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1. Introduction
We study regularized optimal transport problems of the form

OTye = HEH(H?/’l-f./HN)/Cdn +eDf(m, 1y ® - @),

where Dy is an f-divergence, for example, relative entropy (Kullback-Leibler divergence) or L” regularization.
(Notation is detailed in Section 2.) Note that ¢ = 0 yields the classic optimal transport problem OT without regulari-
zation. We are interested in the speed of convergence OT; . — OT as the regularization parameter ¢ tends to
zero—especially its dependence on the marginals y; and the divergence Dy.

Regularized optimal transport has attracted a great deal of research in recent years, chiefly because regulari-
zation enables the use of efficient numerical algorithms (e.g., Blanchet et al. [10], Cuturi [25], Lin et al. [40],
Peyré and Cuturi [55], and the references therein) to approximate OT in high-dimensional applications—
hence, the interest in the speed of convergence. The most important divergence is relative entropy, which
gives rise to Sinkhorn’s algorithm (or the iterative proportional fitting procedure); here, OTy . is often called
the entropic optimal transport problem (e.g., Nutz [49], Peyré and Cuturi [55]). Other divergences, especially
L? regularization, are being used in applications in which sparse optimizers are desired or weak penalization
(small €) causes numerical instabilities with entropic regularization (Blondel et al. [11], Di Marino and Gerolin
[26], Essid and Solomon [31], Lorenz et al. [42], Terjék and Gonzélez-Sanchez [58]). For multimarginal trans-
port and the related Wasserstein barycenters, see, for instance, Agueh and Carlier [2], Benamou et al. [6], Car-
lier [14], and Carlier et al. [15, 16]. Literature more specific to the convergence OT; . — OT is discussed
subsequently.

In this paper, we propose a novel methodology to estimate OT . — OT based on quantization. It is simulta-
neously more general and, arguably, easier than previous arguments, allowing us to obtain convergence rates for a
wide class of f~divergences, unbounded cost functions, and multimarginal problems in a unified manner; the meth-
odology may be as important as the results themselves. Even for entropic optimal transport with two marginals
and quadratic cost, we substantially improve on the existing results by allowing for arbitrary marginals with finite
(2 4+ 6)-moments for which previous techniques required compact supports and uniformly bounded densities (Car-
lier et al. [17], Chizat et al. [22], Conforti and Tamanini [24], Pal [53]).
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To give an informal preview, let us focus on n = 2 marginals with entropic or L” regularization (p > 1) for simplic-
ity. In those examples, we obtain nonasymptotic bounds of the form

OTy,. — OT < Belog (%) + Ke for entropic regularization,

OT;,, — 0T < Ke 5 for L regularization,

where f reflects a certain quantization dimension. In our first result (Theorem 3.1), f encodes the optimal quantiza-
tion rate for one of the marginals; if y; are measures on R%, this leads to B <di Ady. In this result, we assume that
the integrated cost 7w +— [cdm is Lipschitz when restricted to a certain set of couplings; this is satisfied for Lipschitz
functions ¢ and also, for example, for |x — y|? with p > 1 on R? x R”. The stated estimates are sharp in certain exam-
ples (see Section 4) up to the constant K.

The key idea is to use so-called “shadows” to transfer explicit divergence bounds for discrete measures into con-
tinuous couplings with controlled divergence and also bounding the Wasserstein distance. As quantization theory
has long studied how fast general measures can be approximated with discrete ones, this enables us to control both
the transport and divergence terms in OTy ... Specifically, a rate is found by choosing the number of points for the
quantization of the marginals relative to the regularization parameter ¢, such as to balance the transport and diver-
gence terms. At a high level, the shadow construction is a substitute for the widely used block approximation
method first introduced in Carlier et al. [18]. Employing quantization and Wasserstein geodesics instead of build-
ing blocks explicitly, our construction fully exploits the flexibility of the p-Wasserstein distance, making it very suit-
able for unbounded domains and costs.

Our main result (Theorem 3.2) pertains to cost functions on R? x --- x R? admitting a bounded second derivative, in
particular the quadratic cost, and improves the value of § to d/2 under sufficient regularity. Here, smoothness leads
to the factor 1/2, whereas d reflects the quantization rate for an optimal transport plan (of the unregularized problem
OT) rather than the marginals. The key idea is a martingale argument that seems to be novel: the martingale property
of 2-Wasserstein quantization can be used to eliminate the first order term in the integrated Taylor expansion of the
cost function. The remaining leading term is then of second order, hence, the factor 1/2. Once again, the martingale
methodology lends itself to the unbounded setting; moreover, the rates are sharp in a wide class of examples. In par-
ticular, we establish the leading-order term 4¢log(2) for entropically regularized 2-Wasserstein distance whenever
the marginals have finite moments of order 2 + 6 for some 6 > 0 (Corollary 3.1). In its proof, Minty’s [48] trick is used
to establish the quantization rate for an optimal transport plan.

For discrete problems, the study of entropic regularization and its convergence goes back to Cominetti and San
Martin [23]; see also Weed [60] for a nonasymptotic result, Altschuler et al. [5] for a semidiscrete problem, and
Altschuler and Boix-Adsera [4] for multimarginal transport. Here, we are mainly interested in continuous pro-
blems. As OTy,. — OT = O(e¢) if and only if there exists an optimal transport with finite divergence (Proposition
A.1) and as the latter typically fails for continuous marginals, we are dealing with convergence slower than O(e). In
the continuous case, we are not aware of works addressing the multimarginal problem, and for two marginals,
almost all results are on the entropic regularization; an exception is Martins Bianco [44], in which x? divergence is
studied in a compact setting and an upper bound of order ¢!/“*1 is found. Returning to the entropic case, the link
between OTy . and OT goes back to Mikami [46, 47] in the Schrodinger bridge problem (which is closely related to
entropic optimal transport with quadratic cost; cf. Léonard [39]). Gamma-convergence is shown in Léonard [38];
see also Carlier et al. [18] for a proof in a setting closer to ours. A stochastic control viewpoint is presented in Chen
et al. [19]. Early quantitative results for quadratic cost from a large deviations viewpoint are Adams et al. [1],
Duong et al. [27], and Erbar et al. [30]—later extended in Pal [53] to cost functions closely modeled on the quadratic.
Whereas these are first order results, a second order expansion of the optimal cost is obtained in Conforti and
Tamanini [24] for the Schrodinger bridge setting and in Chizat et al. [22] for entropic optimal transport, all with
quadratic cost. These results require strong regularity assumptions in addition to compactly supported marginals.

The most comparable results by far are obtained in the very recent (and partly concurrent) work Carlier et al. [17],
which addresses general cost functions and obtains rates similar to ours, at least for compactly supported marginals,
in the case of entropic regularization with two marginals. Remarkably, the methods used are quite different. For
Lipschitz cost functions and compactly supported marginals, Carlier et al. [17, proposition 3.1] finds that
OTy . — OT <delog(1/e) + O(e), where d is the minimum of the two marginal dimensions. A potentially more gen-
eral result is obtained with a notion of upper Rényi dimension of the marginals; however, a more concrete bound is
only available through the box dimension, which requires compactness to be finite.! The proof proceeds through a
block approximation, applying the Lipschitz property on each block. Our Theorem 3.1 (specialized to the entropic
divergence on two marginals) obtains a bound of the same form but with the dimension defined by quantization.
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Using p-Wasserstein distance with finite p, quantization is well-behaved also for unbounded domains so that the
bound can be established for general marginals with finite (p + 6)-moments. Moreover, Theorem 3.1 applies to costs
such as |x —y|?, p > 1 as the Lipschitz property is only required in an integrated form. Shadows are a convenient
and robust tool in this context as is also exemplified by their application to adapted (causal) optimal transport in Eck-
stein and Pammer [29].

