Mutual information and the encoding of contingency tables
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Mutual information is commonly used as a measure of similarity between competing labelings
of a given set of objects, for example to quantify performance in classification and community
detection tasks. As argued recently, however, the mutual information as conventionally defined can
return biased results because it neglects the information cost of the so-called contingency table, a
crucial component of the similarity calculation. In principle the bias can be rectified by subtracting
the appropriate information cost, leading to the modified measure known as the reduced mutual
information, but in practice one can only ever compute an upper bound on this information cost, and
the value of the reduced mutual information depends crucially on how good a bound is established. In
this paper we describe an improved method for encoding contingency tables that gives a substantially
better bound in typical use cases, and approaches the ideal value in the common case where the
labelings are closely similar, as we demonstrate with extensive numerical results.

I. INTRODUCTION

A common task in data analysis is the comparison of
two different labelings of the same set of objects. For
instance, a prominent example from statistical physics is
the evaluation of community detection algorithms. Such
algorithms attempt to divide a network into cohesive
groups or modules, typically denoted by numeric labels,
based on clues embedded in the network topology. It is
often claimed that these topological communities are cor-
related with exogenous properties of network nodes, such
as demographics in a social network or chemical function
in a biological network. To verify such claims one would
like to investigate the similarity between the labels gen-
erated by the algorithm and the exogenous labels, but
how should one do this, particularly if, as is common,
the number of groups can be different between the two
labelings? Similar questions arise outside of physics too,
in many fields. How well do demographics predict polit-
ical affiliation, for example? Or how accurately do blood
tests predict clinical outcomes? In each of these cases, we
are interested in quantifying the similarity between an ex-
perimental labeling and a known “ground truth.” Such
comparisons are commonly made using the information
theoretic measure known as mutual information [1].

Mutual information is a measure of how easy it is to de-
scribe one labeling of a set of objects if we already know
another labeling. Specifically, it measures how much less
information it takes (in the Shannon sense) to commu-
nicate the first labeling if we know the second versus if
we do not. This approach has a number of appealing
qualities. It is invariant under permutations of the la-
bels in either labeling, so that labelings do not have to
be aligned before comparison. It also generalizes grace-
fully to the case where the two labelings have different
numbers of distinct label values. On the other hand,
the mutual information in its most common form also
has some significant drawbacks and, in particular, it is

known to be biased towards labelings with a large num-
ber of distinct labels. Various proposals have been made
for mitigating this issue [2-6]. In this paper we focus
on the recently proposed reduced mutual information [6],
which improves on the standard measure by carefully ac-
counting for subleading terms in the information that are
normally neglected.

Any version of the mutual information is an approxi-
mation to the true information cost of the labelings being
compared. One computes the information cost by defin-
ing some encoding scheme for labelings and then count-
ing the number of bits needed to specify a labeling within
that encoding. In this paper we highlight two common
pitfalls that occur when quantifying information cost in
this way, which produce errors in opposite directions.
The first is the neglect of the cost of certain parts of the
transmission process, which produces an underestimate
of the total transmission cost. The standard, unreduced
mutual information is an example: it does not include
the cost to transmit the “contingency table” that sum-
marizes the relationship between the two labelings, caus-
ing it to underestimate—sometimes drastically—the to-
tal information cost, particularly for labelings with many
groups.

The second pitfall, and the focus of this paper, is the
use of inefficient encoding schemes, which result in over-
estimates of information cost. The reduced mutual in-
formation, in its conventional form, suffers from this is-
sue because it uses a relatively crude encoding of the
contingency table. In this paper we offer an improved
encoding that gives better bounds on the value of the
reduced mutual information, different enough to change
outcomes in some practical situations, as we demonstrate
with a selection of illustrative examples. Code imple-
menting our approach can be found at https://github.
com/maxjerdee/reduced_mutual_information.



II. CONDITIONAL ENTROPY AND
MUTUAL INFORMATION

To motivate our discussion, we first rederive the con-
ventional mutual information using the language of infor-
mation transmission, before progressing to the reduced
mutual information and its variants.

A. Mutual information

Mutual information can be understood in terms of the
amount of information required to transmit a labeling
from one person to another. Suppose, first, that we want
to transmit to a receiver a discrete quantity X, which
can take any one of a known finite set of N values. For
example, we could be transmitting the outcome of a coin
flip X € {heads, tails} or one possible labeling of a group
of objects. If we assign to each possible value of X a
unique binary string, we can convey any particular value
by transmitting the appropriate string. The minimum
length of string that can encode all N values is

H = [log, N| ~log, N, (1)

where [z] denotes the smallest integer not less than x.
This tells us the number of bits of information needed to
transmit X.

Conventionally one uses base-2 logarithms in equations
like (1), which gives H in units of bits, as here. Some
authors use natural logarithms, which changes the re-
sults by a constant multiplier, but the difference is not
an important one. In this paper we use base-2 logarithms
for explicit numerical calculations, but our formal results
are all independent of the base of the logarithm and one
can use any base one wishes provided one is consistent.
Henceforth, we will write logarithms without any base
indicated.

Suppose now that X is actually a labeling g of a set
of n objects, with each object having exactly one label
and each label having the same g, possible values, which
we represent by integers in the range 1...¢g,. Then there
are N = gy possible values of the entire labeling and
hence any labeling can be transmitted using an amount
of information

H(g) =1log N = nlogg,. (2)

This, however, is not necessarily the most efficient way
to transmit such a labeling. In particular, if different la-
bels occur with different frequencies then a more efficient
encoding may be possible, resulting in a smaller informa-
tion cost. The standard encoding has three parts. First
we transmit the number of groups g, in the labeling. The
maximum possible value of g4 is 7, so if we use a simple
“flat” encoding as in Eq. (1), then transmitting any par-

ticular value requires information H(g,) = logn. Next

we transmit a vector n(9) of qg integers n&g )

number of objects having each label r.

equal to the
By definition,

2

the n&g) sum to n, and the number of ways to choose g,

. . . —1 .
nonnegative integers that sum to n is (";’qf 1 ), so if we
9

again use a flat encoding to transmit n(9) the information
cost will be

H(n9|g,) = log <" g~ 1>. (3)
dg — 1

Finally, we transmit the labeling g itself, choosing only

from among those that have the correct multiplicities n£9 )

of the labels. The number of such labelings is given by
the multinomial n!/ ], n'9! and hence, choosing a flat
encoding one more time, the information cost is

H(gln'?)) = log W (4)

r T
Putting everything together, the information cost, or en-
tropy, to transmit the labeling is

H(g) = H(q) + H(n'"|ay) + H(gn'?)

-1 !
=logn + log <n—|—qg )—l—logn. (5)
qq—1 g

This three-step scheme is not the only one that could be
applied to this problem, but it is a fairly efficient one in
the common case of a small number of groups g, < n
with potentially unequal sizes, and it is the one on which
the conventional definition of entropy is based.

The conventional definition, however, ignores all but
the last term and approximates the entropy as

Ho(g) = (6)

n!
log 71_[ ngg)! .

In most cases this is a good approximation. The other
terms are subleading contributions—they grow more
slowly with n than the leading term—and in practice they
are negligible even for quite modest values of n. Com-
monly one also makes a further approximation, applying
Stirling’s formula to each of the factorials, which gives the
Shannon form of the entropy Ho(g) = —n )., prlogp,,

where p, = n&g) /n is the probability that a randomly
chosen object has label r.

Now consider the corresponding encoding scheme for
mutual information. Suppose that we have two different
labelings of the same set of objects, a candidate label-
ing ¢, generated for instance by some sort of algorithm,
and a ground-truth labeling g which represents the “true”
labels. The mutual information I(c;g) between the two
labelings is defined as the amount of information that can
be saved when transmitting the truth g if the receiver al-
ready knows the candidate c. We can write this quantity
as the total information or entropy needed to transmit g
on its own, minus the conditional entropy, the amount to
transmit g given prior knowledge of c:

I(c;9) = H(g) — H(glc). (7)
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FIG. 1. A contingency table for two labelings (colors) of the
nodes of a network, one with three colors and one with two.
The entries in the 3 x 2 contingency table n{9¢) count the num-
ber of nodes that have each pair of label values. The row and
column sums n9 and n(® then count the number of nodes
with each label in the two labelings. Note that, although we
illustrate the contingency table with an application to a net-
work, the table itself is a function of the labelings only and is
independent of the network structure.

