
HoloCube: 3D Opitcal IoT Connections via
Software Defined Pepper’s Ghost

Xiao Zhang1, Li Xiao2, Matt W. Mutka2

University of Michigan-Dearborn1, Michigan State University2

zhanxiao@umich.edu1,lxiao@cse.msu.edu2, mutka@msu.edu2

Abstract—Optical wireless communication (OWC) has inher-
ent location aware and spatial reuse advantages over RF-based
technologies due to the Line-of-Sight (LoS) propagation of optical
signals. Hence, OWC presents a fresh opportunity for effective
and secure IoT connectivity and data transmission. However,
most OWC systems design transmitter as a point source without
considering its spatial diversity in data delivery in 3D space,
which is not suitable for real-world mobile IoT connections
among devices and users. In this paper, we design and implement
HoloCube, which provides 3D optical IoT connections via soft-
ware defined optical camera communication and Pepper’s ghost
effect. At the heart of the HoloCube design is multiple virtual 3D
hollowed-out cubes with adaptive Spatial-Color Shift Keying (S-
CSK) modulation. Specifically, the virtual cube seen from various
directions has constant structure but embeds different data over
time. The cube’s positioning elements provide double reference
for both 3D reconstruction (spatial) and robust color decoding
(spectral). Our comprehensive experiments demonstrate that
HoloCube achieves practical 3D omnidirectional IoT connections
with 70 Kbps goodput at 4m in real-world indoor setting.

I. INTRODUCTION

With the rapid advancement of wireless technology, inte-

grated communication and sensing (ICS) technologies have

attracted significant interest from industry and academia. ICS

is a promising development for next-generation wireless net-

works and IoT applications. These ubiquitous wireless con-

nections aim to provide high-speed, ultra-low latency commu-

nication with enhanced security and precise sensing and local-

ization capabilities. Consequently, ICS services are expected

to boost broad future applications, including AR/VR/MR, and

networks for vehicles and drones [1]–[9].

Among various ICS wireless methods, optical wireless tech-

nology which uses energy-efficient transceivers such as LED

bulbs, screens, displays, and cameras, shows great potentials

[1]. Optical signals possess a spectrum bandwidth 10,000

times broader than RF (radio frequency) wireless technologies

like LTE, 5G, WiFi, and even high-frequency spectrums such

as mmWave and THz [1], [10], [11]. Hence, optical wire-

less communication (OWC) faces no bandwidth congestion

issues. Unlike RF signals, which propagate in Non-Line-of-

Sight (NLoS) mode, optical signals travel directly in Line-

of-Sight (LoS) manner. The LoS signal propagation in OWC

offers three main advantages: (1) it establishes secure wireless

connections within physical spaces, making eavesdropping

difficult [3]; (2) it allows for numerous optical links to coexist,

enabling practical IoT connections with spatial multiplexing

Fig. 1: Traditional optical wireless systems lack full 3D

mobility, unlike HoloCube for 3D Optical IoT connections,

which provides software defined integrated sensing and com-

munication for indoor personal area network.

without significant interference [12]; and (3) it provides 3D

location awareness in a visible and straightforward manner

without disrupting communication services [13]–[15].

However, optical signals’ LoS paths are prone to be blocked

and require precise pointing between the transmitter and the

receiver. For example, LiFi systems need the receiver to point

(a single-pixel photo diode) to the transmitter (a single LED

bulb) for successful communication [16], [17]. To extend

users’ mobility, we can adopt cameras as OWC receivers that

consist of millions of pixels for light perception. For example,

we can hold a camera to sense whether a light bulb is On/Off

or scan a bar/QR code on a display within 180° instead of

precise pointing needed for LiFi usage [18]. Even so, the

IoT devices’ connections are still restricted without full 3D

directions and space, unlike RF wireless technologies. We

found this limitation comes from non-3D optical transmitters,

especially directional designs like LED bulbs (0D), linear LED

bars (1D), or screens (2D), as shown in Figure 1.

To address the limitation above, we can design and use

3D optical transmitter instead of a point light source for

integrated localization and omnidirectional communication for

multiple IoT devices and users. As demonstrated in U-Star

[13], the authors design a physically 3D hollowed-out cube-

shaped passive optical tag and then achieve omnidirectional

scanning via a camera in an underwater 3D space. Given that

U-Star tags are passive optical tags with fixed data embedding,

they cannot be used for active optical wireless transmission

where the data varies over time. To enable omnidirectional
optical wireless links for multiple IoT devices and users, we

design a 3D-shaped and active optical transmitter while using979-8-3503-5171-2/24/$31.00 ©2024 IEEE
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commercial cameras as receivers.
This paper presents HoloCube, the virtual but visual 3D

tags for omnidirectional optical wireless to break the bottle-
neck that exists for OWC approaches. HoloCube is a software-
defined optical transmitter comprising an optical front-end (8-
directional reflector and smartphone screen), data plane (frame
generator on a smartphone), and control plane (via an inaudi-
ble channel). Users and IoT devices at different directions
and locations in the same space can receive specific data
simultaneously via handheld smartphones, even while moving.
To reliably achieve 3D optical IoT connections, HoloCube has
to tackle several critical technical challenges proposed by the
omnidirectional service design goals:

• 3D Directed Optical Transmission. Instead of using
multiple LED bulbs oriented in different directions, we
create software-defined optical virtual 3D tags containing
directional data for IoT devices. Generating synchronized
yet direction-specific optical signals in one transmitter for
multiple users at different locations poses a challenge.