For cost functions of class C"! (thus, with almost everywhere bounded second derivative) and compactly sup-
ported marginals with uniformly bounded Lebesgue densities, Carlier et al. [17, proposition 3.4] show that
OT;,. — OT <4¢log(l) + O(e). The proof is deep and based on the fine regularity of the Kantorovich potential,
namely, a quadratic bound on the integrated difference between a A-convex function and its first order Taylor
expansion (Carlier et al. [17, lemma 3.6]). This bound depends directly on the diameter of the domain, and the den-
sity assumption is needed to pass from the Lebesgue measure to the actual marginals. By contrast, the martingale
argument used for our Theorem 3.2 applies to unbounded domains and is fairly robust; for instance, it easily
extends to the multimarginal case. It does, however, take as its input the quantization rate of an optimal transport
plan 7" so that it needs to be applied together with a regularity result for v*. For quadratic cost, we prove that the
rate is indeed 1/d in great generality, assuming only finite moments of order 2 + 6. For compactly supported mar-
ginals, a quite generic sufficient condition for this rate is the nondegeneracy of the cost, that is, invertibility of the
mixed derivative Dﬁyc(x, y). For unbounded but sufficiently integrable marginals, we show a rate arbitrarily close
to 1/d if nondegeneracy holds in a uniform sense.

In Carlier et al. [17], the authors also obtain a matching lower bound for the convergence rate (for entropic regu-
larization) for cost functions satisfying the aforementioned nondegeneracy condition and sufficiently regular mar-
ginals. The proof is again based on a fine analysis of the Kantorovich potential. The key tool is a quadratic
detachment estimate (Carlier et al. [17, lemma 4.2]), which we reuse in Section 4 to obtain matching lower bounds
for L¥ regularization as well.

Whereas the present work focuses on the convergence of the optimal cost OTy, ., two related question are the con-
vergence of the optimal couplings and optimal dual potentials. See Bernton et al. [9], Carlier et al. [18], and Léonard
[38, 39] and Berman [8], Chiarini et al. [21], Gigli and Tamanini [36], Nutz and Wiesel [50], and Pooladian and
Niles-Weed [56], respectively, and the references therein. As seen in Bernton et al. [9] and Chiarini et al. [21], the
convergence is also related to the stability of OT; . with respect to (wrt) the marginals (Carlier and Laborde [15],
Eckstein and Nutz [28], Ghosal et al. [35], Nutz and Wiesel [51]).

The remainder of this paper is organized as follows. Section 2 formally introduces the problem and notation and
then gathers preliminaries on quantization, divergence bounds for discrete couplings, and shadows. Section 3 con-
tains the main results on convergence rates. Section 4 provides instances in which the rates are sharp, and the
appendix gathers two additional results.

2. Preliminaries
2.1. Setting and Notation
Let (Y,dy) be a Polish space and P(Y) its set of Borel probability measures. Fix p € [1,00) and denote by P,(Y)

the subset of measures ¢ with finite pth moment; that is, [dy(x,£)" u(dx) < co for some (and then all) £ € Y. The
p-Wasserstein distance W),(u, v) between 11, v € P,(Y) is defined via

Wy(uv)' = inf /dy(x,y)p 7(dx, dy).
nell(u,v)

Fix N €N and let (X;,dx,),i=1,...,N be Polish probability spaces with measures 1, € P(X;). We denote by X =
Hfil X; the product space and use the particular product metric dx,,(x,y) := (Zfi 1 dxi(xi,yi)p)l/ P to induce the
p-Wasserstein distance on X.

Let ¢ : X — R be continuous with growth of order p, that is,

[c(x)| < C(1 +dx,p(x, X))

for some C > 0 and # € X. The optimal transport problem is

OT := inf /c dm,
u

ell(uy, ..., uy

where IT(y;, ..., ty) C Pp(X) denotes the set of couplings of the marginal measures i, € Py(X;). The growth of ¢
ensures that OT is finite.
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Letf : R, — R be a strictly convex, lower bounded function with f(1) = 0 and lim,_,«f(x)/x = co. The f-divergence
D¢ (u,v) between probabilities 1, v on a common space is defined by

Dr(u,v):= /f (Z‘S) dv for p<v,

and D¢(u,v) := oo for i < v. The Dyregularized transport problem is
OTy,e := inf )/Cdﬂ+€Df(T(,P), Pi=1,® - ®uy,
/HN

where ¢ > 0 is the regularization parameter. In particular, entropic optimal transport corresponds to f(x) = xlog(x).

2.2. Quantization
On a Polish space Y, we denote by P"(Y) C P(Y) the set of probability measures supported on at most n points.
Givenp € [1,00) and u € P,(Y), our results depend on an approximation rate of the form

e P(Y): Wo(u',u)<Cn %, nx1 (quant, (C, )

for constants C > 0 and a > 0. The takeaway of the following is that, if the support of u is d-dimensional, this prop-
erty typically holds witha = 1/d.

Remark 2.1 (Quantization Rate on RY). Let Y = R”. If u € P,.5(Y) for some & > 0, then quant,(C, a) holds with a =
1/d for some C > 0. More precisely, Graf and Luschgy [37, theorem 6.2] shows that the exact asymptotic constant

Co:= nlim n'/? inf W' )
—e ureP"(R")

can be expressed through a dimensional constant related to the p-quantization of the uniform measure on the unit
cube and a moment of the density of the absolutely continuous part of p. In particular, C,>0 as soon as p is not
mutually singular wrt the Lebesgue measure, showing that the rate & = 1/d is then optimal. A bound for the (nona-
symptotic) constant C in quant,(C, @) is given in Graf and Luschgy [37, corollary 6.7]; its proof yields an explicit
constant valid for all n > 1 depending only on p,8,d and [|x|P*? u(dx).?

For some variations of our results (in fact, only in the multimarginal case of Theorem 3.1 with nonentropic
divergence), we use a slightly stronger notion, sometimes called (deterministic) empirical quantization, in which
the approximating measures are required to be uniform. Let P “"(Y) C P(Y) be the set of uniform measures on n
points, that is, measures " =n~'>"[, ,, for some y; € Y. Similarly as earlier, we introduce

At e Pr(Y): W (i) <Cn?, nx1 (quant!”(C,a))

for constants C >0 and a > 0. This condition clearly implies quant,(C,a), but at least in the high-dimensional
regime, the optimal rate is in fact the same as summarized in the following remark.

Remark 2.2 (Empirical Quantization Rate on RY). Let Y = R“. The well-known Fournier and Guillin [33, theorem 1]
shows, among other things, that, if u € 772,,+5,(Rd) with d > 2p, then quant;m(C,a) holds with @« =1/d and a con-
stant C depending only on d,p,6 and the (2p + 6)-moment of y. In particular, this bound for the empirical rate
coincides with the bound 1/d given for (arbitrary) quantization in Remark 2.1. Rates for other regimes (d < 2p)
are also obtained in Fournier and Guillin [33, theorem 1]. Notably, the rates derived in Fournier and Guillin [33]
are not based on a deterministic construction of u" but hold almost surely when p" are independent and identi-
cally distributed (i.i.d.) samples of . More precise constants for this result and nonasymptotic bounds can be
found in the very recent work Fournier [32]. Rates for i.i.d. samples of measures supported on compact submani-
folds are studied in Weed and Bach [61].

