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1. Introduction
We study regularized optimal transport problems of the form

OTf , ε :→ inf
π↑Π(µ1, : : : ,µN)

Z
c dπ + εDf (π,µ1↓ ⋯ ↓µN), 

where Df is an f-divergence, for example, relative entropy (Kullback–Leibler divergence) or Lp regularization. 
(Notation is detailed in Section 2.) Note that ε → 0 yields the classic optimal transport problem OT without regulari-
zation. We are interested in the speed of convergence OTf ,ε↔ OT as the regularization parameter ε�tends to 
zero—especially its dependence on the marginals µi and the divergence Df.

Regularized optimal transport has attracted a great deal of research in recent years, chiefly because regulari-
zation enables the use of efficient numerical algorithms (e.g., Blanchet et al. [10], Cuturi [25], Lin et al. [40], 
Peyré and Cuturi [55], and the references therein) to approximate OT in high-dimensional applications— 
hence, the interest in the speed of convergence. The most important divergence is relative entropy, which 
gives rise to Sinkhorn’s algorithm (or the iterative proportional fitting procedure); here, OTf ,ε�is often called 
the entropic optimal transport problem (e.g., Nutz [49], Peyré and Cuturi [55]). Other divergences, especially 
Lp regularization, are being used in applications in which sparse optimizers are desired or weak penalization 
(small ε) causes numerical instabilities with entropic regularization (Blondel et al. [11], Di Marino and Gerolin 
[26], Essid and Solomon [31], Lorenz et al. [42], Terjék and González-Sánchez [58]). For multimarginal trans-
port and the related Wasserstein barycenters, see, for instance, Agueh and Carlier [2], Benamou et al. [6], Car-
lier [14], and Carlier et al. [15, 16]. Literature more specific to the convergence OTf ,ε↔ OT is discussed 
subsequently.

In this paper, we propose a novel methodology to estimate OTf ,ε OT based on quantization. It is simulta-
neously more general and, arguably, easier than previous arguments, allowing us to obtain convergence rates for a 
wide class of f-divergences, unbounded cost functions, and multimarginal problems in a unified manner; the meth-
odology may be as important as the results themselves. Even for entropic optimal transport with two marginals 
and quadratic cost, we substantially improve on the existing results by allowing for arbitrary marginals with finite 
(2 + δ)-moments for which previous techniques required compact supports and uniformly bounded densities (Car-
lier et al. [17], Chizat et al. [22], Conforti and Tamanini [24], Pal [53]).
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To give an informal preview, let us focus on n→ 2 marginals with entropic or Lp regularization (p> 1) for simplic-
ity. In those examples, we obtain nonasymptotic bounds of the form

OTf , ε  OT ↗ βε log 1
ε

 !
+ Kε for entropic regularization,

OTf , ε  OT ↗ Kε
1

(p 1)β+1 for Lp regularization, 

where β�reflects a certain quantization dimension. In our first result (Theorem 3.1), β�encodes the optimal quantiza-
tion rate for one of the marginals; if µi are measures on Rdi , this leads to β ↗ d1 ∧d2. In this result, we assume that 
the integrated cost π ↘↔

R
c dπ�is Lipschitz when restricted to a certain set of couplings; this is satisfied for Lipschitz 

functions c and also, for example, for |x y |p with p ≃ 1 on Rd ⇐ Rd. The stated estimates are sharp in certain exam-
ples (see Section 4) up to the constant K.

The key idea is to use so-called “shadows” to transfer explicit divergence bounds for discrete measures into con-
tinuous couplings with controlled divergence and also bounding the Wasserstein distance. As quantization theory 
has long studied how fast general measures can be approximated with discrete ones, this enables us to control both 
the transport and divergence terms in OTf ,ε. Specifically, a rate is found by choosing the number of points for the 
quantization of the marginals relative to the regularization parameter ε, such as to balance the transport and diver-
gence terms. At a high level, the shadow construction is a substitute for the widely used block approximation 
method first introduced in Carlier et al. [18]. Employing quantization and Wasserstein geodesics instead of build-
ing blocks explicitly, our construction fully exploits the flexibility of the p-Wasserstein distance, making it very suit-
able for unbounded domains and costs.

Our main result (Theorem 3.2) pertains to cost functions on Rd ⇐⋯⇐ Rd admitting a bounded second derivative, in 
particular the quadratic cost, and improves the value of β�to d=2 under sufficient regularity. Here, smoothness leads 
to the factor 1/2, whereas d reflects the quantization rate for an optimal transport plan (of the unregularized problem 
OT) rather than the marginals. The key idea is a martingale argument that seems to be novel: the martingale property 
of 2-Wasserstein quantization can be used to eliminate the first order term in the integrated Taylor expansion of the 
cost function. The remaining leading term is then of second order, hence, the factor 1/2. Once again, the martingale 
methodology lends itself to the unbounded setting; moreover, the rates are sharp in a wide class of examples. In par-
ticular, we establish the leading-order term d

2ε log 1
ε

" #
for entropically regularized 2-Wasserstein distance whenever 

the marginals have finite moments of order 2 + δ�for some δ > 0 (Corollary 3.1). In its proof, Minty’s [48] trick is used 
to establish the quantization rate for an optimal transport plan.

For discrete problems, the study of entropic regularization and its convergence goes back to Cominetti and San 
Martı́n [23]; see also Weed [60] for a nonasymptotic result, Altschuler et al. [5] for a semidiscrete problem, and 
Altschuler and Boix-Adserà [4] for multimarginal transport. Here, we are mainly interested in continuous pro-
blems. As OTf ,ε OT → O(ε) if and only if there exists an optimal transport with finite divergence (Proposition 
A.1) and as the latter typically fails for continuous marginals, we are dealing with convergence slower than O(ε). In 
the continuous case, we are not aware of works addressing the multimarginal problem, and for two marginals, 
almost all results are on the entropic regularization; an exception is Martins Bianco [44], in which χ2 divergence is 
studied in a compact setting and an upper bound of order ε1=(d+1) is found. Returning to the entropic case, the link 
between OTf ,ε�and OT goes back to Mikami [46, 47] in the Schrödinger bridge problem (which is closely related to 
entropic optimal transport with quadratic cost; cf. Léonard [39]). Gamma-convergence is shown in Léonard [38]; 
see also Carlier et al. [18] for a proof in a setting closer to ours. A stochastic control viewpoint is presented in Chen 
et al. [19]. Early quantitative results for quadratic cost from a large deviations viewpoint are Adams et al. [1], 
Duong et al. [27], and Erbar et al. [30]—later extended in Pal [53] to cost functions closely modeled on the quadratic. 
Whereas these are first order results, a second order expansion of the optimal cost is obtained in Conforti and 
Tamanini [24] for the Schrödinger bridge setting and in Chizat et al. [22] for entropic optimal transport, all with 
quadratic cost. These results require strong regularity assumptions in addition to compactly supported marginals.

The most comparable results by far are obtained in the very recent (and partly concurrent) work Carlier et al. [17], 
which addresses general cost functions and obtains rates similar to ours, at least for compactly supported marginals, 
in the case of entropic regularization with two marginals. Remarkably, the methods used are quite different. For 
Lipschitz cost functions and compactly supported marginals, Carlier et al. [17, proposition 3.1] finds that 
OTf ,ε OT ↗ dε log(1=ε) + O(ε), where d is the minimum of the two marginal dimensions. A potentially more gen-
eral result is obtained with a notion of upper Rényi dimension of the marginals; however, a more concrete bound is 
only available through the box dimension, which requires compactness to be finite.1 The proof proceeds through a 
block approximation, applying the Lipschitz property on each block. Our Theorem 3.1 (specialized to the entropic 
divergence on two marginals) obtains a bound of the same form but with the dimension defined by quantization. 
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Using p-Wasserstein distance with finite p, quantization is well-behaved also for unbounded domains so that the 
bound can be established for general marginals with finite (p + δ)-moments. Moreover, Theorem 3.1 applies to costs 
such as |x y |p, p ≃ 1 as the Lipschitz property is only required in an integrated form. Shadows are a convenient 
and robust tool in this context as is also exemplified by their application to adapted (causal) optimal transport in Eck-
stein and Pammer [29].

