

1
2
3
4 Tracing fineware production in the Neo-Assyrian empire: Neutron activation analysis of common
5 and Palace Ware in the Upper Tigris River Valley, Turkey

6
7 *Short title:*
8 Neutron activation analysis of common and Palace Ware in the Upper Tigris River Valley, Turkey

9
10 Britt E. Hartenberger^{1*}, James A. Davenport², and Timothy Matney³

11
12
13 ¹Institute for Intercultural and Anthropological Studies, Western Michigan University,
14 Kalamazoo, Michigan, United States of America

15
16 ²Archaeometry Laboratory, University of Missouri Research Reactor, University of Missouri,
17 Columbia, Missouri, United States of America

18
19 ³Department of Anthropology, University of Akron, Akron, Ohio, United States of America

20
21 *Corresponding author

22 Emails: britt.hartenberger@wmich.edu (BH), davenportja@missouri.edu (JD),
23 matney@uakron.edu (TM)

24
25

26 **Abstract (<300 words. 300)**

27

28 In the Iron Age, the Neo-Assyrian empire (c. 900-600 BC) conquered territory across southwest

29 Asia and established regional capitals along its borders to secure its gains. Governors at these

30 centers oversaw resource extraction and craft production for shipment to the imperial

31 heartland in modern-day northern Iraq. Metals and textiles were the crafts most carefully

32 managed by the administration. We know less about centralized control over ceramic

33 production but hypothesize that fineware production and distribution would have been of

34 interest to imperial administrators. A fineware type known as Palace Ware has been found

35 throughout the empire and is considered an indicator of elite Assyrian dining traditions.

36 Excavations at one regional capital, Ziyaret Tepe (ancient Tušhan) produced pottery of various

37 skill levels used by residents. In this study neutron activation analysis (NAA) was used to

38 characterize and compare the fabrics used to make Palace Ware vessels with more common

39 wares to see if the former vessels were imported from the imperial heartland. Palace Ware is

40 macroscopically distinct, but this does not always indicate an import. Chemical composition of

41 the samples fell into four main groups, and both Palace and common ware were found to have

42 similar compositions. Comparison of these data with those from contemporary sites showed

43 that the two main Ziyaret groups matched the chemical composition of pottery from the

44 Assyrian capitals of Nimrud and Nineveh. Our conclusions show that there is considerable

45 homogeneity in the clays of the upper Tigris river valley in Turkey and the lower Tigris in

46 northern Iraq. Given this similarity, it is possible that Palace Ware at Tušhan was produced

47 locally, imported, or both. If it was manufactured locally, as has been shown at the urban center

48 of Tell Sheikh Hamad, potters in the imperial peripheries may have produced fineware pottery
49 independent of direct imperial control.

50

51 **Introduction**

52

53 Pottery is often used in archaeology as an indicator of craft production or trade in raw materials,
54 as well as for its basic chronological use in charting stylistic change over time. In the context of
55 Iron Age greater Mesopotamia, we know from textual records and finds of raw materials like
56 metal ores outside their source area that significant trade took place. Craft production can be
57 more difficult to trace because workshops are rare finds on large sites as modern excavations
58 often sample only a small proportion of the site area. Contemporary cuneiform texts, while
59 primarily economic, are more concerned with government control of valuable items, usually
60 metals, textiles, or basic foodstuffs (especially grain and flocks). When ceramics are mentioned
61 at all, it is often to discuss the edible contents of ceramic jars and not jars and bowls
62 themselves. Assyrian military expansion and conquest often involved a re-organization of
63 political control and economic production, the latter including standardization of specialist craft
64 production [1]. It is unknown to what extent pottery production was controlled by the imperial
65 administration [2].

66

67 In past decades, archaeologists hypothesized where pottery production took place based on
68 macroscopic clues such as style, form, and decoration. These features can be misleading
69 especially in the case of local imitations of foreign-made wares. Ethnographic research has

70 shown that potters usually use the clay source closest to them for production, so clay
71 composition would be another way to distinguish production locales [3]. Provenience studies in
72 pottery are possible because clay composition differs more significantly between geological
73 regions than within a single geological source. Low-power microscopic analysis of the
74 petrography of the clay body is one way to characterize the geologic differences in clays.
75 Modern chemical provenience studies such as Neutron Activation Analysis (NAA) can
76 characterize pottery accurately by detecting its elemental composition down to the parts per
77 million. During its construction, other materials ('temper') are usually added to the clay body of
78 a vessel to make the clay easier to shape and improve its firing characteristics. A study of its
79 chemical composition, both major and trace elements, will detect characteristics of its clay as
80 well as the additional temper added by the potter.

81

82 From 1997 to 2014, the Ziyaret Tepe Archaeological Project investigated an ancient mounded
83 site in southeastern Turkey [4]. The site has a series of occupations extending back to the Early
84 Bronze (c. 3000 BC), Middle Bronze, and Late Bronze Ages, reaching a maximum extent as a
85 provincial capital of the Neo-Assyrian empire in the Iron Age (900 to 600 BC) when the urban
86 site (32 ha) was called Tušhan. Tušhan was located approximately 270 km northwest (although
87 425 km by river transport) from the Assyrian homeland in northern Iraq (Figure 1). Texts from
88 King Ashurnasirpal II (ruled 883-859 BC) describe three regional capitals being established as the
89 northern frontier along the Tigris River: Tušhan, Sinabu, and Tidu. The Assyrians installed a
90 governor at Tušhan and built a palace for him, garrisoned troops there, and built an encircling
91 city wall. Cuneiform texts found in its palace and administrative buildings detail the military,

92 economic activities such as food and textile production, and governance of the site [5, 6].
93 Smaller sites nearby specialized in grain production and work groups stationed at Tušhan
94 supplied the empire with materials from this region, especially timbers from the nearby
95 mountains that were floated down the Tigris [7], and likely funneling metal ores from mountain
96 sources to the Assyrian heartland. Later occupational levels at Ziyaret Tepe dated to the Late
97 Iron Age, Medieval, and Ottoman periods.