For measures with bounded support, a deterministic construction in Chevallier [20, theorem 3] provides the rate
a =1/d and an explicit constant C for p <d; for p=d, a logarithmic correction is added, whereas for p>d, the rate is
at least & =1/p. For unbounded measures, Chevallier [20, corollary 1] shows a slightly looser bound for the rate
under the condition p € Pp,5(Y). The univariate case d=1 is studied in detail (Bencheikh and Jourdain [7], Xu and
Berger [62]). Here, the optimal rate is =1 if u has a positive density on its support and is sufficiently integrable,
whereas « < 1 is known in several other cases (see Bencheikh and Jourdain [7, table 1] for an overview).
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2.3. Elementary Divergence Bounds
For our purposes, discrete measures are useful because they admit straightforward divergence bounds. The best
known example is that a coupling 7 € I1(u,, u,) of marginals ; supported on n points has relative entropy
D¢(mt, iy ® pi,) < logn. The following lemma collects some extensions of that fact for later reference. We recall that
P"(X;) denotes the probabilities supported on at most n points, P"*"(X;) the empirical measures on n points, and
P=u® - ®uy.
Lemma 2.1 (Divergence Bounds). Let 7w € I1(y, . .., i) and define ¢ by f(x) = xp(x). Assume that ¢ is nondecreasing.
i. Ifn=2, @ is concave, and y, € P"(Xz). Then, Df(m, P) < p(n2).
ii. If u, € P"™(X;) fori=2,...,N, then De(rt, P) < ([T, 1)
iii. If p(x) = log(x) and u; € P"(X;) fori=2,...,N, then D¢(mt, P) < Z,Iiz log(n;).

Proof. Denote by my.n the marginal of 7 on X, XX Xy. In particular, Pony = 11,® - ®u,. We similarly define
m3.v—1 and Ppy_1 as the marginals on Xj X---X Xy_1. Let 0 be the counting measure on the (finite) support of

fad : _ drn _ _dK do
P».,. Disintegrating = u; ® K, we then have P = b, = APy and hence,

dn do
Dy¢(m, P) = /(p (ﬁ) dn < /(p (sz:N> drm.

In case (i) in which 7 =2, Jensen’s inequality yields

Jolips) = | @(;—D dpy < plina)

Whereas in (ii), dggN is constant, and thus, [¢ ( dl‘ng) dn=(p(]_[ﬁ2 n;). To see (iii), we write Z—gzm
A(miN-1® ) d(n— . . 1 o
(mNd,l ) d(m::jwm [gix;). As @(x) = log(x), this yields

Dy(m, P) = Ds(1t, min-1 ® piy) + Dy(min-1, Prn-1)-
To bound the first term, we apply (i) with py as second marginal,
Dy(m, P) < log(nn) + De(run-1, P1n-1)-

Iterating this argument yields Dy(r, P) < SN, log(1;), which was the claim. O

2.4. Shadows

Given mt € IT(uy, ..., ), the shadow 7t of 7t on another vector (i, . .., i) of marginals is a particular W ,-projection
of  onto I1(giy, ..., i) that enjoys a control on its divergence. Intuitively, for n=2, the shadow 7 is obtained by
concatenating three transports: move i1, to u; using a W,-optimal transport, then follow the transport 7 moving u;
into p,, and finally move i, to (1, using a W,-optimal transport. The general definition follows.

Definition 2.1 (Eckstein and Nutz [28]). Let p € [1,00) and w;, 1i; € Pp(Xi),i=1,...,N. Let «; € T1(y,, 11,) be a cou-
pling attaining W,(u;, 1i;) and x; = 4, ® K; a disintegration. Given 7 € I[1(y,, ..., 1), its shadow 7 on (g1, ..., fiy)
is defined as the second marginal of 1 ® K € P(X x X), where the kernel K : X — P(X) is defined as K(x) = K (x1)
® - ®Kn(xn).

The definition and the data processing inequality readily imply the following properties; see Eckstein and
Nutz [28, lemma 3.2] for a detailed proof.

Lemma 2.2 (Shadow Bounds). Let p €[1,00) and u, 11, € Pp(X;),i=1,...,N. Given meIl(uy,...,uy), its shadow
nell(gy,..., [iy) satisfies

N
Wy 7Y = S Wy, i),

i=1
Df(7t, 1,® -+ ®piy) < Dr(T0, 111 ® -+ ®pay).

3. Main Results

One novel idea in this paper is to use a “double” shadow through auxiliary discrete marginals to approximate a
given (typically singular) transport plan with one that has controlled divergence. To illustrate this, we start by
reproving the (known) convergence OTy,. — OT in our general setting.
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Proposition 3.1. Let p€[1,00) and u, € Py(X;) for i=1,...,N. If c is continuous with growth of order p, then
limg_@on/g =0T.

Proof. Using tightness of {,}, we can construct measures p supported on n points with W,(u}, ;) — 0 for
i=1,...,N.Let " € I[1(uy, ..., uy) be an optimizer of OT. We introduce another coupling " € T1(y, ..., i) as fol-
lows: first, let 77 be the shadow of 7" onto (uf, 5, ..., u}); then, define 7" as the shadow of 7 onto (uy, ..., iy)-
Using the triangle inequality and Lemma 2.2, this implies

N 1/p
Wy (r", ") < Wy (", 1) + W(7T, ") <2 (Z Wp(y?,yi)p> — 0.

i=1
As c is continuous with growth of order p, we conclude f cdmn — f cdm*. On the other hand, Lemma 2.2 yields
Dy(r",P) < Df(Tt, i ® up ® ... ) < 00,

where the finiteness is trivial by discreteness of uf'. Given 6 > 0, choose n such that [cdn” — [cdn* <6 and then
€0 > 0 such that egDf(", P) < 6. As 1" is an admissible coupling for OTy, ., we have shown OTy, — OT <26 for all
e<eg. O

3.1. Rate for Lipschitz-Type Costs

To enable a quantitative version of Proposition 3.1, we need to control the speed of convergence [cdn” — [cdn*in
its proof. We introduce the following adaptation of the condition (Aj) of Eckstein and Nutz [28], stating that the
integrated transport cost is Lipschitz with respect to the coupling.

Definition 3.1. Let p € [1,00) and u, € Py(X;), i=1,...,N. Given constants L, C > 0, we say that c satisfies (Ar, c) if,
for all 1, € P,(X;) with W, (i1, u,) <C,i=1,...,N, we have

’/cd(n—ﬁ)

forall m € I1(uy, ..., uy) and 7w € (g1, ..., fiy)-

Clearly, (Ar,c) is satisfied (for all C) if c is L-Lipschitz, but as discussed in Eckstein and Nutz [28, example 3.6], the
condition also captures various non-Lipschitz costs, such as c(x1,x2) = [x1 —x2|” on RY x RY with p €[1,00). In that
case, the constant L depends on the moments of the u; and on C. (The condition does not capture |x; —x,|" for
0 <r < 1. An extension with a modulus of continuity instead of a Lipschitz constant is discussed in Remark A.l.)

