)T}
= n

1/2
0 I

(
η0, α0)−1

Ŝω(η0, α0). (19)

By Conditions (C4)–(C5), (18), (19) and Slutsky’s theorem, we have com-
pleted the proof of Theorem 2.
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B.3. Proof of Theorem 3

Recall that Lω(η, β) is the loss function when the cluster information is un-
known, and LG

ω(η, α) is the loss function when the cluster information is known.
In addition, the penalty terms with unknown cluster information and known
cluster information have the following forms,

Pm(β) = λ
∑
i<j

ρ (‖βi − βj‖) ;

P G
m(α) = λ

∑
k<k′

|Gk‖Gk′ | ρ (‖αk − αk′‖) .

Then, the corresponding objective functions, Qω(η, β), and QG
ω(η, α), have the

following forms, respectively,

Qω(η, β) = mLω(η, β) + Pm(β),
QG

ω(η, α) = mLG
ω(η, α) + P G

m(α).

Define MG = {β ∈ R
mp : βi = βj , for i, j ∈ Gk, 1 ≤ k ≤ K}. From the defi-

nition, we know that for β ∈ MG , we can write β = W α. Let T : MG → R
Kp be

the mapping that T (β) is the Kp×1 vector consisting of K vectors with dimen-
sion p and its kth vector component equals to the common value of βi for i ∈ Gk.
Let T ∗ : Rmp → R

Kp be the mapping such that T ∗(β) = {|Gk|−1∑
i∈Gk

βT
i , k =

1, . . . , K}T. Clearly, when β ∈ MG , T (β) = T ∗(β).
For every β ∈ MG , we have Pm(β) = P G

m(T (β)). And for every α ∈ R
Kp,

we have Pm

(
T −1(α)

)
= P G

m(α). Thus, we have

Qω(η, β) = QG
ω(η, T (β)), QG

ω(η, α) = Qω

(
η, T −1(α)

)
.

By Theorem 2, there exists a positive constant M , such that∥∥η̂or − η0∥∥ ≤ Mn
−1/2
0 , max

i

∥∥∥β̂or
i − β0

i

∥∥∥ ≤ Mn
−1/2
0 .

Denote the neighborhood of
(
η0, β0) as

Θ =
{

η ∈ R
q, β ∈ R

mp :
∥∥η − η0∥∥ ≤ Mn

−1/2
0 , max

i

∥∥βi − β0
i

∥∥ ≤ Mn
−1/2
0

}
.

Obviously,
(

η̂or, β̂or
)

∈ Θ. For any β ∈ R
mp, let β∗ = T −1 (T ∗(β)). We will

show that
(

η̂or, β̂or
)

is a strictly local minimizer of the objective function with
probability approaching 1 through the following two steps.

(i) For any
(
ηT, βT)T ∈ Θ and

(
ηT, (β∗)T

)T
�=
(

(η̂or)T, (β̂or)T
)T

,

Qω (η, β∗) > Qω(η̂or, β̂or).
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(ii) There is a neighborhood of
(

(η̂or)T, (β̂or)T
)T

, denoted by Θm such that

for any
(
ηT, βT)T ∈ Θm ∩ Θ and sufficiently large m,

Qω(η, β) ≥ Qω (η, β∗)

Therefore, by the results in (i) and (ii), we have Qω(η, β) > Qω(η̂or, β̂or)

for any
(
ηT, βT)T ∈ Θm ∩ Θ and

(
ηT, βT)T �=

(
(η̂or)T, (β̂or)T

)T
, so that(

(η̂or)T, (β̂or)T
)T

is a strict local minimizer of Qω(η, β) for sufficiently large m.
In the following we prove the result in (i). We first show P G

m (T ∗(β)) = Cm

for any β ∈ Θ, where Cm is a constant which does not depend on β. Let
T ∗(β) = α =

(
αT

1 , . . . , αT
K

)T. It suffices to show that ‖αk − αk′‖ > aλ for all
k �= k′. Then, by Condition (C7), ργ (‖αk − αk′‖) is a constant, and as a result
P G

m (T ∗(β)) is a constant. Since

‖αk − αk′‖ =
∥∥αk − α0

k + α0
k − α0

k′ + α0
k′ − αk′

∥∥
≥
∥∥α0

k − α0
k′
∥∥−
∥∥αk − α0

k + α0
k′ − αk′

∥∥
≥
∥∥α0

k − α0
k′
∥∥− 2 max

k

∥∥αk − α0
k

∥∥ ,

and we have

max
k

∥∥αk − α0
k

∥∥2

= max
k

∥∥∥∥∥|Gk|−1 ∑
i∈Gk

βi − α0
k

∥∥∥∥∥
2

= max
k

∥∥∥∥∥|Gk|−1 ∑
i∈Gk

(
βi − β0

i

)∥∥∥∥∥
2

= max
k

|Gk|−2

∥∥∥∥∥∑
i∈Gk

(
βi − β0

i

)∥∥∥∥∥
2

≤ max
k

|Gk|−1 ∑
i∈Gk

∥∥(βi − β0
i

)∥∥2

≤ max
i

∥∥βi − β0
i

∥∥2 ≤ M2n−1
0 .