• Robust Optical Decoding. To achieve reliable opti-
cal wireless connections with adaptive data rate, the
HoloCube exploits spectrum (colors) and spatial (spatial
dots) diversities for data embedding that varies with
image frames. It is difficult to differentiate these colorful
dots at variable distances and ambient light.

• Location-aware User Access. The HoloCube is designed
for omnidirectional optical delivery to cater to multiple
users positioned in various directions and distances from
the HoloCube. Identifying and serving multiple users
while accounting for their specific locations and resource
requirements presents a significant challenge.

Importantly, our proposed HoloCube enabled 3D optical IoT
connections are generally applicable to various IoT applica-
tions and scenarios, which is essential for our motivation for
next-gen IoT era. We demonstrate the applicability with the
low-cost prototype and real-world experiments while they can
be upgraded and extended for more applications.

In summary, our intellectual contributions are as follows:
• HoloCube is the first work to exploit Pepper’s Ghost

effect to generate virtual but real 3D tags for omnidi-
rectional optical wireless connections.

• Our design extends optical camera communication dis-
tance from <1m to 4m and angles from <180° to 360°
with robust optical decoding via double references.

• We implement an inaudible control channel with a
location-aware MAC design for adaptive resource allo-
cation, multi user access and services.

• The comprehensive experiments show that our prototype
achieves 3D connections with 70Kbps up to 4m in office
setting and 100% accuracy of user identification.

The proposed HoloCube is poised to drive real-world ap-
plications utilizing 3D optical IoT connections, particularly
in scenarios where radio frequency (RF) signals are limited.
For instance, in medical settings, HoloCube can transmit data
without interfering with sensitive equipment such as pacemak-

ers, implantable defibrillators, ventilators, and MRI machines.
In smart homes, HoloCube can manage devices, including
sensors in densely populated areas. In industrial environ-
ment, it can ensure reliable data transmission unaffected by
electromagnetic noise from machinery and provides accurate
location tracking (e.g., indoor traffic light system for robots
and ground vehicles in warehouse or plants). Additionally,
in high-security environments (e.g., government offices), it
offers secure communication with minimal risk of interception.
These benefits give HoloCube practical implications, making
it especially effective in scenarios where RF technology may
fall short.

II. MOTIVATION

Drawbacks of Current OCC: Optical Wireless Commu-
nication (OWC) includes techniques like Li-Fi, Visible Light
Communication, Optical Camera Communication (OCC), and
Free Space Optical Communication (FSOC) [1]. Thanks to
the popularity of smartphones equipped with cameras, OCC
obtains great attentions for IoT connections. Despite advance-
ments in camera imaging, existing OCC systems treat the LED
bulb and camera as a point-to-point optical imaging system
without spatial diversity. While researchers have increased
the camera’s light sensing frequency using the rolling shutter
effect, it still lags behind the fast switching ability of LED
bulbs, limiting OCC data rates to about 8 Kbps [3], [11], [19]–
[23]. To enhance OCC, researchers use 2D spatial diversity in
camera imaging by employing a commercial screen or display
as an optical modulator [12], [24]. Unlike traditional point-
to-point OCC, this approach operates at the frame rate level
rather than the faster shutter rate. By utilizing millions of
pixels in both the display and the camera’s image sensor, data
rates of about 1 Mbps can be achieved, as demonstrated in
Aircode [12]. However, these screen-camera communications
have limited working range (less than 1m) and scanning angles
(less than 180°), making them impractical for omnidirectional
optical IoT connections among multiple devices. Additionally,
compared to 3D optical tags [13], 2D data embedding suffers
from limited symbol distance for robust decoding.

Software Defined Pepper’s Ghost: Pepper’s Ghost is a
classic technique for creating transparent ghostly images [25].
Popularized by John Pepper in the 1800s, this technique re-
flects an image off plexiglass. It is commonly used in theaters,
where viewers see a virtual image with depth, seemingly
emerging from nowhere. Achieved by reflecting an image onto
a transparent screen at a 45° angle, it creates a tangible object,
as shown in Figure 2 (a) with example of ghost Minions.

There are three possible approaches to design a 3D omni-
directional optical transmitters: (1) design a 3D hollowed-out
light source that consists of LED nodes controlled by a micro-
controller, (2) physically holographic: generating the real 3D
object in air, (3) visually holographic: displaying the virtual-
3D object in 2D planes via the Pepper’s ghost effect [26]. The
first solution requires complex hardware implementation and
control and cannot provide direction-specific data embedding.
The techniques for (2) are being explored and the devices are
very expensive [27]. HoloCube explored the third solution,
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which is cost-effective with software defined optical potential

and configuration flexibility.

Fig. 2: (a) A smartphone with a Pepper’s ghost reflector can

show virtual 3D object. (b) HoloCube is software-defined and

offers 3D optical connections for IoT devices.

III. HOLOCUBE IN A NUTSHELL

Overview. HoloCube facilitates 3D omnidirectional optical

IoT connections among HoloCube tag and stationary or mobile

IoT devices with camera as reader. It provides software-

defined resource allocation, multiple user access with location

awareness, and optical/audio dual-channel for data and control

planes. For example, if an IoT device, such as a ground ve-

hicle with a camera automatically oriented towards HoloCube

(similar to a sunflower facing the sun), moves within an office,

it can either receive data from HoloCube tag via optical IoT

connection or report sensing data to HoloCube tag through an

inaudible audio channel. Subsequently, HoloCube can deliver

the requested data or control commands to specific IoT devices

with adaptive data rate and brightness energy.