< LW, (n,7)

Theorem 3.1. Let p €[1,00) and p; € Py(X;) for i = -N. Assume that y; satisfies quant,(C,a;) for i=2,...,N and
that c satisfies (Ar,c) for some ap, ..., an € (0,1] and L C >03
i. Let f(x) = xlog(x). Then, forall € € (0,1],

N

1 1/
OT;.—-0OT< 1 4(N —1)/PLCe.
I3 _(;a>e og()+ ( ) PLCe

ii. Let f(x) = xp(x), =S N 2a f f(x) = x(xP). Assume that, for some xo,y0 > 0 f is strictly increasing on [xo, c0) with
inverse f, . and ¢ is nondecreasmg Suppose also that either n = 2 and ¢ is concav, or the y; satisfy quant,”(C, a;) instead of
quantp(C oz) Set S, fmv( ) which satisfies lim,_,0S, = oo and lim,_,0eS. = 0. Then, for all € € [0,1/x¢] small enough
such that S, > y(l)/ﬁ +1,

4N -1DYPLC+1

T,. —OT <
OTs. - 0T < 3

Whereas the quantity S, in Theorem 3.1(ii) may not admit a closed-form expression, we can deduce more explicit
bounds as follows.

Example 3.1 (Explicit Bounds). Choose a function ¢ > ¢ such that g(x) := xi(xF) is strictly increasing with inverse
denoted g, .- Then, g, = <f, ,and hence, 1/S. <1/g, (1/¢) so that Theorem 3.1(ii) implies

inv”/

OT; . —OT < (4N — 1)/’ LC + 1)~
We, thus, aim to choose ¢ so that g, has an explicit expression. As an example, consider the L regularization

given by f(x) =%(x’J —1) with p>1. Here, ¢(x) =%xp‘1 —%S%x”‘l =:1(x). With this choice of ¢, we have
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g(x) = %x(f”l)ﬁ“, and the explicit inverse g, (x) = px!/[(°~Vf*1_ As a result, for all ¢ € (0,1],
OT;. —OT <Kew i, K:=(4(N—1)"PLC+1)/p.

Remark 3.1 (On ;). In Theorem 3.1, nothing is assumed about the quantization of p;. In an application, one
would, thus, label j; the marginal with the slowest quantization rate. In particular, for n =2 marginals on RY, we
typically have 1/a, = d; Ad, by Remark 2.1.

Proof of Theorem 3.1. Let " € I1(yy,...,uy) be an optimizer of OT. By our assumption, there exist empirical
quantizations y" for the marginals i=2,...,N such that W,(u}", ;) <Cn;*. We introduce a coupling 7€
I(yy, ..., uy) (depending on ny, ..., ny) as a double shadow: first, let 7 be the shadow of 7 onto (i, 5%, ..., ux');
then, define 7t as the shadow of 7t onto (i, ..., 11y ). Using the triangle inequality and Lemma 2.2,

N 1/p
W, (11, 1) < Wy(m, 72) + W, (7T, ) < 2 (Z W, (ult, uJ”) .
i=2
Combining this with our assumption (Ar, ), we deduce
N 1/p N 1/p
/ cdm — / cdn* <2L (Z W, (", WP) <2IC <Z n,."f”> :
i=2 i=2
On the other hand, Lemma 2.2 again yields
Df(ﬂ,P) < Df(ﬁ, W ® }l;z Q... ynNN .
As 7 is an admissible coupling for OT ., we have proved
N 1/p
OT;,—OT<2LC (Z n; ““P) +eDH(TL, 1y @ b2 @ ... 1y, (3.1)
i=2

and the last divergence term can be bounded by Lemma 2.1. In the remainder of the proof, we choose n; as a suit-
able function of ¢ to balance the decay of the two terms on the right-hand side of (3.1).
As n;is an integer, we need to deal with a rounding error: given S € [1, o), we define g(S) > 0 as

1/p
1 &Koo
S):= 3.2
so that 1 < p(S) < 2M#=2% < 2 and limg_,00(S) = 1. We then have
N r _ 1\ _ 1)/
Z LSl/(XiJ—llip — Q(S)(N 1) < 2(N 1) ) (3.3)
i=2 5 5

i. Setn;=|e V% |fori=2,...,N.ForS=S, = 1/¢,(3.3) yields

N 1/p \p
(Znimp> LHSIN =D oy i,

i=2

and Lemma 2.1(iii) bounds the divergence term by

N ; ; N N1 1
eDF(TL, thy ® Py’ ® =+ ') < ez log(n;) < sz ;log <é>
i=2 i=2 M

In view of (3.1), the claim follows.
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ii. Setn; = I_Sl/ “|fori=2,...,N, where S, is defined in the theorem. Similarly, as in (i),

N 1/p 1/p
Zn;a,‘p < Q(Sé)(N - 1) < 2(N _ 1)1/Pl
= 5 S

& &

On the other hand, S, >y, VP implies yo < [N, n; < s by elementary arguments. Under quant”(C, a;), Lemma
2.1(ii) and monotonicity of ¢ on [y, c0) yield

gf finv(%)
DH(TL, py @ y* ® . iy )<5(P<H”z> <ep(S) = gf(f) ( S >=Slg’

and now the claim again follows from (3.1). For the claim under n=2, we use Lemma 2.1(i) instead of Lemma
2.1(ii). O

Remark 3.2 (On the Constant). The constant four in Theorem 3.1(i) and (ii) can be replaced by 2¢(1/¢) and 20(S;),
respectively, where g(-) is defined in (3.2) and satisfies 1 < p(-) < 2. As ¢(S) = 1+0(1/S), this improves the asymp-
totic constant for ¢ — 0 in Theorem 3.1 from four to two.

Remark 3.3 (On the Proof). In Theorem 3.1 and its proof, the entropic case (i) is treated separately from the gen-
eral case (ii) to obtain an expression that is more explicit and more in line with the literature. In fact, the bound in
Theorem 3.1(ii) is slightly sharper even for the entropic divergence as its proof is based on the optimal trade-off
between the transport and divergence terms: both have the same rate 1/S., whereas in the proof of (i), they have
differing rates ¢ and ¢log(1/¢). However, S, = f mv( ) does not admit an explicit expression in the entropic case,
so we chose instead S, = 1/¢ to obtain an explicit statement. The leading-order term nevertheless turns out to be
sharp; see Proposition 4.1.

3.2. Rate for Twice Differentiable Costs
For the main result, we focus on the exponent p =2 for the Wasserstein metric and on closed convex sets X; C R%
endowed with the Euclidean norm | - |. We recall that X = X; X --- X Xy then also carries the Euclidean metric and
write c€ C*(X) to indicate that ¢ is defined and twice continuously differentiable on a neighborhood of
X c Rd1+ +dN

For costs w1th bounded second derivative and an additional regularity condition, we improve upon the
dimension-dependence in Theorem 3.1 by a factor 1/2, at least for marginals of equal dimension. For that improve-
ment, (A, c) is too weak (as evidenced in Proposition 4.1). Instead, we use a martingale argument to achieve a full
cancellation of the integrated first order term in the Taylor expansion of c. For this, we directly quantize an optimal
transport, not just the marginals. In the following statement, its quantization rate « is taken as given; we elaborate
as follows on how to bound it in practice.

