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Teaser: Competition is more intense in human social hierarchies than in sports leagues, but

less than in animal hierarchies.

Patterns of wins and losses in pairwise contests, such as occur in sports and

games, consumer research and paired comparison studies, and human and

animal social hierarchies, are commonly analyzed using probabilistic models

that allow one to quantify the strength of competitors or predict the outcome

of future contests. Here we generalize this approach to incorporate two addi-

tional features: an element of randomness or luck that leads to upset wins, and

a “depth of competition” variable that measures the complexity of a game or

hierarchy. Fitting the resulting model we estimate depth and luck in a range

of games, sports, and social situations. In general, we find that social compe-

tition tends to be “deep,” meaning it has a pronounced hierarchy with many

distinct levels, but also that there is often a nonzero chance of an upset victory.

Competition in sports and games, by contrast, tends to be shallow and in most
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cases there is little evidence of upset wins.

Introduction

One of the oldest and best-studied problems in data science is the ranking of a set of items, in-

dividuals, or teams based on the results of pairwise comparisons between them. Such problems

arise in sports, games, and other competitive human interactions, in paired comparison surveys

in market research and consumer choice, in revealed-preference studies of human behavior,

and in studies of social hierarchies in both humans and animals. In each of these settings, one

has a set of comparisons between pairs of items or competitors, with outcomes of the form “A

beats B” or “A is preferred to B,” and the goal is to determine a ranking of competitors from

best to worst, allowing for the fact that the data may be sparse (there may be no data for many

pairs) or contradictory (e.g., A beats B beats C beats A). A group of chess players might play

in a tournament, for example, and record wins and losses against each other. Consumers might

express preferences between pairs of competing products, either directly in a survey or implic-

itly through their purchases or other actions. A flock of chickens might peck each other as a

researcher records who pecked whom in order to establish the classic “pecking order.”

A large number of methods have been proposed for solving ranking problems of this kind—

see Refs. (1, 2, 3) for reviews. In this paper we consider one of the most common, which uses a

statistical model for wins and losses and then fits that model to observed win/loss data. In the

most widely adopted version one considers a population of n competitors labeled by i = 1 . . . n

and assigns to each a real score parameter si ∈ [−∞,∞]. Then the probability that i beats j

in a single pairwise match or contest is assumed to be some function of the difference of their

scores: pij = f(si − sj). The score function f(s) satisfies the following axioms:

1. It is increasing in s, since by definition a better competitor has a higher probability of

winning than a worse one.
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2. It tends to 1 as s → ∞ and to 0 as s → −∞, meaning that an infinitely good player

always wins and an infinitely poor one always loses.

3. It is antisymmetric about its mid-point at s = 0, with the form

f(−s) = 1− f(s), (1)

because the probability of losing is one minus the probability of winning. As a corol-

lary, this also implies that the probability f(0) of beating an evenly matched opponent is

always 1

2
.

Subject to these constraints the function can still take a wide variety of forms, but the most

popular choice by far is the logistic function f(s) = 1/(1 + e−s)—shown as the bold curve in

Fig. 1A—which gives

f(si − sj) =
esi

esi + esj
. (2)

The resulting model is known as the Bradley-Terry model, after R. Bradley and M. Terry who

described it in 1952 (4), although it was (unknown to them) first introduced much earlier, by

Zermelo in 1929 (5).

Given the model, one can estimate the values of the score parameters si by a number of

standard methods, including maximum likelihood estimation (5,4,6,7,8), maximum a posteriori

estimation (9), or Bayesian methods (10, 11), then rank competitors from best to worst in order

of their scores. The fitted model can also be used to predict the outcome of future contests

between any pair of competitors, even if they have never directly competed in the past.