98

99 Fig 1. Map showing Ziyaret Tepe, Nineveh, Nimrud, Tell Sheikh Hammad, Tell Jemmeh, Khirbet
100 Khatuniyeh, Khirbet Qasrij, and Qasrij Cliff.

101

102

103 Several different types of pottery wares are found across the excavated buildings and burials at
104 Tušhan, differing in skill level, appearance, and function. The most common ware is called Plain
105 Simple Ware (LA01) in our recording system. It is medium in coarseness with multiple different
106 kinds of temper and was fired to a light reddish-brown to buff color. It is found in a variety of jar
107 and bowl shapes. Other wares include two cooking wares (LA03 and LA04) used to create large
108 globular pots, as well as finewares such as Palace Ware (LA05), a Near Palace Ware (LA06), and
109 a rarer Neo-Assyrian glazed ware (LA10). All necessary permits were obtained from the Turkish
110 Ministry of Culture and Tourism for exporting the potsherds for the described study, which
111 complied with all relevant regulations.

112

113 Palace Ware is thin, fine-grained, and made of well-levigated clay; its manufacture is a highly
114 skilled technique. Palace Ware vessels come in a set of standard shapes like a dining set [8, 9].
115 This sophisticated type was found in low quantities in most domestic Neo-Assyrian contexts at
116 Tušhan and visually mirrors pottery used in Assyrian capitals. It is absent in the preceding Early
117 Iron Age contexts when a small part of the high mound at Ziyaret Tepe was used by indigenous
118 groups between 1050 BC and the Neo-Assyrian conquest in the early 9th century BC. Palace
119 Ware was first defined in the 1950s after numerous examples were found at the Assyrian
120 capitals [10, 11] and it is only found in a narrow time period (late 9th century BC through the
121 end of the 7th century BC). Wherever Palace Ware appears, whether it is in Syria, Iraq, Israel, or
122 Turkey, it is regarded as an indicator of Neo-Assyrian influence [12; 2]. Three basic shapes of
123 Palace Ware have been defined using measurements of vessels from the capitals of the Neo-
124 Assyrian empire (Nineveh and Nimrud), and all are drinking-related: bowls, cups, and small jars
125 [9]. We have found examples of all three of these forms at Tušhan and they are evenly spread
126 between houses of different statuses across the site [13]. Their overall frequency is a small
127 percentage of the pottery assemblage (1-7% depending on the context), but even in small
128 quantities it is significant as an indicator of a “foreign” dining tradition in a provincial context.

129 ~~The pieces were, we assume, relatively expensive, but likely not the most elite dining vessels.~~
130 ~~Perhaps we should broaden our terms beyond materials and propose that the truly rare and~~
131 ~~“fine” wares were not ceramic at all, but were metal or glass vessels, which would have been~~
132 ~~even more valuable and restricted in manufacture.~~

133

134 In this study, we analyzed Plain Simple Ware and Palace Ware at a chemical level to characterize
135 their similarities and differences. With the naked eye, it is easy to distinguish Palace Ware from
136 the vast majority of other contemporary pottery, as it is clearly different in color, thickness,
137 texture, and temper. However, such macroscopic distinguishing features do not necessarily
138 mean the Palace Ware and more common pottery are made from different clay sources, or in
139 far-flung workshops. Macroscopic variations could be due to the skill level of the potter,
140 preparation processes for the clay, manufacturing (hand versus wheel), and firing techniques
141 and conditions. Chemical studies of the clay body should show whether or not these two wares
142 were made with different clays and tempers, thereby indicating multiple, geographically distinct
143 clay sources and workshops.

144

145 One key contribution of our analysis is a chemical characterization of the clays of the upper
146 Tigris River valley in southeastern Turkey. As discussed below, chemical studies have been
147 conducted on clays in pottery from the Assyrian imperial capitals in northern Iraq and a few
148 sites within 50 km of the imperial capitals along the Tigris. Other scholars have chemically
149 analyzed clays at the western frontier of the Neo-Assyrian empire in the Levant. However, few
150 have sampled the upper Tigris valley on the northern frontier of the empire, with the exception
151 of Kibaroğlu [14].

152

153 Our hypothesis was that, given the fragility of Palace Ware for travel, we expected to find that
154 potters were producing both Palace Ware and common wares using local Upper Tigridian clay
155 sources in workshops located at, or in the immediate vicinity of, Ziyaret Tepe. This NAA study

156 cannot directly address the possibility that the potters themselves were resources and could
157 have been moved into the region from the imperial homeland, either to produce or to train
158 other potters in elite, Palace Ware production techniques.