Theorem 3.2. Let X; C R% be convex and u; € PaX;) fori = .,N. Assume that ¢ € C*(X) has bounded second derivative
w'c”(x)w < Blw|* forall x,weX, forsome B>0, 34)

and that OT admits an optimal transport * satisfying quant,(C, &) for some a € (0,1] and C>0.
i. Let f(x) = xlog(x). Then, forall ¢ € (0,1],

OTfé.—OT<N élog( >+SBCE.

ii. Let n =2, f(x) = xp(x) with ¢ nondecreasing and concave; let = 5= and f(x) = x@(xP). Assume that, for some xo >

0, f is strictly increasing on [xg,0) with inverse f Set S, f ( ) which satisfies lim,_,0S, = co and lim,_,0eS, = 0.

inv’

Then, for all € € (O, x—o} small enough such that S, > 1,

nv

8BC +1
OTy. —OT < .
& S

&
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Before proving the theorem, we recall the martingale property of W,-quantization; see, for example, Pages [52,
proposition 5.1] for a proof. This property and its interplay with the Taylor expansion in (3.5) explain why our
result is limited to p =2.

Lemma 3.1. Given a probability n € P»(Y) on a Polish space Y and n >1, there exists n" € arg min,pepry)Wa(17", 1),
called an optimal Wy-quantizer of 1 on n points. There is a coupling 0 € II(n",n) attaining Wa(n",n), meaning that
[1x = y|2 6(dx,dy) = Wa(n",n)?, and it is a martingale: the kernel « in its disintegration 0 = 1" ® « satisfies [1y(x,dy) =
x for 1t-almost all x.

Proof of Theorem 3.2. For n > 1, let @ € P(X) be an optimal W,-quantizer of 7* on 1 points and let 6 € I1(7t, ") be
the coupling attaining W (7, 7*); cf. Lemma 3.1. The martingale property of 6 implies that [/(x) - (y — x) 6(dx, dy) =
0 for any measurable function /1 : X — R?** of linear growth. As ¢ has a bounded second derivative, its first
derivative ¢’ has linear growth, and thus,

/c’(x) (y — x) O(dx,dy) = 0.

Considering the Taylor expansion of ¢(y), this shows that the integral of the first order term vanishes, and then
the bound on the second derivative yields

/cdn* — /cdﬁ

_ ‘ [~ o, dy)\

<B / |x — y|? 6(dx, dy) = BWa (7, ") (3.5)

Denote by ! the marginal of ™ on X; and by 0; the marginal of 6 on X; x X;. We observe that 0; € T1(u!, u;) is
again a martingale coupling. Furthermore, as we are using the Euclidean norm,

N
> / |x; — | Oildx;, dy;) = / |x = y|* O(dx, dy) = Wy(7t, 7). (3.6)
i=1

Next, we construct a coupling 7 € I1(u, ..., it),) that is reminiscent of the shadow of 7 but uses the kernels of 9;
instead of W,-optimal transports between u' and u;. Namely, decomposing 0; = u! ® K; and writing K(x) := K3
(x1)®... ® Kn(xn), we set y := 1 @ K € P(X x X) and define 7w € I1(yy, ..., 1)) as the second marginal of y. Prob-
abilistically speaking, this means that we take the (possibly dependent) components of the vector martingale 6
and combine their laws into a new vector martingale y with independent components. In particular, y € Il(7, 7t)
is also a martingale coupling: [v; K(x,dy) = [v; Ki(x;,dy;) = x; for all I by the martingale property of 6;. Repeating
the argument for (3.5) with y instead of 0, inserting the definition of y, and using (3.6), we conclude that

’/cdn—/cdﬁ SB/|x—y|2y(dx,dy)

- BEN: / |x; — yi|? 0i(dxi, dy;) = BWo(7t, 70")°.
i=1
In view of (3.5), the triangle inequality and the assumption on 7* then yield
/ cdn— / cdn* < 2BWa (7, m*)* < 2BCn~ 2. (3.7)
On the other hand, by the data processing inequality (e.g., Nutz [49, lemma 1.6]), the construction of 7z implies
Df(rt, P) < Df(1t, ui® -+ ®uy)-

This bound is analogous to Lemma 2.2 (indeed the reasoning is the same).
The rest of the proof is analogous to Theorem 3.1. To deal with the rounding error, we now define o(S) for S €

[1,00) as
Si 2a
(S):= [ - 338
0 <L o J> (3.8)
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so that 1 < o(S) < 2** <4 and lims_.0(S) = 1. In particular,
|52 = p(S)S ' <4571, (3.9)
i. Letn =|e 2. Then, (3.7) and (3.9) for S = S, = 1/e imply
/ cdm — / cdn* <2BCo(S.)S; ' <8BCo(S:)e,

whereas Lemma 2.1(iii) yields D¢(7, pf® -+ ®uy) < (N — 1)log(n), completing the proof of (i).
ii. Here, we define n = LS?J, and then, (3.7) and (3.9) yield

/cdn—/cdn"s %@(55) < 85(:,

whereas (recall n=2) Lemma 2.1(i) yields Df(7, u} ® p) < ¢(n), and thus,

eDf(m, P) < ep(n) <

E(p(S?)SS 1
S. T

completing the proof. O
Similarly, as in Remark 3.2, the asymptotic constant in Theorem 3.2 can be improved from eight to two.

Remark 3.4 (Relaxing C® Condition). Theorem 3.2 immediately extends to slightly less regular costs: if (c;),cy is a
sequence of cost functions satisfying the assumptions of Theorem 3.2 and lim,_,cllc; —c¢ll, =0 for some
c:RY S R, then

OTy,.(c) = OT(c) < 2lc;y — clloo + OTf, (") — OT(c")

asboth OT¢ . and OT are 1-Lipschitz with respect to || - ||, so that Theorem 3.2 applies to c as well.
We also have the following analogue of Example 3.1.

Example 3.2 ( L? Regularization). For the L regularization f(x) = %(xp —1) with p > 1, Theorem 3.2(ii) implies
that, for all € € (0,1],

OT; . —OT <Ke# ', K:=(8BC+1)/p,
by the same algebra as in Example 3.1. (Of course,  now has a different definition).

Remark 3.5 (Comparison with Theorem 3.1). Let n=2 for simplicity. As any quantization of the coupling 7*
induces quantizations for its marginals, it is clear that & < a,. In the best case, we have a = @y, and then, Theorem
3.2 yields an improvement of 1/2 over Theorem 3.1. Note that a = a, is typically the case if d; =d, =: d and the
support of 1" is also d-dimensional—more on this in a moment.

On the flip side, as Theorem 3.2 implicitly quantizes all the marginals, there is no immediate benefit to having
a faster rate for one marginal as in Remark 3.1. Thus, there are situations in which Theorem 3.1 actually yields a
better rate, especially if d; > 2d,. But, of course, d; = d, is the most important setting.

To obtain a good result from Theorem 3.2, we need to know that OT admits an optimal transport 7* satisfying
quant,(C, @) for some good «. Indeed, quant,(C, «) holds trivially for 1/a =d;+ --- +dy (under a moment condi-
tion), but that does not yield the desired improvement over Theorem 3.1. On the other hand, suppose that n* is
given by a Lipschitz transport map over Xj; then, 7" inherits the quantization rate from p; so that 1/a = d;. The
existence of such a map is studied intensely in the regularity theory of optimal transport; see Caffarelli [12, 13]
and the literature thereafter. However, the conditions are known to be very restrictive (Loeper [41], Ma et al.
[43]), and clearly, a Lipschitz map can almost never be expected for unbounded marginals. On the other hand, as
emphasized in McCann et al. [45], a lower dimensional structure does not require a transport map at all.