Applicable Scenarios. HoloCube is applicable in a wide

range of scenarios since modules such as screens, cameras,

speaker and microphone have been ubiquitously deployed as

default on many edge devices [28]–[30]. HoloCube is designed

to cater to various applications such as smart home, smart

factory, and indoor navigation, offering secure IoT connections

within spaces, free from eavesdropping risks. With upgrades,

HoloCube can handle outdoor challenges, extending its use to

smart transportation and vehicular networks.

System Architecture. HoloCube comprises two compo-

nents, as illustrated in Figure 3: (1) 3D active virtual optical

tags, referred to as HoloCube tag, and (2) AI-based mobile

tag readers, which are massive IoT devices.

• HoloCube Tags (Sec. IV): Mounted on ceilings with

fixed orientations, these tags include an optical front-end

(a smartphone screen and a Pepper Ghost Reflector) and

connect to the Internet, functioning as optical routers.

They display eight virtual 3D cubes with consistent vertex

colors (red, green, blue, and white) and unique data

Fig. 3: HoloCube System Architecture.

elements. Proper spacing ensures clear data presentation

by preventing Line-of-Sight (LoS) blockage.

• Tag Readers (Sec. V): Smart devices with cameras

capture HoloCube images. They track tags with YOLO,

classify visual orientation, estimate distance, and parse

data using spatial and spectrum references to counter

ambient light. Spatial reference restores 3D structure and

locates data elements. Spectrum reference retrieves data

by comparing colors to positioning elements.

• Optical and Inaudible Dual Channels (Sec. VI): We

use spatial and spectrum diversity in optical imaging

for rapid omnidirectional delivery in the optical data

channel, employing techniques like S-CSK modulation

and adaptive resource allocation. To ensure smooth user

access and services, we also establish an inaudible control

channel in the near-ultrasound spectrum, handling user

identification, access control, and metadata transmission.

IV. TAG DESIGN

Three components make up the HoloCube tag we created:

(1) a video frame generator, (2) an omnidirectional reflec-
tor, and (3) the virtual yet real 3D cubes that are the reflected

images from the screen through a certain sector of the reflector.

In the design of the HoloCube, there are some key parameters

illustrated in Table I. Si denotes the sector index with range

from 1 to 8. O denotes the modulation order with the range

of [3, 6]. θ denotes the angle between the sector plane and

the screen plane in the range of [30°, 45°, 60°]. We set 45°

in the final design with analysis. C denotes the divide color

scales in the modulation. D denotes the transmission distance

in the range of 1m to 5m. The 3D virtual optical cube is the

de facto transmission front-end and we illustrate it first.

TABLE I: 5 key parameters in HoloCube tag design.

A. 3D Virtual Optical Cube

3D Embedding Design. The presented 2D image of the

3D virtual cube seen from specific directions are expected

to be different based on the perspective principle but they

represent the exact one spatially-united (i.e., the same size and



Fig. 4: 3D data embedding and symbol distance compar-

ison with 1D and 2D optical codes.

Fig. 5: 4 positioning element pairs based S-16-CSK

(Spatial-Color Shift Keying) modulation.

orientation) 3D cube, as illustrated in Figure 2 (b). Given an

example, a 3-order 3D cube has 33 = 27 elements, which

includes 8 vertices as positioning elements and the inside

remaining 19 elements as data elements. These elements are

spatially distributed in a 3D space instead of an existing

bar/QR code where elements are distributed in a linear or

planar manner with limited symbol distance and the scanning

angle limitation. For instance, a data element (i.e., dot) in a

cube has a broader normalized symbol distance distribution

than a dot in a square, as illustrated in Figure 4. Besides,

there is no LoS blockage issue in U-Star [13] thanks to our

software defined video frame generation with preset proper

viewing angles of the camera.

S-CSK modulation. In contrast to the static data in an U-

Star tag [13], the color of each element in our virtual 3D

cube can be set synchronously and separately to the expected

color to represent the time-varied data. To boost the data

rate, we adopt the Color Shift Keying (CSK) modulation in

numerous spatial data elements, which is named as S-(N)-CSK

modulation. N is the color scales listed in Tab I. Each data

element can be the combination of different amounts of R

(red), G (green), and B (blue) colors. Each pure color (Rp,

Gp, Bp) is divided into N scales of [0, 255]. For example,

if the N is 16. Then a data element‘s color mixed with Red

of 240 (14× 16), Green of 128 (07× 16), and Blue of 48

(02× 16), as shown in Figure 5. We define the 14×, 07×,

and 02× as the α, β, and γ, formulated as below.

C = α×Rp/16 + β ×Gp/16 + γ ×Bp/16 (1)

Thus, each data element can denote log2(16× 16× 16) =

12 bits. A 3-order virtual 3D tag can embed 12 × 19 = 228

bits in one frame duration, and 228 bits × 60Hz × 8 directions

= 109.4 Kbps data rate with 60 Hz display refresh rate. The

benefit of S-CSK compared with traditional CSK is its spatial

multiplexing via these numerous data elements instead of

solely one light source. Furthermore, these spatially located

data elements have no mutual signal interference thanks to the

millions of pixels of both screen and the camera to separate

them via the pinhole imaging principle.