This approach is effective and widely used, but the standard Bradley-Terry model is a sim-

plistic representation of the patterns of actual competition and omits many important elements

found in real-world interactions. Generalizations of the model have been proposed that incorpo-

rate some of these elements, such as the possibility of ties or draws between competitors (12,13),
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values of the luck and depth variables for a variety of real-world data sets drawn from differ-

ent arenas of human and animal competition. Our results suggest that social hierarchies are in

general deeper and may have a larger element of luck to their dynamics than recreational games

and sports, which tend to be shallower and show little evidence of a luck component.

Software implementations of the various methods described in this paper are available at

https://github.com/maxjerdee/pairwise-ranking and https://doi.org/

10.5061/dryad.kh18932fc.

The model

Suppose we observe m matches between n players. The outcomes of the matches can be rep-

resented by an n × n matrix A with element Aij equal to the number of times player i beats

player j. Within the standard Bradley-Terry model the probability of a win is given by Eq. (2)

and, assuming the matches to be statistically independent, the probability or likelihood of the

complete set of observed outcomes is

P (A|s) =
∏

ij

f(si − sj)
Aij =

∏

ij

(

esi

esi + esj

)Aij

, (3)

where s is the vector with elements si and terms that only depend on the data A have been

dropped. (We assume that the structure of the tournament—who plays whom—is determined

separately, so that (3) is a distribution over the directions of the wins and losses only and not

over which pairs of players competed.)

The scores are traditionally estimated by the method of maximum likelihood, maximiz-

ing (3) with respect to all si simultaneously to give estimates

ŝ = argmax
s
P (A|s). (4)

These maximum likelihood estimates (MLEs) can then be sorted in order to give a ranking of

the competitors, or simply reported as measures of strength in their own right. The widely used
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Elo ranking system for chess players, for example, is essentially a version of this approach, but

extended to allow for dynamic updates as new matches are added to the data set.

The maximum likelihood approach unfortunately has some drawbacks. For one, the like-

lihood is invariant under a uniform additive shift of all scores si and hence the scores are not

strictly identifiable, though this issue can easily be fixed by normalization. A more serious prob-

lem is that the likelihood maximum does not exist at all unless the network of interactions—the

directed network with adjacency matrix A—is strongly connected (meaning there is a directed

chain of victories from any player to any other), and the maximum likelihood estimation pro-

cedure fails, with the divergence of some or all of the scores, unless this relatively stringent

condition is met.

This issue can be addressed by introducing a prior on the scores and adopting a Bayesian

perspective. A variety of potential priors for this purpose have been systematically examined

by Whelan (9), who, after careful consideration, recommends a Gaussian prior with mean zero.

The variance is arbitrary—it merely sets the scale on which the score s is measured—but for

subsequent convenience we here choose a variance of 1

2
so that the prior on s takes the form

P (s) =
n
∏

i=1

1√
π
e−s2i . (5)

An alternative prior, also recommended by Whelan, is the logistic distribution

PL(s) =
n
∏

i=1

1

(1 + esi)(1 + e−si)
. (6)

In practice the Gaussian and logistic distributions are similar in shape and the choice of one or

the other does not make a great deal of difference. The logistic distribution is perhaps the less

natural of the two and we primarily use the Gaussian distribution in this paper, but the logistic

distribution does have the advantage of leading to faster numerical algorithms and we have used

it in previous work for this reason (19, 8). We also include it in the basket of models that we

compare our section on predicting wins and losses.
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Once we have defined a prior on the scores we can calculate a maximum a posteriori (MAP)

estimate of their values as

ŝ = argmax
s
P (s|A) = argmax

s
P (A|s)P (s). (7)

The MAP estimate always exists regardless of whether the interaction network is strongly con-

nected, and using a prior also eliminates the invariance of the probability under an additive shift

and hence the need for normalization. As an alternative to computing a MAP estimate we can

also simply return the full posterior distribution P (s|A), which gives us complete information

on the expected values and uncertainty of the scores given the observed data.

