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ABSTRACT

According to the World Health Organization, healthy communities rely on well-functioning ecosystems. Clean air,
fresh water, and nutritious food are inextricably linked to ecosystem health. Changes in biological activity
convey important information about ecosystem dynamics, and understanding such changes is crucial for the
survival of our species. Scientific edge cyberinfrastructures collect distributed data and process it in situ, often
using machine learning algorithms. Most current machine learning algorithms deployed on edge cyberinfras-
tructures, however, are trained on data that does not accurately represent the real stream of data collected at the
edge. In this work we explore the applicability of two new self-supervised learning algorithms for characterizing
an insufficiently curated, imbalanced, and unlabeled dataset collected by using a set of nine microphones at
different locations at the Morton Arboretum, an internationally recognized tree-focused botanical garden and
research center in Lisle, IL. Our implementations showed completely autonomous characterization capabilities,
such as the separation of spectrograms by recording location, month, week, and hour of the day. The models also
showed the ability to discriminate spectrograms by biological and atmospheric activity, including rain, insects,
and bird activity, in a completely unsupervised fashion. We validated our findings using a supervised deep
learning approach and with a dataset labeled by experts, confirming competitive performance in several features.
Toward explainability of our self-supervised learning approach, we used acoustic indices and false color spec-
trograms, showing that the topology and orientation of the clouds of points in the output space over a 24-h
period are strongly linked to the unfolding of biological activity. Our findings show that self-supervised
learning has the potential to learn from and process data collected at the edge, characterizing it with minimal
human intervention. We believe that further research is crucial to extending this approach for complete
autonomous characterization of raw data collected on distributed sensors at the edge.

1. Introduction

Stability | Learn Science at Scitable, n.d.; Ashford et al., 2021).
Recent advancements in environmental monitoring (Stephenson,

Understanding ecosystems is critical for human survival, as they
provide vital resources and regulate Earth's processes (Cianfagna et al.,
2021; Marselle et al., 2021). Ecosystem degradation can lead to reduced
agricultural productivity and increased risks of natural disasters
(AbdelRahman, 2023; Gomiero, 2016; Kato and Huang, 2021; Paz et al.,
2020; Walz et al., 2021; Wickramasinghe, 2021). Biodiversity loss is an
indicator of declining ecosystem health (Biodiversity and Ecosystem

2020) have led to the development of Sage, a software-defined sensor
network for artificial intelligence (AI)-enabled edge computation
(Beckman et al., 2019; Catlett et al., 2019; Catlett et al., 2022). This
platform enables continuous ecosystem monitoring and biodiversity
characterization by processing full-resolution sensor data in situ using
efficient, low-power computation at the edge.

Al, particularly deep learning methods, allows for the automated
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detection and classification of environmental data (AbeBer, 2020; Kahl
etal., 2021). However, Al models deployed at the edge often use curated
datasets for training, which may not reflect real-world conditions (Al-
Atat et al., 2023; Fan et al., 2023; Hao et al., 2023; Lin et al., 2022;
Murshed et al., 2021; Wu et al., 2019). Additionally, the statistical dis-
tribution of live data streams can change over time (Ackerman et al.,
2022), further complicating training and inference.

While numerous studies have utilized supervised learning for audio
classification, self-supervised learning (SSL) approaches have been
limited. Recent machine learning strategies have demonstrated the
separation of soundscape components using various clustering methods
(McGinn et al., 2023; Michaud et al., 2023; Morales et al., 2022; Morita
et al., 2022; Rowe et al., 2021; Sun et al., 2022; Thomas et al., 2021).
These techniques range from neighborhood-based dimensionality
reduction based on spectrograms (Thomas et al., 2021) to combinations
of unsupervised and supervised deep learning (Michaud et al., 2023;
Morales et al., 2022).

Our approach differs from previous research in several key aspects.
We explore learning from datasets that are neither well-curated nor
balanced, mimicking real-world edge computing scenarios. We employ
two SSL approaches under the joint embedding umbrella (self-DIstilla-
tion with NO labels (DINO) (Caron et al.,, 2021a) and variance-
invariance-covariance regularization (VICReg) (Bardes et al., 2022)) to
simulate edge computing training without preprocessing. We process
soundscapes collected from multiple devices at different locations,
addressing the challenge of varying statistical features over time and
space.

The experimentation of our approach include the visualization of the
output space to extract various aspects of the data, such as recording
time, date, and location. Clustering properties are derived from
morphological features in spectrograms, including birdsongs, environ-
mental conditions (e.g., rain), insect sounds, and human activity. Clus-
ters are labeled using an alternative supervised-learning architecture
(BirdNET (Kahl et al., 2021)). The clustering properties are validated
using a human-expert labeled dataset (NIPS4Bplus (Morfi et al., 2018)).
Acoustic indices are utilized to add explainability to clustering proper-
ties extracted from the output feature space.