B. Video Frame Generator
Center-Bias Elements Generation. An object or a cube

seen from different view angles are different as caused by the

perspective principle. Our goal is to generate these different

viewed images of the same cube at the same time on the

screen. The challenge is to generate each element of these

8 cube images (i.e., eight 3-order cubes have 27 × 8 = 216

elements with different sizes and specified setting colors)

considering different screen sizes. We design the center-bias

elements generation algorithms, as illustrated in Figure 6.

There are 6 steps: (1) use Unity 3D platform to create 3D

cube with 8 vertices, (2) capture the 2D image of the tag seen

from 8 directions, (3) generate a frame consists of these 8

captured 2D images at their specific sectors, (4) find the center

point of the frame and measure the normalized bias from each

vertex of a cube image to the center point in both x and y

directions, (5) generate all the positioning elements of cubes

from 8 directions based on the center-bias values whatever the

screen size is, (6) based on these positioning elements, it is

easy to find other elements from a cube according to the space

geometry (e.g., middle point, three equal points, etc.).
Adaptive Cube Order. The data rate of HoloCube increases

with the cube order O and we can design the HoloCube with

an adaptive cube order from the basic 3-order to the 6-order

for an adaptive data rate (i.e., 13.68 to 149.76 Kbps for a

Fig. 6: 1 video frame with 8 3D cubes on sectors. Fig. 7: One examples of 3D tags with adaptive orders.



Fig. 8: 3D printed 45◦ reflector with 8 sectors. Fig. 9: Spatial-united cubes with direction-specific data.

cube with 60 Hz refresh rate and N is 16). If 8 directional

cubes are with different data, the achieved data rate can vary

from 109 Kbps to 1.2 Mbps. One example of cubes with

adaptive orders is shown in Figure 7. To achieve these adaptive

cube order, we can follow the above center-bias elements

generation algorithms to first find positioning elements, then

calculate the locations of other elements one by one. Although

each element is calculated, the entire computation latency is

less than the refresh period and therefore keep these elements

shown and updated synchronously. The frame generating time

grows exponentially as the S-CSK order increases. However,

this latency can be reduced by searching for and displaying

pre-generated frames from a database on a smartphone (i.e.,

using additional storage space to reduce time costs.

C. Omnidirectional Reflector

Spatial-United Cubes. The generated image frame on the

screen is reflected by the omnidirectional reflector shaped with

an 8-sector pyramid based on Pepper’s Ghost illusion. The

reflector is 3D printed with 8 sectors and the reflection angle

is set as 45◦. Each sector of the reflector is coated with black

plastic thin film with a smooth plane. Thus the 8 virtual cubes

on the screen can be seen by user via related sector of the

reflector. Although these virtual cubes are a 2D image, they

simulate a physical 3D cube in space, as illustrated in Figure

8 and Figure 9. If the inside data elements from these 8 cubes

are the same (both spatial-united and data-united), it indeed is

the same scene for the user’s vision as a physical cube.

Direction-Specified Data. As shown in Figure 8, we print

reflectors with 30◦, 45◦, and 60◦ reflection angles. The virtual

cube generated by 60◦ reflector is too low to view while 30◦

reflector is too high to view. Thus, we choose the reflector

with 45◦. Besides the serving for single user, we should also

consider serving multiple users in different directions to the

HoloCube. Therefore, we design the reflector with 8 sectors

instead of 4 is to fully utilize the finer-grained spatial diversity

for multi-user services.

Thanks to the software defined optical feature of our

HoloCube via the video frame generation, we can easily

achieve a spatial-united cube but direction-specified data em-

bedding and resource allocation for which a physical cube

cannot achieve easily with a low cost. As shown in Figure 7

and Figure 9, we can set the 8 cubes with different embedded

data for users at different directions. Besides the 8 sectors with

8 cubes for 8 directions, we can also conduct 4, 6, or other

numbers of directions with simply an adaptation of the video

frame generator and the reflector design.

V. READER DESIGN

In this section, we will focus on tag reader design. To

decode the embedded data in a virtual but visual 3D cube

inside of the HoloCube, the first task for the reader is to

determine the location of the HoloCube from the surroundings.

Then, the reader can further crop the 2D image of the inside

virtual but visual 3D cube from the tracked HoloCube for

next step: decoding. Convolutional Neural Networks (CNN)

are widely applied in many applications especially in computer

vision areas including image recognition, objectives tracking,

image segmentation, etc. YOLO (You Only Look Once) mod-

els are widely used for objective detection due to their fast

Fig. 10: YOLO assisted tag tracking, orientation guidance, and audio based user identification and ranging.



inference and robust performance. Thus, we adopt YOLOv5

model for 4 goals, as shown in Figure 10 (b): (1) real-

time tag tracking, (2) user orientation determination, (3) user

identification from spectrogram of chirp-bin matrix and (4)

received signal strength based ranging.

A. Tag Tracking & Orientation Awareness

Tag Tracking via YOLO. As shown in Figure 10 (a),

the adopted open sourced YOLOv5 CNN network consists

of EfficientNet backbone, BiFPN layers for efficiently extract

objectives’ features. Then, these extracted features are fed

into the prediction nets for HoloCube recognition with the

bonding box (location determination). We captured the image

of a HoloCube tag with random angles and varied distances

within 5m at different altitudes. The total number of images for

training is 100. We manually label the HoloCube tag with

bonding box in images via Roboflow platform with data

augmentation to increase the dataset size to 145 images.