In the following, we provide some results for 7 =2 marginals and remark briefly on the multimarginal case.
Generally speaking, any result on the structure of optimal transports can be combined with Theorem 3.2. The
next result covers the most important example—the quadratic cost defining 2-Wasserstein distance—under a
minimal condition on the marginals (which includes many situations in which no coupling is given by a map).

Lemma 3.2. Consider c(x,y) = |x — y|* on R? x RY with marginals 1,, i, € Pa+s(RY) for some &> 0. Then, any optimal
transport satisfies quant,(C, 1/d) for some C > 0.
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Proof. Let A = {(x,x): x € R?} be the diagonal and proj* : R* — A the Euclidean orthogonal projection. Let 7t €
I1(,, i,) be an optimal transport; then, 7 € P.5(R*) because of the assumption on the marginals. Define the
push-forward measure
n:= projﬁ T,
which is concentrated on A; we claim that 7 satisfies quant,(C, 1/d). Consider the rotated coordinates (u, v) given by
_Xty _rXy

v T

in which A = {(,0) : u € R’} and proj® can be written as (1,v) — (u,0). Thus, 1) can be seen as a measure on R?, and
with that identification,

/|u|2+°‘dn = /|(u,v>|2+ﬁdn - /|(x,y>|2+°‘dn <.

By Remark 2.1, € Pp,5(R") implies that 1 satisfies quant,(C, 1/d).
To show the same rate for 17, we use Minty’s [48] trick along the lines of Alberti and Ambrosio [3]. Recall that
the support I := spt 7t is c-cyclically monotone (e.g., Villani [59]), which for quadratic cost means

& =xy —-y=>0, (xy),,y)eT.
In the rotated coordinates, this implies that
[0 —ol < |u' —ul, (u0),W,0)el.

In particular, u = u’ implies v = v/, meaning that proj* admits an inverse map ¢ : proj*(I') = T, (1,0) +— (1,v), and
moreover, ¢ is V2-Lipschitz. By Kirszbraun’s theorem, we can extend ¢ to a V2-Lipschitz map A — RY x RY, still
denoted . Note that 7 = £4n and any quantization of 1 on A pushes forward to a quantization of 7. In view of
the V2-Lipschitz property, we conclude that 7 satisfies quant,(V2C,1/d). O

The following combines Lemma 3.2 with Theorem 3.2 and Example 3.2.

Corollary 3.1 (Quadratic Cost). Consider c(x,y) = |x —y|? on R? x R? with marginals i, i1, € Pass(RY) for some &> 0.
i. Let f(x) = xlog(x). There exists K > 0 such that

OT;. - 0T < gelog (%) +Ke, €€(0,1].
ii. Letf(x) = %(xf’ — 1) with p > 1. There exists K > 0 such that

OTf, e — OT< KE—(p—l)ld/Z-H’ ce (O, 1].

Next, we aim to generalize Lemma 3.2 from quadratic to more general costs. Following McCann et al. [45], the basic
idea is that a fairly generlc cost is locally equivalent to a perturbation of the quadratic cost after a change of coordi-
nates. Let X3, X, C RY be convex and ¢ € CZ(X) We say that ¢ is nondegenerate if D c(x y) is invertible for all
(x,y) € X. Here, D2 c(x y) denotes the d xd matrix [8 y]c(x Yli<i j<a- We follow the termmology of McCann et al.
[45]; the condltlon 1s called (A2) in Ma et al. [43], whereas Carlier et al. [17] calls such c infinitesimally twisted.

If the support can be covered by finitely many such local coordinate changes, we obtain the same quantization
rate as in the quadratic case. In particular, this holds for compact support.

Lemma 3.3. Let X1, X, C R? be convex and let c € C*(X) be nondegenerate. If 1, i, are compactly supported, then any
optimal transport satisfies quant,(C,1/d) for some C > 0.

For a proof, see steps 1 and 2 in the proof of Lemma 3.4. Next, we address the unbounded case; here, we assume
that nondegeneracy holds in a uniform sense (which is automatic in the compact case) and achieve a rate arbitrarily
close to 1/d under sufficient integrability. The proof is a combination of the proofs of Lemma 3.2 and McCann et al.
[45, theorem 1.1] with a cutoff argument. We denote by ||M]| the operator norm of the matrix M.

Lemma 3.4. Let X1, X, C R? be convex and let ¢ € C*(X) be nondegenerate. Suppose that D> ,c(x,y) is uniformly continu-
ous and ||nyc|| (D2 c) Y| are bounded on X. Let d’ > d. Ifu, u, €P (R ) for g := Zd +, then any optimal transport satis-
fies quantZ(C,l/d’)for some C > 0.
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Proof. Let 7 be an optimal transport. Whenever a subprobability v is given, we denote by v = v/v(X) its normal-
ized measure.

Step 1. Consider a cube Q = ([, r]Zd + {(x0,10)}) N X centered at (xo,yo) € spt 7. We show that, for r sufficiently
small, 7;5 satisfies quant,(C,1/d) with a constant C independent of (xo,yo). Let M := Diyc(xo,yo) e R™ and
G(x,y) := —c(x, — M‘ly) —x-y. Then.

DﬁyG(x, y) = D,z(yc(x, ~-M'yM! -1,
= D,z(yc(x, ~MlyM! — chyc(xo,yo)M’1 ,
and hence,

ID2,Gx )l < M 1D, e(x, — M"y) — D, c(xo, o)l

As Diyc is uniformly continuous and ||(D]2(yc)71|| is uniformly bounded, we can, thus, choose r € (0,1) independent
of (xo, Yo) such that ||D)2(yG(x, y)|| <1 forall (x,y) € R? x RY with (x, — M~y) € Q.

Consider (x,y), (¥’,y’) such that (x, — M~'y),(x’, — M~'y’) € Q N spt 7. Then, the c-cyclical monotonicity of spt 7
yields

C(.X, - M_ly) + (X’, - M_ly’) < C(.X, - M_ly) + C(x,/ - M_ly’)
or, equivalently,

xy+Gy)+xy + Gy )2 x-y +Gxy ) +x" -y + G, y). (3.10)

Next, we use a second change of coordinates
Xty X7y
V2’ V2
Closely following the proof of McCann et al. [45, theorem 1.2], using (3.10) with Ax:=x" —x, Ay:=y' —y, Au :=
u —u, Av:=v' —vleads to

1,1
Ax-Ay+Ax- / / Din(x +sAx,y + tAy)Aydsdt > 0,
0 Jo

and hence, Ax-Ay > —1|Ax||Ay]| as ||D§yG|| <1 along the integration domain. Noting that AyV2 = Au+ Av and
AxV2 = Au — Av, we deduce

|Au|? — |Av|? = 2Ax - Ay > —|Ax||Ay|
1 1
> — (8 + 1Ay =~ (1Aul + |a0f?),

and thus,

|Av| < V3|Au]. (3.11)

Consider the composition a = a3°a;°a; of the linear maps

a : (x, —M‘ly) —(xy), a:(xy)— (1,0), a3:(u,v)— wu.

Clearly, the image I = a(R*) is a d-dimensional linear subspace. Defining 1 := a#%, we see that spt 1 is a bounded
subset of I. Its diameter admits a bound depending only on r and the Lipschitz constant of 4, and the latter is inde-
pendent of (xo, yo) as ||M]| = [|Dxyc(xo, yo)|| is uniformly bounded. Recall from Remark 2.1 that a measure on R? with
bounded support satisfies quant,(Co, 1/d) with a constant Cy depending only on d and the diameter of the support
(note that the diameter bounds any moment). As a result, 1 satisfies quant,(Cy, 1/d) with a constant Cy independent

of (xo, Yo)-
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The map a admits a Lipschitz inverse £:a(Q Nspt ) — Q Nspt m with a Lipschitz constant L independent
of (xo, yo) because of the boundedness of ||(D§yc)71|| and (3.11). Again, by Kirszbraun’s theorem, ¢ extends to a

Lipschitz map ¢:1— R?x R? with the same Lipschitz constant. As 7t|q = €gn, we deduce that 7| satisfies
quant,(C,1/d) for C = LC,.