Our method demonstrates the ability to separate different spectro-
gram features, allowing for the identification and analysis of various
soundscape components. This capability is crucial for understanding the
complex and dynamic nature of ecosystems through acoustic data.

The novel contributions of our approach to the field include:

e A framework for processing and learning from distributed data
collected by edge cyberinfrastructure, addressing the challenges of
real-world, uncurated datasets.

e Application of SSL to soundscape analysis, enabling the extraction of

meaningful features without needing extensive labeled data.

Integration of multiple data sources and temporal variations,

providing a more comprehensive understanding of ecosystem

dynamics.

¢ A method for adding explainability to SSL-derived features through

acoustic indices, bridging the gap between machine learning outputs

and ecological interpretations.

Demonstration of the effectiveness of SSL in analyzing poorly curated

and unlabeled datasets collected by edge infrastructures like Sage,

opening new possibilities for large-scale ecosystem monitoring and
biodiversity assessment.

By addressing these challenges and providing these novel capabil-
ities, our approach paves the way for more robust and adaptable
methods of ecosystem monitoring using edge computing and Al
technologies.
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2. Materials and methods

Our methodology, illustrated in Fig. 1, comprises three main stages:
training, inference, and post-processing. We convert soundscapes to
spectrogram images, then train a neural network to produce vector
representations of each image using self-supervised learning techniques.
During training, each input image is augmented to create two versions,
which are processed through an encoder to produce embedding vectors.
A distance function between these vectors is computed as a loss for
network training. In the inference stage, all images are processed
through the pre-trained network to obtain embedding vectors, forming a
multidimensional output feature space. Post-processing involves various
techniques to study the feature space, including dimensionality reduc-
tion (PCA, t-SNE) for visualization and clustering methods (DBSCAN, k-
means, KNN).

2.1. Experimentation roadmap

Fig. 2 presents our experimentation roadmap, organized by datasets
(columns) and experimental stages (rows).

We use three datasets: the Morton Arboretum dataset, a high bird
density filtered subset, and the NIPS4Bplus dataset (Morfi et al., 2018).
The experimental stages include:

Pre-processing: This stage involves converting audio soundwaves into
spectrogram images. The procedure is described in detail in Section 2.3.
This step transforms the raw audio data into a format suitable for neural
network processing.

Training: In this stage, we train the networks using self-supervised
learning procedures. The process involves using the spectrogram im-
ages without labels to train the network to produce meaningful em-
beddings. This stage is elaborated in Sections 2.4.

Inference: After training, we use the pre-trained models with frozen
parameters to process the complete set of spectrogram images. This
stage produces a set of embedding vectors for each image, which are
used in subsequent analysis and validation steps. Importantly, even
though the model may see the same data as during training, it hasn't
been exposed to task-specific labels.

Post-processing: This stage involves analyzing the embedding vectors
obtained from the inference step. We perform dimensionality reduction,
clustering, and visualization analyses on these vectors. These techniques
help us understand the structure and patterns in the learned feature
space. This process is detailed in Section 3.1.

k-nearest neighbor (k—NN) classification: In this step, we use the
embedding vectors from the inference stage to perform K-Nearest
Neighbors classification for different labels. This helps evaluate how
well the learned representations capture relevant features for classifi-
cation tasks. The k-NN classification process is explained in Section
3.1.1.

Linear validation: This stage involves training a linear layer on top of
the frozen pre-trained model for classification tasks. By keeping the pre-
trained model fixed and only training a simple linear layer, we can assess
how linearly separable the learned representations are for different
classification tasks. This process is described in detail in Section 3.1.2.

Acoustic indices comparison: In this final stage, we compare the
embedding vectors obtained from inference for a specific day with
acoustic indices commonly used in ecology. This analysis helps bridge
the gap between our machine learning approach and traditional
ecological measures. The details of this experiment are provided in
section 3.3.

For the high bird density subset (middle column in Fig. 2), we filter
the original dataset to extract samples with a high probability of bird-
song activity. We then train a new model from scratch on this subset and
perform similar analyses as with the full dataset. This process allows us
to focus on birdsong-rich samples and assess how this affects the model's
performance.