For the first term, we use the three-part encoding
scheme described above, Eq. (5). For the second we use
a similar multipart scheme, but one that now takes ad-
vantage of the receiver’s knowledge of c¢. In this scheme
we first communicate g, and n(9) as before, at the same
information cost of H(g,) + H(n9|q,). Then we com-
municate a contingency table n(9, a matrix with ele-

ments n'99 that represent the number of objects that
simultaneously belong to group r in the ground truth g
and group s in the candidate labeling c. Figure 1 shows
an example of a contingency table for two labelings of
the nodes of a small network.

The elements of the contingency table are all non-
negative integers and its row and column sums are equal

to the multiplicities of the labels in g and ¢ respectively:

inﬁg@ = n§.9>, Zn(gp = (8)
s=1

Since the receiver already knows the values of n(9)
and n(®) (the former because we just transmitted it and
the latter because they know c¢), only contingency ta-
bles with these row and column sums need be considered.
The information cost to transmit the contingency table
with a flat encoding is then equal to logQ(n(9), n(©)),
where Q(n(9),n(%)) is the number of possible tables with
the required row and column sums. There is no known
general expression for this number, but approximations
exist that are good enough for practical purposes [7-9].

Finally, after transmitting the contingency table, it
remains to transmit the ground-truth labeling itself.
For this we need only consider those labelings consis-
tent with the contingency table and the known can-
didate labeling c. The number of such labelings
is [[, n&c)!/ IL.. ni9, so the information needed to
uniquely identify one of them is

(C)|
o [ ns!

[T, nst Y

H(g\c,n(-"c)) =

Putting everything together, the total conditional infor-
mation is then

H(gle) = H(qy) + H(n'?|qy)

+ H(n(gc)‘n(9)7n(c)) + H(g\c,n(gc))
n+qg — 1)
dg — 1

+log Q(n'9),

=logn + log (

I, ngc)!

) +1o . (10

)+ log e (10
In typical applications the number of labelings compati-
ble with the contingency table is much smaller than the
total number of labelings. Thus the amount of infor-
mation needed to transmit the ground truth using this
encoding is typically substantially smaller than Eq. (5).
The difference—the amount saved—is the quantity we
call the mutual information:

= H(g) — H(glc)
= H(qy) + H(n'?|qg) + H(g|n'")
- [H(QQ) + H(n(g)|q9)
+ H(n(90)|n(5’),n(c>) + H(g\c,n(-"c))]
— H(g|n(5’)) — H(gle, n(gC)) — H(n(90>|n(9),n(0))
w1, %!

=1lo '——logQ(n<9) n(c)). (11)
(9) (c) ’
[L 7 [T ms !

I(c;g9)

Once again this encoding is not necessarily the most
efficient one, but it works well in practical situations and
forms the basis for the conventional definition of mutual
information. And once again the conventional definition
drops the subleading term, retaining only the first term

n (11):

Lt (12)
H n(g);l—[ n(f);
s'vS -

Commonly one again also applies Stirling’s approxima-
tion, which leads to the familiar expression for the mutual
information Io(c;9) = n)., . prslog(prs/prps), where
prs = n'29 /n is the joint probability that a randomly
chosen object has label r in the ground truth and s in
the candidate labeling.

Although the principles behind them are similar, an
important practical difference between Eq. (5) for the
entropy and Eq. (11) for the mutual information is that
the subleading term in the mutual information is typi-
cally larger and can significantly affect the overall value.
It is the neglect of this term that produces the bias to-
wards an excessive number of groups in the conventional
mutual information. The cure for this bias is to retain
the subleading term, which leads to the measure known
as the reduced mutual information.

Io(c; g) = log



B. Reduced mutual information

Equation (12) defines the standard mutual informa-
tion Iy, which neglects subleading behavior. In the limit
of large n this is a good approximation, but for finite n,
including values large enough to be of practical conse-
quence, the subleading term can contribute significantly.
In this section, we demonstrate how this gives rise to a
bias in favor of labelings with larger numbers of groups
and how simply retaining the subleading term removes
this bias.

The full expression in Eq. (11) is known as the reduced
mutual information, with this particular version (we will
shortly consider others) distinguished by the fact that it
assumes a flat encoding when transmitting the contin-
gency table. We will denote this measure by Iqa¢:

' Hrs nsgc N
H n(9)| Hs ngc)!

The moniker “reduced” derives from the fact that
the —log ) term is always negative and so reduces the
value of the mutual information relative to the conven-
tional definition of Eq. (12), but we emphasize that func-
tionally we are simply retaining terms that are usually
neglected. As mentioned previously, there is no gen-
eral closed-form expression for the number Q(n(9), n(?)
of contingency tables with given row and column sums,
and its numerical computation is #P-hard and hence in-
tractable for all but the smallest of examples [10]. In
practice, therefore, the value must be approximated. In
this paper we make use of the “effective columns” approx-
imation of [9], which has good performance over a wide
range of situations and a simple closed-form expression:

Inai(c; 9) = —log Q(n'9,n(?)). (13)

Q(n(9)7n(c)) ~
n—+ —1 —1 4e () -1 (.‘1) -1
qcx H ns +o H + qc
geor — 1 et a—1 st ge—1 ’
(14)
where
n?>—n+ ( /q
_ c ( )
o= o , R= Z 9 (15)

This estimate differs from the one originally used for the
reduced mutual information in [6], but we favor it here
since it performs better in certain regimes.

To appreciate the importance of the contingency table
term in the mutual information, consider the simple case
where the candidate labeling ¢ places every object in its
own group: ¢ = (1,...,n). Regardless of the ground-
truth labeling ¢, this choice of ¢ clearly contains no in-
formation about the truth, so we expect the mutual in-
formation to be zero. But it is not. We have n{”1 = 1
for all s in this case, while the contingency table has
a single 1 in each column and all other elements are 0,

SO nsagg )1 =1 for all r, s, and hence the conventional mu-

tual information of Eq. (12) simplifies to

n!
Io(c; 9) = log ——= = Ho(g)- (16)

e

This answer is as wrong as it possibly could be: we ex-
pect the mutual information to take the minimum value
of zero, but instead it is equal to the entropy Hy(g), which
is its maximum possible value, since the largest amount
of information we can save by knowing ¢ when we trans-
mit g is equal to the entire information Hy(g). In other
words, the conventional mutual information would have
us believe that this candidate labeling which puts every
object in its own group tells us everything there is to
know about the true labeling g, when in fact it tells us
nothing at all.

The reason for this failure is that the contingency ta-
ble itself uniquely determines ¢ in this case, so neglect-
ing the information content of the table puts the mutual
information in error by an amount equal to the com-
plete information cost of the ground truth. If we include
the cost of transmitting the contingency table, this erro-
neous behavior disappears. We can calculate the number
Q(n'9), n(®) of contingency tables exactly for this exam-
ple. Since there is just a single 1 in every column of the
table, the number of tables is

n!

(9) () —
and the reduced mutual information is
Iﬂat(c g) = IO(C g) 0, (18)

H n(9)|

which is now the correct answer.

C. Improved encodings

The reduced mutual information offers a significant im-
provement over the traditional measure for finite-sized
systems, particularly when the candidate labeling has a
large number of distinct label values. And, as we have
seen, it gives exactly the correct answer in the case where
every object is in a group of its own. In this paper, how-
ever, we argue that the reduced mutual information, as
it is usually defined, is itself an imperfect measure, and
in particular that it overcorrects for the flaws of tradi-
tional mutual information because the encoding scheme
used for both H(g) and H(g|c) is inefficient and does
not approximate the entropy as well as it could. All cal-
culated entropies are merely upper bounds on the true
value: calculating the information cost of transmitting
a labeling using a specific encoding guarantees that no
more than that amount of information is needed, but it
is possible that a better encoding exists that can do the
job with less. In this section, we propose more efficient



encodings that give better bounds on the entropy and
the conditional entropy, particularly in the common case
where the two partitions ¢ and g are similar.