User Orientation Determination. In our HoloCube design

illustrated in Section IV-C, the data are directional for users

at different directions, thus the reader should know the user’s

orientation based on the positioning elements (P.E.) seen from

the virtual but visual 3D cube. The positioning elements are

4 pairs of colorful diagonal vertices. Thus, they can generate

specific color arcs in each specific plane of the virtual 3D cube

and thus to reflect user’s orientation, as illustrated in Figure 10

(c). For example, the HoloCube is mounted in the ceiling with

fixed orientation and the plane with anticlockwise colored-arc

of white, blue, green and red is oriented to the South. If the

reader captured this plane, then it reflects that the user is facing

to the North. We also adopt the YOLO model for the eight

orientation determination. We collect 20 images of HoloCube

at each direction at 2 m and label them manually.

B. Data Parsing via Double Reference

Each data element in the virtual 3D cube contains the

information of (1) where its spatial location is, and (2) what

color spectrum (or light wavelength) it is. (1) is essential

to recover the bit sequences in the order. (2) is essential to

correctly parse the embedded bits in that data element. In

our approach, we design Double Reference in spatial and

spectrum aspects for robust data parsing at reader side.

3D Restoring via Positioning Elements. As shown in

Figure 11 (a), the captured virtual 3D cube has 4 diagonal

vertices pairs with pure red, green, blue and white colors. We

can filter out these vertices and then restore the 3D structure

of the virtual cube from its 2D image based on the space

geometry principle. The detailed steps of 3D restoring via

positioning elements are: S1: Filter out 8 positioning elements

from the captured 2D image, S2: Locate each data element

in each layer, S3: Know the data elements sequences for

potential bits decoding and re-connection. Given an example in

Figure 11 (a), we can first reconstruct 3D structure and the 3D

location of each data element based on positioning elements.

Then we can detect correctly via the color reference and

further parse the embedded 12 bits in each data element based

on S-CSK demodulation. Finally, the embedded bit stream

can be parsed and re-connected according to their embedding

sequence of 3D locations.

Color Reference via Positioning Elements. Different from

the static and sole color for data elements in U-Star tags (i.e.,

fixed dark or green) [13], the color of each data element in

the virtual 3D cube is the combination of R,G,B color with 16

scales separately. These combined colors face severe distortion

and attenuation after the propagation with the impact of

distance and ambient light. Specifically, it is modeled in theory

that the variation trend of R, G, and B ideally are different with

individual non-linear color-distance function [31], as shown

in Figure 11 (b). For example, the detected color of a data

element at 0m is RGB (255,255,198). Nevertheless, with the

increased distance from the camera to the HoloCube tag, all

R, G, B color component values are decreased, the detected

RGB value at 1m is (203,236,189) at 1m and the detected

RGB value at 2m is (128,133,126), as shown in Figure 11 (c).

However, the color distortion has no unified function with

distance under the varied optical environment, which makes

the recovering of original color impossible based on the

known distance and color-distance function for further correct

decoding. For example, the detected pure color of R,G,B at

1m is changed from (255, 255, 255) to (205, 235, 222), which

is normalized as (0.8, 0.92, 0.87), as shown in Figure 11 (d).

This received color is not matched with the distorted color in

theory, as shown in Figure 11 (b).

To overcome the challenge above, we endow positioning

elements (P.E.) with the second reference, color reference, for

robust decoding. Although the color distortion under varied

distance and ambient light are not united, the color attenuation

and distortion for all data elements and positioning elements

in the virtual 3D tag are consistent because they nearly have

Fig. 11: P.E. based double references: (1) 3D reconstruction and (2) embedded data parsing via color reference.



the same propagation distance to the camera and ambient light

impact. Thus, we can use positioning elements and their pure

colors’ variation to record the color distortion at that moment

and location as the reference for other data elements. For

example, as shown in Figure 11 (d), the received colors are

successfully recovered to original transmitted colors via P.E.

referred ratio (e.g., the B value 189 of data element to the B

value 222 of blue positioning element at 1m).

VI. MAC DESIGN

To enable multi-user services, we’ve designed a location-

aware MAC for HoloCube, operating inaudibly to avoid in-

terference with the optical data plane and ambient sounds.

The inaudible control channel, in the near ultrasound band, is

enabled by our audio packet design, suitable for synchronous

functions. Each audio packet includes chirp preambles for

synchronization, distance ranging, and user indication, along

with OFDM frames for metadata transmission. This design

ensures short packet durations to periodically update user

information to the HoloCube tag. In our design, we’ve set

the audio packet duration to 200ms (5Hz) to accommodate

potential long-distance ranging (e.g., 50ms × 340m/s = 170m).

However, achieving all expected functions within this short

inaudible packet is challenging.

A. Chirp based Preamble

Our designed chirp preamble consists of two parts: (1) an

FMCW (Frequency Modulated Continuous Wave) up-chirp

for synchronization and distance estimation, and (2) chirp-bin

matrix to indicate and differentiate a large number of users.

Fig. 12: Chirp based preamble consists of two segments: (1)

FMCW up-chirp, and (2) chirp-bin matrix.

FMCW for Synchronization. In the control channel, the

transmitter is the speaker in user’s smartphone. The receiver

is the microphone at the HoloCube tag. The FMCW can assist

the receiver to know when the audio packet starts and where

is the data frame for further meta data decoding. The fmin

and the fmax of the FMCW up-chirp is set to 17 KHz and 20

KHz separately to guarantee it is imperceptible by human. This

broad Δf make it easier for robust identification by reader

(i.e., the HoloCube’s microphone) at long distance [32].