159

160 **Materials and Methods**

161 At other sites, it has proven difficult to distinguish Palace Ware that is imported from local
162 imitations. Some local potters copied the type if they were skilled enough to do so because it
163 was a luxury good, presumably of greater value. Imitation pieces have been found in Palestine,
164 Transjordan, and Syria [15, 16, 2]. In attempting to source Palace Ware from sites on the edges
165 of the empire, techniques such as ceramic petrography have been used but, by itself, this
166 method was not always successful in distinguishing between clays at sites, and chemical
167 methods have proven more useful. For example, Hunt was able to distinguish clays along the
168 Euphrates River from those along the Tigris using NAA due to their slightly different clay
169 minerals [2].

170

171 One significant issue addressed in this study is the relative homogeneity of geological
172 formations along the Tigris River, discussed below. As a result, in some cases it has not been
173 possible to distinguish clay fabrics between nearby sites on the Tigris, e.g., when comparing
174 pottery from Arpachiyeh and Tell Gawra to that found at Khirbet Qasrij and Qasrij Cliff 25 km to
175 the south [17]. Similarly within 50 km of the Neo-Assyrian capital, a study of 60 potsherds from
176 Khirbet Khatuniyeh overlapped in chemical composition with clays used at nearby Qasrij Cliff
177 and Khirbet Qasrij [18]. Since Tušhan is 425 km upstream from the capital, we hoped to find a

178 distinctive clay chemical signature for common ware at the site that would contrast with the
179 known signature for Palace Ware as already defined in the imperial heartland in the studies
180 cited above.

181

182 Several studies have used NAA to compare the chemical characteristics of pottery from Tell
183 Sheikh Hamad (ancient Dur-Katlimmu), Tell Jemmeh (in Israel), and from two Neo-Assyrian
184 capitals [19, 2]. Tell Sheikh Hamad was contemporary with Tušhan and also functioned as a
185 regional Neo-Assyrian provincial capital. It is located about 230 km to the southwest of the
186 Assyrian heartland on the lower Khabur River, a tributary of the Euphrates. Based on Hunt's
187 petrographic and chemical analysis of the pottery, she concluded that potters at Tell Sheikh
188 Hamad made their own version of Palace Ware using local clays that looked very similar to
189 examples made in the capital cities [2]. Hunt used geologic methods and chemical methods
190 such as NAA to characterize Palace Ware at the capitals of Nimrud, Nineveh, and Aššur as her
191 baseline for comparison [9, Hunt and Sterba 2013]. Her results are discussed below in relation
192 to our own chemical analyses on the Ziyaret Tepe samples.

193

194 A total of 50 pieces were selected for analysis from the exported sherds taken from the Ziyaret
195 Tepe excavations (see Table 1 below). These included 40 samples of probable local pottery. We
196 used a standard concept called the 'criterion of abundance technique' to characterize the local
197 pottery samples from the site [20]. Simply stated, we can safely assume that Plain Simple Ware
198 is local because it makes up the majority (81% in primary contexts) of Iron Age pottery at the
199 site and there would be no need to trade or import ordinary pottery or cooking wares from

200 elsewhere. Also as noted above, potters typically use clay found near their workshop location.
201 Plain Simple Ware provides one indicator of local clay chemical signatures. Another source of
202 information on the clays used are the discarded mistakes from pottery kilns at the site, overfired
203 pieces called 'wasters'.

204

205 Some contexts from which our samples are drawn date from other time periods than the Iron
206 Age but are assumed to have used the same local Upper Tigridian clays in their production as
207 did the potters of the Neo-Assyrian period. These include: one Middle Bronze Age cooking ware
208 sherd, four Early Iron Age Plain Simple Ware sherds, and eleven Medieval cooking ware sherds.

209 The one piece of Cilician Ware, stylistically a clear foreign import found in a single primary
210 context in the palace at Tušhan, was included. Painted pottery is rare in the Neo-Assyrian period
211 and comparanda suggest that this painted piece may be an import from Cilicia, 500 km to the
212 west of Ziyaret.

213

214 *Table 1: List of samples by ware, quantity, and period*

215

216	Ware type	Ware name	No. of samples	Period
217	LA01	Plain Simple	10	Neo-Assyrian
218	LA03 and LA04	Cooking	10	Neo-Assyrian
219	LA05	Palace	6	Neo-Assyrian
220	LA06	Near Palace	3	Neo-Assyrian
221	ER01	Plain Simple	4	Early Iron
222	ME03	Cooking	11	Medieval
223	MB03	Cooking	1	Middle Bronze
224	Waster	unknown, vitrified	3	Medieval
225	Waster	unknown, vitrified	1	no date
226	XX	Cilician ware?	1	Iron Age?

227

228

229

230 We did not collect modern clay samples from the region during the project. Our permit for the
231 Ziyaret Tepe project was limited to on-site mapping and excavation and did not include survey
232 of the surrounding area so we did not map nearby clay sources while in the field. The
233 composition of the local clay, however, can be hypothesized from the geological context.
234 Geologically, the upper Tigris River flows through Lower Miocene and Upper Miocene-Pliocene
235 rock formations [21, 22]. The Lower Miocene limestone and sandstone formations contain
236 abundant quartz, feldspar and silt and the Upper Miocene-Pliocene formations are
237 conglomerates, clay, and silt [21]. At its upper elevations the Tigris also flows through pre-
238 Neogene limestones composed mostly of calcium carbonate in the form of calcite and ophiolitic
239 mélanges containing sedimentary and igneous rocks [21]. Given this geologic signature of the
240 region, we expected NAA to show high amounts of calcium, silicon, and likely iron and sodium
241 and/or potassium from the feldspars in the local clays.