The central observation behind our proposed encod-
ings is that quantities like n(9) and n(99 often have un-
evenly distributed elements, sometimes strongly so. For
example, mutual information is most often used to com-
pare labelings that are quite similar, which means the
elements of the contingency table are very non-uniform—
those that correspond to common pairs of labels are large,
while all the others are small. This in turn means that
choices of the contingency table with these properties are
much more likely to occur than others and hence that a
“flat” encoding that assumes all choices to be equally
likely is inefficient. By using an encoding that allows
for a non-uniform distribution, we can save a substantial
amount of information and achieve a better approxima-
tion of the mutual information.

The encodings we propose are based on the sym-
metric Dirichlet-multinomial distribution, a standard,
one-parameter family of discrete distributions over g¢-
vectors X of non-negative integer elements that sum to
a given total V. The distribution is derived from a two-
part generative process in which, first, a set of ¢ probabil-
ities py ... p, are drawn from a symmetric Dirchlet distri-
bution with concentration parameter « > 0, and then a
set of ¢ integers X; ... X, are drawn from a multinomial
distribution with those probability parameters. The re-
sulting distribution over X is given by

Hq—1 pe! u pX
— r= T N' T
@) / B(a) E X,

Dirichlet

P(X|N,q, (19)

Multinomial

where B(«) is the multivariate beta function and the in-
tegral is over the simplex of non-negative values p, such
that > p, = 1. Performing the integral then gives the
standard expression for the Dirichlet-multinomial distri-
bution:

N+ga—1 1 X +a-1
P(X|N =
g = (Y ) T ),
(20)

where for non-integer o we generalize the binomial coef-
ficient in the obvious way:

(n) B I'(n+1)
k) T(k+1)T(n—k+1)

(21)

with I'(z) being the standard gamma function.

If & = 1, the Dirichlet-multinomial distribution is uni-
form over all g-vectors X of non-negative integers that
sum to V:

N—i—q—l)l- (22)

PxNg.a=1)= (N7

Smaller values 0 < a < 1 produce a distribution biased
towards more heterogeneous X. In the extreme limit

where @ — 0 (which we will denote as a = 0) the dis-
tribution is supported only on vectors that have a single
nonzero entry equal to IV:

v _ | 1/q if X has one nonzero entry,
P(X|N,g,0=0) = { 0  otherwise.
(23)

Conversely, for « > 1 the Dirichlet-multinomial distri-
bution favors vectors X with more uniform entries, and
in the limit @ — oo it approaches the symmetric multi-
nomial distribution where p, = 1/q for all r:

LI AN

r=1

P(X|N,q,a — o0) =

Different choices of the parameter « thus place more or
less weight on different types of vectors X.

We can use the Dirichlet-multinomial distribution to
improve the encoding of the group sizes n(? and so
better approximate the total unconditional information
cost H(g). The information cost used in the definition of
the standard reduced mutual information is

Haat(g) = H(qg) + H(n'9|qy) + H(gln'?),  (25)

where as previously the subscript “flat” indicates the
flat encoding that assumes equal probability for all out-
comes at each step. In the new approach we propose
here, we still use flat encodings for g, and g but we use
a nonuniform Dirichlet-multinomial distribution for the
group sizes n(9).

Generally when transmitting a sequence of n values
with unequal probabilities such that value r occurs n,
times, the information cost is given by Eq. (4):

n!
log =—— ~nl —n— rlogn, —n,
ognrnr! nlogn —n Z(n ogn, —ny)
=— ZnT log p,, (26)

where p, = n,/n is the probability of value r and the fac-
torials are approximated using Stirling’s formula. Equa-
tion 26 tells us that the information cost to transmit
the value r is simply — log p,.. Applying this observation
to the Dirichlet-multinomial distribution we can calcu-
late the total information cost to transmit a vector n(9)
drawn from the Dirichlet-multinomial distribution with
concentration parameter ay:

H(n(g)|ng ag) = - IOgP( @) |Qg7 O‘g)
n+ qgog — + ag—1
o8 ( qg0rg — 1 ) Z ( -1
(27)

The optimal encoding for transmitting n(9) within the
Dirichlet-multinomial family is given by the minimum of
this expression with respect to «g, which is also equiva-
lent to simply maximizing P(n(9|a,), i.e., to finding the
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FIG. 2. Optimal values of oy for the transmission of the com-
munity sizes n'9, along with the resulting information cost
in bits Hpm (n(9>) in our new Dirichlet-multinomial encoding
scheme and the corresponding cost Heaat (n(g)) in the old, flat
encoding. Note how vectors with more extreme values benefit
from smaller values of ag, while more uniform vectors favor
larger ay.

maximum-likelihood value of a. In practice we can find
the maximum-likelihood value with standard numerical
optimization techniques, as described in Appendix C.
We apply this procedure to a selection of example val-
ues of n(9) in Fig. 2, giving the optimal values of oy for
each one, along with the resulting values for the entropy.
In each case, as we can see, the Dirichlet-multinomial
encoding is more efficient than the conventional flat en-
coding, sometimes by a wide margin. In the extreme case
where n(9) has only a single nonzero entry, the optimal
value of o is zero and the information cost is
H(n(g)|an ag = 0) = log qq, (28)
whereas the cost to transmit the same n(9) using a flat
encoding (equivalent to oy = 1) is considerably steeper:

n+qy —

H(n'9) =1)=1
(1 Pgcry = 1) = t0g (" T

1
) ~ gglogn. (29)

One could argue that to truly make a fair compar-
ison, one should also include the cost to transmit the
value of «y itself. As shown in Appendix C, however,
this cost is small in practice, and moreover cancels com-
pletely from the final value of the mutual information, so
it is normally safe to ignore it, as we do here.

Although the information saved by using the Dirichlet-
multinomial distribution is in some cases a significant
fraction of the information needed to transmit n'9), it is
normally quite small next to the information needed to
transmit the entire labeling, which is dominated by the
cost H(g|n9)) of sending the labeling itself. The same
is not true, however, when we turn to the conditional
entropy H(g|c), where using the Dirichlet-multinomial
distribution can result in large efficiency gains, and this
is our primary motivation for taking this approach.

Recall that the standard model for the conditional
information breaks the transmission process into four
steps—transmission of g, n(@), n¥9)  and g—which can

be represented by the equation

H(qq) + H(n'9|qy) + H(n'9) |n(® nl))
+ H(gle,nl99), (30)

Heat(g]c) =

with a flat encoding at each step. In our alternate pro-
posal, we again transmit ¢, using a flat encoding, but
then combine the second and third steps to transmit the
contingency table all at once, given g, and n(®). This
transmission again leverages a nonuniform encoding to
achieve efficiency gains. The final step of transmitting g
itself remains unchanged.

Our process for transmitting the contingency table
involves transmitting one column at a time using the
Dirichlet-multinomial distribution. We use the same
value oy for each column, but the columns are other-

wise independent. If we denote column s by n.(gc), then
the information cost of this procedure can be written

ZH (gc
qc
- Z [log <ng 7 q9%gle — 1)
s=1 qgaglc -1
gc)
nrs + -1
721 ( o _-‘?'i >] (31)
gl|c

For instance, consider the special case of perfect recov-
ery where ¢ = g, so that n(99) is a diagonal matrix and
each column n(s 99 has only a single nonzero entry. Then,
as in Eq. (28), ag). = 0 is the optimal choice for trans-
mitting the contingency table and the total information
cost is simply

H(n99n(), 4, a10) = 70y 04.)