Extensions of the model

In this section we define generalizations of the Bradley-Terry model that extend the score func-

tion f in two useful ways, while keeping other aspects of the model fixed, including the normal

prior. The specific generalizations we consider involve dilation or contraction of the score func-

tion in the vertical and horizontal directions. Vertical variation controls the element of luck that

allows a weak player to sometimes beat a strong one; horizontal variation controls the “depth

of competition,” a measure of the complexity of a game or contest.

Upset wins and luck

The first generalization of the Bradley-Terry model that we consider is one where the function f

is contracted in the vertical direction, as shown in Fig. 1A. We parametrize this function in the

form

fα(s) =
1

2
α + (1− α)

1

1 + e−s
, (8)

with α ∈ [0, 1]. In the traditional Bradley-Terry model f(s) tends to 0 and 1 as s → ±∞, as

discussed in the introduction, but in the modified model with α > 0 this is no longer the case.
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One can think of the parameter α as controlling the probability of an “upset win” in which an

infinitely good player loses or an infinitely bad player wins. (The probabilities of these two

events must be the same because of the antisymmetry condition, Eq. (1).)

For some games or competitions it is reasonable that f(s) tends to zero and one at the limits.

In a game like chess that has no element of randomness, an infinitely good player may indeed

win every time. In a game of pure luck like roulette, on the other hand, both players have equal

probability 1

2
of winning, regardless of skill. These two cases correspond to the extreme values

α = 0 and α = 1 respectively in Eq. (8). Values in between represent games that combine

both luck and skill, like poker or backgammon, with the precise value of α representing the

proportion of luck. For this reason we refer to α as the luck parameter, or simply the “luck.”

(One could also consider the chance of the weaker player winning in the standard Bradley-

Terry model to be an example of luck or an upset win, but that is not how we use these words

here. In the present context the “luck” α describes the probability of winning the game even if

one’s opponent is infinitely good, which is zero in the standard model but nonzero in the model

of Eq. (8) with α > 0.)

Another way to think about α is to imagine a game as a mixture of a luck portion and a

skill portion. With probability α the players play a game of pure chance in which the winner is

chosen at random, for instance by the toss of a coin. Alternatively, with probability 1− α, they

play a game of skill, such as chess, and the winner is chosen with the standard Bradley-Terry

probability. The overall probability of winning is then given by Eq. (8) and the parameter α

represents the fraction of time the game is decided by pure luck. By fitting (8) to observed

win-loss data we can learn the luck inherent in a competition or hierarchy. We do this for a

variety of data sets in our Results section.
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Depth of competition

The second generalization we consider is one where the function f is dilated or contracted in

the horizontal direction, as shown in Fig. 1B, by a uniform factor β > 0 thus:

fβ(s) =
1

1 + e−βs
. (9)

The slope of this function at s = 0 is given by

f ′

β(0) =

[

βe−βs

(1 + e−βs)2

]

s=0

= 1

4
β, (10)

so β is simply proportional to the slope. A more functional way of thinking about β is in terms

of the probability that the stronger of a typical pair of competitors will win. With a normal prior

on s of variance 1

2
as described in our Model section, the difference si − sj between the scores

of a randomly chosen pair of competitors will be a priori normally distributed with variance 1,

meaning the scores will be separated by an average (root-mean-square) distance of 1. Consider

two players separated by this average distance. If β is small, making fβ a relatively flat function

(the shallowest curve in Fig. 1B), the probability pij of the stronger player winning will be close

to 1

2
and there is a substantial chance that the weaker player will win. Conversely, if β is large

then pij will be close to 1 (the steepest curve in Fig. 1B) and the stronger player is very likely

to prevail.

Thus one way to understand the parameter β is as a measure of the imbalance in strength

or skill between the average pair of players. When β is large the contestants in the average

game are very unevenly matched. As we will shortly see, this is a common situation in social

hierarchies, but not in sports and games, perhaps because contests between unevenly matched

opponents are less rewarding both for spectators and for the competitors themselves.