For cost functions of class C1, 1 (thus, with almost everywhere bounded second derivative) and compactly sup-
ported marginals with uniformly bounded Lebesgue densities, Carlier et al. [17, proposition 3.4] show that 
OTf ,ε OT ↗ d

2ε log 1
ε

" #
+ O(ε). The proof is deep and based on the fine regularity of the Kantorovich potential, 

namely, a quadratic bound on the integrated difference between a λ-convex function and its first order Taylor 
expansion (Carlier et al. [17, lemma 3.6]). This bound depends directly on the diameter of the domain, and the den-
sity assumption is needed to pass from the Lebesgue measure to the actual marginals. By contrast, the martingale 
argument used for our Theorem 3.2 applies to unbounded domains and is fairly robust; for instance, it easily 
extends to the multimarginal case. It does, however, take as its input the quantization rate of an optimal transport 
plan π⇒ so that it needs to be applied together with a regularity result for π⇒. For quadratic cost, we prove that the 
rate is indeed 1=d in great generality, assuming only finite moments of order 2 + δ. For compactly supported mar-
ginals, a quite generic sufficient condition for this rate is the nondegeneracy of the cost, that is, invertibility of the 
mixed derivative D2

xyc(x, y). For unbounded but sufficiently integrable marginals, we show a rate arbitrarily close 
to 1=d if nondegeneracy holds in a uniform sense.

In Carlier et al. [17], the authors also obtain a matching lower bound for the convergence rate (for entropic regu-
larization) for cost functions satisfying the aforementioned nondegeneracy condition and sufficiently regular mar-
ginals. The proof is again based on a fine analysis of the Kantorovich potential. The key tool is a quadratic 
detachment estimate (Carlier et al. [17, lemma 4.2]), which we reuse in Section 4 to obtain matching lower bounds 
for Lp regularization as well.

Whereas the present work focuses on the convergence of the optimal cost OTf ,ε, two related question are the con-
vergence of the optimal couplings and optimal dual potentials. See Bernton et al. [9], Carlier et al. [18], and Léonard 
[38, 39] and Berman [8], Chiarini et al. [21], Gigli and Tamanini [36], Nutz and Wiesel [50], and Pooladian and 
Niles-Weed [56], respectively, and the references therein. As seen in Bernton et al. [9] and Chiarini et al. [21], the 
convergence is also related to the stability of OTf ,ε�with respect to (wrt) the marginals (Carlier and Laborde [15], 
Eckstein and Nutz [28], Ghosal et al. [35], Nutz and Wiesel [51]).

The remainder of this paper is organized as follows. Section 2 formally introduces the problem and notation and 
then gathers preliminaries on quantization, divergence bounds for discrete couplings, and shadows. Section 3 con-
tains the main results on convergence rates. Section 4 provides instances in which the rates are sharp, and the 
appendix gathers two additional results.

2. Preliminaries
2.1. Setting and Notation
Let (Y, dY) be a Polish space and P(Y) its set of Borel probability measures. Fix p ↑ [1,⇑) and denote by Pp(Y)
the subset of measures µ with finite pth moment; that is, 

R
dY(x, x̂)pµ(dx) <⇑ for some (and then all) x̂ ↑ Y. The 

p-Wasserstein distance Wp(µ,ν) between µ,ν ↑ Pp(Y) is defined via

Wp(µ,ν)p → inf
π↑Π(µ,ν)

Z
dY(x, y)pπ(dx, dy):

Fix N ↑ N and let (Xi, dXi), i → 1, : : : , N be Polish probability spaces with measures µi ↑ P(Xi). We denote by X →
QN

i→1 Xi the product space and use the particular product metric dX, p(x, y) :→ (PN
i→1 dXi(xi, yi)p)1=p to induce the 

p-Wasserstein distance on X.
Let c : X ↔ R be continuous with growth of order p, that is,

|c(x) | ↗ C(1 + dX, p(x, x̂)p )
for some C ≃ 0 and x̂ ↑ X. The optimal transport problem is

OT :→ inf
π↑Π(µ1, : : : ,µN)

Z
c dπ, 

where Π(µ1, : : : ,µN) ⇓ Pp(X) denotes the set of couplings of the marginal measures µi ↑ Pp(Xi). The growth of c 
ensures that OT is finite.
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Let f : R+ ↔ R be a strictly convex, lower bounded function with f (1) → 0 and limx↔⇑f (x)=x →⇑. The f-divergence 
Df (µ,ν) between probabilities µ,ν�on a common space is defined by

Df (µ,ν) :→
Z

f dµ
dν

 !
dν for µ⇔ ν, 

and Df (µ,ν) :→⇑ for µ⇔ ν. The Df-regularized transport problem is

OTf ,ε :→ inf
π↑Π(µ1, : : : ,µN)

Z
c dπ+ εDf (π, P), P :→ µ1↓ ⋯ ↓µN, 

where ε > 0 is the regularization parameter. In particular, entropic optimal transport corresponds to f (x) → x log(x).

2.2. Quantization
On a Polish space Y, we denote by Pn(Y) ⇓ P(Y) the set of probability measures supported on at most n points. 
Given p ↑ [1,⇑) and µ ↑ Pp(Y), our results depend on an approximation rate of the form

↖µn ↑ Pn(Y) : Wp(µn,µ) ↗ Cn α, n ≃ 1 (quantp(C,α))

for constants C ≃ 0 and α > 0. The takeaway of the following is that, if the support of µ is d-dimensional, this prop-
erty typically holds with α → 1=d.
Remark 2.1 (Quantization Rate on Rd). Let Y → Rd. If µ ↑ Pp+δ(Y) for some δ > 0, then quantp(C,α) holds with α →
1=d for some C ≃ 0. More precisely, Graf and Luschgy [37, theorem 6.2] shows that the exact asymptotic constant

Ca :→ lim
n↔⇑

n1=d inf
µn↑Pn(Rd)

Wp(µn,µ)

can be expressed through a dimensional constant related to the p-quantization of the uniform measure on the unit 
cube and a moment of the density of the absolutely continuous part of µ. In particular, Ca>0 as soon as µ is not 
mutually singular wrt the Lebesgue measure, showing that the rate α → 1=d is then optimal. A bound for the (nona-
symptotic) constant C in quantp(C,α) is given in Graf and Luschgy [37, corollary 6.7]; its proof yields an explicit 
constant valid for all n ≃ 1 depending only on p,δ, d and 

R
|x |p+δµ(dx).2

For some variations of our results (in fact, only in the multimarginal case of Theorem 3.1 with nonentropic 
divergence), we use a slightly stronger notion, sometimes called (deterministic) empirical quantization, in which 
the approximating measures are required to be uniform. Let Pn, em(Y) ⇓ P(Y) be the set of uniform measures on n 
points, that is, measures µn → n 1Pn

i→1 δyi for some yi ↑ Y. Similarly as earlier, we introduce

↖µn ↑ Pn, em(Y) : Wp(µn,µ) ↗ Cn α, n ≃ 1 (quantem
p (C,α))

for constants C ≃ 0 and α > 0. This condition clearly implies quantp(C,α), but at least in the high-dimensional 
regime, the optimal rate is in fact the same as summarized in the following remark.

Remark 2.2 (Empirical Quantization Rate on Rd). Let Y → Rd. The well-known Fournier and Guillin [33, theorem 1] 
shows, among other things, that, if µ ↑ P2p+δ(Rd) with d > 2p, then quantem

p (C,α) holds with α → 1=d and a con-
stant C depending only on d, p,δ�and the (2p + δ)-moment of µ. In particular, this bound for the empirical rate 
coincides with the bound 1=d given for (arbitrary) quantization in Remark 2.1. Rates for other regimes (d ↗ 2p) 
are also obtained in Fournier and Guillin [33, theorem 1]. Notably, the rates derived in Fournier and Guillin [33] 
are not based on a deterministic construction of µn but hold almost surely when µn are independent and identi-
cally distributed (i.i.d.) samples of µ. More precise constants for this result and nonasymptotic bounds can be 
found in the very recent work Fournier [32]. Rates for i.i.d. samples of measures supported on compact submani-
folds are studied in Weed and Bach [61].

For measures with bounded support, a deterministic construction in Chevallier [20, theorem 3] provides the rate 
α → 1=d and an explicit constant C for p<d; for p→d, a logarithmic correction is added, whereas for p>d, the rate is 
at least α → 1=p. For unbounded measures, Chevallier [20, corollary 1] shows a slightly looser bound for the rate 
under the condition µ ↑ Pp+δ(Y). The univariate case d→1 is studied in detail (Bencheikh and Jourdain [7], Xu and 
Berger [62]). Here, the optimal rate is α→1 if µ has a positive density on its support and is sufficiently integrable, 
whereas α < 1 is known in several other cases (see Bencheikh and Jourdain [7, table 1] for an overview).
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2.3. Elementary Divergence Bounds
For our purposes, discrete measures are useful because they admit straightforward divergence bounds. The best 
known example is that a coupling π ↑Π(µ1,µ2) of marginals µi supported on n points has relative entropy 
Df (π,µ1 ↓µ2) ↗ log n. The following lemma collects some extensions of that fact for later reference. We recall that 
Pn(Xi) denotes the probabilities supported on at most n points, Pn, em(Xi) the empirical measures on n points, and 
P → µ1↓ ⋯ ↓µN.