H(n(gg)m(g), agle = Qe = 0)

ZH gg)|n

= Z log gy = qglog gy- (32)
r=1

In the traditional flat encoding the cost is much greater:
H(n(99)|n(9)) - H(n(g)|n,qg) + H(n(96)|n(0

1
log(n 1)+10gQ( (@) n@)

= 0(gyqclogn). (33)

) n(®)

This significant improvement also extends to the case
where ¢ ~ g and the labelings are similar but not iden-
tical. It is in precisely this regime that mutual informa-
tion is often applied to quantify similarity, so the new
encoding is much preferred over the old one in common
settings, a conclusion strongly confirmed by the example
applications given in Section III.

Figure 3 shows the equivalent of Fig. 2 for the trans-
mission of a selection of example contingency tables.
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FIG. 3. Comparison of the information cost of transmitting example contingency tables under the old and new encodings.
The top half of the figure shows the new encoding, along with the values for the optimal Dirichlet-multinomial parameter ayg.

and the resulting information cost Hpwm(n'99|n(®). The bottom half shows the old encoding and associated information
cost Hﬁat(n(gc)|n(c)). The new encoding is more efficient in every case, and especially so in the case of equal labelings ¢ = g.

In the case where the candidate labeling places all ob-
jects in a single group, so that ¢. = 1, our proposed
scheme is exactly analogous to our method for trans-
mitting the vector n(9), which implies that the mu-
tual information is Ipm(c;g) = 0 (the DM denoting
“Dirichlet-multinomial”). This is a desirable property
which is also shared by the traditional and reduced mu-
tual informations—a candidate labeling that places all
objects in a single group tells us nothing about the
ground truth g. We also note the considerable gulf in
efficiency between the two encodings for the case of iden-
tical labelings g = ¢, the second column in Fig. 3, while
for labelings that are dissimilar (the final two columns
of the figure), the gains of the new encoding are more
modest, as we would expect.

Employing our new encoding in the calculation of the
conditional information, we now obtain a revised infor-
mation cost of

HDM(g|C) = H(qg) + H(n(gC)|n(C)7 qga ag|0)

+ H(gle,n'99). (34)
(Once again one could arguably also include the fixed
cost of transmitting the value of a., but in practice this
cost is small and moreover cancels from the final value of
the mutual information—see Appendix C.)

Putting everything together, we then arrive at our im-

proved mutual information measure
Ipn(c; g) = Hpm(g) — Hpm(gle)
= IO(Q g) + H(n(g) |Qg7 ag) - H(n(gc) |n(c)7 4y ag|c)
= Io(c;9)

g (9)
n+ggag — 1 ny’ 4oy —1
—|—1og( — E log
qgag — 1 — ag—1

_ ilog <nge) + qgOg|c — 1)
s=1

QgQgle — 1

49 qc (gc)
Nys  + agle — 1
1 " gle . 35
2y (, ) @

Besides giving an improved estimate of the mutual in-
formation, this formulation has a number of additional
advantages over the standard reduced mutual informa-
tion. The closed-form expression means that approx-
imations like those used for the number Q(n(9) n(?)
of contingency tables in Eq. (14) are unnecessary—the
measure can be calculated exactly without approxima-
tion. Another advantage is that it is possible to prove
that Ipwm(c; g) < Ipm(g; g) for all ¢, with the exact equal-
ity holding only when ¢ and g are identical up to a per-
mutation of labels, an intuitive result that is required for
proper normalization, but which has not been shown for
the standard reduced mutual information. We give the



proof in Appendix A.

This being said, the encoding we use is not necessarily
the last word in calculation of the mutual information.
As discussed at the start of this section, all entropy cal-
culations only give bounds on the true value and it is
possible that another encoding exists that gives a better
bound. One could imagine trying an approach analogous
to that used for the standard reduced mutual informa-
tion and constraining not only the column sums of the
contingency table but also the row sums, while still us-
ing a nonuniform distribution over tables subject to these
constraints. Placing more constraints on the contingency
table should reduce the number of tables we need to con-
sider and hence save on transmission costs. This ap-
proach, however, turns out to offer little benefit in prac-
tical situations because the gains must be offset against
the information needed to transmit the row sums. It
transpires that, in the common case where the candidate
and ground-truth labelings are similar to one another,
the possible values of the row sums are already tightly
restricted, even without placing any explicit constraint
on them, so that imposing such a constraint saves little
information, while the cost of transmitting the row sums
is considerable. In most cases, therefore, this approach
is less efficient than the one we propose.

Equation 35 does still have some shortcomings. For
one thing, it is not fully analytic, since the values of the
parameters o, and agy). must be found by numerical op-
timization (see Appendix C). Also, because of the asym-
metric encoding used to capture the contingency table,
in which rows and columns are treated differently, the
measure is not symmetric under interchange of ¢ and g.
For typical applications where one is comparing candi-
date labelings against a single ground truth this does not
matter greatly, since the problem is already inherently
asymmetric, but there may be cases where a symmetric
measure would be preferred. Lastly, the encoding we pro-
pose is not guaranteed to always perform better than the
standard (flat) reduced information. In particular, if the
labelings ¢ and g are truly drawn from the distribution
corresponding to the flat encoding scheme, then by def-
inition the flat mutual information will give an optimal
encoding and our method cannot do better. Our broader
claim, however, is that in the realistic regime of labelings
that have a significant degree of similarity, our new en-
coding can be expected to perform better than the flat
encoding.

D. Normalized mutual information

So far we have defined various measures of absolute
information content, as quantified in bits for example,
but such absolute measures can be difficult to interpret.
Are 20 bits of mutual information a little or a lot? To
make sense of the results, they are often expressed in
terms of a normalized mutual information (NMI) that
represents the information content as a fraction of its

maximum possible value [11]. There are various ways to
perform the normalization [12]. Here we use the form

I(c; )
I(g;9)

Note that this expression is asymmetric in ¢ and g—
the value is not invariant under their interchange. Other
normalized mutual information measures use a symmet-
ric denominator, such as $[I(g;g) + I(c; c)] [11, 12], giv-
ing a normalized measure that is itself symmetric. How-
ever, this approach is known to introduce bias in some
cases [13] and, when comparing a labeling to a known
ground-truth as here, we favor the asymmetric normal-
ization of (36), which eliminates this bias. Indeed, nor-
malizing by the information cost of the ground truth la-
beling alone, as above, is the only normalization that
ensures that, out of a set of candidate labelings, the one
with the highest unnormalized score is also the one with
the highest normalized score. No symmetric normaliza-
tion shares this desirable property and for this reason we
consider all symmetric normalizations to be problematic,
as argued in [13].

We can define a normalized mutual information of the
form (36) for any of the mutual information measures dis-
cussed in this paper, including the Dirichlet-multinomial
measure. All of the resulting versions of NMI have the de-
sirable properties of being 1 when ¢ = g and zero when
the mutual information is zero. Thus NMI values ap-
proaching 1 generally indicate similar labelings and val-
ues near zero indicate dissimilar ones, making this an
intuitive measure of similarity. It is also possible for the
NMI to become (slightly) negative for the reduced mutual
information measures we consider [6]. (This cannot hap-
pen with the traditional unreduced mutual information.)
A negative value indicates that the encoding scheme that
makes use of ¢ when transmitting g is actually less effi-
cient than simply transmitting g alone. This, however,
happens only when ¢ and g are very dissimilar and hence
rarely occurs in practical situations (where we are usu-
ally concerned with candidates ¢ that are similar to the
ground truth).

For the particular case of the Dirichlet-multinomial
mutual information, the NMI has the additional desirable
property that it takes the value 1 if and only if ¢ and g
are identical up to a permutation of labels, while for all
other ¢ it is less than 1—see Appendix A. This follows
directly from the inequality Ipm(c;g) < Ipm(g;g) men-
tioned above. The same is not true of the conventional
unreduced NMI, defined as in Eq. (36), which can be 1
even for very dissimilar labelings (see Section IIB). It
is potentially true, but currently unproven, for the flat
reduced mutual information.