Another way to think about β is in terms of the number of levels of skill or strength in a

competition. Suppose we define one “level” as the distance ∆s = si − sj between scores such
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that i beats j with a certain probability q. For a win probability of the form of Eq. (9) we have

q = 1/(1 + e−β∆s) and hence

∆s =
1

β
log

q

1− q
. (11)

Considering again the typical pair of players a distance 1 apart, the number of levels between

them is

1

∆s
=

β

log[q/(1− q)]
. (12)

Thus the number of levels is simply proportional to β. Let us choose the probability q such that

the constant of proportionality is 1, meaning log[q/(1− q)] = 1 or

q =
1

1 + e−1
= 0.731 . . . (13)

With this definition, a “level” is the skill difference ∆s between two players such that the better

one wins 73% of the time and our parameter β is simply equal to the number of such levels

between the average pair of players.

In this interpretation, β can be thought of as a measure of the complexity or depth of a game

or competition. A “deep” game, in this sense, is one that can be played at many levels, with

players at each level markedly better than those at the level below. Chess, which is played at a

wide range of skill levels from beginner to grandmaster, might be an example.

This concept of depth has a long history. For example, in an article in the trade publication

Inside Backgammon in 1980 (20), world backgammon champion William Robertie defined a

“skill differential” as the strength difference between two players that results in the better one

winning 70 to 75% of the time—precisely our definition of a “level”—and the “complexity

number” of a sport or game as the number of such skill differentials that separate the best player

from the worst. Cauwet et al. (21) have defined a similar but more formal measure of game

depth that they call “playing-level complexity.” There has also been discussion in the animal
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behavior literature of the “steepness” of animal dominance hierarchies (22), which appears to

correspond to roughly the same idea.

One should be careful about the details. Robertie and Cauwet et al. both define their mea-

sures in terms of the skill range between the best and worst players, but this could be prob-

lematic in that the range will depend on the particular sample of players one has and will tend

to increase as the sample size gets larger, which seems undesirable. Our definition avoids this

by considering not the best and worst players in a competition but the average pair of players,

which gives a depth measure that is asymptotically independent of sample size.

Even when defined in this way, however, the number of levels is not solely about the intrinsic

complexity of the game, but does also depend on who is competing. For example, if a certain

competition is restricted to contestants who all fall in a narrow skill range, then β will be small

even for a complex game. In a world-class chess tournament, for instance, where every player

is an international master or better, the number of levels of play will be relatively small even

though chess as a whole has many levels. Thus empirical values of β combine aspects of the

complexity of the game with aspects of the competing population.

For this reason we avoid terms such as “complexity number” and “depth of game” that

imply a focus on the game alone and refer to β instead as the “depth of competition,” which we

feel better reflects its meaning. (A variety of alternative notions of depth are discussed in the

Supplementary materials, Section S5.)

Combined model

Combining both the luck and depth of competition variables into a single model gives us the

score function

fαβ(s) =
1

2
α + (1− α)

1

1 + e−βs
. (14)
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In the Results, we fit this form to observed data from a range of different areas of study in order

to infer the values of α and β. In the process one can also infer the scores si, which can be

used to rank the participants or predict the outcome of unobserved contests, and we explore

this angle later in the paper. In this section, however, our primary focus is on α and β and on

understanding the varying levels of luck and depth in different kinds of competition.

To perform the fit we consider again a data set represented by its adjacency matrix A and

write the data likelihood in the form of Eq. (3):

P (A|s, α, β) =
∏

ij

fαβ(si − sj)
Aij . (15)

The scores s are assumed to have the Gaussian prior of Eq. (5), and we assume a uniform (least

informative) prior on α, which means P (α) = 1. We cannot use a uniform prior on β, since it

has infinite support, so instead we use a prior that is approximately uniform over “reasonable”

values of β and decays in some slow but integrable manner outside this range. A suitable choice

in the present case is (the positive half of) a Cauchy distribution centered at zero:

P (β) =
2w/π

β2 + w2
, (16)

where w controls the scale on which the function decays. In this paper we use w = 4, which

roughly corresponds to the range of variation in β that we see in real-world data sets, and has

the convenient property of giving a uniform prior on the angle of fβ(s) at the origin.