Then for all k and k′,

‖αk − αk′‖ ≥
∥∥α0

k − α0
k′
∥∥− 2 max

k

∥∥αk − α0
k

∥∥ ≥ b − 2Mn
−1/2
0 > aλ,

where the last inequality follows from the assumption that b > aλ and λ �
n

−1/2
0 . Therefore, we have P G

m (T ∗(β)) = Cm.

Since
(

(η̂or)T, (α̂or)T
)T

is the unique global minimizer of LG
ω(η, α), then

LG
ω (η, T ∗(β)) > LG

ω (η̂or, α̂or) for all
(

ηT, (T ∗(β))T
)T

�=
(

(η̂or)T
, (α̂or)T

)T

and hence QG
ω(η, T ∗(β)) > QG

ω(η̂or, α̂or) for all T ∗(β) �= α̂or due to that
P G

m(T ∗(β)) = P G
m(α̂or). Since we have Qω(η, β) = QG

ω(η, T (β)) for β ∈ MG
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and QG
ω(η, α) = Qω

(
η, T −1(α)

)
, we have QG

ω(η̂or, α̂or) = Qω(η̂or, β̂or) and
QG

ω (η, T ∗(β)) = Qω

(
η, T −1 (T ∗(β))

)
= Qω (η, β∗). Therefore,

Qω (η, β∗) > Qω(η̂or, β̂or)

for all β∗ �= β̂or, and the result in (i) is proved.
Next, we prove the result in (ii).
For a positive sequence tm, let Θm =

{
βi : maxi

∥∥∥βi − β̂or
i

∥∥∥ ≤ tm

}
.

For
(
ηT, βT)T ∈ Θm ∩ Θ, by the mean value theorem, we have

Qω(η, β) − Qω (η, β∗) = mΓ1 + Γ2,

where
Γ1 = ∂Lω(η, βs)

∂βT (β − β∗) ,

Γ2 =
m∑

i=1

∂Pm (βs)
∂βT

i

(βi − β∗
i ) ,

where βs = αβ + (1 − α)β∗ for some constant α ∈ (0, 1).
We know that,

max
i

∥∥β∗
i − β0

i

∥∥2 = max
k

∥∥αk − α0
k

∥∥2 ≤ M2n−1
0 .

Since βs
i is between βi and β∗

i , then,

max
i

∥∥βs
i − β0

i

∥∥ ≤ α max
i

∥∥βi − β0
i

∥∥+ (1 − α) max
i

∥∥β∗
i − β0

i

∥∥
≤ αMn

−1/2
0 + (1 − α)Mn

−1/2
0 = Mn

−1/2
0 .

We will first show the bound of Γ1. The partial derivative with respect to β
is denoted as S̃(η, β) = ∂Lω(η, β)/∂βT. Then, we have

∂Lω(η, βs)
∂βT =

m∑
i=1

WiN
−1
i

Ni∑
h=1

δihπ−1
ih

∂Lih(η, βs)
∂βT

=
m∑

i=1
WiS̃i(η, βs),

where S̃i(η, βs) = N−1
i

∑Ni

h=1 δihπ−1
ih ∂Lih(η, βs)/∂βT. By Condition (C5) and

the mean value theorem, there exists (η̃, β̃) lying between (η, βs) and (η0, β0)
such that

∥∥∥∂2Lih(η, β)/∂(ηT, βT)T∂(ηT, βT)|(η̃,β̃)

∥∥∥ ≤ C4 for sufficiently large
m, where C4 is a positive constant. Combined with Condition (C6), we have

max
i

∥∥S̃i(η, βs) − S̃i(η0, β0)
∥∥

≤ max
i

1
Ni

Ni∑
h=1

δihπ−1
ih {
∥∥∂Lih(η, βs)/∂βT − ∂Lih(η0, β0)/(β0)T∥∥}
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≤ max
i

1
Ni

Ni∑
h=1

δihπ−1
ih

∥∥∥∥∥ ∂2Lih(η, β)
∂(ηT, βT)T∂(ηT, βT)

∣∣∣∣
(η̃,β̃)

{(ηT, (βs)T)−((η0)T, (β0)T)}
∥∥∥∥∥

≤N−1
i

Ni∑
h=1

δihπ−1
ih C4M(q + Kp)n−1/2

0

≤n
−1/2
0 N−1

i

Ni∑
h=1

δihC4C−1
2 Nin

−1
i M(q + Kp)

=Op(n−1/2
0 ). (20)

Moreover, it is known that
∥∥S̃i

(
η0, β0)∥∥ ≤

∑p
l=1
∣∣S̃l

i

(
η0, β0)∣∣, where

S̃l
i

(
η0, β0) = 1

Ni

Ni∑
h=1

δihπ−1
ih xih,l (yih − μih) .