NMI(c; g) =

(36)

III. EXAMPLE APPLICATIONS

In this section we give a selection of example appli-
cations of our proposed measure, demonstrating that
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FIG. 4. An example where the three normalized mutual information measures considered here differ substantially.

A set

of objects (circular dots) is divided into three ground-truth groups, represented by the horizontal stripes of red, green, and
blue. Three competing candidate divisions of the same objects are represented by the black boxes denoted A to I. In each, the
ground-truth groups are divided into a set of equally sized subgroups. But regardless of how many objects are in each subgroup,
the unreduced measure NMIj returns a maximal score of 1 for all the candidate divisions, while the reduced measures rightfully
return lower scores, except in the case where the sizes of the subgroups diverge. For subgroups of intermediate size, such as
the groups of size three in the middle column, the Dirichlet-multinomial measure NMIpwn of this paper can give a substantially
different and larger score than the standard (“flat”) reduced mutual information NMIgat.

it can give significantly different answers from previ-
ous measures—different enough to affect scientific con-
clusions under real-world conditions.

A. Comparison of the proposed measure and the
standard reduced mutual information

In some circumstances the results returned by the mea-
sure proposed in this paper can diverge significantly from
those given by either the non-reduced mutual informa-
tion or the standard (“flat”) version of the reduced mu-
tual information. We have already seen examples for the
non-reduced measure: cases in which the candidate la-
beling ¢ has many more labels than the ground truth can
cause the unreduced measure to badly underestimate the
true information cost, sometimes maximally so—see Sec-
tion II B.

A simple example illustrating the difference between
the Dirichlet-multinomial and flat versions of the reduced
mutual information is shown in Fig. 4. In this example
a set of objects, represented by the dots in the figure,
are split into three equally sized ground-truth groups.
The candidate labeling ¢ respects this division but fur-
ther splits each of the three groups into three subgroups,

also of equal size. This is a special case of the situa-
tion mentioned above in which the candidate division
has more labels than the ground truth, so it comes as
no surprise that the conventional, unreduced mutual in-
formation overestimates similarity in this case—indeed it
returns the maximal value of 1.

To understand the behavior of our two reduced mutual
information measures we consider three special cases. In
the first, shown in the left column of Fig. 4, each of the
subgroups, labeled A to I, has size 1, meaning that every
group in ¢ has only a single object in it. We discussed
this case previously in Section IIB and argued that the
correct mutual information should be zero. As the figure
shows, both versions of the reduced mutual information
give this correct result, while the unreduced measure is
maximally incorrect.

Next, consider the right column of Fig. 4, which shows
what happens as the total number of objects tends to
infinity and the size of the subgroups A to I diverges.
Asymptotically, the candidate ¢ now gives full informa-
tion about the ground truth—g¢ is fully specified when
both ¢ and the contingency table are known, but the in-
formation cost of transmitting the contingency table is
a vanishing fraction of the total. Thus the NMI should
be 1 in this case, and again both versions of the reduced
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FIG. 5. Comparison of the two normalized reduced mutual
information measures considered here for the example sys-
tem in Fig. 4, for various sizes nﬁc) of the subgroups as de-
noted by the labels. In all cases except nSC) = 1 and oo
the flat reduced mutual information NMlg,¢ returns a lower
value than the Dirichlet-multinomial reduced mutual infor-
mation NMIpy because it overestimates the information cost

of the contingency table.

mutual information give the right answer. (In this limit
the unreduced measure also gives the right answer.)

But now consider the middle column of the figure, in
which subgroups A to I have size 3. In this case the
contingency table, as shown in the figure, is highly non-
uniform, and hence is transmitted much more efficiently
by the Dirichlet-multinomial encoding than by the flat
encoding. This produces a substantial difference between
the values of the two reduced mutual information mea-
sures. The Dirichlet-multinomial measure gives a rel-
atively high value of 0.75, indicating a strong similar-
ity between candidate and ground truth, while the stan-
dard flat measure gives a significantly smaller value, less
than 0.5. This is a case where the standard measure has
penalized the mutual information too heavily by overesti-
mating the information content of the contingency table,
thereby giving a misleading impression that the two la-
belings are more dissimilar than in fact they are.

Figure 5 shows a plot of the difference between the
two reduced measures for this example system with sub-
group sizes nt ranging all the way from 1 to co. Across

the entire range we observe that, apart from the limiting

values of 7' = 1 and oo, the flat reduced mutual infor-
mation consistently gives underestimates relative to the
Dirichlet-multinomial measure.

Figure 6 shows a different aspect of the two reduced
measures. In this example the ground-truth labeling di-
vides a set of 19 objects into four groups of varying sizes,

and we compare outcomes for two proposed candidate
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FIG. 6. Two candidate labelings of the same set of objects. In
this figure, 19 objects are divided among four ground-truth
groups, represented by the horizontal stripes of red, green,
blue, and magenta, and two candidate labelings c¢i and c2
are denoted by the boxes labeled A to G. The Dirichlet-
multinomial measure of this paper favors the left labeling ¢;
while the flat reduced mutual information prefers the right
one cs.

labelings, denoted ¢; and co. Labeling ¢; has identified
the four groups correctly but splits one of them into a
further four subgroups. As we would expect, the con-
ventional unreduced NMI awards this labeling a maxi-
mal score of 1, which is clearly incorrect. Both reduced
measures correctly give a value less than 1, although the
values are somewhat different.

Now consider candidate labeling co, which erroneously
amalgamates the second ground-truth group with part
of the first as shown. Most observers would probably
say that this labeling is worse than c;, but that is not
what the standard reduced mutual information reports:
the standard measure favors co over ¢; by a substantial
margin. On the other hand, the Dirichlet-multinomial
measure of this paper correctly favors c;, by a similar
margin.

B. Network community detection

The examples of the previous section are illustrative
but anecdotal. To shed more systematic light on the per-
formance of the new measure we apply it to the outcomes
of a large set of network community detection calcula-
tions. In these tests we use the popular Lancichinetti-
Fortunato-Radicchi (LFR) graph model [14] to gener-
ate 100000 random networks with known community
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curve shows the same results smoothed using a quartic kernel
density estimator with the same bin width.

structure and realistic distributions of node degrees and
group sizes. Then we use six different popular commu-
nity detection algorithms to generate candidate divisions
of these networks, which we compare to the known struc-
ture using both the conventional reduced mutual infor-
mation and the measure proposed here. Some technical
details of the calculations are given in Appendix D 1.

As discussed in Section IT C, our Dirichlet-multinomial
approach improves the efficiency of information trans-
mission in two places: in the transmission of the group
sizes n(9) and the transmission of the contingency ta-
ble n(9¢). Figure 7 shows the fractional improvement
in information cost for the group sizes for each of our
test networks. The gains vary substantially between net-
works, and some are close to zero, but in a large fraction
of cases they reach 10% or more.

More important, however, are the gains in transmis-
sion of the contingency table. Since the contingency ta-
ble depends on the candidate ¢ as well as the ground
truth, these gains also depend on the candidate and hence
vary between the six different community detection algo-
rithms, but for our purposes here we aggregate the results
over algorithms. Figure 8a shows the distribution of the
resulting fractional information savings for all networks
in a single plot. The different curves in the plot show
how the distribution varies as a function of how similar
the ground-truth and candidate divisions are, measured
using the Dirichlet-multinomial NMI.

Based on these results we observe that when ¢ and ¢
are similar (NMI > 0.8, brown curve in the figure) the in-
formation gains when transmitting the contingency table
are large, up to a factor of ten or more. This aligns with
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our observation, discussed in Appendix A, that for ¢ >~ ¢
the new encoding scheme is near-optimal, while the flat
scheme is very inefficient. Even in cases where ¢ and ¢
are less similar, efficiency gains are often significant, typ-
ically above 10% and as high as 100% or more. There are
a handful of cases, all occurring when the candidate la-
beling and ground truth are very dissimilar (NMI < 0.2,
blue in the figure), where the new encoding performs
slightly worse than the standard one, as discussed in Sec-
tion II C. However, given that mutual information mea-
sures are normally applied in cases where the two label-
ings are significantly similar, the evidence of Fig. 8 sug-
gests that our new encoding should be preferred, often
by a wide margin, in most practical community detection
scenarios.