242
243 Since pottery contains temper added by the potter, we also expected to find some elements
244 deriving from the mineral or organic inclusions visible in cross-sections of the sherds. One
245 common temper is grain chaff, and other types frequently seen in the clay macroscopically are
246 white quartz grains, mica, and black, white, or red mineral inclusions. From a macroscopic
247 perspective, it is not possible to identify these minerals, except that we may hypothesize
248 feldspar, quartz, or crushed conglomerate from the nearby river deposits. Previous petrographic
249 and chemical (X-ray fluorescence) study of common ware pottery from the Upper Tigris region
250 has indicated it often contains quartz and muscovite inclusions and that the local clays are iron-
251 rich [14].

252

253 **NAA Methods**

254 NAA was conducted by the Archaeometry Laboratory at the University of Missouri Research
255 Reactor (MURR) using the standard methods and parameters at that laboratory. These methods
256 are described in detail elsewhere [23, 24, 25]. To briefly summarize, a fragment of roughly 1 cm²
257 was removed from each sherd. Because NAA is a bulk analytical technique, all surfaces were
258 removed by burring using a silicon-carbide grinding tool to account for any compositionally
259 distinct surface treatments, like clay slips or pigments applied as decoration. This also accounts
260 for any post-depositional contamination from taphonomic processes. After burring was
261 completed, samples were rinsed in deionized water and allowed to dry. Samples were then
262 homogenized into a fine powder through grinding with an agate mortar and pestle and placed
263 in a drying oven to remove any remaining moisture in the samples for a minimum of 24 hours at
264 105°C. Once completely dry, aliquots were measured into two vials: 100 mg of powder was
265 measured into a high-density polyethylene vial, and 200 mg of powder measured into a high-
266 purity quartz vial and sealed under vacuum. Masses were recorded to the nearest 0.01 mg, and
267 all values were within \pm 2 mg of the target mass.

268

269 Two at a time, the aliquots in the polyethylene vials were loaded into a larger polyethylene
270 container called a 'rabbit' and transported to the reactor via a pneumatic tube system for an
271 irradiation of five seconds by a neutron flux of 8×10^{13} n cm⁻² s⁻¹. During this process, three
272 samples of standards of certified reference material from NIST of SRM1633c Coal Fly Ash and
273 SRM688 Basalt Rock, and an in-house quality control of New Ohio Red Clay were also irradiated

274 under the same parameters. After being allowed to decay for 25 minutes, samples were
275 counted for a period of 12 minutes by high-purity germanium detectors, yielding values in parts
276 per million for nine elements: Al, Ba, Ca, Dy, K, Mn, Na, Ti, and V.

277

278 Aliquots in quartz vials were bundled into groups of 50 samples along with four samples of
279 standard SRM1633c, and quality controls of SRM679 Brick Clay and New Ohio Red Clay. These
280 bundles were irradiated for a period of 24 hours in a neutron flux of $6 \times 10^{13} \text{ n cm}^{-2} \text{ s}^{-1}$. After an
281 initial decay of seven days, these samples were washed and detected by high-purity germanium
282 detectors for a period of 30 minutes each, yielding counts for As, La, Lu, Nd, Sm, U, and Yb.

283 Samples were then allowed to decay for an additional two weeks before a second detection
284 period of 2.5 hours, yielding counts for Ce, Co, Cr, Cs, Eu, Fe, Hf, Ni, Rb, Sb, Sc, Sr, Ta, Tb, Th, Zn,
285 and Zr.

286

287 After all three periods of detection were complete, datasets were assembled and evaluated
288 using a suite of multivariate statistical routines that are commonly applied to compositional
289 data of archaeological ceramics and other materials [26, 27, 28, 29, 30]. This began with a
290 calculation of a total variation matrix (TVM) [31, 32, 33], a table composed of log-transformed
291 data where each element is expressed as a ratio of all other elements in the dataset. Total
292 variation (vt) is the sum of all variances in the variation matrix divided by twice the number of
293 elements in the matrix [33]. This value provides a metric to evaluate variability in a chemical
294 dataset which is compatible with both variances and Euclidean distances. This value is
295 significant to the evaluation of ceramic composition studies as it is an indicator of what is

296 referred to as a monogenic or polygenic datasets. A high value indicates a polygenic dataset. For
297 a study of ceramic composition, this translates to multiple compositional groups made from
298 chemically discrete raw materials.

299

300 Groups were next identified using a combination of different statistical methods which are
301 commonly used in the interpretation of compositional data of archaeological ceramics [20],
302 including principal components analysis (PCA), hierarchical cluster analysis, and total variation
303 matrix. Data was next subjected to principal components analysis (PCA). This testPCA
304 demonstrated that greater than 95% of the cumulative variance can be explained by the first
305 eight principal components. ~~Using the results of the PCA, along with hierarchical cluster~~
306 ~~analysis, s~~hers were assigned into four distinct compositional groups, with one outlier. After
307 group assignments were made, group membership was evaluated and refined through the
308 calculation of Mahalanobis distances. After group assignments were made, group members
309 were examined across different attributes, including ware and time period.