We know that 1
N2

i

∑Ni

h=1 δihπ−2
ih x2

ih,l ≤ 1
n2

i C2

∑Ni

h=1 δihx2
ih,l ≤ c2

x

niC2
≤ c2

x

mini niC2

by Condition (C9). Then, by Condition (C8), we have

P

(∣∣S̃l
i

(
η0, β0)∣∣ ≥√2c−1

1 C−1
2 c2

x

√
log m

mini ni

)

=P

(∣∣∣∣∣ 1
Ni

Ni∑
h=1

δihπ−1
ih xih,l (yi − μi)

∣∣∣∣∣ ≥
√

2c−1
1 C−1

2 c2
x

log m

mini ni

)

≤P

⎛⎝∣∣∣∣∣ 1
Ni

Ni∑
h=1

δihπ−1
ih xih,l (yih − μih)

∣∣∣∣∣ ≥
√√√√ 1

N2
i

Ni∑
h=1

δihπ−2
ih x2

ih,l

√
2c−1

1 log m

⎞⎠
≤2 exp

(
−c12c−1

1 log m
)

= 2 exp (−2 log m) = 2
m2 .

Thus, we have

P

(
max

i

∥∥S̃i

(
η0, β0)∥∥ ≥

√
2c−1

1 C−1
2 c2

x

√
log m

mini ni

)

≤
m∑

i=1

p∑
l=1

P

(∣∣∣S̃l
i

(
η0, β0)∣∣∣ ≥√2c−1

1 C−1
2 c2

x

√
log m

mini ni

)

≤
m∑

i=1

p∑
l=1

P

(∣∣S̃l
i

(
η0, β0)∣∣ ≥√2c−1

1 C−1
2 c2

x

√
log m

mini ni

)

≤mp × 2
m2 = 2p

m
.

The result implies that maxi ‖S̃i

(
η0, β0) ‖ = Op

(√
log m

mini ni

)
. Combined with
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(20), we have

max
i

∥∥S̃i(η, βs)
∥∥

= max
i

∥∥S̃i(η, βs) − S̃i(η0, β0) + S̃i(η0, β0)
∥∥

≤ max
i

∥∥S̃i(η, βs) − S̃i(η0, β0)
∥∥+ max

i

∥∥S̃i(η0, β0)
∥∥

=Op

(√
log m

mini ni

)
.

Since when i, j ∈ Gk, β∗
i = β∗

j , Γ1 can be written as

Γ1 =
K∑

k=1

∑
{i,j∈Gk,i<j}

{WiS̃i(η, βs) − WjS̃j(η, βs)} (βi − βj)
|Gk| ,

Then, we have ∥∥∥∥{WiS̃i(η, βs) − WjS̃j(η, βs)} (βi − βj)
|Gk|

∥∥∥∥
≤2 max

i
Wi |Gk|−1 max

i

∥∥S̃i(η, βs)
∥∥ ‖βi − βj‖

=2 max
i

Wi |Gk|−1
Op

(√
log m

mini ni

)
‖βi − βj‖ .

Based on Condition (C1), we know that all ñk’s are in the same order and
all ni’s are in the same order. Since K is fixed, then |Gk| has the same order as
m. These imply that Op(

√
log m

mini ni
|Gk|−1) = Op(

√
log m

m n
−1/2
0 ). Also, combined

with Condition (C1), then, we have

Γ1 ≥ − 1
m

K∑
k=1

∑
{i,j∈Gk,i<j}

Op

(√
log m

m
n

−1/2
0

)
‖βi − βj‖ . (21)

Next we consider Γ2.

Γ2 =λ
∑

{j>i}
ρ′

γ

(∥∥βs
i − βs

j

∥∥) ∥∥βs
i − βs

j

∥∥−1 (
βs

i − βs
j

)T (βi − β∗
i )

+ λ
∑

{j<i}
ρ′

γ

(∥∥βs
i − βs

j

∥∥) ∥∥βs
i − βs

j

∥∥−1 (
βs

i − βs
j

)T (βi − β∗
i )

=λ
∑

{j>i}
ρ′

γ

(∥∥βs
i − βs

j

∥∥) ∥∥βs
i − βs

j

∥∥−1 (
βs

i − βs
j

)T (βi − β∗
i )

+ λ
∑

{i<j}
ρ′

γ

(∥∥βs
j − βs

i

∥∥) ∥∥βs
j − βs

i

∥∥−1 (
βs

j − βs
i

)T (
βj − β∗

j

)
=λ
∑

{j>i}
ρ′

γ

(∥∥βs
i − βs

j

∥∥) ∥∥βs
i − βs

j

∥∥−1 (
βs

i − βs
j

)T {(βi − β∗
i ) −
(
βj − β∗

j

)}
.
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When i, j ∈ Gk, β∗
i = β∗

j , and βs
i − βs

j = α (βi − βj). Thus,

Γ2 = λ

K∑
k=1

∑
{i,j∈Gk,i<j}

ρ′
γ

(∥∥βs
i − βs

j

∥∥) ∥∥βs
i − βs

j

∥∥−1 (
βs

i − βs
j

)T (βi − βj)

+ λ
∑
k<k′

∑
{i∈Gk,j′∈Gk′ }

ρ′
γ

(∥∥βs
i − βs

j

∥∥) ∥∥βs
i − βs

j

∥∥−1

·
(
βs

i − βs
j

)T {(βi − β∗
i ) −
(
βj − β∗

j

)}
.