It is worth mentioning that the choice of prior on β does have an effect on the results in some

cases. When data sets are large and dense, priors tend to have relatively little impact because the

posterior distribution is narrowly peaked around the same set of values no matter what choice

we make. But some of the data sets we study here are quite sparse and for these the results can

vary with the choice of prior. Our qualitative conclusions remain the same in all cases, but it is

worth bearing in mind that the quantitative details can change.
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Combining the likelihood and priors, we now have

P (s, α, β|A) = P (A|s, α, β)P (α)P (β)P (s)

P (A)
. (17)

The prior on A is unknown but constant, so it can be ignored. We now draw from the distribution

P (s, α, β|A) to obtain a representative sample of values s, α, β. In our calculations we generate

the samples using the Hamiltonian Monte Carlo method (23) as implemented in the probabilistic

programming language Stan (24), which is ideal for sampling from continuous parameter spaces

such as this. The running time to obtain the samples depends on the computational cost per

iteration, which is proportional to the number of matches m, and on the Monte Carlo mixing

time, which is roughly proportional to the number of competitors n. The total running thus

scales roughly as O(mn). In practice, a few thousand samples are sufficient to get a good

picture of the distribution of α and β, which in our implementation takes anywhere from a few

seconds to an hour or so for our largest data sets.

Minimum violations ranking

One special case of our model worth mentioning is the limit β → ∞ for fixed α > 0. In this

limit the function fαβ(s) becomes a step function with value

fα,∞(s) =











1

2
α if s < 0,

1

2
if s = 0,

1− 1

2
α if s > 0.

(18)

For this choice the data likelihood becomes

P (A|s, α, β) =
(

1

2
α
)v(

1− 1

2
α
)m−v

, (19)

where m is the total number of games/interactions/comparisons and v is the number of “viola-

tions,” meaning games where the weaker player won. Then the log-likelihood is

logP (A|s, α, β) = −v log
1− 1

2
α

1

2
α

+m log
(

1− 1

2
α
)

= −Av − B, (20)
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of P (α, β|A), computed as a kernel density estimate from Monte Carlo sampled values of α

and β. The + signs in the figure represent the mean values of α and β for each data set computed

directly by averaging the samples.

The figure reveals some interesting trends. Note first that all of the sports and games—chess,

basketball, video games, etc.—appear on the left-hand side of the plot in the region of low depth

of competition, while all the social hierarchies are on the right with higher depth. We conjecture

that the low depth of the sports and games is a result of a preference for matches to be between

roughly evenly matched opponents, as discussed in our Section on depth of competition. For a

game to be entertaining to play or watch the outcome of matches should not be too predictable,

but in a sport or league with high depth the average pairing is very uneven, with the stronger

player very likely to win. Low depth of competition ensures that matches are unpredictable

and hence entertaining. In games such as chess, which have high intrinsic depth, the depth can

be reduced by restricting tournaments to players in a narrow skill range, such as world-class

players, and this is commonly done in many sports and games. We explore this interpretation

further in Supplementary Materials, Section S5.

There are no such considerations at play in social hierarchies. Such hierarchies are not, by

and large, spectator sports, and there is nothing to stop them having high depth of competition.

The results in Fig. 2A indicate that in general they do, though the animal hierarchies are deeper

than the human ones. A high depth in this context indicates a hierarchy in which the order of

dominance between the typical pair of competitors is clear. This accords with the conventional

wisdom concerning hierarchies of both humans and animals, where it appears that participants

are in general clear about the rank ordering.