310

311 The Archaeometry Laboratory at MURR maintains a database of compositional data of
312 archaeological objects and source materials, including over 300,000 archaeological ceramics.
313 Additionally, the Archaeometry Laboratory curates data from other reactors, some of which are
314 no longer operational and others that no longer use NAA on archaeological materials. NAA data
315 from this research was compared to relevant datasets from these databases. To compare to
316 data from Hunt and Sterba [18] analyzed at the Technische Universität Wien, it was necessary to
317 calculate a new PCA, removing values from elements that were not detected in common

318 between the two reactors (aluminum, calcium, dysprosium, manganese, titanium, vanadium,
319 and tungsten).

320

321 **Results**

322

323 The chemical composition of the 50 sherds was detected by element. The University of Missouri
324 Research Reactor (MURR) then described these patterns with various statistical techniques. In
325 the calculation of the total variation matrix, chromium (Cr) showed highest amount of variation
326 while dysprosium (Dy) showed the least. The TVM of the samples has a total variation (*vt*) value
327 of 4.405. Often the integer is equivalent to the amount of groups present in a single dataset, so
328 a *vt* value of 4.405 suggests that this data is polygenic and is made up of at least four
329 compositionally discrete groups.

330

331 The chemical compositions of the samples cluster statistically into four main groups and four
332 outliers in the principal components analysis. Figure 2 shows this pattern using the first two
333 principal components, and accounts for 72.3% of the variation in the data. Groups 1 and 2
334 contain the majority of the pottery and are therefore assumed to represent the chemical
335 signature for local clays. They are somewhat distinct from each other though they vary more
336 from Group 4 (purple) and Group 3 (green).

337

338 Fig 2. Main compositional groupings of the Ziyaret Tepe samples. The scatterplot shows the
339 sample distribution using the first and second principal components representing 72.3% of the
340 total variance. The ellipses are drawn at 90% confidence intervals.

341

342 Another view of this data can be seen in Figure 3 below, where the elemental vectors in the
343 principal components analysis are included. Chromium, as the element contributing the most
344 difference, has a noticeably long vector compared to most other elements, with nickel being the
345 second longest.

346

347 Fig 3. Biplot showing the distribution of samples using the first and second principal
348 components with elemental vectors added. Ellipses are drawn at 90% confidence intervals.

349

350 Figure 4 graphs the compositional groups again, showing the four wasters as purple dots,
351 showing that all wasters fall within either Group 1 or 2. Three wasters are from Medieval
352 contexts and one from an undated context. The one waster seen in Group 1 is medieval in date.

353

354 Fig 4. Graph of primary and secondary principal components, showing wasters plotted as purple
355 dots.

356

357 Though the scatterplots above are useful for describing the local clay signature near Ziyaret,
358 they do not take the time periods or wares of the samples into account. When mapped by our
359 defined wares for the site, the Iron Age wares fall into Groups 1, 2, and 3 but not 4. Figure 5
360 shows the same composition groups as oval border lines and in this case the symbols indicate
361 the Iron Age samples only. The possible import from Cilicia is coded as “Import?” in this plot.

362

363 Fig 5. Graph of the primary and secondary principal components showing compositional groups
364 as ovals with symbols for the Iron Age ware types. The ellipses indicate 90% confidence
365 intervals.

366

367 Nearly all the Iron Age samples fit into or fall near Groups 1 and 2. One pattern visible in Figure
368 5 is that all the samples within Group 3 are cooking wares (LA03 and LA04), represented by
369 green squares. Other samples of cooking wares are also present in or near Group 1. MURR
370 determined that the key distinguishing element separating Group 3 from Groups 1 and 2 was
371 calcium. Group 3 pots contained 18-21% Ca compared to Groups 1 and 2, where Ca levels were
372 between 5 and 10%. When the additional Ca was corrected for and the principal components
373 analysis run again, those three samples then fell within Group 1. Therefore, these cooking pots
374 were made using the same clay as other pottery at the site, but with a higher level of calcium.

375

376 With Figure 5, we can see where the Palace Ware (LA05 and LA06) fits as compared to the local
377 chemical signature indicated by Groups 1 and 2. Most of the Palace Ware pieces sampled match
378 the chemical composition of the local pottery as represented by the Plain Simple and cooking

379 wares from Ziyaret composing Groups 1 and 2. In this plot Compositionally, the fine wares
380 cannot be distinguished from the chemical signature of the local pottery through the statistical
381 analyses that were applied.

382

383 The chemical composition of pieces from Ziyaret was compared with other regional capitals and
384 the imperial capitals of Nineveh and Nimrud in the heartland of the empire using the data of
385 Hunt and Sterba [18]. The other two regional capitals are relatively nearby, ancient Dur-
386 Katlimmu (modern Tell Sheikh Hamad in Syria) and on the outskirts of the empire, Tell Jemmeh
387 in modern Israel [18]. A PCA calculated with the 25 elements detected in common between the
388 Missouri and Vienna reactors demonstrated that greater than 95% of the cumulative variance
389 can be explained by the first nine principal components. Figure 6 shows the PCA when all these
390 samples are combined, graphed by the resulting first and second principal components.

391

392 Fig 6. Scatterplot of principal components 1 and 2, representing 66.2% of the total variance in
393 the data. Individual samples from Ziyaret are shown as plus signs while the samples from the
394 other sites analyzed at the Vienna lab are other symbols.