Hence, for k �= k′, i ∈ Gk, j′ ∈ Gk′ ,∥∥βs
i − βs

j

∥∥ ≥ min
i∈Gk,j′∈Gk′

∥∥β0
i − β0

j

∥∥− 2 max
i

∥∥βs
i − β0

i

∥∥ ≥ b − 2Mn
−1/2
0 > aλ,

and thus ρ′
γ

(∥∥βs
i − βs

j

∥∥) = 0 by Condition (C7). Therefore,

Γ2 = λ

K∑
k=1

∑
{i,j∈Gk,i<j}

ρ′
γ

(∥∥βs
i − βs

j

∥∥) ∥∥βs
i − βs

j

∥∥−1 (
βs

i − βs
j

)T (βi − βj)

= λ
K∑

k=1

∑
{i,j∈Gk,i<j}

ρ′
γ

(∥∥βs
i − βs

j

∥∥) ‖βi − βj‖ ,

where the last step follows from βs
i − βs

j = α (βi − βj).
When i, j ∈ Gk, we have β∗

i = β∗
j and

max
i

‖β∗
i − β̂or

i ‖ = max
k

‖αk − α̂or
k ‖ ≤ max

i
‖βi − β̂or

i ‖.

Then,
max

i

∥∥βs
i − βs

j

∥∥ ≤ 2 max
i

‖βs
i − β∗

i ‖ ≤ 2 max
i

‖βi − β∗
i ‖

≤ 2
(

max
i

‖βi − β̂or
i ‖ + max

i
‖β∗

i − β̂or
i ‖
)

≤ 4 max
i

‖βi − β̂or
i ‖

≤ 4tm.

Hence ρ′
γ

(∥∥βs
i − βs

j

∥∥) ≥ ρ′
γ (4tm) by concavity of ργ(·). As a result,

Γ2 ≥
K∑

k=1

∑
{i,j∈Gk,i<j}

λρ′
γ (4tm) ‖βi − βj‖ . (22)

Based on (21) and (22), we have

Qω(η, β) − Qω (η, β∗)

≥
K∑

k=1

∑
{i,j∈Gk,i<j}

{
λρ′

γ (4tm) − Op

(√
log m

m
n

−1/2
0

)}
‖βi − βj‖ .
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As tm = o(1), ρ′
γ (4tm) → 1 by Condition (C7). Since λ � n

−1/2
0 , therefore,

Qω(η, β) > Qω (η, β∗). The result in (ii) is proved.
By combining (i) and (ii), we will have that Qω(η, β) > Qω(η̂or, β̂or) for

any
(
ηT, βT)T ∈ Θn ∩ Θ and

(
ηT, βT)T �=

(
(η̂or)T, (β̂or)T

)T
. This shows

that
(

(η̂or)T, (β̂or)T
)T

is a strict local minimizer of the objective function for
sufficiently large m.

Appendix C: Conditions verification

C.1. Poisson sampling

To demonstrate the rationality of the proposed method, we verify the generality
conditions in Section 3 for the case where Poisson sampling is conducted for
each domain; see [20] for a similar treatment. In this section, we verify condi-
tions specifically for Poisson sampling, including (C3)–(C5). We now assume
the following specific conditions.
(A1) The parameter space Θ is compact, containing

(
η0, α0) as an interior

point. For (η, α) ⊂ Θ, LG
ih (η, α) is convex and twice continuously differ-

entiable with respect to (η, α) for i = 1, . . . , m and h = 1, . . . , Ni, where
m → ∞. Besides, E[LG

ih (η, α)]2 < C0 for a constant C0.
(
η0, α0) uniquely

minimizes E{LG
ih (η, α)}.

(A2) The pair (πih, xih, zihyih) is independent of (πjk, xjk, zjk, yjk) for i �= j
or h �= k.

(A3) For all i = 1, . . . , m, there exist two constants 0 < C1 < C2 < ∞ such
that C1 < Nin̄

−1
i πih < C2 for h = 1, . . . , Ni almost surely with respect to

the super-population model, where n̄i =
∑Ni

h=1 πih is the expected sample
size in unit i satisfying n̄i = op(Ni), max{n̄i : i = 1, . . . , m}/ min{n̄i : i =
1, . . . , m} < C3, and C3 is a positive constant. In addition,

max{Ni : i = 1, . . . , m}/ min{Ni : i = 1, . . . , m} < C3,

max{ñk : k = 1, . . . , K}/ min{ñk : k = 1, . . . , K} < C3,

where ñk is the sample size of the kth cluster.
(A4) There exists a compact set B ⊂ Θ containing (η0, α0) as an interior point,

such that sup(η,α)∈B E‖Ŝi (η, α) ‖4 < ∞, where ‖x‖ is the Euclidean
norm of a vector x.