As a result of the changes in both H(g) and H(g|c),
the value of the mutual information itself can also change
significantly. Figure 8b shows the fractional change in
the mutual information in our test set, with the differ-
ent curves again showing the results for different ranges
of similarity between the ground truth and the can-
didate division. Because the standard encoding usu-
ally overestimates the conditional information H(g|c), it
tends to underestimate the mutual information I(c; g) =
H(g) — H(g|c), although this bias is offset somewhat by
the corresponding overestimate of the unconditional en-
tropy H(g). On balance, however, the standard encod-
ing significantly underestimates the mutual information
in many cases and there are substantial information sav-
ings to be had under the new encoding, with the mutual
information changing by up to 20% or more in the com-
mon case where the two labelings are similar (NMI > 0.8,
brown curve in the figure).

IV. CONCLUSIONS

In this paper we have presented an improved formula-
tion of the mutual information between two labelings of
the same set of objects. Our approach is in the spirit of
the recently proposed reduced mutual information, and
like that measure it addresses the bias towards an ex-
cessive number of groups present in traditional measures
by taking full account of information costs including par-
ticularly the cost of the contingency table. Where our
proposal differs from the standard reduced mutual in-
formation is in using a more efficient encoding for the
contingency table. While all information theoretic mea-
sures are, in a sense, merely bounds on the true value,
our formulation gives significantly tighter bounds in the
common regime where the two labelings are similar to
one another.

We have demonstrated our proposed measure with a
number of examples and performed extensive tests on
network community structures generated using the LFR
benchmark model. In the latter context we find that the
new encoding does produce considerable savings in in-
formation cost and the resulting values for the mutual
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information differ from the standard reduced mutual in-
formation by up to 20% of the total value under com-
monly occurring conditions.

Looking ahead, the improved encoding we present for
contingency tables could also be used in applications be-
yond the computation of the mutual information that
is the focus of this paper. In general, the Dirichlet-
multinomial distribution that underlies our encoding pro-
vides a more informative prior than the standard uniform
distribution for Bayesian analysis involving contingency
tables [15]. The encoding presented here could thus be
used to improve data compression performance of any
model that requires the specification of a prior distribu-
tion over contingency tables, for example in the methods
for clustering discrete data presented in [16, 17].
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Appendix A: Upper bound on the

normalized mutual information

In this appendix we show that the value of the normal-
ized mutual information measure proposed in this paper
is bounded above by 1:

Ipm(c; g)

MM (E9) = 7 ()

<1, (A1)

and moreover that the exact equality is achieved if and
only if ¢ and ¢ are identical up to a permutation of their
labels. These properties ensure that no candidate can
receive a score higher than that of the ground truth itself
and enable us to interpret a score of 1 as equality up to
permutation. The ordinary non-reduced NMI, normal-
ized as in Eq. (36), does not have the same properties—
as shown in Fig. 4, there are possible labelings ¢ that
are substantially different from g but nonetheless give a
conventional NMI of 1. It is possible that the standard
(“flat”) reduced mutual information satisfies a bound
like (A1), but this has not been proven. It is known
to be violated if poor approximations of Q(n(9), n(%)) are
used, so any proof would require an exact expression for
Q(n'9) n(9) or a sufficiently good estimate. It is unclear
whether current estimates are good enough, although we
are not aware of any violations of the relevant inequality
when the estimate of Eq. (14) is employed.

To prove (Al) we express the numerator and denomi-



nator as
Iowi(c; g) = To(c; g) + H(n'9|n, g4, )
_ H(n(96)|n(0)7qg’%|0),
Ioni(g; 9) = Io(g 9) + H(n'P|n, g4, rg)
_ H(n(gy) ‘n(9)7 g Cglg)
= Ho(g) + H(n'?|n, g4, ) — g4 log gy, (A3)

(A2)

as in Egs. (3
rewritten as
L, nsc !
11 (90)|

75 :

2) and (35). Then our desired bound can be

log —=*——~ +H(n(gc)‘n(c)an70‘g\c) > qglogqy.

(A4)

The left-hand side of this inequality decreases when the
entries of the contingency table decrease. To demonstrate
this we define a table 72(9¢) which is identical to the orig-

inal table n(99) except that a single entry is decreased
~(g9c) _ (gc)

by 1: nys’ = nys° — 1. With this change the first term
in Eq. (A4) must decrease, since
(e)y = () ()
log 1_11_[ n(gc')' — log 1_11_13 iL‘zgc;)' = log n(ggc) > 0. (A5)
s s | s s | A

Similarly, the second term in Eq. (A4) also decreases if
we make the further assumption that

n{99 > ngc)/qg, n{99) > 1. (A6)
Under these conditions we can bound the change in the
second term by

H(n 90, g, ag1c) = H(@9 |2, g, 0rg1c)
( ) ~(c)
~ log < 7+ agg)e — 1> — log <nSC + qg0yg|c — 1>
ang|c— 1 ang\c_ 1
(g¢) 1 (gc) -1
~ log (n T e ) +log (n e )
agle —1 agle — 1
g " g =1l a1
n® nig?)
y log ngc) + qg0glc — dg B log n%&) + Qgle — 1
2 n® R
n(c)/ + aye—1 2 + g — 1
—log e Tole T2 g 0 o
(c (gc)
N /q_q Ny's
>0

)

(A7)

where in the last step we have made use of (A6) and the
the fact that log((z+«a—1)/x) is monotonically decreas-
ing in z for all z > 0.

Now we observe that if there is any entry of n(9¢) such

that n$.€ic) > 1, then there must be an entry n(gc) >
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ngc) /qg, i-e., it is greater than or equal to the average
for its column. We apply this observation repeatedly to
decrement each non-zero entry of the table to 1 until
= (gc) (g

Nys

= mm(nmc) 1) while at the same time ensuring
that
H n{1
Hm n(gc)!
[T, 2!
H ﬁ(g(')l

This reduces the problem of showing the general inequal-
ity (A4) to proving it for tables 7 whose entries are 0 or 1
only, which we can do as follows:

I, nsp).
H 7:[,(90)1

+(©)
s c 1
=5 :[log {1 + log (" + 49y : )

dgCglc —

3 Zl (nm +ag|i— 1)}

Qglc

H(n(gC) |n(C)a dg, ag|c)

> log + H7RY)R gy, ). (AS)

log=2——— + H (297, g, ag).)

= Z[log(ﬁg ? + gyag)e — 1)! = log(ggag)e — 1)!

~(C),1
> Z Z log(ggargic +t) — 79 log agle| (A9a)
s t=0
> il [log(gga)c) — log agc] (A9b)
> il log qg > qqlog g, (A9c)

S

where in the final step we have made use of the fact that
each of the g, groups must contain at least one object,
so there must be at least g, nonzero entries in n(9°) and
hence also in 7(9¢). We also observe that the inequal-

ities (A9a—A9c) are saturated only when Al = 1 for
all s and ¢. = g4. These conditions together imply that
the contingency table n(9¢) must be diagonal, and hence
that the labelings ¢ and ¢ are equivalent up to a per-
mutation of their labels. The reverse conclusion, that
RMIpm(c;g) = 1 when ¢ and g are equivalent up to a
permutation, also follows since our measure is invariant
under label permutations.

Finally, we note that if we instead normalize the re-
duced mutual information symmetrically according to

Ipm(c; 9) + Ipm(g; )

NMIE) (c; 9) =
om (€5 9) Ipm(g; 9) + Ipm(c;c)

, (A10)

then the results of this section also ensure
that NMI%SI\)/I(C; g) < 1 and that this bound is satu-
rated only for ¢ and g equivalent up to a permutation.