Step 2. We start with a general observation about sums. Let v, ...,v,, be subprobabilities with a cumulative
mass of at most one and suppose that each v; satisfies quant,(C, «) for n > 1. Consider the quantization problem for
the sum v =", v;, which can be seen as the convex combination Y ", v;(X)v; of probability measures (and the
zero measure if necessary). Noting that, given n =km points, we can allocate k points to each of the v;, it is easy to
see that v satisfies quant,(m“C, &) for all n € {m,2m, ---} and, thus, for all n > m after increasing the constant C.

For N € N, consider R=Nr and the cube Qg =[—R, R]Zd, which can be divided into m := N> small cubes of the
type in step 1. Combining step 1 with the observation about sums, we see that 7|, satisfies quant,((R/ r*C,1 /d)
forn > (R/r)*.

We note that, if the marginals are compactly supported, Qg contains spt 7 for R sufficiently large so that 7 satis-
fies quant,(C, 1/d) after increasing C. For the noncompact case, we use the following cutoff.

Step 3. For n > 1, choose R = R(n) as

R(n) := an%‘dL’Jl/z.
Note that lim, eR(17) = 0o and 7> (R(n)/r)* and (R(n)/r)*n~Y4 < n~Y/4 Writing 7, := 7|y, this shows that
there exist v, € P"(RM) such that Wx(v,,, 7T,) < Cn~ Y%, On the other hand, consider 7 — 7, which is supported
outside [-R(n),R(n)]*. As a consequence,

/|z|2d(7z—7zn)SR(n)77’/|z|2+Vd7z

=4

for any y > 0. Choose y:= 4 =4 (1 1) 1 then, R(n)™ < C'n=2/% for a constant C’ >0, and as 2 + y =24+ the

integral is finite by our assumption on the marginals. Quantizing = — 7, by a single point mass at the origin, we
then see with the result for 7t,, that 7t satisfies quant,(C, 1/d’) for a (different) constant C. O

Lemmas 3.3 and 3.4 have immediate corollaries similar to Corollary 3.1; we omit the statements for brevity.

The nondegeneracy condition can be extended to the multimarginal transport problem and is used in Pass [54, theo-
rem 2.2] to bound the dimension of the support of an optimal transport. However, as noted by the author, the condition
is no longer generic when n>2, and indeed, some quite reasonable multimarginal problems only have solutions of
larger dimension (Pass [54, remark 2.13]). On the other hand, we do expect that our results extend to n > 2 for particular
costs, such as those in Gangbo and Swiech [34]. In any event, Theorem 3.2 separates such regularity issues from the con-
vergence analysis so that any available regularity result from optimal transport theory can be applied directly.

Remark 3.6. As mentioned in the introduction, Carlier et al. [17] previously obtained the constant 4/2 for com-
pactly supported marginals with uniformly bounded Lebesgue densities and also showed its sharpness (cf. Sec-
tion 4). Unlike in our result, the upper bound in Carlier et al. [17] does not require nondegeneracy. Interestingly,
Minty’s trick is also used in Carlier et al. [17], but it is employed in the proof of the sharpness rather than in the
upper bound as in the present work. We worked on the primal problem and used Minty’s trick to estimate the
dimension of optimal couplings, whereas in Carlier et al. [17], the authors work on the Kantorovich potentials of
the dual problem to derive the upper bound, giving a quadratic control on the integrated difference between a
A-convex function and its first order Taylor expansion.

4. Sharpness

In this section, we show that the upper bounds obtained in the preceding section are sharp in certain cases.
Throughout, we focus on n =2 marginals and divergences given by f(x) = xlog(x) and f(x) = %(xp —1). Lower
bounds for OTy,. — OT are naturally obtained from the dual problem of OTy, ..

Lemma 4.1. Let h;eL! (y;); i = 1, 2 be Kantorovich potentials for OT, and é(x,y):=c(x,y) — ha(x) — ﬁ2(y) for
(x,y) € X1 X Xy. Let f*(y) := sup o [xy — f(x)] for y € Rand f(y) := ef* (Ly). Then,

OT;,. —OT>sup (a - / fila—¢&)d(u, ® u2)>

acR

> sup (u —f:(a)/l,m» d(y, ® u2)> — ¢f*(0).

a€R
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Proof. Recall (e.g., Eckstein and Pammer [29], Terjék and Gonzalez-Sanchez [58]) the duality

OTye =sup [ In(x) +ha(y) — (1 (x) + ha(y) — c(x, y)) py (dx)p,(dy),

ha, hy

where the supremum ranges over i; € L'(11,). As OT = 2| [I; du,, choosing h = iy +aand hy = i, yields

OTy,. — OT > sup (a - /f;(a —0)d(u, ® y2)> .
aeR

As f? is nondecreasing, ¢ >0 and f;(0) = ¢f*(0) > —¢f(1) =0, we also have [f(a —¢)d(u, ® u,) <fi(a) [Lose A, ®

U,) +£:(0), leading to the second inequality. O

Turning to the sharpness of the Lipschitz result (Theorem 3.1), it was observed in Carlier et al. [17, example 3.3]
that the leading-order term ¢log(1/¢) is sharp in the entropic case for the distance cost on R. Part (i) is a simple
extension of that result to d dimensions equipped with the L'-metric as cost, showing that the dependence on the
dimension (or, equivalently, the quantization rate) is also sharp. For Lf regularization, we show in (ii) that the lead-
ing term has the sharp order and, in particular, the correct dimension dependence. Regarding the relation between
dimensiodn and quantization rate, recall from Remark 2.1 that a, =1/d for absolutely continuous marginal
U, € P(RY).

Proposition 4.1 (Sharpness of Theorem 3.1). Let X; = X, = R with Uy = U, the uniform distribution on [0,1]d and

c(x,y) = S0 1xi — il
i. Let f(x) = xlog(x). Then, forall ¢ >0,

OT. —OT > delog(l/e) — 24 —1)e.

In particular, the leading term matches the bound in Theorem 3.1(i).
ii. Letf(x) = %(xp —1) for some p > 1. Then,
OT; . — OT > Ke" 17 + O(e)

for a constant K > 0. In particular, the leading term has the same exponent as the bound deduced from Theorem 3.1(ii) in
Example 3.1.

Proof.
i. Here, f*(x) = ¢* — 1. Recalling the normalizing constant |- Re‘“;v‘ du = 2¢ of the Laplace distribution,

4 Xi—V;
/e%d(yl(g‘uz):egn/ 6‘ o ‘dedyiﬁea/S(Zé')d,
=1 /10,11

and thus, Lemma 4.1 (with ﬁl = ﬁz =0) shows
OTs . — OT > sup(a — 2 gdlon/e 4 ¢

Choosing a = delog(1/¢), the right-hand side equals delog(1/¢) — 27— 1)e.
ii. Here, f*(y) = %yi + % forq:= % so that
£

« oy al
fs(a)zgf(a/é)—qgﬁ‘*'ﬁ, a>0.