With the NIPS4Bplus dataset (right column), we use the model pre-
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Fig. 1. Illustration of our procedure: dataset generation, pre-training of joint embedding architectures, inference to collect embedding vectors, and post-processing of

the output space.

trained on the high bird density subset for inference. We then conduct k-
NN and linear validation on this labeled and balanced dataset, allowing
us to evaluate our method's performance on a standardized benchmark.
These experiments are detailed in subsequent sections, addressing data
visualization, validation, acoustic indices analysis, and comparisons
across datasets. The code for reproducing these procedures is available
on GitHub (Dematties and Rajani, 2024).

2.2. Recording process

We deployed nine recording devices in the Morton Arboretum which
captured audio between May 24 and August 31, 2021. Fig. 3 shows a
map of recorder locations, the distance between recording locations,
timeline of the recordings, and mapping of recording devices to loca-
tions over the time window (Fig. 3a). The recording devices, from
Frontier Labs, Australia, used in our study are shown in Fig. 3b and c.
Two devices in the northwest corner were deployed in the “open
grassland” habitat. The canopy recording devices, labeled Forest 1 and
Forest 2, were deployed at the boundary between the forest and open
grassland, and the remaining devices were canopy recorders that were
deployed in the forested region. The southeast locations are closer to U.
S. Interstate highways I-88 and I-355.

For canopy recorders we used the Frontier Labs BAR-LT, that has a
rugged, lockable, and waterproof case made of UV resistant plastic. The
case is painted in camouflage colors and offers flexible yet rugged
mounting options. For open grassland we used the Frontier Labs Solar
BAR, that is powered by a compact solar panel and rechargeable battery.
Both devices incorporate four SD card slots and support recording in 16-
bit waveform audio file format (WAV) and Free Lossless Audio Codec
(FLAC) with sampling rates ranging from 8 kHz to 96 kHz. The devices
have builtin GPS, which automatically time-syncs and geo-stamps the
recordings. The devices feature highly sensitive, low-noise omni-direc-
tional microphones with a 20 dB class A pre-amp and cable driver, and

they automatically log the microphones' serial number and
manufacturing date for every recording. All devices provide text-based
log-files (in comma-separated variable (CSV) format) that record spe-
cifics including the GPS location, microphone serial number, sampling
frequency, audio format, and gain. We used WAV format to record audio
in mono channel at 16-bit resolution and a sampling rate of 44.1n kHz.
In Fig. 3b and c we also provide details of the microphones' gains.
Pseudo-replication in our recordings due to proximity of recording
devices could affect the separation of the spectrograms in our analyses,
the approximate distance between different recording zones is shown in
Fig. 3a. Forest 1 is 85 ft. away from open grassland terrain. Forest 2 is
195 ft. away from high-voltage power lines. The organization of the
recorders covers a diagonal line extending Northwest throughout a
distance of 4330 ft. (1.32 km) from Forest 6 to Grassland 1 zone.

2.3. Audio data pre-processing

We pre-processed the 2.3 TB Morton Arboretum dataset by chopping
the audio files into non-overlapping 9 s windows and converting the
waveforms to spectrograms. We generated 1,976,583 spectrograms,
which are image representations of the audio data. The decision to use a
9 s window was determined through trial and error: the duration and
repetition of the bird songs we encountered were such that a 9 s window
greatly improved the chances of containing a full song rather than a song
being split across two or more windows. A thorough investigation,
however, will be be required to analyze the effects of different windows
lengths and overlap on the performance of audio classification.

2.4. Self-supervised learning and its application to audio recordings

Self-supervised learning (SSL) is a machine learning paradigm that
learns useful data representations without human-labeled data, instead
using proxy tasks to generate pseudo-labels at scale (Chen et al., 2020a).



D. Dematties et al.

The
Morton
Arboretum
Dataset

Pre-
processing
R
Train
L] L]
i, P
Lo
b
e
Inference
i
Post-
processing
0.48 0.49 0.64
KNN
Bl::is
Linear '
O—BB—i—
<
Acoustic
Indices

@ =

Ecological Informatics 83 (2024) 102823

High bird
Density NIPS4Bplus
Morton Dataset
Dataset
(DINO)

\

o
>
~

o

@

<

o
@
S
-
o
o
-
o
o
o
@
a

Blue Jay
Indigo Bunting
Lularb song
Parcae song
Petpet call
Phycol song
Strtur song

Birds

Eastern Wood-Pewee

Birds

o i

Y, \,

Fig. 2. Experimentation roadmap across datasets and procedures. BB: Backbone, LL: Linear Layer in linear evaluation.

Common examples include predicting original colors from grayscale
images or predicting occluded parts of an image. Many powerful lan-
guage models are pre-trained using simple proxy tasks like predicting
the next token in a text sequence (Radford et al., n.d.).