Lemma 2.1 (Divergence Bounds). Let π ↑Π(µ1, : : : ,µN) and define ω by f (x) → xω(x). Assume that ω is nondecreasing. 
i. If n → 2, ω is concave, and µ2 ↑ Pn2(X2). Then, Df (π, P) ↗ ω(n2):
ii. If µi ↑ Pni, em(Xi) for i → 2, : : : , N, then Df (π, P) ↗ ω(QN

i→2 ni):
iii. If ω(x) → log(x) and µi ↑ Pni(Xi) for i → 2, : : : , N, then Df (π, P) ↗PN

i→2 log(ni):

Proof. Denote by π2:N the marginal of π�on X2 ⇐⋯⇐ XN. In particular, P2:N → µ2↓ ⋯ ↓µN. We similarly define 
π1:N 1 and P1:N 1 as the marginals on X1 ⇐⋯⇐ XN 1. Let σ�be the counting measure on the (finite) support of 
P2:n. Disintegrating π → µ1 ↓K, we then have dπdP → dK

dP2:n
↗ dσ

dP2:n
, and hence,

Df (π, P) →
Z
ω

dπ
dP

 !
dπ ↗

Z
ω

dσ
dP2:N

 !
dπ:

In case (i) in which n→ 2, Jensen’s inequality yields
Z
ω

dσ
dP2:N

 !
dπ →

Z
ω

dσ
dµ2

 !
dµ2 ↗ ω(n2):

Whereas in (ii), dσ
dP2:N 

is constant, and thus, 
R
ω dσ

dP2:N

$ %
dπ → ω(QN

i→2 ni): To see (iii), we write dπ
dP → dπ

d(π1:N 1↓µN)
d(π1:N 1↓µN)

dP → dπ
d(π1:N 1↓µN)

d(π1:N 1)
dP1:N 1

. As ω(x) → log(x), this yields

Df (π, P) → Df (π,π1:N 1 ↓µN) + Df (π1:N 1, P1:N 1):

To bound the first term, we apply (i) with µN as second marginal,
Df (π, P) ↗ log(nN) + Df (π1:N 1, P1:N 1):

Iterating this argument yields Df (π, P) ↗PN
i→2 log(ni), which was the claim. w

2.4. Shadows
Given π ↑Π(µ1, : : : ,µN), the shadow eπ�of π�on another vector (eµ1, : : : , eµN) of marginals is a particular Wp-projection 
of π�onto Π(eµ1, : : : , eµN) that enjoys a control on its divergence. Intuitively, for n→2, the shadow eπ�is obtained by 
concatenating three transports: move eµ1 to µ1 using a Wp-optimal transport, then follow the transport π�moving µ1 
into µ2, and finally move µ2 to eµ2 using a Wp-optimal transport. The general definition follows.

Definition 2.1 (Eckstein and Nutz [28]). Let p ↑ [1,⇑) and µi, eµi ↑ Pp(Xi), i → 1, : : : , N. Let κi ↑Π(µi, eµi) be a cou-
pling attaining Wp(µi, eµi) and κi → µi ↓Ki a disintegration. Given π ↑Π(µ1, : : : ,µN), its shadow eπ�on (eµ1, : : : , eµN)
is defined as the second marginal of π↓K ↑ P(X ⇐ X), where the kernel K : X ↔ P(X) is defined as K(x) → K1(x1)
↓ ⋯ ↓KN(xN):

The definition and the data processing inequality readily imply the following properties; see Eckstein and 
Nutz [28, lemma 3.2] for a detailed proof.
Lemma 2.2 (Shadow Bounds). Let p ↑ [1,⇑) and µi, eµi ↑ Pp(Xi), i → 1, : : : , N. Given π ↑Π(µ1, : : : ,µN), its shadow 
eπ ↑Π(eµ1, : : : , eµN) satisfies

Wp(π, eπ)p →
XN

i→1
Wp(µi, eµi)

p,

Df (eπ, eµ1↓ ⋯ ↓eµN) ↗ Df (π,µ1↓ ⋯ ↓µN):

3. Main Results
One novel idea in this paper is to use a “double” shadow through auxiliary discrete marginals to approximate a 
given (typically singular) transport plan with one that has controlled divergence. To illustrate this, we start by 
reproving the (known) convergence OTf ,ε↔ OT in our general setting.
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Proposition 3.1. Let p ↑ [1,⇑) and µi ↑ Pp(Xi) for i → 1, : : : , N. If c is continuous with growth of order p, then 
limε↔0OTf ,ε → OT.
Proof. Using tightness of {µi}, we can construct measures µn

i supported on n points with Wp(µn
i ,µi) ↔ 0 for 

i → 1, : : : , N. Let π⇒ ↑Π(µ1, : : : ,µN) be an optimizer of OT. We introduce another coupling πn ↑Π(µ1, : : : ,µN) as fol-
lows: first, let eπ�be the shadow of π⇒ onto (µn

1,µn
2 , : : : ,µn

N); then, define πn as the shadow of eπ�onto (µ1, : : : ,µN). 
Using the triangle inequality and Lemma 2.2, this implies

Wp(πn,π⇒) ↗ Wp(πn, eπ) + Wp(eπ,π⇒) ↗ 2
XN

i→1
Wp(µn

i ,µi)
p

 !1=p

↔ 0:

As c is continuous with growth of order p, we conclude 
R

c dπn ↔
R

c dπ⇒: On the other hand, Lemma 2.2 yields
Df (πn, P) ↗ Df (eπ,µn

1 ↓µn
2 ↓ : : :µn

N) <⇑, 

where the finiteness is trivial by discreteness of µn
i . Given δ > 0, choose n such that 

R
c dπn  

R
c dπ⇒ ↗ δ�and then 

ε0 > 0 such that ε0Df (πn, P) ↗ δ. As πn is an admissible coupling for OTf ,ε, we have shown OTf ,ε OT ↗ 2δ�for all 
ε ↗ ε0. w

3.1. Rate for Lipschitz-Type Costs
To enable a quantitative version of Proposition 3.1, we need to control the speed of convergence 

R
c dπn ↔

R
c dπ⇒ in 

its proof. We introduce the following adaptation of the condition (AL) of Eckstein and Nutz [28], stating that the 
integrated transport cost is Lipschitz with respect to the coupling.
Definition 3.1. Let p ↑ [1,⇑) and µi ↑ Pp(Xi), i → 1, : : : , N. Given constants L, C ≃ 0, we say that c satisfies (AL, C) if, 
for all eµi ↑ Pp(Xi) with Wp(eµi,µi) ↗ C, i → 1, : : : , N, we have

Z
c d(π eπ)

&&&&

&&&& ↗ LWp(π, eπ)

for all π ↑Π(µ1, : : : ,µN) and eπ ↑Π(eµ1, : : : , eµN).
Clearly, (AL, C) is satisfied (for all C) if c is L-Lipschitz, but as discussed in Eckstein and Nutz [28, example 3.6], the 

condition also captures various non-Lipschitz costs, such as c(x1, x2) → |x1 x2 |p on Rd ⇐ Rd with p ↑ [1,⇑). In that 
case, the constant L depends on the moments of the µi and on C. (The condition does not capture |x1 x2 | r for 
0 < r < 1. An extension with a modulus of continuity instead of a Lipschitz constant is discussed in Remark A.1.)
Theorem 3.1. Let p ↑ [1,⇑) and µi ↑ Pp(Xi) for i → 1, : : : , N. Assume that µi satisfies quantp(C,αi) for i → 2, : : : , N and 
that c satisfies (AL, C) for some α2, : : : ,αN ↑ (0, 1] and L, C ≃ 0.3

i. Let f (x) → x log(x). Then, for all ε ↑ (0, 1],

OTf ,ε OT ↗
XN

i→2

1
αi

 !