Another distinction that emerges from Fig. 2A is that the results for sports and games gen-

erally do not give strong support to a nonzero luck parameter. The expected values, indicated

by the + signs, are nonzero in most cases, but the clouds representing the posterior distributions
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give significant weight to points close to the α = 0 line, indicating that we cannot rule out

the possibility that α = 0 in these competitions. For many of the social hierarchies, on the

other hand, there is strong evidence for a nonzero amount of luck, with the posterior distribu-

tion having most of its weight well away from α = 0, a finding that accords with our intuition

about social hierarchies. There would be little point in having any competition at all within a

social hierarchy if the outcomes of all contests were foregone. If participants knew that every

competitive interaction was going to end with the higher-ranked individual winning and the

lower-ranked one backing down, then there would be no reason to compete. It is only because

there is a significant chance of a win that competition occurs at all.

An interesting counter-example to this observation comes from the two faculty hierarchies,

which represent hiring practices at US universities and colleges. The interactions in this data

set indicate when one university hires a faculty candidate who received their doctoral training

at another university, which is considered a win for the university where the candidate trained.

The high depth of competition and low luck parameter for these data sets indicates that there is

a pronounced hierarchy of hiring with a clear pecking order and that the pecking order is rarely

violated. Lower-ranked universities hire the graduates of higher-ranked ones, but the reverse

rarely happens.

Figure 2B shows a selection of the fitted functions fαβ(s) for five of the data sets. For each

data set we show in bold the curve for the expected values α̂, β̂ along with ten other curves for

values of α, β sampled from the posterior distribution, to give an indication of the amount of

variation around the average. We see for example that the curve for the soccer data set has a

shallow slope (low depth of competition) but is close to zero and one at the limits (low luck).

The curve for the mice data set, by contrast, is steep (high depth) but clearly has limits well

away from zero and one (nonzero luck).
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Luck and parameter identifiability

Inherent in the view of competition that underlies our model are two different types of random-

ness. There is the randomness inherent in the probabilistic nature of the model: even when one

player is better than the other there is always a chance they may lose, so long as the players’

levels of skill are not too severely imbalanced. But there is also the randomness introduced

by the luck parameter, which applies no matter how imbalanced the players are, even if one is

infinitely better than the other.

In a low-depth situation it can be difficult to distinguish between these two types of random-

ness. When depth is low there are few (or no) players who are very good or very bad, so there

are few matches were a good player is unequivocally observed to lose because of the element

of “luck.” In mathematical terms, the score function f(s) in a low-depth competition is shallow

in its central portion, close to the origin, and moreover it is only this portion that gets probed

by the matches, since there are few contests between badly mismatched players. But a score

function with a shallow center can be generated either by a large value of α or a small value

of β—the functional forms are very similar either way.

In practice this means that the values of α and β suffer from poor identifiability in this low-

depth regime. This is visible in Fig. 2A as the long, thin probability clouds of the sports and

games on the left-hand side of the plot. For these there is a set of parameter value pairs α, β that

fall roughly along a curve in the plot and that all have similar posterior probability, and hence it

becomes difficult to pin down the true parameter values. This phenomenon particularly affects

the luck parameter α, whose spread is so broad in this regime that we cannot reliably determine

whether it is nonzero.

As depth increases, on the other hand, we expect that there will be a larger number of

competitors who are either very strong or very weak, and from the outcomes of their matches

we can determine the level of luck with more certainty. This is reflected in the distributions on
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the right of Fig. 2A, for many of which it is possible to say clearly that α is nonzero.

An alternative view of the same behavior is that the long thin probability clouds in the figure

imply the existence of a particular combination of luck and depth that is narrowly constrained

for each data set, and an orthogonal combination that is highly uncertain. In Supplementary

materials, Section S6, we define a measure of “predictability” of competition in terms of the

amount of information needed to communicate the outcomes of all matches in a data set, and

show that this predictability corresponds precisely to the narrowly defined direction in the fig-

ure, so that predictability can be estimated accurately in all cases, even when there is consider-

able uncertainty about the raw parameters α and β.

Predicting wins and losses

In addition to allowing us to infer the luck and depth parameters and rank competitors, our

model can also be used to predict the outcomes of unobserved matches. If we fit the model to

data from a group of competitors, we can use the fitted model to predict the winner of a new

contest between two of those same competitors. The ability to accurately perform such predic-

tions can form the basis for consumer product recommendations and marketing, algorithms for

guiding competitive strategies in sports and games, and the setting of odds for betting, among

other things.