In computer vision, joint embedding (JE) architectures have signif-
icantly advanced SSL, reducing the need for labeled data in various
tasks. Key works include SimCLR, SwWAV, BYOL, SimSiam, and DINO
(Caron et al., 2021a; Caron et al., 2021b; Chen et al., 2020b; Chen and
He, 2020; Grill et al., 2020). These architectures aim to make networks
invariant to certain input augmentations, typically using two branches

processing differently augmented versions of the same image. The
network learns to produce similar output vectors despite augmentation
differences, acquiring robust representations.

To analyze audio spectrograms, we explored two SSL strategies:
DINO (Caron et al., 2021a) and VICReg (Bardes et al., 2022). DINO uses
self-distillation with a student-teacher strategy, where the student learns
to mimic the teacher's outputs for different augmentations. VICReg uses
a different approach without a stop gradient, where both branches learn
to mimic each other, with additional regularization losses to increase
information in network representations.
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(a) Locations and time of the recorders at Morton Arboretum. Left: Some of recording devices were
moved during the recording period, we assigned an identifier for each location (Grassland 1-2, Forest
1-6). Right: A timeline of the recording activity per week/month and location.

(b) Canopy recorder. Seven devices: MIC 5
(45dB), MIC 9 (45dB), MIC 6 (40dB), MIC 3
(45dB), MIC 8 (45dB), MIC 4 (45dB), and MIC
7 (45dB). The size of the dataset recorded is
1.99TB across 100 days.

.

¥ ==

(c) Open grassland recorder. Two devices: MIC
1 (45dB) and MIC 2 (50dB). The size of the
dataset recorded is 444GB across 78 days.

Fig. 3. Data collection setup.

For both architectures, we followed a two-phase strategy to map
audio spectrograms to embeddings. The first phase involved training for
45 epochs, reducing embedding dimensionality, and removing corrup-
ted samples. In the second phase, we retrained the model from scratch
for 45 epochs with extraneous samples removed. We then applied
multiple clustering methods to study the resulting embeddings,
including t-SNE with DBSCAN and PCA with k-means clustering.

For DINO, we performed an additional third phase focusing on bird
detections. We identified clusters with the highest bird detection rates
using a supervised model (BirdNET), then conducted longer training
over 200 epochs on spectrograms from those clusters, followed by
probing and validation experiments.

Training was parallelized across 8 NVIDIA A100 GPUs using a data
parallel scheme. For VICReg, each phase of training used the same
hyperparameters: the effective batch size was 2048, the base learning
rate followed a linear schedule from 0 to 0.2 across 5 warmup epochs,
and the LARS optimizer was used with a weight decay of scale 107°. We
also used the default coefficients for the variance, invariance, and
covariance terms in the loss function (1 = 25, 4 =25, v = 1). For DINO,
we used an effective batch size of 512, an initial learning rate of 5 x
107>, and a cosine learning rate schedule with 10 warmup epochs.

This approach to SSL in audio analysis demonstrates the potential for
unsupervised learning techniques to extract meaningful representations
from soundscape recordings, which can be particularly valuable in

ecological monitoring and biodiversity assessment contexts.
3. Results

We applied SSL to the Morton Arboretum dataset and to the
NIPS4Bplus dataset. In this section, we present extensive exploration of
the output of the machine learning (ML) model using visualization tools
and clustering methods.

3.1. The Morton arboretum dataset

After the second phase of training, we used the weights of the
encoder network for each model (VICReg and DINO) to produce an
embedding for each spectrogram in the dataset. To visualize the em-
beddings in two dimensions, we used principal component analysis
(PCA) to reduce the dimensionality of the output vector to 50 (from
2048 using VICReg and 384 using DINO) and then used t-distributed
stochastic neighbor embedding (t-SNE) with two components and a
perplexity of 50. Next, we applied density-based spatial clustering of
applications with noise (DBSCAN) with eps =1.2 and a minimum
number of samples per cluster of 35 for both DINO and VICReg. With the
VICReg data it resulted in 919 clusters with 8 % of the points considered
noise; with the DINO data we found 703 clusters with 10 % of the points
considered noise. The average silhouette score in this clustering was
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approximately 0.77 for VICReg and 0.71 for DINO. The DBSCAN clus-
tering was used to support the separation of low and high bird detection
rate activity.