ε log 1
ε

 !
+ 4(N 1)1=pLCε:

ii. Let f (x) → xω(x), β →PN
i→2

1
αi

, ef (x) → xω(xβ). Assume that, for some x0, y0 ≃ 0, ef is strictly increasing on [x0,⇑) with 
inverse ef inv and ω is nondecreasing. Suppose also that either n → 2 and ω is concav, or the µi satisfy quantem

p (C,αi) instead of 
quantp(C,αi). Set Sε → ef inv

1
ε

" #
, which satisfies limε↔0Sε →⇑ and limε↔0εSε → 0. Then, for all ε ↑ [0, 1=x0] small enough 

such that Sε ≃ y1=β
0 + 1,

OTf ,ε OT ↗ 4(N 1)1=pLC + 1
Sε

:

Whereas the quantity Sε�in Theorem 3.1(ii) may not admit a closed-form expression, we can deduce more explicit 
bounds as follows.
Example 3.1 (Explicit Bounds). Choose a function ψ ≃ ω such that eg(x) :→ xψ(xβ) is strictly increasing with inverse 
denoted eginv. Then, eginv ↗ ef inv, and hence, 1=Sε ↗ 1=eginv(1=ε) so that Theorem 3.1(ii) implies

OTf ,ε OT ↗ (4(N 1)1=pLC + 1) 1
eginv(1=ε)

:

We, thus, aim to choose ψ�so that eginv has an explicit expression. As an example, consider the Lρ�regularization 
given by f (x) → 1

ρ (xρ 1) with ρ > 1. Here, ω(x) → 1
ρxρ 1 1

ρx ↗ 1
ρxρ 1 ≕ ψ(x). With this choice of ψ, we have 
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eg(x) → 1
ρx(ρ 1)β+1, and the explicit inverse eginv(x) → ρx1=[(ρ 1)β+1]. As a result, for all ε ↑ (0, 1],

OTf ,ε OT ↗ Kε
1

(ρ 1)β+1, K :→ (4(N 1)1=pLC + 1)=ρ:

Remark 3.1 (On µ1). In Theorem 3.1, nothing is assumed about the quantization of µ1. In an application, one 
would, thus, label µ1 the marginal with the slowest quantization rate. In particular, for n→ 2 marginals on Rdi , we 
typically have 1=α2 → d1 ∧d2 by Remark 2.1.
Proof of Theorem 3.1. Let π⇒ ↑Π(µ1, : : : ,µN) be an optimizer of OT. By our assumption, there exist empirical 
quantizations µni

i for the marginals i → 2, : : : , N such that Wp(µni
i ,µi) ↗ Cn αi

i . We introduce a coupling π ↑
Π(µ1, : : : ,µN) (depending on n2, : : : , nN) as a double shadow: first, let eπ�be the shadow of π⇒ onto (µ1,µn2

2 , : : : ,µnN
N ); 

then, define π�as the shadow of eπ�onto (µ1, : : : ,µN). Using the triangle inequality and Lemma 2.2,

Wp(π,π⇒) ↗ Wp(π, eπ) + Wp(eπ,π⇒) ↗ 2
XN

i→2
Wp(µni

i ,µi)
p

 !1=p

:

Combining this with our assumption (AL, C), we deduce

Z
c dπ 

Z
c dπ⇒ ↗ 2L

XN

i→2
Wp(µni

i ,µi)
p

 !1=p

↗ 2LC
XN

i→2
n αip

i

 !1=p

:

On the other hand, Lemma 2.2 again yields

Df (π, P) ↗ Df (eπ,µ1 ↓ µ
n2
2 ↓ : : :µnN

N ):

As π�is an admissible coupling for OTf ,ε, we have proved

OTf ,ε OT ↗ 2LC
XN

i→2
n αip

i

 !1=p

+ εDf (eπ,µ1 ↓µ
n2
2 ↓ : : :µnN

N ), (3.1) 

and the last divergence term can be bounded by Lemma 2.1. In the remainder of the proof, we choose ni as a suit-
able function of ε�to balance the decay of the two terms on the right-hand side of (3.1).

As ni is an integer, we need to deal with a rounding error: given S ↑ [1,⇑), we define ε(S) > 0 as

ε(S) :→ 1
N 1

XN

i→2

Sp

↙S1=αi∝αip

 !1=p

(3.2) 

so that 1 ↗ ε(S) ↗ 2maxi≃2αi ↗ 2 and limS↔⇑ε(S) → 1. We then have

XN

i→2
↙S1=αi∝ αip

 !1=p

→ ε(S)(N 1)1=p

S ↗ 2(N 1)1=p

S : (3.3) 

i. Set ni → ↙ε 1=αi∝ for i → 2, : : : , N. For S → Sε → 1=ε, (3.3) yields

XN

i→2
n αip

i

 !1=p

→ ε(Sε)(N 1)1=p

Sε
↗ 2(N 1)1=pε, 

and Lemma 2.1(iii) bounds the divergence term by

εDf (eπ,µ1 ↓µ
n2
2 ↓ ⋯ µnN

N ) ↗ ε
XN

i→2
log(ni) ↗ ε

XN

i→2

1
αi

log 1
ε

 !
:

In view of (3.1), the claim follows.
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ii. Set ni → ↙S1=αi
ε ∝ for i → 2, : : : , N, where Sε�is defined in the theorem. Similarly, as in (i),

XN

i→2
n αip

i

 !1=p

↗ ε(Sε)(N 1)1=p

Sε
↗ 2(N 1)1=p 1

Sε
:

On the other hand, Sε ≃ y1=β
0 + 1 implies y0 ↗

QN
i→2 ni ↗ Sβε�by elementary arguments. Under quantem

p (C,αi), Lemma 
2.1(ii) and monotonicity of ω on [y0,⇑) yield

εDf (eπ,µ1 ↓µ
n2
2 ↓ : : :µnN

N ) ↗ εω
YN

i→2
ni

 !

↗ εω(Sβε) →
εef (Sε)

Sε
→
εef ef inv

1
ε

" #$ %

Sε
→ 1

Sε
, 

and now the claim again follows from (3.1). For the claim under n→2, we use Lemma 2.1(i) instead of Lemma 
2.1(ii). w

Remark 3.2 (On the Constant). The constant four in Theorem 3.1(i) and (ii) can be replaced by 2ε(1=ε) and 2ε(Sε), 
respectively, where ε(·) is defined in (3.2) and satisfies 1 ↗ ε(·) ↗ 2. As ε(S) → 1 + o(1=S), this improves the asymp-
totic constant for ε↔ 0 in Theorem 3.1 from four to two.

Remark 3.3 (On the Proof). In Theorem 3.1 and its proof, the entropic case (i) is treated separately from the gen-
eral case (ii) to obtain an expression that is more explicit and more in line with the literature. In fact, the bound in 
Theorem 3.1(ii) is slightly sharper even for the entropic divergence as its proof is based on the optimal trade-off 
between the transport and divergence terms: both have the same rate 1=Sε, whereas in the proof of (i), they have 
differing rates ε�and ε log(1=ε). However, Sε → ef inv

1
ε

" #
does not admit an explicit expression in the entropic case, 

so we chose instead Sε → 1=ε�to obtain an explicit statement. The leading-order term nevertheless turns out to be 
sharp; see Proposition 4.1.

3.2. Rate for Twice Differentiable Costs
For the main result, we focus on the exponent p→ 2 for the Wasserstein metric and on closed convex sets Xi ⇓ Rdi 

endowed with the Euclidean norm | · | . We recall that X → X1 ⇐⋯⇐ XN then also carries the Euclidean metric and 
write c ↑ C2(X) to indicate that c is defined and twice continuously differentiable on a neighborhood of 
X ⇓ Rd1+⋯+dN .

For costs with bounded second derivative and an additional regularity condition, we improve upon the 
dimension-dependence in Theorem 3.1 by a factor 1/2, at least for marginals of equal dimension. For that improve-
ment, (AL, C) is too weak (as evidenced in Proposition 4.1). Instead, we use a martingale argument to achieve a full 
cancellation of the integrated first order term in the Taylor expansion of c. For this, we directly quantize an optimal 
transport, not just the marginals. In the following statement, its quantization rate α�is taken as given; we elaborate 
as follows on how to bound it in practice.

Theorem 3.2. Let Xi ⇓ Rdi be convex and µi ↑ P2(Xi) for i → 1, : : : , N. Assume that c ↑ C2(X) has bounded second derivative

w′c∞∞(x)w ↗ B |w |2 for all x, w ↑ X, for some B ≃ 0, (3.4) 

and that OT admits an optimal transport π⇒ satisfying quant2(C,α) for some α ↑ (0, 1] and C>0. 
i. Let f (x) → x log(x). Then, for all ε ↑ (0, 1],

OTf ,ε OT ↗ N 1
2α ε log 1

ε

 !
+ 8BCε:

ii. Let n → 2, f (x) → xω(x) with ω nondecreasing and concave; let β → 1
2α�and ef (x) → xω(xβ). Assume that, for some x0 ≃

0, ef is strictly increasing on [x0,⇑) with inverse ef inv. Set Sε → ef inv
1
ε

" #
, which satisfies limε↔0Sε →⇑ and limε↔0εSε → 0. 