We can test the performance of our model in this prediction task using a cross-validation

approach. For any data set A we randomly remove or “hold out” a small portion of the matches

or interactions and then fit the model to the remaining “training” data set. Then we use the fitted

model to predict the outcome of the held-out matches and compare the results with the actual

outcomes of those same matches.

The simplest version of this calculation involves fitting our model to the training data by

making point estimates of the parameters and scores. We first estimate the expected posterior
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values α̂, β̂ of the parameters given the training data. Then, given these parameter values, we

maximize the posterior probability as a function of s to obtain MAP estimates ŝ of the scores.

Finally, we use the combined parameter values and scores to calculate the probability p̂ij =

fα̂β̂(ŝi − ŝj) that a held-out match between i and j was won by i, with fαβ(s) as in Eq. (14).

Further discussion of the procedure is given in Supplementary Materials, Section S3.

We can quantify the performance of our predictions by computing the log-likelihood of the

actual outcomes of the held-out matches under the predicted probabilities p̂ij . If Wij is the

number of times that i actually won against j then the log-likelihood per game is

Q =

∑

ij Wij log p̂ij
∑

ij Wij

. (21)

This measure naturally rewards cases where the model is confident in the correct answer (p̂ij close

to 1) and heavily penalizes cases where the model is confident in the wrong answer (p̂ij close

to 0). Note that the log-likelihood is equal to minus the description length of the data—the

amount of information needed to describe the true sequence of wins and losses in the held-

out data given the estimated probabilities p̂ij—so models with high log-likelihood are more

parsimonious in describing the true pattern of wins and losses. (An alternative way to quan-

tify performance would be simply to compute the fraction of correct predictions made by each

model. Some results from this approach are given in the Supplementary materials, Section S2,

and are largely in agreement with the results for log-likelihood.)

To place the performance of our proposed model in context, we compare it against a basket

of other ranking models and methods, including widely used standards, some recently pro-

posed approaches, and some variants of the approach proposed in this paper. As a baseline we

compare performance against the standard Bradley-Terry model with a logistic prior, which is

commonly used in many ranking tasks, particularly in sports, and which we have ourselves used

and recommended in the past (8). We measure the performance of all other models against this
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one by calculating the difference in the log-likelihood per match, Eq. (21). The other models

we test are:

1. The luck-plus-depth model of this paper.

2. A depth-only variant in which the parameter α is set to zero.

3. A luck-only variant in which the parameter β is set to ∞, which is equivalent to minimum

violations ranking.

4. The Bradley-Terry model under maximum-likelihood estimation, which is equivalent to

imposing an improper uniform prior. Note that maximum-likelihood estimates diverge if

a player wins (or loses) all of their matches and to avoid this, in keeping with previous

work (25), we impose a very weak L2 regularization of the scores which is equivalent to

a MAP estimate with Gaussian prior of width σ = 100.

5. The “SpringRank” model of De Bacco et al. (25), which ranks competitors using a phys-

ically motivated mass-and-spring model.

This is a representative selection of ranking models but not comprehensive, excluding for in-

stance models that incorporate information beyond wins and losses, and multidimensional mod-

els (17,18). The proportion of data held out in the cross-validation was 20% in all cases, chosen

uniformly at random, and at least 50 random repetitions of the complete process were performed

for each model for each of the data sets listed in Table 1.