The definition of c shows that 1,5, < Hflzl 1¢|x,—y|<a), and thus,

d 1 r1
/ Lecd(p @) <[] /0 /0 Los x| dxidy; = (22 — a) < (2a)°
i=1

for a € [0,1] with the last bound valid for a2 > 0. Lemma 4.1, thus, yields

OTy,. — OT > sup (a —2'f:(a)a" — ef *(0))

aeR,

d+q 2171 d
= sup (a—Zd ? i—e). (4.1)

-1
aeR, qet p
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Setting a := ke 71, where k>0 is such that K := (k — 27" /q) > 0, we deduce OTy,, —OT > Kem i + O(e) as
claimed. O

Remark 4.1. We can sumlarly show the sharpness of Corollary 3.1(ii) for quadratic cost. Namely, let c(x,y) =
lx—y2=30 |x—yil> Gomg through the proof of Proposition 4.1, we now have 1,5, < [[%, 15—y | <yay and

thus, OTf . — OT > Keb D721 DT 4 O(¢). A more general (if much more involved) argument for a general class of mar-
ginals is given as follows.

Indeed, we can establish the sharpness of Theorem 3.2 for a general class of marginals and costs. For the entro-
pic case, it is well-known that the leading term ¢¢log(1) is sharp for quadratic cost c(x,y) = [x — y|? on R? x R?
when the marginals are sufficiently regular (Chizat et al. [22], Conforti and Tamanini [24], Pal [53]). Very
recently, Carlier et al. [17] showed that this term is sharp for the broad class of nondegenerate (as defined before
Lemma 3.3) costs and regular marginals; their result is stated in (i) as follows for completeness. The core of the
proof in Carlier et al. [17] is a quadratic detachment estimate for the Kantorovich potentials. In (ii), we apply their
technique to divergences f(x) = 1 (xf’ — 1) to show sharpness of the leading order in Theorem 3.2(ii).

Proposition 4.2 (Sharpness of Theorem 3.2). For i = 1, 2, let X; ¢ R be convex and compact and let u, € P(X;) have
bounded Lebesgue density. Let ¢ € C*(X) be nondegenerate.
i. Let f(x) = xlog(x). Then,

OT;,. —0T2> gelog(l/e) +O(e).

In particular, the leading term matches the bound in Theorem 3.2(i).
ii. Letf(x) = %(xp — 1) for some p > 1. Then,

OTf,. - 0T 2> Kew a7 4 O(¢)

for a constant K > 0. In particular, the leading term has the same exponent as the bound deduced from Theorem 3.2(ii) in
Example 3.2.

Proof. See Carlier et al. [17, proposition 4.4] for (i). To show (ii), we argue that there exist constants Cy, C > 0 such
that

0T}, > OT +sup (a — Cf(@)a"/? — max{0, f;(())}) . (4.2)

a<Cy

This bound is similar to (4.1) but with different constants and implies the claim along the same lines. To show
(4.2), we apply Lemma 4.1 with optimal potentials (/11,/1,). The latter can be chosen to be continuous so that ¢ is
also continuous. The main difficulty is to bound [1,5¢ d(i; ® u,). Following the proof of Carlier et al. [17, proposi-
tion 4.4], we find a finite open cover A =U!_; A; of the compact set {¢ = 0} N (X; X X;) satisfying the following:

a. On the compact B := (X; x X3)\A, we have ¢ > Cy for some Cy > 0.

b. There exist r,C; > 0 such that, foralli € {1,...,n}, for somer, € R? depending only on v € RY,

/ Lo>¢ d(:ul ®‘Uz) < Cl//1a2|u7rv|2/4dudvz
A; B,JB,

where B, ¢ R is the ball of radius r> 0 around the origin.
Bounding the inner integral in (b) according to

d
/ 1a2|u_,,v|2/4du < / 1ﬂ2|u‘2/4du < H/l‘llilszﬁdu < 4dad/2,
B, R? -1 JR
we obtain
/ Tose d(uy ® y) < Ca/?
AN(X;%Xa)
for a constant C > 0. In view of (a), this shows
/ 1ose d(u, ® ) < Ca?? for a<Co (4.3)
XXX

and now (4.2) follows by Lemma 4.1. O
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Appendix
The following is well-known in the entropic case (Nutz [49, section 5]. For completeness, we provide an extension to the
f-divergences under consideration.

Proposition A.1. We have OTy,. — OT = O(¢) if and only if there exists an optimal transport plan 1 for OT with Dy(r*, P) < oo.

Proof. If there exists an optimal transport plan 7i* with finite divergence, clearly OTy,. — OT < eDy(r", P) = O(¢). Conversely,
let 71, be an optimizer of OTy,.. If OTy. — OT = O(¢), it follows that sup, 1)Df(7e, P) < 0. As f has superlinear growth, the
densities dmt. /dP are then uniformly integrable; in particular, there exists a weak’-convergent sequence dr, /dP, meaning that
(me,) converge set-wise. The limit 77y is again a coupling. We have [cdmg <liminf OT;, =OT by a generalized Fatou's
lemma (Royden [57]) and the growth condition on ¢, showing that 7, is an optimal transport. The same Fatou’s lemma shows
Dy(mo, P) < lim inf Dy(m,,,, P) < 00, completing the proof. [

The following extension of Theorem 3.1 was prompted by a question of by G. Carlier; see also the similar Carlier et al.
[17, remark 3.2].

Remark A.1 (Extension of Theorem 3.1 Beyond Lipschitz). Fix p=1 and replace (Ar, c) by

‘/cd(n—ﬁ)

where w: R, — R, is an increasing and concave modulus of continuity. To motivate this, note that, if the function c itself
has modulus of continuity w, then choosing 6 € I'l(nt, 77) attaining Wi (7, 70) yields

‘/Cd(ﬂ—ﬁ)

< w(Wy(m, 1)), (A1)

< / le(x) — c(y)| O(dx, dy)

< /a)(dx,](x,y)) 0(dx, dy) < w(Wi(r, 7))

by Jensen'’s inequality. Going through the proof of Theorem 3.1 with (A.1), we obtain, instead of (3.1), that

N
0Ty, - 0T < 2w (CZ ni“’> +eDp(TE, 1y ® Uy’ ® ... iy

=2
and can then optimize the choice of #;. For instance, in the entropic case, we take S, = a)*l(l/ ¢); then, the first term is again
of order ¢, whereas the divergence term is of order ¢log(w~!(1/¢)). For N=2 and c(x,y) = dx 1(x,y)" with 0<r <1, we end
up with

1 1
OTs. -~ 0T <—c¢log (7) + Ke.
rap &
It is worth noting the formal similarity with Theorem 3.2(i), which corresponds to r =2.

Endnotes

' Note added in proof: this statement refers to the preprint version of Carlier et al. [17]. The final published version provides an improved
result, namely, the upper Rényi dimension is bounded by the Euclidean dimension as soon as the marginal has a finite logarithmic moment.

2 The result in Graf and Luschgy [37, corollary 6.7] is stated for all n > C3 instead of n > 1 for a certain constant Cs in order to have a statement
whose constants do not depend on the moment [|x|"*° u(dx). For our purposes, we do not mind such a dependence, and we can easily
deduce a result valid for all # > 1 by adjusting the constants.

3 Exponents a; > 1 could be accommodated with minor changes in the constants. In view of Remark 2.1, the condition ; <1 is not restrictive
in practice.
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