Then, for all ε ↑ 0, 1
x0

$ i
small enough such that Sε ≃ 1,

OTf ,ε OT ↗ 8BC + 1
Sε

:
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Before proving the theorem, we recall the martingale property of W2-quantization; see, for example, Pagès [52, 
proposition 5.1] for a proof. This property and its interplay with the Taylor expansion in (3.5) explain why our 
result is limited to p→ 2.

Lemma 3.1. Given a probability η ↑ P2(Y) on a Polish space Y and n ≃ 1, there exists ηn ↑ arg minηn↑Pn(Y)W2(ηn,η), 
called an optimal W2-quantizer of η�on n points. There is a coupling θ ↑Π(ηn,η) attaining W2(ηn,η), meaning that R
|x y |2 θ(dx, dy) → W2(ηn ,η)2, and it is a martingale: the kernel κ�in its disintegration θ → ηn ↓ κ�satisfies 

R
yκ(x, dy) →

x for eπ-almost all x.

Proof of Theorem 3.2. For n ≃ 1, let eπ ↑ P(X) be an optimal W2-quantizer of π⇒ on n points and let θ ↑Π(eπ,π⇒) be 
the coupling attaining W2(eπ,π⇒); cf. Lemma 3.1. The martingale property of θ�implies that 

R
h(x) · (y x)θ(dx, dy) →

0 for any measurable function h : X ↔ Rd1+⋯+dN of linear growth. As c has a bounded second derivative, its first 
derivative c∞ has linear growth, and thus,

Z
c∞(x) · (y x)θ(dx, dy) → 0:

Considering the Taylor expansion of c(y), this shows that the integral of the first order term vanishes, and then 
the bound on the second derivative yields

Z
c dπ⇒  

Z
c deπ

&&&&

&&&& →
Z

(c(y) c(x))θ(dx, dy)
&&&&

&&&&

↗ B
Z

|x y |2 θ(dx, dy) → BW2(eπ,π⇒)2: (3.5) 

Denote by µn
i the marginal of eπ�on Xi and by θi the marginal of θ�on Xi ⇐ Xi. We observe that θi ↑Π(µn

i ,µi) is 
again a martingale coupling. Furthermore, as we are using the Euclidean norm,

XN

i→1

Z
|xi yi |2 θi(dxi, dyi) →

Z
|x y |2 θ(dx, dy) → W2(eπ,π⇒)2: (3.6) 

Next, we construct a coupling π ↑Π(µ1, : : : ,µN) that is reminiscent of the shadow of eπ�but uses the kernels of θi 
instead of W2-optimal transports between µn

i and µi. Namely, decomposing θi → µn
i ↓Ki and writing K(x) :→ K1 

(x1) ↓ : : : ↓KN(xN), we set γ :→ eπ ↓K ↑ P(X ⇐ X) and define π ↑Π(µ1, : : : ,µN) as the second marginal of γ. Prob-
abilistically speaking, this means that we take the (possibly dependent) components of the vector martingale θ�
and combine their laws into a new vector martingale γ�with independent components. In particular, γ ↑Π(eπ,π)
is also a martingale coupling: 

R
yi K(x, dy) →

R
yi Ki(xi, dyi) → xi for all I by the martingale property of θi. Repeating 

the argument for (3.5) with γ�instead of θ, inserting the definition of γ, and using (3.6), we conclude that
Z

c dπ 
Z

c deπ
&&&&

&&&& ↗ B
Z

|x y |2 γ(dx, dy)

→ B
XN

i→1

Z
|xi  yi |2 θi(dxi, dyi) → BW2(eπ,π⇒)2:

In view of (3.5), the triangle inequality and the assumption on π⇒ then yield
Z

c dπ 
Z

c dπ⇒ ↗ 2BW2(eπ,π⇒)2 ↗ 2BCn 2α: (3.7) 

On the other hand, by the data processing inequality (e.g., Nutz [49, lemma 1.6]), the construction of π�implies

Df (π, P) ↗ Df (eπ,µn
1↓ ⋯ ↓µn

N):

This bound is analogous to Lemma 2.2 (indeed the reasoning is the same).
The rest of the proof is analogous to Theorem 3.1. To deal with the rounding error, we now define ε(S) for S ↑

[1,⇑) as

ε(S) :→ S 1
2α

↙S 1
2α∝

 !2α

(3.8) 
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so that 1 ↗ ε(S) ↗ 22α ↗ 4 and limS↔⇑ε(S) → 1. In particular,

↙S 1
2α∝ 2α → ε(S)S 1 ↗ 4S 1: (3.9) 

i. Let n → ↙ε 1
2α∝. Then, (3.7) and (3.9) for S → Sε → 1=ε�imply

Z
c dπ 

Z
c dπ⇒ ↗ 2BCε(Sε)S 1

ε ↗ 8BCε(Sε)ε, 

whereas Lemma 2.1(iii) yields Df (eπ,µn
1↓ ⋯ ↓µn

N) ↗ (N 1) log(n), completing the proof of (i).
ii. Here, we define n → ↙S

1
2α
ε ∝, and then, (3.7) and (3.9) yield

Z
c dπ 

Z
c dπ⇒ ↗ 2BCε(Sε)

Sε
↗ 8BC

Sε
, 

whereas (recall n→2) Lemma 2.1(i) yields Df (eπ,µn
1 ↓µn

2) ↗ ω(n), and thus,

εDf (π, P) ↗ εω(n) ↗ εω(S
1

2α
ε )Sε

Sε
→ 1

Sε
, 

completing the proof. w

Similarly, as in Remark 3.2, the asymptotic constant in Theorem 3.2 can be improved from eight to two.

Remark 3.4 (Relaxing C2 Condition). Theorem 3.2 immediately extends to slightly less regular costs: if (cn)n↑N is a 
sequence of cost functions satisfying the assumptions of Theorem 3.2 and limn↔⇑∈cn c∈⇑ → 0 for some 
c : Rd ↔ R, then

OTf ,ε(c) OT(c) ↗ 2∈cn c∈⇑ + OTf ,ε(cn) OT(cn)

as both OTf ,ε�and OT are 1-Lipschitz with respect to ∈ · ∈⇑ so that Theorem 3.2 applies to c as well.
We also have the following analogue of Example 3.1.

Example 3.2 ( L! Regularization). For the Lρ�regularization f (x) → 1
ρ (xρ 1) with ρ > 1, Theorem 3.2(ii) implies 

that, for all ε ↑ (0, 1],

OTf ,ε OT ↗ Kε
1

(ρ 1)β+1, K :→ (8BC + 1)=ρ, 

by the same algebra as in Example 3.1. (Of course, β�now has a different definition).
Remark 3.5 (Comparison with Theorem 3.1). Let n→ 2 for simplicity. As any quantization of the coupling π⇒
induces quantizations for its marginals, it is clear that α ↗ α2. In the best case, we have α → α2, and then, Theorem 
3.2 yields an improvement of 1/2 over Theorem 3.1. Note that α → α2 is typically the case if d1 → d2 ≕ d and the 
support of π⇒ is also d-dimensional—more on this in a moment.

On the flip side, as Theorem 3.2 implicitly quantizes all the marginals, there is no immediate benefit to having 
a faster rate for one marginal as in Remark 3.1. Thus, there are situations in which Theorem 3.1 actually yields a 
better rate, especially if d1 > 2d2. But, of course, d1 → d2 is the most important setting.

To obtain a good result from Theorem 3.2, we need to know that OT admits an optimal transport π⇒ satisfying 
quant2(C,α) for some good α. Indeed, quant2(C,α) holds trivially for 1=α → d1+ ⋯ +dN (under a moment condi-
tion), but that does not yield the desired improvement over Theorem 3.1. On the other hand, suppose that π⇒ is 
given by a Lipschitz transport map over X1; then, π⇒ inherits the quantization rate from µ1 so that 1=α → d1. The 
existence of such a map is studied intensely in the regularity theory of optimal transport; see Caffarelli [12, 13] 
and the literature thereafter. However, the conditions are known to be very restrictive (Loeper [41], Ma et al. 
[43]), and clearly, a Lipschitz map can almost never be expected for unbounded marginals. On the other hand, as 
emphasized in McCann et al. [45], a lower dimensional structure does not require a transport map at all.