(A5) Given any a ∈ R
q+Kp satisfying ‖a‖ = 1, V {Sa,ih(η0, α0)} > 0, and there

exists a positive definite matrix Σa such that
m∑

i=1
W 2

i n̄iN
−2
i

Ni∑
h=1

π−1
ih

(
1, Sa,ih

(
η0, α0))T (1, Sa,ih

(
η0, α0))→ Σa

in probability with respect to the super-population model, where
V
{

Sa,ih

(
η0, α0)} is the variance of Sa,ih(η0, α0) with respect to the

super-population model, and Sa,ih(η, α) = aTSih (η, α).
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(A6) For (η, α) ∈ B, there exists a positive definitive and non-stochastic ma-
trix ΣS(η, α) such that n̄0V

{
Ŝw(η, α) | F} → ΣS(η, α) in probabil-

ity with respect to the super-population model uniformly over B, where
n̄0 =

∑m
i=1 n̄i, x⊗2 = xxT for a vector x, and

V
{

Ŝw(η, α) | F
}

=
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

π−1
ih (1 − πih) Sih (η, α)⊗2

is the design variance of Ŝω(η, α).
(A7) sup(η,α)∈B E

{
‖Ii (η, α) ‖2} < ∞, and I

(
η0, α0) is invertible, where

I(η, α) is the limit of
∑m

i=1 WiIi(η, α) =
∑m

i=1 WiE{Ii (η, α)} as m →
∞.

(A8) The number of clusters K, and the dimensions of covariates p and q are
fixed. Conditions (C7)–(C9) hold.

Condition (A1) is similar to Condition (C2), and its second part is used to
validate Condition (C3). Condition (A2) guarantees the central limit theorem
by assuming independence between different elements in the finite population,
and the independence is with respect to the model. Condition (A3) regulates
inclusion probabilities as well as population and sample sizes, and it is required
to show the convergence rate in Condition (C4). Condition (A4) is used to show
the central limit theorem for the estimating function. Conditions (A5)–(A6)
assume the probability limit for the scaled estimating function with respect to
Poisson sampling conditional on the finite population, and it is also used to verify
the central limit theorem for the estimating function. Condition (A7) is required
to show the convergence of the information matrix, and Condition (A8) contains
regularity conditions on the penalty term as well as others for the model.

C.1.1. Lemma 1

Under Poisson sampling and Conditions (A1)–(A3), Condition (C3) holds.

Proof.

V {Lω (η, α) |F} = V

{
m∑

i=1
WiN

−1
i

Ni∑
h=1

δihπ−1
ih Lih (η, α) |F

}

=
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

π−1
ih (1 − πih) L2

ih (η, α)

≤
m∑

i=1
W 2

i (C1n̄i)−1Ni
−1

Ni∑
h=1

L2
ih (η, α)

=
m∑

i=1
W 2

i Op(n̄−1
i ),
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where the third inequality is based on Condition (A3), and the last equality holds
by Conditions (A1)–(A2) and weak law of large numbers. Since

∑m
i=1 Wi = 1

and Wi � m−1 by Condition (A3), V {Lω (η, α) |F} → 0 in probability with
respect to the super-population model as ni → ∞ under Poisson sampling.

This completes the proof of Lemma 1.

C.1.2. Lemma 2

Under Poisson sampling and Conditions(A2)–(A4), we have

sup
(η,α)∈B

V̂
{

aTŜω(η, α) | F
}

� n̄−1
0

in probability with respect to the super-population model and the sampling
mechanism, where

V̂
{

aTŜω(η, α) | F
}

=
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

δihπih
−2(1 − πih){aTSih(η, α)}2,

where a ∈ R
q+Kp satisfying ‖a‖ = 1.

Proof. First we consider E
[
V̂
{

aTŜω(η, α) | F
}]

with respect to the super-
population model and the sampling mechanism.

E
[
V̂
{

aTŜω(η, α) | F
}]

= E
(

E
[
V̂
{

aTŜω(η, α) | F
}

| F
])

= E

[
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

δihπih
−2(1 − πih)aTSih(η, α)2 | F

]

=
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

πih
−1(1 − πih)aTSih(η, α)2.

By Conditions (A3)–(A4), we have

E
[
V̂
{

aTŜω(η, α) | F
}]

� n̄−1
0

uniformly over B, where the expectation is taken with respect to super-population
model.

Next, consider the variance of V̂
{

aTŜω(η, α) | F
}

with respect to the super-
population model and the sampling mechanism:

V
[
V̂
{

aTŜω(η, α) | F
}]

= E
(

V
[
V̂
{

aTŜω(η, α) | F
}

| F
])

+ V
(

E
[
V̂
{

aTŜω(η, α) | F
}

| F
])

.
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Under Poisson sampling, we have

E
(

V
[
V̂
{

aTŜω(η, α) | F
}

| F
])

= E

[
V

{
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

δihπih
−2(1 − πih)aTSih(η, α)2 | F

}]

=
m∑

i=1
E

[
V

{
W 2

i N−2
i

Ni∑
h=1

δihπih
−2(1 − πih)aTSih(η, α)2 | F

}]