This symmetric normalization may be more appropriate
when comparing two labelings neither of which can be
considered a ground truth.

Appendix B: Clustering and permutation invariance

In this paper we have focused on the comparison of
different labelings of a set of objects, but the most com-
mon applications of the mutual information are actually
to the comparison of clusterings, i.e., partitions of ob-
jects into some number g, of (unlabeled) groups. One
can easily represent a clustering by arbitrarily assigning
integer labels 1...¢q, to the groups and then recording
the label of the group to which each object belongs, but
the mapping from clusterings to labelings is not unique:
here are ¢,! permutations of the labels that correspond
to the same clustering. This means that the information
cost of transmitting a labeling, as discussed in this paper,
is larger than the information cost of transmitting a clus-
tering. In the most extreme case, suppose that we want
to transmit the unique clustering of n objects into n dis-
tinct groups, with a single object in each group. There
are n! possible labelings that represent this clustering,
so the information cost to transmit any one of them is
Ho(g) = logn! as in Eq. (6). Yet there is only a sin-
gle clustering that places each object in its own group,
so in principle the information cost should be log1 = 0.
Thus the label-based approach grossly overestimates the
true information cost in this case. As we argue in this
appendix, however, the amount of the overestimate is a
constant that plays no role in typical applications, and
cancels completely from the mutual information itself,
so in practice the measures described in this paper give
correct and useful answers as is.

What is the actual information content of a clustering,
not just of the labeling that represents it? To answer
this question we adopt a notation that directly describes
clusterings rather than labelings. For a given labeling g
with g4 labels we define the equivalence class g to be the
set of all g4! variants of g obtained by permutations of
the label values, including the original permutation g it-
self. By combining all these permutations into a single
object, the equivalence class directly represents the clus-
tering of which labeling g is a manifestation. With this
definition we can adapt the encoding schemes for label-
ings described in this paper to give encoding schemes for
clusterings.

Any encoding of labelings effectively defines a proba-
bility distribution over all labelings via P(g) = e~ (9,
Since the schemes of this paper are all invariant under
the g4! possible permutations of the labels, we can easily
sum up the resulting probability weight over all label-
ings that represent a given clustering to find the induced
probability distribution over clusterings:

P(3) =Y _P(g) = q,! P(g).

q€g

(B1)
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Under this distribution the cost to directly transmit the
clustering ¢ independent of its label assignment is
H(g) = —log P(g) = H(g) — log g, (B2)
Thus, if we could find a way to transmit only the clus-
tering we would realize an information savings of log g,!
compared with the transmission of an arbitrary labeling.
A practical way to achieve this is simply to agree upon
a single unique labeling that will represent each possible
clustering. Only these agreed labelings will be transmit-
ted and no others. By definition this reduces the number
of possible labelings by a factor of g4! and hence reduces
the information by logg,!, as above.
To give an explicit example of such an encoding, we
could stipulate that every labeling must have the follow-
ing two properties:

1. Groups are labeled in order of increasing size, so
that group 1 is the smallest and group g4 is the
largest.

2. If two groups have the same size, the tie is broken
by giving the smaller group label to the group that
appears first in the ordered list of all objects.

For every clustering there is only one labeling that sat-
isfies these rules, and any labeling that does not satisfy
them can easily be converted into one that does. For
example, g = 33132112 becomes 22321331.

If enforcement of the above rules is denoted by R, the

information content of a clustering is

H(g) = H(g|R), (B3)
and with these definitions we can now explicitly calcu-
late the information needed to transmit a clustering. As
before, we transmit the clustering in three steps. In the
first step we transmit the number of groups g,. The fact
that a labeling respects the rules R has no effect on g4, so
the information required for this step is unchanged from
before: H(qq4|R) = H(qy).

In the second step we transmit the group sizes n(9),
and here there is a change because rule 1 above implies
that the group sizes must appear in non-decreasing or-
der, and hence the possible values of n(9) are drawn only
from the set of such non-decreasing candidates, a subset
of the ((17;__11) possible vectors that sum to n. We further
note that not all of these non-decreasing vectors will oc-
cur with equal frequency. The number of ways one such
vector can occur in our transmission process is equal to
the number of unique starting vectors that can be per-
muted into the given non-decreasing form. If we define
the multiplicity of the group sizes as

M= |{r|n{? =t}|, t=1...q,, (B4)
then there are g¢4!/[], M;! such permutations. So
the probability that any individual one will occur is



(gq!/ 11, Mt!)/(;_fl) and the information cost to trans-
g

mit 7(9) is minus the log of this probability:

H(n9|g,. R) = log K”_l>HtMt’] (B5)

dg — 1 (Jg!

In the third step of the transmission process we trans-
mit the labeling itself, and here too the information cost
is modified because of our rules. Whenever two groups
of the same size are present, we know that the group ap-
pearing first must have the smaller group label because
of rule 2 above and hence we need only consider labelings
that satisfy this requirement. This leaves only a fraction
1/ 11, My¢! of the original n!/ ], n{9! labelings, giving an
information cost of

n!
T, n1 T, My

Combining these terms, the total information cost to
transmit the clustering is

H(g) = H(g|R)
= H(gg|R) + H(n'9|qq, R) + H(g|n'", R)
= H(q,) + Hn'9) + logHMt! —log gq!

H(gln'9, R) = log (B6)

¢
+ H(g|n\9) — logH M!
¢

= H(g) — log g, (B7)

as expected.

Taking, for instance, our earlier example in which there
are n groups of one object each, all groups have the same
size, so by rule 2 above they are simply labeled in order
of their appearance 123...n. This is the unique valid
labeling with this set of group sizes, so setting ¢, = n,
the information cost is correctly given as H(g)—log g,! =
logn! —logn! = 0.

The same discounted information cost also applies to
the conditional entropy. Suppose we are given a candi-
date clustering denoted by equivalence class ¢ and repre-
sented as above by a unique labeling ¢ within that class,
such as the one obeying the rules R. Since our encod-
ing schemes are invariant under label permutations, all
labelings in ¢ are equally informative, including the one ¢
that we have selected, and hence

H(gle) = H(glc)- (B8)

Using the same argument as before, the conditional in-
formation cost of the clustering is then given by

H(gle) = H(g|c) — log g,! (B9)
and hence the mutual information between two cluster-
ings is given by

1(¢;g) = H(g) — H(g|¢)
= [H(g) —logqy!] — [H(glc) —log q!]

= H(g) — H(glc) = I(c; g)- (B10)
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Thus, the mutual information between clusterings is the
same as between any corresponding pair of labelings. In
practice, this means that we never need to consider mu-
tual information measures between clusterings. Calcu-
lating the mutual information between labelings, as de-
scribed in this paper, is more straightforward and gives
the same result.

Using this clustering perspective we can also show that
the encoding we propose in this paper is near optimal
in the important case where ¢ = ¢g. All the encoding
schemes we consider are invariant under label permuta-
tions, which implies that

H(glg) = H(glg) = H(g|g) +1ogqq! = logqy!  (B11)
From Egs. (32) and (34) our Dirichlet-multinomial en-
coding has cost

Hpwi(glg) = H(gg) + H(n99|n'
= logn + g4 log qq.

) + H(gle,n'99)
(B12)

) Qglg

If we accept the cost logn of transmitting the number
of groups g, as a necessary price of doing business, this
value for Hpnm(glg) very nearly saturates the bound in
Eq. (B11), since the gap between ¢4 log g, and logg,! is
only of order O(gq). By contrast, the flat encoding is
far from saturating the bound in this case, explaining
its poorer performance in the important regime where
¢ ~ g. Equation (B12) also helps explain a point made
in Section IIC, that it is rarely beneficial to constrain
both the row and column sums of the contingency table,
since the Dirichlet-multinomial encoding is already near-
optimal while constraining only the columns.