Chirp-bin Matrix for User Indication. In the design of

chirp-bin matrix, we divide the Δf into 2 sub-band and the

Δt into 2 sub-duration, as shown in Figure 12. The chirp can

be up-chirp as well as down-chirp. Thus, there are 4 possible

chirp-bin shapes (i.e., with/without up-chirp and with/without

down-chirp) in each spectrogram (i.e., voicegram) bin and

totally 44 = 256 status to indicate up to 256 users at the same

time. Then the receiver (i.e., microphone at HoloCube) can

utilize its onboard computation resource to run YOLO model

assisted user identification based on the generated spectrogram

chirp-bin matrix patterns.

ToF Ranging vs. Signal Strength based Ranging. As

demonstrated in [33] that we can utilize ultrasound FMCW

chirp signals for ToF (Time-of-Flight) fine-grained and con-

tinuous ranging. As shown in the left of Figure 13, the sent-out

audio signals can be reflected by the sectors of the HoloCube

tag. We are supposed to obtain the round-trip time of audio

signals via FMCW chirp’s shift on the spectrogram to cal-

culate the distance. However, the smartphone’s mic captured

audio signals are not fine-grained to show the significant gap

between sent and echo signals.

Fig. 13: ToF ranging vs. RSS ranging.

Therefore, we adopt the YOLO assisted received signal

based distance estimation to provide user’s localization for

adaptive resource allocation, which requires the grain of the

floor area for a human standing on (i.e., about 0.5m, a step

length). As shown in the right of Figure 13, the user’s speaker

send out the audio packet at different distance to the HoloCube

tag, the tag received audio signal strength is decreased by the

increased distance. With YOLO deep learning assistance, we

can classify the distances with 0.5m precision accordingly.

B. OFDM Meta Data

Following the chirp preamble, we design the OFDM (Or-

thogonal Frequency Division Multiplexing) symbol based seg-

ments for meta data transmission. The challenge here is to

embed as much as data via the limited narrow bandwidth in

near ultra sound band from 17KHz to 19.6KHz.

Fig. 14: An audio packet (200ms) with chirp preamble, chirp-

bin matrix and OFDM data frame.

OFDM Symbol Design. We divide the near-ultra-sound

audio band into 26 subcarriers with a gap of 100 Hz, as shown

in Figure 14 (a). In order not to introduce additional decoding

overhead, we adopt simple OOK (On-Off Keying) modulation.

If the amplitude of the subcarrier is high, it denotes the bit

1 and otherwise the bit 0. Combined with a preamble, the

entire audio packet has a duration of 200ms to update the

calculated distance or meta data from the user side to the tag

side 5 times per second periodically. Meta Data Content.



Fig. 15: HoloCube prototype. Fig. 16: Cost of HoloCube tag. Fig. 17: Experiment setup and outside testing.

The inaudible channel can transmit a user’s access request,

location information, location switching, and other data to the

HoloCube as an up-link, enabling adaptive multi-user services.

VII. EVALUATION

A. HoloCube Tags

We implement a proof-of-concept HoloCube tag based on

commercial devices. As shown in Figure 15, the HoloCube

prototype consists of a smartphone (i.e., VIVO-Y71) and a 3D-

printed pyramid reflector with 8 sectors attached with black

and smooth plastic paper. The screen size of smartphone is

720 × 1440 pixels of the 6.00-inch display. The reflector has

the height of 7 cm and the width of 3.5 cm. The angle between

a sector plane to the screen plane is 45°. The reflector is

50 g and attached on the screen with double-sides tap. The

entire HoloCube can be mounted on the indoor ceiling or the

top of other static/mobile objectives as omnidirectional optical

transmitter. The entire cost of the HoloCube prototype is less

than $70 and the details are listed in Figure 16.
B. Tag Reader

The tag readers are the users’ hand-held smartphones. These

commercial smartphones have cameras, a microphone and a

speaker. In our experiments, we use a commercial smartphone

Sumsung S20 for comprehensive experiments. Considering

that the smartphones are already provided by users, the cost

of the tag reader should not be counted into cost as the

smartphone used in HoloCube tag. We use the smartphone

to take images of HoloCube for further decoding and send

out audio signals to the HoloCube. We present in this section

our experimental setup for HoloCube evaluation and detailed

performance of our proof-of-concept Holocube prototype. We

set different conditions for experiments including distances

and ambient light settings. The experiment scenarios are

shown in Figure 17. We evaluate the BER and related goodput

based on the reflected image of HoloCube as color refer-

ence (0m, medium brightness). We also placed our current

HoloCube prototype, which is designed for indoor use, in

an outdoor environment to identify challenges and explore

potential solutions.

C. Optical Link Performance

1) BER and throughput results.:
BER vs. different colors. The color components of R,

G, and B have different non-linear distortion in propagation.

Therefore, we evaluate our color reference performance for

different color components with 8 color scales. As shown in

Figure 18 (a), the BER of red and green increase significantly

Fig. 18: BER results and related goodput performance.

after 3m while the BER of blue decreases after 3m, which

is reasonable because the blue color has more recovery range

compared with red and green, as shown in Figure 11 (b).