=
m∑

i=1
W 4

i N−4
i

Ni∑
h=1

πih(1 − πih)πih
−4(1 − πih)2E

{
aTSih(η, α)4}

=
m∑

i=1
W 4

i N−4
i

Ni∑
h=1

πih
−3(1 − πih)3E

{
aTSih(η, α)4}

≤
m∑

i=1
W 4

i (C1n̄i)−3N−1
i

Ni∑
h=1

E
{

aTSih(η, α)4}
� n̄−3

0 ,

and

V
(

E
[
V̂
{

aTŜω(η, α) | F
}

| F
])

=V

{
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

πih
−1(1 − πih)aTSih(η, α)2

}

=
m∑

i=1
W 4

i N−4
i

Ni∑
h=1

V
{

πih
−1(1 − πih)aTSih(η, α)2}

≤
m∑

i=1
W 4

i N−4
i

Ni∑
h=1

E
[
πih

−2(1 − πih)2 {aTSih(η, α)
}4]

≤
m∑

i=1
W 4

i (C1n̄i)−2N−2
i

Ni∑
h=1

E
[
(1 − πih)2 {aTSih(η, α)

}4]
=o(1)

uniformly over B by Condition (A4). This completes the proof of Lemma 2.

C.1.3. Lemma 3

Under Poisson sampling and Conditions (A2)–(A6), Condition (C4) holds.

Proof. Given every a ∈ R
q+Kp satisfying ‖a‖ = 1, by Conditions (A2)–(A5),

Theorem 1.3.5 of [13] shows

V̂
{

aTŜω(η0, α0) | F
}−1/2

aT
{

Ŝω(η0, α0) − Sω(η0, α0)
}

|→ N(0, 1)
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in distribution with respect to the sampling mechanism conditional on finite
population in probability, where Ŝω(η0, α0) =

∑m
i=1 WiN

−1
i

∑Ni

h=1 δihπ−1
ih Sih(

η0, α0), Sω(η0, α0) = E{Ŝω(η0, α0) | F}.
Since the finite population is a random sample generated from a super-

population model satisfying Conditions (A4)–(A5), by the Chebychev’s inequal-
ity [2, Corollary 3.1.3], we have

aTSω(η0, α0) = aT [Sω(η0, α0) − E
{

Sω(η0, α0)
}]

= op(n̄−1/2
0 )

with respect to the super-population model, where the second equality holds
since E

{
Sω(η0, α0)

}
= 0, and the last equality holds by Condition (A3).

Thus, by Condition (A6), Lemma 3 and Theorem 5.1 of [39] we have

V̂
{

aTŜω(η0, α0) | F
}−1/2

aTŜω(η0, α0) → N(0, 1)

in distribution with respect to the super-population model and the sampling
mechanism, which validates Condition (C4) by the Cramér-Wold device.

C.1.4. Lemma 4

Under Poisson sampling, Conditions (A2)–(A3) and Condition (A7), Condition
(C5) holds.

Proof. Consider

E
{

Îω(η, α) | F
}

=
m∑

i=1
WiN

−1
i

Ni∑
h=1

Iih (η, α)

E

{
m∑

i=1
Ii (η, α)

}
= I(η, α).

Then we have

E
{

Îω(η, α)
}

= E
[
E
{

Îω(η, α) | F
}]

= I(η, α)

with respect to the super-population model and the sampling mechanism. For
a ∈ R

q+Kp satisfying ‖a‖ = 1, consider the variance of aTÎω(η, α)a with
respect to the super-population model and the sampling mechanism:

V
{

aTÎω(η, α)a
}

= E
[
V
{

aTÎω(η, α)a | F
}]

+ V
[
E
{

aTÎω(η, α)a | F
}]

.

First consider

V
{

aTÎω(η, α)a | F
}

=
m∑

i=1
W 2

i N−2
i

Ni∑
h=1

1 − πih

πih
Z2

a,ih(η, α)

≤
m∑

i=1
W 2

i (C1ni)−1 1
Ni

Ni∑
h=1

Z2
a,ih(η, α),
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where Za,ih = aTIih (η, α) a, the second inequality holds by Conditions (A2)–
(A3). Thus we have

E
[
V
{

aTÎω(η, α)a | F
}]

= O(n̄−1
0 )

in probability with respect to the super-population model uniformly over B by
Condition (A7).

Next consider

V

{
m∑

i=1
WiN

−1
i

Ni∑
h=1

aTIih (η, α) a

}
=

m∑
i=1

W 2
i N−1

i V
{

aTIih (η, α) a
}

≤
m∑

i=1
W 2

i N−1
i E

{
|aTIih (η, α) a|2

}
= o(1)

in probability with respect to the super-population model uniformly for (η, α) ∈
B by Condition (A7), where the last equality holds by Condition (A3).

By Markov’s inequality, we can show that

Îω(η, α) → I(η, α)

in probability with respect to the super-population model and the sampling
mechanism uniformly for (η, α) ∈ B, which completes the proof of Lemma 4.

C.2. Stratified multistage cluster sampling

In this section, we consider a popular stratified multistage cluster sampling as
in Example 1 of [20]; see Example 1 of [40] for a similar treatment. We assume
that elements within each stratum share common regression coefficients, and we
estimate the cluster structure by regression coefficients on the stratum level.