Appendix C: Choosing and transmitting the
value of the Dirichlet-multinomial parameter

In computing the information costs H(n(g)|qg7 ag)
and H(n¥99|n(9, g, a,.) that appear in Eqgs. (27)
and (31) we have used the values of the Dirichlet-
multinomial parameters oy and o), that minimize those
costs. These values were found by numerical optimiza-
tion, using golden-ratio search in the space of log a with
a starting bracket of a € [1073,103]. Since the golden-
ratio method converges exponentially, the complexity of
this calculation grows logarithmically in the desired accu-
racy. In practice we converge to machine precision within
about 50 iterations.

In Figs. 7 and 8 we compared the information costs
of transmitting the group sizes n(9) and the contin-
gency table n(9°) within the Dirichlet-multinomial encod-
ing scheme and the standard (flat) encoding, but we ne-
glected the cost of sending the value of «, which arguably
means the comparison is not entirely fair. Assigning a
cost to the transmission of « is somewhat delicate, since
it is a continuous-valued parameter with a potentially in-
finite number of decimal digits, and hence its complete



(@ 1.0

o © o
£ [«)] [oe]
1 1 1

Relative frequency

°
N
1

0.0

0 10 20 30 40 50
Hiiat(n'9)) — Hom(n'?) — H(ag) (bits)

16

(b) 1.0 —— NMipy <0
0 <NMipy =0.2
0.8 —— 0.2<NMlpy<0.4
' —— 0.4<NMIpy<0.6
—— 0.6 <NMIpy <0.8
0.6 1 —— 0.8<NMilpy =<1
0.4 1
0.2 1
00 n T T T T
-10 0 10 102 103 104

Haat(n'99)) — Hom(n'99) — H(agc) (bits)

FIG. 9. (a) The absolute change in the information cost of transmitting the vector of true group sizes n(?) between the standard
flat encoding and the optimized Dirichlet-multinomial encoding. In contrast with Fig. 7, the information cost H(agy) = 4 bits
for transmitting the Dirichlet-multinomial parameter is included in this comparison. (b) The absolute change in the information
cost of transmitting the contingency table n(99 between the standard flat encoding and the Dirichlet-multinomial encoding
(including H (cy)c)). The different curves show the distribution for different levels of similarity between the ground-truth and
candidate labelings, as measured by the normalized mutual information. The horizontal scale is linear between —10 and 10
and logarithmic outside that range. In both panels the densities of cases are transformed and smoothed as in Fig. 7.

transmission would require an infinite amount of informa-
tion. In practice, however, high accuracy is not needed to
get most of the benefit of the Dirichlet-multinomial ap-
proach and we can use a small number of bits to transmit
a value chosen from a finite set of possibilities without
losing much. For example, by using four bits of infor-
mation we can transmit a value chosen from the 16 pos-
sibilities o € {1072,107+7 10~15 ... 10*°,10%75}. In
Figure 9 we show the resulting difference in information
cost between the Dirichlet-multinomial and flat encod-
ings when this additional small cost is taken into account.
As panel (a) shows, the cost of transmitting o, does have
a noticeable effect on the (already small) information to
transmit n(9), the flat encoding now being favored in
some cases, but this is usually not an issue, since the
information cost of n(9) is not a large part of the total in
most practical situations. As panel (b) shows, we retain
the significant gains in the cost of transmitting the con-
tingency table under the Dirichlet-multinomial scheme,
even allowing for the cost of transmitting o)., especially
in the common regime where ¢ ~ g.

Moreover, these concerns will not impact our final mu-
tual information score at all if the same method is used
to transmit both ay and ag.. Any costs that we include
will cancel in the expression for the mutual information
because

Inm(c; g) = Io(c;g) + H(n'9|n, qg> 0tg) + H(ay)
- [H(n(gc)|n(c)7 dg: Cglc) + H(O‘g\c)]

= Io(c;g) + H(n'9|n, g4, ag) — Hn9) 0, gy, ).
(C1)

In practice, therefore, the cost of transmitting « plays no
role in our calculation of the mutual information.

Appendix D: Benchmark generation

In this appendix we briefly describe the generation of
benchmark networks and the community detection algo-
rithms used in our network clustering tests.

1. LFR network generation

The networks we use for benchmarking are generated
using the LFR model described in [14], which creates
networks with relatively realistic features by the following
procedure.

1. Fix the number of nodes n and mixing pa-
rameter p. In our examples we use node counts
in the range n € [200,51200]. The parame-
ter p controls the relative number of edges within
and between communities. For small y there are
many more edges within communities than between
them, which makes the communities relatively easy
to detect. But as p increases there are more edges
between communities and detection becomes more
difficult. Our examples span values of u in the
range [0.2,0.8].

2. Draw a degree sequence from a power-law
distribution with exponent 7. Many networks
have power-law degree distributions, typically with



exponents between 2 and 3 [18], and the LFR
model exclusively uses power-law distributions. We
use 7 = 2.5, with average degree (k) = 20 and
a maximum degree that scales with graph size
as kmax = n/10.

3. Draw a set of community sizes from a power-
law distribution with exponent 75. Many networks
also have community sizes that approximately fol-
low a power law, with typical exponents in the
range from 1 to 2 [14, 19-21]. We use 7 = 1.5
and a minimum community size of sy = 20 in
all cases, while the maximum community size is set
t0 Smax = max(n/10,100). Empirically, our results
are not very sensitive to the choices of degree and
community size distributions.

4. Assign each node to a community at random
while ensuring that the community chosen is always
large enough to support the added node’s intra-
community degree, given by (1 — u)k where k is the
total degree.

5. Rewire the edges attached to each node while
preserving the node degrees so that the fraction of
edges connected to each node running outside its
community is approximately p.

The parameter values above are similar to those used for
instance in [22].

2. Community detection algorithms

We perform community detection on the LFR networks
using six well-known algorithms to generate realistic can-
didate labelings c¢. (We use the implementations found in
the igraph library [23], except for the inference method,
for which we use the graph-tool library [24].)

1. InfoMap: InfoMap is an information theoretic
community detection method that defines a com-
pression algorithm for encoding a random walk on
a network based on the communities that the walk
passes through [25]. Different community labelings
yield different compression efficiencies, as quanti-
fied by the so-called map equation, and the label-
ing with the highest efficiency is considered the best
community division.

2. Modularity maximization: Modularity is a
quality function for community divisions equal to
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the fraction of edges within communities minus
the expected such fraction in a randomized ver-
sion of the network. Modularity maximization al-
gorithms work by searching for the division of the
network that maximizes this modularity. Exact
maximization is NP-hard and computationally in-
tractable in most practical situations, but the mod-
ularity can be approximately maximized using var-
ious methods such as the Louvain and Leiden al-
gorithms [26, 27], spectral methods [28], and simu-
lated annealing [29-31].

. Modularity with enhanced resolution: Stan-

dard modularity maximization is known to suffer
from a “resolution limit”—it cannot detect com-
munities smaller than a certain threshold size [32].
This can be remedied by generalizing the mod-
ularity to include a resolution parameter 7y such
that higher values of « push the algorithm towards
smaller communities [31]. Standard modularity
maximization corresponds to v = 1, but for com-
parison we also conduct tests with v = 10 using the
Leiden algorithm.

. Statistical inference: Community detection can

also be formulated as a statistical inference prob-
lem. In this approach one assumes the network
to have been generated from a randomized model
in which the probabilities of edges depend on the
group membership of the nodes at their ends. Then
finding the communities in a given network be-
comes a question of fitting the model to the network
to find the best set of group assignments. Here we
fit the so-called degree-corrected stochastic block
model [33] to our LFR networks using a Bayesian
method [34].

. Walktrap: Walktrap is an agglomerative algo-

rithm in which initially separate nodes are com-
bined into progressively larger communities in or-
der from strongest to weakest connections, where
strength is defined in terms of the time for a ran-
dom walk to reach one node from another [35].

. Labelprop: The label propagation or “labelprop”

algorithm likewise initially places every node in its
own community, then it iteratively updates the la-
bels of randomly chosen nodes by majority vote
among their network neighbors [36].
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