395

396 Much of these data overlap in Figure 6 except the Tell Jemmeh (blue squares) samples which
397 are more distinct from the others. Ziyaret Group 1 as outlined in red contains a broad area in
398 this scatterplot and overlaps with most of the samples from Dur-Katlimmu (purple dots).
399 Nineveh and Nimrud are closer to each other and further away from Tell Jemmeh than Ziyaret
400 Group 1. Given that Tell Jemmeh is in Israel, the chemical signature of its clay is quite different

401 than the other sites. Dur-Katlimmu is on a tributary leading into the Euphrates and so may be
402 expected to be significantly different from the others along the Tigris, but in fact falls within
403 Group 1 from Ziyaret. Group 2 from Ziyaret is a small area in this plot and does not contain
404 many samples from other sites and in particular does not contain any of the signatures of
405 samples from Nineveh and Nimrud.

406

407 To detect further differences between the Ziyaret samples and those from the capitals and Dur-
408 Katlimmu (Tell Sheikh Hamad), we noted that Hunt found chromium (Cr) and hafnium (Hf)
409 distinguished some of her samples [2]. MURR then took these elements into consideration.

410 Figure 7 below shows the same compositional ovals as above for Ziyaret but graphs the
411 concentration of Hf versus Cr in each sample. It includes all Ziyaret samples (shown as plus
412 signs) and highlights Ziyaret fine wares and fine wares from Nimrud and Nineveh as reported by
413 Hunt [9]. The most obvious pattern is the overlap between the Ziyaret types and samples from
414 the Assyrian heartland. Nimrud samples are green triangles and those from Nineveh are pink
415 diamonds, and they either fall into Group 1 or 2, or just outside them with slightly less Hf. The
416 Nimrud samples fall into two clusters, one with lower Cr and slightly lower Hf, and one with
417 higher values of both. All of the samples from Nineveh fall completely within Group 1 or 2.

418

419 Fig 7. Scatterplot of Cr and Hf showing ellipses and samples from Ziyaret Tepe, along with
420 samples from Nimrud and Nineveh. Ziyaret Tepe Palace Ware (LA05) samples are represented as
421 dark blue triangles, and Near Palace Ware (LA06) samples are teal diamonds. Ellipses are drawn
422 at 90% confidence intervals.

423

424 Two samples from Ziyaret (ZT 48352/1 and ZT 5738/3) plot closely to several samples from
425 Nineveh and are also ones that were identified on other charts as near the Nineveh samples
426 through PCA and Euclidean Distance analyses. Several other sherds of Palace or Near Palace
427 Ware also plot closely to Nineveh in Figure 7. Their closeness was confirmed by MURR with a
428 Euclidean distance search using the 25 elements analyzed in common for the samples between
429 MURR and the Vienna lab. Overall, four Ziyaret samples (ZT 48352/1, ZT 503/8, ZT 503/2, and ZT
430 5738/3; see Appendix A) show the greatest similarity with the Nineveh samples from Hunt's
431 analysis. Since the Vienna lab did not measure Ca, a major component of the Ziyaret pottery,
432 and the clays up and down the Tigris apparently exhibit very little variation in their major
433 components, interpretation of these results are made with caution.

434

435 **Discussion/Conclusion**

436 We are now able to define chemically the local clays used in the Neo-Assyrian period in the
437 Upper Tigris river valley. Chemical-Statistical analyses of the chemical characterization places
438 most of the Plain Simple Ware as well as the cooking pots into Groups 1 and 2 ~~by PCA~~, and
439 additionally the presence of all the wasters in the same groups confirms that those groups
440 represent clays local to Ziyaret.

441

442 An unforeseen result of the chemical analysis was the discovery of extra Ca in some of the Neo-
443 Assyrian cooking pots. The MURR lab suggests that a production method involving slightly
444 varied clay preparation would cause this chemical pattern of higher Ca, probably related to a

445 need to create pots that could withstand thermal stress. This result is promising and provides
446 information on pottery production methods that is difficult to detect otherwise since we did not
447 find Neo-Assyrian pottery workshops at Ziyaret.

448

449 Regarding finewares, it is likely that Palace Ware at Ziyaret Tepe was produced locally, imported,
450 or both. There are few significant chemical differences between the clays of the upper Tigris
451 river valley near Ziyaret and the Tigris river near the Assyrian capitals. It is therefore difficult to
452 clearly separate imports from local products through NAA. If any are imported, Nineveh
453 represents the most likely source among those discussed here, given the close proximity
454 between its samples and several from Ziyaret in Figure 7.

455

456 Our initial hypothesis was that the finewares used at Neo-Assyrian Tušhan during the imperial
457 period were made using local clay. The results of the NAA study undertaken to test this
458 hypothesis do not provide any clear evidence to reject or revise this hypothesis. As noted
459 earlier, if Palace Ware was made at Ziyaret, the larger significance would be that there are very
460 highly skilled potters operating at a regional capital, as appears was the case at another regional
461 capital, Tell Sheikh Hamad in Syria. A second confirmed case of highly skilled local potters
462 indicates that the production of such an elite type of pottery was not restricted to workshops in
463 the imperial heartland. Unlike other crafts such as metalworking and textile production, the
464 Assyrian bureaucrats did not closely track the movements of finished ceramic vessels and,
465 based on evidence presented here, appear to have allowed regional production either by highly
466 skilled craftspeople brought in from the imperial heartland, or local imitators who followed the

467 form and fashions set there, or both. Potters at Tušhan, Dur-Katlimmu and in other imperial
468 peripheries therefore likely produced fineware pottery independent of direct government
469 control.