Assume that there exist m strata in the finite population F . Let Ni be the
number of clusters in the ith stratum, Mih be the number of elements in the hth
cluster of the ith stratum, and Mi =

∑Ni

h=1 Mih be the size of the ith stratum,
where Ni is the number of clusters in the ith stratum. Let ni be the number of
clusters selected from the ith stratum with selection probability pih satisfying∑Ni

h=1 pih = 1 for i = 1, . . . , m, where pih is proportional to a size measure,
for example, pih ∝ Mih for h = 1, . . . , Ni. Within each selected cluster, de-
note L̂ih(η, β) and Ŝw,ih(η, β) as design-unbiased estimators of the associated
cluster means of the objective function and score function under sampling at
the second and subsequent stages. Then, the probability-weighted score func-
tion is Ŝw(η, β) =

∑m
i=1 WiŜw,i(η, β), where Wi ∝ Mi and

∑m
i=1 Wi = 1,

Ŝw,i(η, β) = n−1
i

∑ni

h=1 S̃w,ih(η, β), S̃w,ih(η, β) = da(ih)p
−1a(ih)Ŝw,a(ih)(η, β),

da(ih) = Ma(ih)/Mi, a(ih) is the index of the hth selected cluster. We implic-
itly assume that m → ∞, and the number of stages are fixed for the sampling
design. For this sampling design, we make the following assumptions.
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(B1) There exists constants 0 < C1 < C2 < ∞, such that C1 < Mipih < C2
almost surely with respect to the model for i = 1, . . . , m and h = 1, . . . , Ni.

(B2) max1≤i≤m ni = O(1).
(B3) There exists δ > 0 such that

m∑
i=1

WiE
{

‖S̃w,a(i1)(η, α) − Si(η, α)‖2+δ | F
}

= Op(1)

with respect to the model uniformly for (η, α) ∈ B, where B is a compact
set containing (η0, α0) as an interior point, and Si(η, α) = E{S̃w,a(i1)(η,
α) | F} is the average score function associated with the ith stratum.

(B4) max1≤i≤m sup(η,α)∈B E
{

‖Îw,a(i1)(η, α)‖2 | F
}

= Op(1) with respect to
the model, where Îw,ih(η, α) = ∂Ŝw,ih(η, α)/∂(η, α).

(B5) There exists a non-stochastic function I(η, α) such that

sup
(η,α)∈B

‖I(η, α) − I(η, α)‖ → 0

in probability with respect to the model, where

I(η, α) = E{Îw(η, α) | F}, Îw(η, α) =
m∑

i=1
WiÎw,i(η, β)

Îw,i(η, β) = n−1
i

ni∑
h=1

Ĩw,ih(η, β), Ĩw,ih(η, β) = da(ih)p
−1a(ih)Îw,a(ih)(η, β),

and I(η0, α0) is invertible.
(B6) sup(η,α)∈B‖n0

∑m
i=1 W 2

hV {S̃w,a(i1)(η, α) | F} − ΣS(η, α)‖ → 0 in proba-
bility with respect to the model, where ΣS(η, α) is a non-stochastic and
positive definitive variance matrix for (η, α) ∈ B, and n0 =

∑m
i=1 ni.

(B7) sup(η,α)∈B V {S(η, α)} = o(n−1
0 ) with respect to the model, where S(η, α)

= E{Ŝw(η, α) | F}.
(B8) Conditions (C1)–(C3), (C6)–(C9) hold.

Conditions (B1)–(B2) are commonly assumed for stratified multistage cluster
sampling [22]. That is, we consider a sampling design, where the number of
selected clusters is bounded but the number of strata diverges. Condition (B3)
is used to show the central limit theorem in Condition (C4), and Conditions
(B4)–(B5) are mainly used to show the convergence result in Condition (C5).
Conditions (B6)–(B7) shows the convergence of the sample variance conditional
on the finite population, and the variance V {S(η, β)} is asymptotically negli-
gible, which is required by the second part of Condition (C7). Condition (B8)
regulates the objective function as well as the penalty, and the variance of the
probability-weighted objective function is also assumed to converge in proba-
bility. Specifically, by Condition (B8), we can show max1≤i≤m Wi = Op(m−1),
which is essential to establish convergence rates under stratified multi-stage
cluster sampling.
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Different from Poisson sampling, the sampling indicators may be correlated
due to sampling at the second and subsequent stages. Under the above con-
ditions, Conditions (C4)–(C5) can be verified in exactly the same manner as
Lemmas S5–S6 of [20], so the detailed proofs are omitted.

Appendix D: More simulation results

In this section, we present the results of our proposed estimator when the data
sets are simulated from settings that are different from the assumed models.