In the following, we provide some results for n→ 2 marginals and remark briefly on the multimarginal case. 
Generally speaking, any result on the structure of optimal transports can be combined with Theorem 3.2. The 
next result covers the most important example—the quadratic cost defining 2-Wasserstein distance—under a 
minimal condition on the marginals (which includes many situations in which no coupling is given by a map).
Lemma 3.2. Consider c(x, y) → |x y |2 on Rd ⇐ Rd with marginals µ1,µ2 ↑ P2+δ(Rd) for some δ > 0. Then, any optimal 
transport satisfies quant2(C, 1=d) for some C > 0.
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Proof. Let ! → {(x, x) : x ↑ Rd} be the diagonal and proj! : R2d ↔ ! the Euclidean orthogonal projection. Let π ↑
Π(µ1,µ2) be an optimal transport; then, π ↑ P2+δ(R2d) because of the assumption on the marginals. Define the 
push-forward measure

η :→ proj!# π, 

which is concentrated on !; we claim that η�satisfies quant2(C, 1=d). Consider the rotated coordinates (u, v) given by

u → x + y’’’
2

∋ , v → x y’’’
2

∋

in which ! → {(u, 0) : u ↑ Rd} and proj! can be written as (u, v) ↘↔ (u, 0). Thus, η�can be seen as a measure on Rd, and 
with that identification,

Z
|u | 2+δ dη →

Z
| (u, v) |2+δ dπ →

Z
| (x, y) |2+δ dπ <⇑:

By Remark 2.1, η ↑ P2+δ(Rn) implies that η�satisfies quant2(C, 1=d).
To show the same rate for π, we use Minty’s [48] trick along the lines of Alberti and Ambrosio [3]. Recall that 

the support Γ :→ spt π�is c-cyclically monotone (e.g., Villani [59]), which for quadratic cost means

△x∞ x, y∞ y▽ ≃ 0, (x, y), (x∞, y∞) ↑ Γ:

In the rotated coordinates, this implies that

|v∞  v | ↗ |u∞  u | , (u, v), (u∞, v∞) ↑ Γ:

In particular, u → u∞ implies v → v∞, meaning that proj! admits an inverse map 0 : proj!(Γ) ↔ Γ, (u, 0) ↘↔ (u, v), and 
moreover, 0�is 

’’’
2

∋
-Lipschitz. By Kirszbraun’s theorem, we can extend 0�to a 

’’’
2

∋
-Lipschitz map ! ↔ Rd ⇐ Rd, still 

denoted 0. Note that π → 0#η�and any quantization of η�on ! pushes forward to a quantization of π. In view of 
the 

’’’
2

∋
-Lipschitz property, we conclude that π�satisfies quant2(

’’’
2

∋
C, 1=d). w

The following combines Lemma 3.2 with Theorem 3.2 and Example 3.2.
Corollary 3.1 (Quadratic Cost). Consider c(x, y) → |x y |2 on Rd ⇐ Rd with marginals µ1,µ2 ↑ P2+δ(Rd) for some δ > 0. 

i. Let f (x) → x log(x). There exists K > 0 such that

OTf ,ε OT ↗ d
2ε log 1

ε

 !
+ Kε, ε ↑ (0, 1]:

ii. Let f (x) → 1
ρ (xρ 1) with ρ > 1. There exists K > 0 such that

OTf ,ε OT ↗ Kε
1

(ρ 1)d=2+1, ε ↑ (0, 1]:

Next, we aim to generalize Lemma 3.2 from quadratic to more general costs. Following McCann et al. [45], the basic 
idea is that a fairly generic cost is locally equivalent to a perturbation of the quadratic cost after a change of coordi-
nates. Let X1, X2 ⇓ Rd be convex and c ↑ C2(X). We say that c is nondegenerate if D2

xyc(x, y) is invertible for all 
(x, y) ↑ X. Here, D2

xyc(x, y) denotes the d⇐d matrix [ϑ2
xiyj

c(x, y)]1↗i, j↗d. We follow the terminology of McCann et al. 
[45]; the condition is called (A2) in Ma et al. [43], whereas Carlier et al. [17] calls such c infinitesimally twisted.

If the support can be covered by finitely many such local coordinate changes, we obtain the same quantization 
rate as in the quadratic case. In particular, this holds for compact support.
Lemma 3.3. Let X1, X2 ⇓ Rd be convex and let c ↑ C2(X) be nondegenerate. If µ1,µ2 are compactly supported, then any 
optimal transport satisfies quant2(C, 1=d) for some C > 0.

For a proof, see steps 1 and 2 in the proof of Lemma 3.4. Next, we address the unbounded case; here, we assume 
that nondegeneracy holds in a uniform sense (which is automatic in the compact case) and achieve a rate arbitrarily 
close to 1=d under sufficient integrability. The proof is a combination of the proofs of Lemma 3.2 and McCann et al. 
[45, theorem 1.1] with a cutoff argument. We denote by ∈M∈ the operator norm of the matrix M.
Lemma 3.4. Let X1, X2 ⇓ Rd be convex and let c ↑ C2(X) be nondegenerate. Suppose that D2

xyc(x, y) is uniformly continu-
ous and ∈D2

xyc∈, ∈(D2
xyc) 1∈ are bounded on X. Let d∞ > d. If µ1,µ2 ↑ Pq(Rd) for q :→ 2 d∞+d

d∞ d, then any optimal transport satis-
fies quant2(C, 1=d∞) for some C > 0.
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Proof. Let π�be an optimal transport. Whenever a subprobability ν�is given, we denote by eν → ν=ν(X) its normal-
ized measure. 

Step 1. Consider a cube Q → ([ r, r]2d + {(x0, y0)}) 􏿼 X centered at (x0, y0) ↑ spt π. We show that, for r sufficiently 
small, gπ |Q satisfies quant2(C, 1=d) with a constant C independent of (x0, y0). Let M :→ D2

xyc(x0, y0) ↑ Rd⇐d and 
G(x, y) :→ c(x,  M 1y) x · y. Then.

D2
xyG(x, y) → D2

xyc(x,  M 1y)M 1 1n

→ D2
xyc(x,  M 1y)M 1 D2

xyc(x0, y0)M 1 , 

and hence,

∈D2
xyG(x, y)∈ ↗ ∈M 1∈∈D2

xyc(x,  M 1y) D2
xyc(x0, y0)∈:

As D2
xyc is uniformly continuous and ∈(D2

xyc) 1∈ is uniformly bounded, we can, thus, choose r ↑ (0, 1) independent 
of (x0, y0) such that ∈D2

xyG(x, y)∈ ↗ 1
2 for all (x, y) ↑ Rd ⇐ Rd with (x,  M 1y) ↑ Q.

Consider (x, y), (x∞, y∞) such that (x,  M 1y), (x∞,  M 1y∞) ↑ Q 􏿼 spt π. Then, the c-cyclical monotonicity of spt π�
yields

c(x,  M 1y) + (x∞,  M 1y∞) ↗ c(x,  M 1y) + c(x∞,  M 1y∞)

or, equivalently,
x · y + G(x, y) + x∞y∞ + G(x∞, y∞) ≃ x · y∞ + G(x, y∞) + x∞ · y + G(x∞, y): (3.10) 

Next, we use a second change of coordinates

u → x + y’’’
2

∋ , v → x y’’’
2

∋ :

Closely following the proof of McCann et al. [45, theorem 1.2], using (3.10) with !x :→ x∞ x, !y :→ y∞ y, !u :→
u∞ u, !v :→ v∞ v leads to

!x · !y + !x ·
Z 1

0

Z 1

0
D2

xyG(x + s!x, y + t!y)!y dsdt ≃ 0, 

and hence, !x · !y ≃ 1
2 |!x | |!y | as ∈D2

xyG∈ ↗ 1
2 along the integration domain. Noting that !y

’’’
2

∋
→ !u + !v and 

!x
’’’
2

∋
→ !u !v, we deduce

|!u |2 |!v |2 → 2!x · !y ≃ |!x | |!y |

≃ 1
2 ( |!x |2 + |!y | 2) → 1

2 ( |!u |2 + |!v |2) , 

and thus,

|!v | ↗
’’’
3

∋
|!u | : (3.11) 

Consider the composition a → a3
↦a2

↦a1 of the linear maps

a1 : (x,  M 1y) ↘↔ (x, y), a2 : (x, y) ↘↔ (u, v), a3 : (u, v) ↘↔ u:

Clearly, the image I → a(R2d) is a d-dimensional linear subspace. Defining η :→ a#gπ |Q , we see that spt η�is a bounded 
subset of I. Its diameter admits a bound depending only on r and the Lipschitz constant of a, and the latter is inde-
pendent of (x0, y0) as ∈M∈ → ∈Dxyc(x0, y0)∈ is uniformly bounded. Recall from Remark 2.1 that a measure on Rd with 
bounded support satisfies quant2(C0, 1=d) with a constant C0 depending only on d and the diameter of the support 
(note that the diameter bounds any moment). As a result, η�satisfies quant2(C0, 1=d) with a constant C0 independent 
of (x0, y0).
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The map a admits a Lipschitz inverse 0 : a(Q 􏿼 spt π) ↔ Q 􏿼 spt π�with a Lipschitz constant L independent 
of (x0, y0) because of the boundedness of ∈(D2

xyc) 1∈ and (3.11). Again, by Kirszbraun’s theorem, 0�extends to a 
Lipschitz map 0 : I ↔ Rd ⇐ Rd with the same Lipschitz constant. As gπ |Q → 0#η, we deduce that gπ |Q satisfies 
quant2(C, 1=d) for C → LC0.