470

471 In the future, sampling a greater variety of pottery from sites up and down the Tigris may make
472 it possible to distinguish slight differences in the local compositions of clay used for pottery.
473 Other researchers should take note of the proportion of rare earth elements such as chromium
474 and hafnium, which may vary more significantly over the landscape than other more common
475 elements. In our own ongoing research, we submitted NAA samples this year from two small
476 farmstead sites in the Erbil Plain within the Assyrian heartland as part of the Sebittu Project. The
477 samples were Plain Simple Ware as well as a few pieces of Palace Ware, to see how these vary
478 chemically from the others already studied. Unlike a regional capital such as Tušhan or Dur-
479 Katlimmu, we do not expect potters at such small sites to have produced fineware pottery
480 themselves. We are likewise expanding our NAA study to include glazed wares from Tušhan in
481 order to characterize this fineware chemically and see if it contrasts with Palace Ware. Broadly,
482 glazed wares are even more rare than Palace Ware as their production required careful control
483 of glaze preparation and precise temperature regulation as the vessels cooled after firing, in
484 addition to other skilled manufacturing techniques.

485

486 **Acknowledgments**

487

488 Neutron activation analysis was conducted in the Archaeometry Laboratory at MURR with
489 funds from a Faculty Research and Creative Activities Award from Western Michigan University
490 to BH. JD performed the statistical analyses and wrote the report summarizing the results from
491 the NAA. Permission to export sherds for destructive analysis was granted to TM from the
492 Turkish Ministry of Culture and Tourism.

493

494 **Author Contributions**

495 Conceptualization: BH, TM

496 Funding acquisition: BH

497 Data Curation: JO

498 Formal Analysis: JO

499 Resources: TM, JO

500 Writing – original draft: BH

501 Writing – review and editing: TM, JO, BH

502

503 **Supplemental Information**

504 **Appendix A:** Raw NAA data. List of sample numbers by sample number and their elemental
505 compositions, with additional tabs for PCA, total variation matrix calculation, and Mahalanobis
506 distances.

507

508

509 **References**

510

511 1. D'Agostino A. The Upper Khabur and the Upper Tigris valleys during the Late Bronze Age:
512 settlements and ceramic horizons, in Bonatz, D., ed. The archaeology of political spaces: The
513 Upper Mesopotamian piedmont in the second millennium BCE. Berlin, Boston, De Gruyter;
514 2014. p. 169-199.

515

516 2. Hunt A. Palace Ware Across the Neo-Assyrian imperial landscape: Social value and semiotic
517 meaning. Leiden, Brill; 2015.

518
519 3. Arnold, D. Ceramic Theory and cultural process. Cambridge, Cambridge University Press;
520 1985.
521
522 4. Matney T, J MacGinnis, D Wicke, and K Köroğlu. Ziyaret Tepe: Exploring the Anatolian frontier
523 of the Assyrian empire. Edinburgh: Caique Publishing Ltd; 2017.
524
525 5. Parpola S. Cuneiform texts from Ziyaret Tepe (Tušhan), 2002-2003, State Archives of Assyria
526 Bulletin. 2008;17: 1-113.
527
528 6. MacGinnis J, Monroe MW. Recent texts from Ziyaret Tepe, State Archives of Assyria Bulletin
529 2015;20: 47-56.
530
531 7. Lanfranchi G, Parpola S. The correspondence of Sargon II, Part II: Letters from the Northern
532 and Northeastern provinces. 1990;State Archives of Assyria 5
533
534 8. Anastasio S. Atlas of the Assyrian pottery of the Iron Age. Subartu 24. Turnhout, Belgium,
535 Brepols; 2010.
536
537 9. Hunt A. Assyrian palace ware definition and *chaîne opératoire*: Preliminary results from
538 Nineveh, Nimrud, and Aššur, in M Martinón-Torres (Ed.), Craft and science: International
539 perspectives on archaeological ceramics. Doha, Qatar: Bloomsbury Qatar Foundation; 2014
540 <http://dx.doi.org/10.5339/uclq.2014.cas.ch15>
541
542 10. Oates J. Late Assyrian pottery from Fort Shalmaneser, Iraq 1954;21(2): 130-146.
543
544 11. Rawson PS. Palace Ware from Nimrud: Technical observations, Iraq. 1954;16: 168-172.
545
546 12. Parker B. The mechanics of empire: The northern frontier of Assyria as a case study in
547 imperial dynamics. Helsinki, Vammalan Kirjapaino Oy; 2001.
548
549 13. Matney T, Rainville L. Archaeological I=investigations at Ziyaret Tepe: 2003-2004, Anatolica.
550 2005;31:19-68.
551
552 14. Kibaroğlu M. Archaeometric analysis of Early Bronze Age dark rimmed orange bowl ware
553 (DROB ware) from the Upper Khabur (NE-Syria) and the Upper Tigris valley (SE-Anatolia),
554 Arkeoloji Dergisi. 2021;26(4):91-106.
555
556 15. Courtois LC, Doray AM. Technologie et ceramiques Levantines au temps de la domination
557 Assyrienne. Comptes Rendus du 108e Congrès National des Sociétés Savantes, Grenoble:
558 Ministere de L'éducation Nationale Comité des travaux historiques et scientifiques. Paris: CTHS;
559 1983. p. 125–136.
560
561 16. Engstrom C. The Neo-Assyrians at Tell el-Hesi: A petrographic study of I=imitation Assyrian