The results are summarized in Fig. 3. The horizontal dashed line in the figure represents the

baseline set by the Bradley-Terry model and the points with error bars represent the increase (or

decrease) in log-likelihood relative to this level for each model and data set. The error bars rep-

resent the upper and lower quartiles of variation of the results over the random repetitions. (We
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violations ranking is competitive, which is also unsurprising: as shown in Fig. 2 this hierarchy

is very deep—the value of β is over 100—and hence there is little difference between our model

and the minimum violations ranking. For all the other data sets the minimum violations ranking

performs worse—usually much worse—than our model. (Arrows at the bottom of the figure

indicate results so poor they fall off the bottom of the scale.) The maximum likelihood fit to

the Bradley-Terry model also performs quite poorly, a notable observation given that this is

one of the most popular ranking algorithms in many settings. It even performs markedly worse

than the same Bradley-Terry model with a logistic prior. Finally, we note that the SpringRank

algorithm of (25) is relatively competitive in these tests, though it still falls short of the model

of this paper and the standard Bradley-Terry model with logistic prior.

As mentioned above, our selection of models excludes multidimensional models, which

have substantially larger parameter spaces and allow for a wider range of behaviors, such as in-

transitive competition, and which could in principle provide better fits to the data. In other tests

(not shown here) we found one such model, the blade-chest model of Chen and Joachims (17),

that outperforms our model on four of the animal data sets (dogs, baboons, sparrows, and hye-

nas), although it performs poorly in most other cases. This could suggest the presence of in-

transitivity in these data sets.

Discussion

In this paper we have studied the ranking of competitors based on pairwise comparisons be-

tween them, as happens for instance in sports, games, and social hierarchies. Building on the

standard Bradley-Terry ranking model, we have extended the model to include two additional

features: an element of luck that allows weak competitors to occasionally beat strong ones, and

a “depth of competition” parameter that captures the number of distinguishable levels of play

in a hierarchy. Deep hierarchies with many levels correspond to complex games or social struc-
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tures. We have fitted the proposed model to data sets representing social hierarchies among both

humans and animals and a range of sports and games, including chess, basketball, soccer, and

video games. The fits give us estimates of the luck and depth of competition in each of these

examples and we find a clear pattern in the results: sports and games tend to have shallow depth

and little evidence of a luck component, while social hierarchies are significantly deeper and

more often have an element of luck, with the animal hierarchies being deeper than the human

ones.

We also test our model’s ability to predict the outcome of contests. Using a cross-validation

approach we find that the model performs as well as or better than every other model tested in

predictive tasks and very significantly better than the most common previous methods such as

maximum likelihood fits to the Bradley-Terry model or minimum violations rankings.
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Tables and captions

Data set β̂ n m Description Ref.

S
p
o
rt

s/
g
am

es

Scrabble 0.68 587 23477 Scrabble tournament matches 2004–2008 (26)

Basketball 1.01 240 10002 National Basketball Association games 2015–2022 (27)

Chess 1.17 917 7007 Online chess games on lichess.com in 2016 (28)

Tennis 1.44 1272 29397 Association of Tennis Professionals men’s matches 2010–2019 (29)

Soccer 1.73 1976 7208 Men’s international association football matches 2010–2019 (30)

Video games 1.77 125 1951 Super Smash Bros Melee tournament matches in 2022 (31)

H
u
m

an Friends 3.54 774 2799 High-school friend nominations (32)

CS departments 4.25 205 4388 Doctoral graduates of one department hired as faculty in another (33)

Business schools 4.36 112 7856 Doctoral graduates of one department hired as faculty in another (33)

A
n
im

al

Vervet monkeys 6.01 41 2930 Dominance interactions among a group of wild vervet monkeys (34)

Dogs 8.74 27 1143 Aggressive behaviors in a group of domestic dogs (35)

Baboons 13.19 53 4464 Dominance interactions among a group of captive baboons (36)

Sparrows 22.92 26 1238 Attacks and avoidances among sparrows in captivity (37)

Mice 26.48 30 1230 Dominance interactions among mice in captivity (38)

Hyenas 100.58 29 1913 Dominance interactions among hyenas in captivity (39)

Table 1: Data sets in order of increasing depth of competition β. Here n is the number of

participants and m is the number of matches/interactions. Further information on the data sets

is given in the Supplementary materials, Section S1.
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