Step 2. We start with a general observation about sums. Let ν1, : : : ,νm be subprobabilities with a cumulative 
mass of at most one and suppose that each eνi satisfies quant2(C,α) for n ≃ 1. Consider the quantization problem for 
the sum ν →Pm

i→1 νi, which can be seen as the convex combination 
Pm

i→1 νi(X)eνi of probability measures (and the 
zero measure if necessary). Noting that, given n→km points, we can allocate k points to each of the eνi , it is easy to 
see that eν�satisfies quant2(mαC,α) for all n ↑ {m, 2m, ⋯ } and, thus, for all n ≃ m after increasing the constant C.

For N ↑ N, consider R→Nr and the cube QR → [ R, R]2d, which can be divided into m :→ N2d small cubes of the 
type in step 1. Combining step 1 with the observation about sums, we see that gπ |QR satisfies quant2((R=r)2C, 1=d)
for n ≃ (R=r)2d.

We note that, if the marginals are compactly supported, QR contains spt π�for R sufficiently large so that π�satis-
fies quant2(C, 1=d) after increasing C. For the noncompact case, we use the following cutoff.

Step 3. For n ≃ 1, choose R → R(n) as
R(n) :→ r↙n1

d 1
d∞ ∝1=2:

Note that limn↔⇑R(n) → ⇑ and n ≃ (R(n)=r)2d and (R(n)=r)2n 1=d ↗ n 1=d∞ . Writing πn :→ π |QR(n) , this shows that 
there exist νn ↑ Pn(R2d) such that W2(νn,fπn) ↗ Cn 1=d∞ . On the other hand, consider π πn, which is supported 
outside [ R(n), R(n)]2d. As a consequence,

Z
|z |2 d(π πn) ↗ R(n) γ

Z
|z |2+γ dπ�

for any γ ≃ 0. Choose γ :→ 4d
d∞ d → 4

d∞
1
d 1

d∞
" # 1; then, R(n) γ ↗ C∞n 2=d∞ for a constant C∞ > 0, and as 2 + γ → 2 d∞+d

d∞ d, the 
integral is finite by our assumption on the marginals. Quantizing π πn by a single point mass at the origin, we 
then see with the result for πn that π�satisfies quant2(C, 1=d∞) for a (different) constant C. w

Lemmas 3.3 and 3.4 have immediate corollaries similar to Corollary 3.1; we omit the statements for brevity.
The nondegeneracy condition can be extended to the multimarginal transport problem and is used in Pass [54, theo-

rem 2.2] to bound the dimension of the support of an optimal transport. However, as noted by the author, the condition 
is no longer generic when n> 2, and indeed, some quite reasonable multimarginal problems only have solutions of 
larger dimension (Pass [54, remark 2.13]). On the other hand, we do expect that our results extend to n> 2 for particular 
costs, such as those in Gangbo and Świȩch [34]. In any event, Theorem 3.2 separates such regularity issues from the con-
vergence analysis so that any available regularity result from optimal transport theory can be applied directly.
Remark 3.6. As mentioned in the introduction, Carlier et al. [17] previously obtained the constant d=2 for com-
pactly supported marginals with uniformly bounded Lebesgue densities and also showed its sharpness (cf. Sec-
tion 4). Unlike in our result, the upper bound in Carlier et al. [17] does not require nondegeneracy. Interestingly, 
Minty’s trick is also used in Carlier et al. [17], but it is employed in the proof of the sharpness rather than in the 
upper bound as in the present work. We worked on the primal problem and used Minty’s trick to estimate the 
dimension of optimal couplings, whereas in Carlier et al. [17], the authors work on the Kantorovich potentials of 
the dual problem to derive the upper bound, giving a quadratic control on the integrated difference between a 
λ-convex function and its first order Taylor expansion.

4. Sharpness
In this section, we show that the upper bounds obtained in the preceding section are sharp in certain cases. 
Throughout, we focus on n→ 2 marginals and divergences given by f (x) → x log(x) and f (x) → 1

ρ (xρ 1). Lower 
bounds for OTf ,ε OT are naturally obtained from the dual problem of OTf ,ε.
Lemma 4.1. Let ĥi ↑ L1(µi); i → 1, 2 be Kantorovich potentials for OT; and ĉ(x, y) :→ c(x, y) ĥ1(x) ĥ2(y) for 
(x, y) ↑ X1 ⇐ X2. Let f ⇒(y) :→ supx≃0[xy f (x)] for y ↑ R and f ⇒ε (y) :→ εf ⇒ 1

εy
" #

. Then,

OTf ,ε OT ≃ sup
a↑R

a 
Z

f ⇒ε (a ĉ)d(µ1 ↓µ2)
 !

≃ sup
a↑R

a f ⇒ε (a)
Z

1a≃ĉ d(µ1 ↓µ2)
 !

 εf ⇒(0):
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Proof. Recall (e.g., Eckstein and Pammer [29], Terjék and González-Sánchez [58]) the duality

OTf , ε → sup
h1, h2

Z
h1(x) + h2(y) f ⇒ε (h1(x) + h2(y) c(x, y))µ1(dx)µ2(dy), 

where the supremum ranges over hi ↑ L1(µi). As OT →P2
i→1
R

ĥi dµi, choosing h1 → ĥ1 + a and h2 → ĥ2 yields

OTf ,ε OT ≃ sup
a↑R

a 
Z

f ⇒ε (a ĉ)d(µ1 ↓µ2)
 !

:

As f ⇒ε�is nondecreasing, ĉ ≃ 0 and f ⇒ε (0) → εf ⇒(0) ≃ εf (1) → 0, we also have 
R

f ⇒ε (a ĉ)d(µ1 ↓µ2) ↗ f ⇒ε (a)
R

1a≃ĉ d(µ1↓
µ2) + f ⇒ε (0), leading to the second inequality. w

Turning to the sharpness of the Lipschitz result (Theorem 3.1), it was observed in Carlier et al. [17, example 3.3] 
that the leading-order term ε log(1=ε) is sharp in the entropic case for the distance cost on R. Part (i) is a simple 
extension of that result to d dimensions equipped with the L1-metric as cost, showing that the dependence on the 
dimension (or, equivalently, the quantization rate) is also sharp. For Lρ�regularization, we show in (ii) that the lead-
ing term has the sharp order and, in particular, the correct dimension dependence. Regarding the relation between 
dimension and quantization rate, recall from Remark 2.1 that α2 → 1=d for absolutely continuous marginal 
µ2 ↑ P(Rd).
Proposition 4.1 (Sharpness of Theorem 3.1). Let X1 → X2 → Rd with µ1 → µ2 the uniform distribution on [0, 1]d and 
c(x, y) →Pd

i→1 |xi yi | . 
i. Let f (x) → x log(x). Then, for all ε > 0,

OTf ,ε OT ≃ dε log(1=ε) (2d 1)ε:

In particular, the leading term matches the bound in Theorem 3.1(i).
ii. Let f (x) → 1

ρ (xρ 1) for some ρ > 1. Then,

OTf ,ε OT ≃ Kε
1

(ρ 1)d+1 + O(ε)

for a constant K > 0. In particular, the leading term has the same exponent as the bound deduced from Theorem 3.1(ii) in 
Example 3.1.

Proof.
i. Here, f ⇒(x) → ex 1. Recalling the normalizing constant 

R
Re | u v |

ε du → 2ε�of the Laplace distribution,
Z

ea c
ε d(µ1 ↓µ2) → ea

ε

Yd

i→1

Z

[0, 1]2
e

| xi yi |
ε dxidyi ↗ ea=ε(2ε)d, 

and thus, Lemma 4.1 (with ĥ1 → ĥ2 → 0) shows

OTf ,ε OT ≃ sup
a

(a 2dεd+1ea=ε + ε):

Choosing a → dε log(1=ε), the right-hand side equals dε log(1=ε) (2d 1)ε.
ii. Here, f ⇒(y) → 1

q yq
+ + 1

ρ�for q :→ ρ
ρ 1 so that

f ⇒ε (a) → εf ⇒(a=ε) →
aq

qεq 1 + ε
ρ

, a ≃ 0:

The definition of c shows that 1a≃c ↗
Qd

i→1 1{ |xi yi | ↗a}, and thus,
Z

1a≃c d(µ1 ↓µ2) ↗
Yd

i→1

Z 1

0

Z 1

0
1a≃ |xi yi | dxidyi → (2a a2)d ↗ (2a)d 

for a ↑ [0, 1] with the last bound valid for a ≃ 0. Lemma 4.1, thus, yields

OTf ,ε OT ≃ sup
a↑R+

$
a 2df ⇒ε (a)ad εf ⇒(0)

%

→ sup
a↑R+

a 2d ad+q

qεq 1 
2dεad

ρ
 ε

 !