562 Palace Ware, *Bulletin of the American Schools of Oriental Research*. 2004;333: 69–81.

563

564 17. Freestone IC, Hughes MJ. Appendix III: Examination of ceramics from Qasrij Cliff and Khirbet

565 Qasrij. In: J. Curtis (ed.) *Excavations at Qasrij Cliff and Khirbet Qasrij*. London: British Museum

566 Publications Ltd., 1989. p. 61–75.

567

568 18. Hughes MJ, Freestone IC, Humphrey MS. Neutron activation and petrographic analysis of

569 pottery, in Curtis, J. and A. Green, *Excavations at Khirbet Khatuniyah*. Saddam Dam Report 11,

570 Ministry of Culture and Information, Iraq. London, British Museum Press; 1997. p. 95-101.

571

572 19. Hunt A, Sterba JH. Chemical composition by Neutron Activation Analysis (INAA) of Neo-

573 Assyrian Palace Ware from Iraq, Syria and Israel, *Journal of Open Archaeology Data*. 2013;

574 2:e10, DOI: <http://dx.doi.org/10.5334/joad.aa>

575

576 20. Bishop R, Neff H. Compositional data analysis in archaeology. In: Allen R, editor.

577 *Archaeological Chemistry IV, Advances in Chemistry Series 220*. American Chemical Society;

578 Washington, DC; 1989. p. 576–586.

579

580 21. Doğan U. Holocene fluvial development of the Upper Tigris Valley (Southeastern Turkey) as

581 documented by archaeological data, *Quaternary International*. 2005;129: 75-86.

582

583 22. Nicoll K. Landscape development within a young collision zone: Implications for post-Tethyan

584 Evolution of the Upper Tigris River system in Southeastern Turkey, *International Geology Review*.

585 2010;52(4-6): 404-422.

586

587 23. Glascock MD. Characterization of archaeological ceramics at MURR by neutron activation

588 analysis and multivariate statistics. In: Neff H, editor. *Characterization of Ceramic Pastes in*

589 *Archaeology*. Madison: Prehistory Press; 1992. p. 11–26.

590

591 24. Glascock MD. Compositional analysis of archaeological ceramics. In: Glascock MD, Neff H,

592 Vaughn KJ, editors. *Ceramics of the Indigenous Cultures of South America: Studies of*

593 *Production and Exchange through Compositional Analysis*. Albuquerque: University of New

594 Mexico Press; 2019.

595

596 25. Glascock MD. Instrumental neutron activation analysis and its application to cultural

597 heritage materials. In: D'Amico S, Venuti V, editors. *Handbook of Cultural Heritage Analysis*.

598 Cham: Springer International Publishing; 2022. pp. 69–94. doi:[10.1007/978-3-030-60016-7_5](https://doi.org/10.1007/978-3-030-60016-7_5)

599

600 26. Baxter MJ. Archaeological use of the Biplot--a neglected technique? In: Lock G, Moffett J,

601 editors. *Computer Applications and Quantitative Methods in Archaeology*, 1991. Oxford:

602 Tempvs Reparatvum, Archaeological and Historical Associates; 1992. pp. 141–148.

603

604 27. Baxter MJ, Buck CE. Data handling and statistical analysis. In: Ciliberto E, Spoto G, editors.
605 Modern Analytical Methods in Art and Archaeology. New York: John Wiley & Sons, Inc.; 2000. p.
606 681–746.

607

608 28. Neff H. RQ-Mode principal components analysis of ceramic compositional data.
609 Archaeometry. 1994;36: 115–130. doi:[10.1111/j.1475-4754.1994.tb01068.x](https://doi.org/10.1111/j.1475-4754.1994.tb01068.x)

610

611 29. Neff H. Neutron activation analysis for provenance determination in archaeology. In:
612 Ciliberto E, Spoto G, editors. Modern Analytical Methods in Art and Archaeology. New York:
613 John Wiley & Sons, Inc.; 2000. pp. 81–134.

614

615 30. Neff H. Quantitative techniques for analyzing ceramic compositional data. In: Glowacki DM,
616 Neff H, editors. Ceramic Production and Circulation in the Greater Southwest: Source
617 Determination by INAA and Complementary Mineralogical Investigations. Los Angeles: Cotsen
618 Institute of Archaeology; 2002. pp. 15–36.

619

620 31. Aitchison J. The statistical analysis of compositional data. Dordrecht: Springer Netherlands;
621 1986.

622

623 32. Buxeda i Garrigós J. Alteration and contamination of archaeological ceramics: The
624 perturbation problem. Journal of Archaeological Science. 1999;26: 295–313.
625 doi:[10.1006/jasc.1998.0390](https://doi.org/10.1006/jasc.1998.0390)

626

627 33. Buxeda i Garrigós J, Kilikoglou V. Total variation as a measurement of variability in chemical
628 data sets. In: van Zelst L, editor. Patterns and Process: A Festschrift in Honor of Dr Edward V
629 Sayre. Suitland: Smithsonian Center for Materials Research and Education; 2003. p. 185–198.

630

631

632

633 Captions: NEW Figure 1: Map showing sites mentioned in the text, and the Assyrian heartland.

634