D.1. Example 1

In this example, we generate finite populations from linear mixed models, that
is

yih = ui + β0,i + β1,ixih + εih, (23)

where ui is a random effect with ui
iid∼ N(0, ε2

u). This model used a lot in small
area estimation in survey sampling, see examples in [36]. Other settings are the
same as those in Section 4.1. Note that, [24] did a similar comparison without
employing a survey sampling setup. In their comparison, they simulated datasets
from a linear mixed model with common regression coefficients and explored the
performance of the clustered intercept model for capturing the random effects.
In our model, the values of β′

0,is can contain the information of random effects.
We explore and compare the results for different values of εu = 0.1, 0.2, 0.4, 0.5
for CC and PCC. Table 6 shows the estimated K̂ and ARI for different setups.
It can be seen that when εu and ni are larger, the estimated K̂ is much larger
than the true number of clusters. This is because that the estimated values of
β′

0,is have the information of ui. In Figure 3, we calculate RMSEs defined as
RMSE2 = 1

m

∑m
i=1(β0,i +ui − β̂0,i)2, which measures the accuracy of using fixed

clustered effects to estimate the fixed intercept and random effects together.
From these figures, we observe that when ni = 30, 50 and εu = 0.4, 0.5, PCC
has much smaller RMSE for estimating βi,0 + ui. These are consistent with
the estimated number of clusters in Table 6, which implies that the β̂i,0 has
information of ui. CC can capture this information only when εu = 0.5 and
ni = 50.

D.2. Example 2

In this example, we generate a finite population from the following model.

yih = β0,i + β1,ixih + b log(|xih|) + εih. (24)

Table 7 summarizes the results of average K̂ and average ARI based on 1 000
simulations when b = 0.3 and 1. When b = 0.3, the fitted model is not really
different from the true model. PCC can identify the cluster structure well and
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Table 6

Summary of average K̂ and average ARI of CC and PCC for the linear mixed model based
on 1 000 simulations, along with standard deviations in the parentheses.

K̂ ARI
CC PCC CC PCC

εu = 0.1
ni = 10 5.01(1.089) 3.41(0.578) 0.94(0.042) 0.99(0.019)
ni = 30 4.94(0.739) 3.05(0.232) 0.95(0.042) 1(0.01)
ni = 50 4.96(0.617) 3.04(0.206) 0.96(0.036) 1(0.005)

εu = 0.2
ni = 10 5.00(1.085) 3.41(0.587) 0.94(0.04) 0.99(0.019)
ni = 30 4.85(0.66) 3.04(0.204) 0.96(0.033) 1(0.006)
ni = 50 4.72(0.542) 3.21(0.976) 0.97(0.021) 0.99(0.061)

εu = 0.4
ni = 10 5.03(1.088) 3.54(0.932) 0.93(0.042) 0.98(0.049)
ni = 30 4.70(0.527) 10.4(1.288) 0.97(0.017) 0.56(0.051)
ni = 50 5.30(2.468) 11.06(1.668) 0.92(0.142) 0.5(0.064)

εu = 0.5
ni = 10 5.14(1.134) 5.47(3.153) 0.92(0.049) 0.86(0.18)
ni = 30 5.00(1.299) 10.82(1.611) 0.95(0.076) 0.51(0.064)
ni = 50 12.18(1.511) 12.61(1.585) 0.56(0.069) 0.43(0.056)

Fig 3. RMSE2 based on 1 000 simulations with expected sample size ni = 10 (top), ni = 30
(middle) and ni = 50 (bottom).

performs better than CC. When b = 1, both approaches have worse performance
compared to the case in Section 4.1 when the sample size is small (ni = 10).
The performances are similar to the case in Section 4.1 when the sample size is
large.
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Table 7

Summary of average K̂ and average ARI of CC and PCC for model (24) based on 1 000
simulations, along with standard deviations in the parentheses.

K̂ ARI
CC PCC CC PCC

b = 0.3
ni = 10 4.86(1.034) 3.41(0.565) 0.94(0.039) 0.98(0.024)
ni = 30 4.86(0.771) 3.06(0.234) 0.95(0.043) 1(0.015)
ni = 50 4.89(0.637) 3.05(0.233) 0.96(0.037) 1(0.013)

b = 1
ni = 10 5.83(1.379) 4.87(0.975) 0.84(0.096) 0.86(0.065)
ni = 30 4.51(0.590) 3.17(0.378) 0.96(0.022) 0.99(0.024)
ni = 50 3.98(0.333) 3.05(0.221) 0.98(0.011) 1(0.019)

D.3. Example 3

In this example, we generate a finite population from the following model. In
this example, the cluster structure is applied for a nonlinear term of xih.

yih = β0,i + β1,i(xih + log(|xih|) + εih. (25)

Table 8 summarizes the results of average K̂ and average ARI. We observe
that CC has a very small ARI when ni = 10, which indicates that it cannot
recover the cluster structure. Our proposed PCC tends to estimate the number
of clusters larger than the true value, but the ARI is still relatively large.

Table 8

Summary of average K̂ and average ARI of CC and PCC for model (25) based on 1 000
simulations, along with standard deviations in the parentheses.

K̂ ARI
CC PCC CC PCC

ni = 10 3.98(2.264) 4.73(1.054) 0.20(0.265) 0.91(0.044)
ni = 30 5.54(0.787) 3.79(0.694) 0.92(0.042) 0.97(0.021)
ni = 50 4.86(0.451) 4.11(0.687) 0.96(0.015) 0.96(0.019)
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