: (4.1) 
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Setting a :→ kε
1

(ρ 1)d+1, where k>0 is such that K :→ (k 2dkq+d=q) > 0, we deduce OTf ,ε OT ≃ Kε
1

(p 1)d+1 + O(ε) as 
claimed. w

Remark 4.1. We can similarly show the sharpness of Corollary 3.1(ii) for quadratic cost. Namely, let c(x, y) →
|x y |2 →Pd

i→1 |xi  yi |2. Going through the proof of Proposition 4.1, we now have 1a≃c ↗
Qd

i→1 1{ |xi yi | ↗
’’
a

∋
}, and 

thus, OTf ,ε OT ≃ Kε
1

(p 1)d=2+1 + O(ε): A more general (if much more involved) argument for a general class of mar-
ginals is given as follows.

Indeed, we can establish the sharpness of Theorem 3.2 for a general class of marginals and costs. For the entro-
pic case, it is well-known that the leading term d

2ε log 1
ε

" #
is sharp for quadratic cost c(x, y) → |x y |2 on Rd ⇐ Rd 

when the marginals are sufficiently regular (Chizat et al. [22], Conforti and Tamanini [24], Pal [53]). Very 
recently, Carlier et al. [17] showed that this term is sharp for the broad class of nondegenerate (as defined before 
Lemma 3.3) costs and regular marginals; their result is stated in (i) as follows for completeness. The core of the 
proof in Carlier et al. [17] is a quadratic detachment estimate for the Kantorovich potentials. In (ii), we apply their 
technique to divergences f (x) → 1

ρ (xρ 1) to show sharpness of the leading order in Theorem 3.2(ii).
Proposition 4.2 (Sharpness of Theorem 3.2). For i → 1, 2, let Xi ⇓ Rd be convex and compact and let µi ↑ P(Xi) have 
bounded Lebesgue density. Let c ↑ C2(X) be nondegenerate. 

i. Let f (x) → x log(x). Then,

OTf ,ε OT ≃ d
2ε log(1=ε) + O(ε):

In particular, the leading term matches the bound in Theorem 3.2(i).
ii. Let f (x) → 1

ρ (xρ 1) for some ρ > 1. Then,

OTf ,ε OT ≃ Kε
1

(ρ 1)d=2+1 + O(ε)
for a constant K > 0. In particular, the leading term has the same exponent as the bound deduced from Theorem 3.2(ii) in 
Example 3.2.
Proof. See Carlier et al. [17, proposition 4.4] for (i). To show (ii), we argue that there exist constants C0, C > 0 such 
that

OTf ,ε ≃ OT + sup
a↗C0

a Cf ⇒ε (a)ad=2 max{0, f ⇒ε (0)}
$ %

: (4.2) 

This bound is similar to (4.1) but with different constants and implies the claim along the same lines. To show 
(4.2), we apply Lemma 4.1 with optimal potentials (ĥ1, ĥ2). The latter can be chosen to be continuous so that ĉ is 
also continuous. The main difficulty is to bound 

R
1a≃ĉ d(µ1 ↓µ2). Following the proof of Carlier et al. [17, proposi-

tion 4.4], we find a finite open cover A →∀n
i→1 Ai of the compact set {ĉ → 0} 􏿼 (X1 ⇐ X2) satisfying the following: 

a. On the compact B :→ (X1 ⇐ X2)\A, we have ĉ > C0 for some C0 > 0.
b. There exist r, C1 > 0 such that, for all i ↑ {1, : : : , n}, for some rv ↑ Rd depending only on v ↑ Rd,

Z

Ai

1a≃ĉ d(µ1 ↓µ2) ↗ C1

Z

Br

Z

Br

1a≃ |u rv | 2=4 dudv, 

where Br ⇓ Rd is the ball of radius r>0 around the origin.
Bounding the inner integral in (b) according to

Z

Br

1a≃ |u rv | 2=4 du ↗
Z

Rd
1a≃ |u | 2=4 du ↗

Yd

i→1

Z

R
1 |ui | ↗2

’’
a

∋ du ↗ 4dad=2, 

we obtain
Z

A􏿼(X1⇐X2)
1a≃ĉ d(µ1 ↓µ2) ↗ Cad=2 

for a constant C>0. In view of (a), this shows
Z

X1⇐X2

1a≃ĉ d(µ1 ↓µ2) ↗ Cad=2 for a ↗ C0 (4.3) 

and now (4.2) follows by Lemma 4.1. w
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Appendix
The following is well-known in the entropic case (Nutz [49, section 5]. For completeness, we provide an extension to the 
f-divergences under consideration.

Proposition A.1. We have OTf ,ε OT → O(ε) if and only if there exists an optimal transport plan π⇒ for OT with Df (π⇒, P) <⇑.

Proof. If there exists an optimal transport plan π⇒ with finite divergence, clearly OTf ,ε OT ↗ εDf (π⇒, P) → O(ε). Conversely, 
let πε�be an optimizer of OTf ,ε. If OTf ,ε  OT → O(ε), it follows that supε↑(0, 1]Df (πε, P) <⇑. As f has superlinear growth, the 
densities dπε=dP are then uniformly integrable; in particular, there exists a weak⇒-convergent sequence dπεn=dP, meaning that 
(πεn ) converge set-wise. The limit π0 is again a coupling. We have 

R
c dπ0 ↗ lim inf OTf ,εn → OT by a generalized Fatou’s 

lemma (Royden [57]) and the growth condition on c, showing that π0 is an optimal transport. The same Fatou’s lemma shows 
Df (π0, P) ↗ lim inf Df (πεn , P) <⇑, completing the proof. w

The following extension of Theorem 3.1 was prompted by a question of by G. Carlier; see also the similar Carlier et al. 
[17, remark 3.2].

Remark A.1 (Extension of Theorem 3.1 Beyond Lipschitz). Fix p→ 1 and replace (AL, C) by
Z

c d(π eπ)
&&&&

&&&& ↗ ω(W1(π, eπ)), (A.1) 

where ω : R+ ↔ R+ is an increasing and concave modulus of continuity. To motivate this, note that, if the function c itself 
has modulus of continuity ω, then choosing θ ↑Π(π, eπ) attaining W1(π, eπ) yields

Z
c d(π eπ)

&&&&

&&&& ↗
Z

|c(x) c(y) | θ(dx, dy)

↗
Z
ω(dX, 1(x, y))θ(dx, dy) ↗ ω(W1(π, eπ))

by Jensen’s inequality. Going through the proof of Theorem 3.1 with (A.1), we obtain, instead of (3.1), that

OTf ,ε  OT ↗ 2ω C
XN

i→2
n αi

i

 !
+ εDf (eπ,µ1 ↓µ

n2
2 ↓ : : :µnN

N )

and can then optimize the choice of ni. For instance, in the entropic case, we take Sε → ω 1(1=ε); then, the first term is again 
of order ε, whereas the divergence term is of order ε log(ω 1(1=ε)). For N→2 and c(x, y) → dX, 1(x, y)r with 0 < r < 1, we end 
up with

OTf ,ε  OT ↗ 1
rα2
ε log 1

ε

 !
+ Kε:

It is worth noting the formal similarity with Theorem 3.2(i), which corresponds to r→ 2.

Endnotes
1 Note added in proof: this statement refers to the preprint version of Carlier et al. [17]. The final published version provides an improved 
result, namely, the upper Rényi dimension is bounded by the Euclidean dimension as soon as the marginal has a finite logarithmic moment.
2 The result in Graf and Luschgy [37, corollary 6.7] is stated for all n ≃ C3 instead of n ≃ 1 for a certain constant C3 in order to have a statement 
whose constants do not depend on the moment 

R
|x | p+δ µ(dx). For our purposes, we do not mind such a dependence, and we can easily 

deduce a result valid for all n ≃ 1 by adjusting the constants.
3 Exponents αi > 1 could be accommodated with minor changes in the constants. In view of Remark 2.1, the condition αi ↗ 1 is not restrictive 
in practice.
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