BER vs. different distances D. We set the distance between

the reader (camera) and the HoloCube tag in range of [1m, 2m,

3m, 4m, 5m] and capture images of the 3-order virtual 3D cube

with 8 color scales for each setting indoor. As shown in Figure

18 (b), the BER increases with the increased transmission

distance from 0.03 at 1m to 0.26 at 5m. All the BER with color

reference are lower significantly than without color reference

in decoding, which keep high in all distances.

BER vs. different ambient light. We set the distance at 2m

with 4 ambient light settings [dark, low-brightness, medium-

brightness, bright, strong-brightness] to capture images of 3-

order virtual 3D cube with 8 color scales for each setting.

As shown in Figure 18 (c), BER with color reference drops

compared to decoding without color reference, and there is no

significant difference across ambient light settings thanks to

the color reference from positioning elements. Outdoor testing

(Fig. 17 (c)) revealed that very strong ambient light (i.e.,

sunlight) mostly destroys cube detection and further decoding,

unless proper parameters are used (e.g., D <0.2m, camera

exposure settings).

Throughput vs. different color scales N. We set the

HoloCube order as 3 (i.e., the 3x3x3 cube) and test different

color scale division in modulation of [4, 8, 16] (i.e., divide

pure color into 4, 8, and 16 scales to denote bits, as shown

in Figure 5) impact of obtained goodput at 4m under bright

ambient light and 60FPS screen refresh rate setting. As shown

in Figure 18 (d), 16 color scales achieves the highest data

rate of 70 Kbps. Although the higher color scales cause the



decreased symbol distance and higher BER, the embedded bits

in one data element is 12 (3×log216) which is more than 6

bits in 4-color-scale and 9 bits in 8-color-scale setting.

Fig. 21: Tracking evaluation setting and examples.

2) Tag Tracking: The trained model achieves precision of

0.947 and the recall of 0.95. As shown in Figure 19 (a), we

evaluated 4 types of motion at 5m: (1) horizontal translation

motion, (2) vertical translation motion, (3) anteroposterior

translation motion, and (4) encircling motion, as shown in

Figure 21. The tag recognition accuracy and the latency is

important for user experience and system robustness. Track-
ing Accuracy. As shown in Figure 19 (b), the tracking of

HoloCube tag is accurate at 5m whatever the motion is. All

of the tracking accuracy is over 0.99. Tracking Latency. The

tracked results should be updated in real time to guarantee

the user experience. As shown in Figure 19 (b), there is

not significant difference of tracking latency among different

motions. The average of tracking latency is 21ms with min of

10ms. Thus, the screen refresh rate can set about 47FPS for

further optical transmission.
3) Orientation Guidance: The 8 directions in orientation

guidance are North, NorthEast, East, SouthEast, South, South-

West, West, and NorthWest, labeled them as D1-D8. We first

collect 6 images for each direction, totally 48 images and then

perform dataset augmentation. There are 114 images in the

orientation dataset after augmentation. We used the model after

300 epoches training for real-world evaluation. Orientation
Guidance Accuracy. As shown in Figure 19 (c), the average

of orientation of 8 directions achieves 0.91 and 6 of 8

directions achieves over 0.94. The accuracy drop of D5 (0.69)

and D8 (0.8) is because of non-detections instead of wrong

direction determination. Orientation Guidance Latency. As

shown in Figure 19 (c), all 8 directions’ orientation guidance

are similar with the average latency of 8.4ms to 8.8ms.
4) Comparison with 1D/2D Tags: We also present 1D and

2D virtual codes with the same edge size of 1.5cm and the

same amount of embedded data elements (i.e., 19) of a 3-

order 3D virtual cube with the same manner of HoloCube for

comparison, as shown in Figure 20. Symbol Distance. With

the same edge size of 1.5cm, the average symbol distance

from the first data element to other data elements in virtual 3D

cube is 1.4cm, which is 2.45× and 1.82× to the 1D bar code

(0.57cm) and 2D QR code (0.77cm) via its 3D spatial element

embedding instead of linear and plane manners, as illustrated

and measured in Figure 20. FOV. Although bar/QR codes with

our reflector can be scanned in all directions, they look like

8 codes in 8 planes (sectors) instead of HoloCube’s 1 spatial-

united virtual cube. Data Rate/Throughput. Compared to U-

Star’s static data (21 bits, 3rd order, On-Off keying) [13],

HoloCube transmits temporal data at 70 Kbps with the same

order and 16-S-CSK, achieving a 3333× higher data rate.

These results demonstrate that HoloCube effectively extends

symbol distance, enhances decoding robustness, and increases

data capacity.

D. Control Channel Performance

Fig. 22: One received OFDM symbol example at 5m.

1) Audio Link Performance:
We sent 5 audio packets (each packet has 26 embedded bits,

illustrated in Figure 14) from the smartphone (user side) to the

microphone (tag side) for each distance setting of [1m, 2m,

3m, 4m, 5m] with the same amplitude of inaudible signals.

Then we process the received audio packets and decode the

embedded bits based on the amplitude of OOK symbols

carried by OFDM subcarriers. Figure 22 is a received OFDM

packet example at 5m. As shown in Figure 23 (a), the BER

keeps low among all distance settings. The average BER is

0.04 while the 1m achieves the lowest BER of 0.023 and 5m

achieves the highest BER of 0.069.

2) User Identification Performance: Setting. Totally, we set

8 UID which are 7 (0b 00000111), 29 (0b 00011101), 38
(0b 00100110), 66 (0b 001000010), 88 (0b 01011000), 110
(0b 01101110), 173 (0b 10101101), and 205 (0b 11001101).

We send out the audio chirp packets and receive them at

random distance within 5m and convert it to spectrogram.

Examples of spectrogram for each picked user are presented

in Figure 10 (d). We captured 10 spectrogram for each user

and totally 80 images. We also adopt augmentations with

adjustment of gracale, hue, saturation, and noise to increase

the dataset size (192 images) and model robustness. Results.
We use the trained YOLO model to parse user ID according to

chirp-bin matrix pattern. Precision is the ratio of true positive

samples to all samples predicted as positive by a classifier.

Therefore, we use precision-confidence curve to evaluate the

user identification performance. As shown in Figure 23 (b),

the trained model successfully differentiates users with high

Fig. 19: Tag tracking and orientation guidance. Fig. 20: Comparison with 1D and 2D codes.



confidence. All eight user classes achieve 100% prediction

accuracy with confidence over 0.972.

Fig. 23: Other evaluation results.

3) Audio based Distance Estimation: Setting. We capture

20 audio spectrogram images for 8 distance setting with aug-

mentation as the dataset with 438 images, as shown in Figure

13. Then we use the trained model to parse distances from the

user to the tag with 5 audio packets at each distance setting of

0.5m-5m with step of 0.5m. Accuracy. The confusion matrix

of different ranging distances is shown in Figure 23 (c). Most

of distance settings can be predicted correctly, especially 0.5m,

1.5m, 3m, and 5m. For other distance, the wrong predictions

are still within the error of 0.5m-1m. These results demonstrate

that our user distance ranging works well to provide the user’s

location with precision of 0.5m, a step size of a person.

Latency. As shown in Figure 23 (d), more than 90% of

distance ranging of a packet costs less than 15ms (i.e., 66.7Hz)

while the maximum ranging latency is less than 22ms. These

results shows that our audio received signal strength based

user distance ranging can work in real time.

VIII. RELATED WORK AND DISCUSSION

Related Work. Various communication technologies serve

distinct purposes [34]–[39]. WiFi provides high-speed data

transfer for HD video streaming and large file sharing, with

rates ranging from hundreds of Mbps to several Gbps. Zigbee

supports low-power IoT devices within shorter ranges, typi-

cally offering rates from tens to hundreds of kbps. Bluetooth

facilitates short-range connections like wireless headphones

and keyboards, with rates from tens of kbps to hundreds of

Mbps. LoRa specializes in low-power, long-range IoT com-

munications, with rates from hundreds of bps to tens of Kbps,

suitable for smart cities and agricultural sensor networks.

In contrast, our HoloCube prototype with rates from tens of

Kbps to several Mbps stands out for its ability for IoT con-

nections. HoloCube provides moderate-capacity, low-latency,

energy-efficient and highly secure communication, making it

ideal for IoT applications requiring dependable, affordable

3D connectivity. Unlike RF technologies, which may face

interference and eavesdropping risk, HoloCube offers a reli-

able and cost-effective solution for short-range 3D optical IoT

connections in indoor environments like smart home/factory.

Unlike Free Space Optical Communication (FSOC), which

focuses on long-distance transmission of data, the Pepper’s

ghost effect primarily deals with short-range displays.

Discussion. Currently, our HoloCube system has limita-

tions in handling information processing between adjacent

sectors and seamless handover between sectors. Additionally,

its performance is relatively low, with data rates around 70

Kbps (i.e., the similar rate level with LoRa) and a range

of approximately 4 meters. Reliable demodulation is only

achievable indoors [40], [41]. To enable HoloCube to operate

in larger indoor and even outdoor environments, such as

shopping malls or smart transportation facilities, the design

and implementation of updated algorithm is required. YOLO

models: We utilize YOLO models for complex localization

tasks related to image patterns, rather than for communication

tasks. The trained YOLO models (e.g., tag tracking, user ori-

entation determination, user identification, and received signal

strength-based ranging) can be deployed on mobile devices for

real-world applications of the HoloCube system. These models

can be integrated into commercial Android and iPhone devices

using methods such as TorchScript, ONNX, and TensorFlow

Lite [42]–[44]. Vulnerabilities and solutions: The Pepper’s

ghost effect is affected by ambient light, with high ambient

light intensity can cause the image to become faint. This can be

addressed by using a high-brightness projection source. Image

quality can also be affected by interference from other light

sources and the optical properties of the reflective surface.

To mitigate these issues, signal strength can be increased by

improving the optical system, reducing ambient light [45],

and employing signal processing and machine learning-based

denoising techniques such as GAN (Generative Adversarial

Network) [46]. Security and privacy concerns: The MAC

protocol ensures data access is restricted to authenticated users

within the LoS space, providing dual-layer security protection.

IX. CONCLUSION

In this paper, we propose, design and implement the

HoloCube system for omnidirectional software-defined optical

wireless communication. We investigate software defined Pep-

per’s ghost illusion using 3D spatial and spectrum diversities to

enable omnidirectional IoT connections. We tackle challenges

such as omnidirectional optical delivery, robust optical decod-

ing, and location-aware MAC protocols. Lastly, we assess the

performance of HoloCube in various scenarios. Our prototype,

built with affordable commercial devices, achieves a goodput

of up to 70 Kbps at a distance of 4m and provides real-time

user distance parsing with a precision of 0.5m.
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