Our data validates the attribution of separation of spectrograms to
the different locations and clarifies the effects, if any, of intrinsic
properties of the microphones and recorders on the clustering. In our
data collection, three different microphones (MICs 5, 8, and 9) were co-
deployed in location Forest 3. Later, MICs 5 and 8 were co-deployed in
location Forest 5 (Fig. 3a). If the intrinsic properties of the microphones
dominated substantially, the output feature vectors of location Forest 3
and Forest 5 should be considerably overlapping. However, this was not
the case. Fig. 4 shows a subsample of 197,658 feature vectors repre-
senting 10 % of the complete dataset from VICReg and DINO; each point
represents one spectrogram embedding. The samples are colorized by
their recording location within the arboretum, and there is a visual
separation between Forest 3 and 5 locations. Analysis in Section 3.1.1)
further bolsters this observation.

Post data collection, we discovered that two devices (MIC 2 and MIC
6) were inadvertently configured with different gain settings, and could
have affected the analysis, however, 6 devices with the same gain
configuration were separated with high accuracy (see Fig. 11), sug-
gesting inconsequential effects, if any. Deliberate data collection uti-
lizing more microphones, longer collection periods, different
configurations, and with multiple microphones in the same locations can
further our understanding.

Both the time of year and time of day also significantly affect the
acoustic content (Fig. 5). For both joint embedding (JE) techniques, we
find that different date and time are positioned in different locations of
the output feature space. For DINO, we observed a clear segmentation by
month (depicted by the horizontal dimension of t-SNE in Fig. 5). In
Fig. 5, June is mostly located on the left of the space, July at the center,
and August on the right. Similarly, week number colorization (shown in
the center of Fig. 5) follows the patterns found for the different months
but adds information with finer-grained separation (e.g., for DINO,
weeks 32, 33, and 34 follow a bottom-up pattern in the output space).
For VICReg, different months are localized in different angular spans,
with weeks presenting a finer subdivision. The diurnal distribution of

VICReg

Forest 3
Forest 4

I Forestl
I Forest 2
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the points in the output space presents certain patterns, too. We observe
groups of points that correspond with continuous intervals of several
hours such as 22-02 UTC (16-20 evening CDT), 5-9 UTC (23-3 night
CDT), and 12-15 UTC (6-9 morning CDT) (Fig. 5, right side).

We observed that the output-space patterns captured the extent of
biological activity as signified by the prevalence of birdsongs. In Fig. 6
the left-hand side of the figure shows the clusters with BirdNET detec-
tion rates less than 30 % (low activity) and the right-hand side shows
clusters with detection rates greater than 70 %.

The feature embeddings appear to capture information about device
location within the arboretum. We observed that open grassland de-
vices, such as Grassland 1 and Grassland 2, as well as devices located
near open grassland, such as Forest 1, have points close together in both
VICReg and DINO (Fig. 4). There is a dense cluster of points associated
with Forest 2, which is closer to an open grassland region under high-
voltage power lines. Fig. 5 provides evidence supporting the observa-
tion that clustering of points is a function of location in addition to time.
For example, the patterns associated with device location Forest 2 across
all months are close in this output space. Other device locations are
concentrated in diverse regions of the output space. Figs. 4 and 6 show
that clusters populated with more than 70 % birdsong detections are
mostly from locations Forest 2 and Grassland 1.

The t-SNE method is designed for visual analysis of the data and it
performs non-linear dimension reduction while preserving the local
structure (cluster) of data, but is computationally intensive. Because t-
SNE does not allow the addition of new samples, it is also not suitable for
statistical analysis. We hence explored only a subset of the dataset using
this method, using it to guide our analysis. For in depth analysis we used
a simple dimensionality reduction method, PCA, on a subsample of the
data and then fit new samples to the trained dimensionality reducer. To
carry out this approach, we conducted postprocessing of our data in
three stages: first we scaled our data, then we reduced its dimensionality
to 2 using PCA, and finally we applied k-means clustering. We fit the
PCA model on 20 % of the data (395,316 vectors). Principal components
1 and 2 explain approximately 25 % (0.14, 0.11) of the original data
variance. We saved the models for scaling and reducing the dimen-
sionality, as well as the labels of the different clusters for each sample.

DINO

L gy y A
e » 3 /,z“ .—:3
: e 2y
¥ S s ad
N ARG Y,

¥ Lo

B Grassland 1
I Grassland 2

Forest 5
Forest 6

Fig. 4. Output feature vectors from VICReg (left) and DINO (right) reduced to 2 components using t-SNE. The weights of the encoder network for each model
(VICReg and DINO) were used to produce an embedding for each spectrogram in the dataset. The dimensionality of the output vector was reduced to 50 using PCA,
and then t-SNE was used with two components and a perplexity of 50 to make them suitable for 2D visualization. Points are colored according to their recording

locations within arboretum.
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Fig. 5. Output feature vectors from VICReg (top) and DINO (bottom) reduced to 2 components using t-SNE. Left: Colorization of points corresponding to different
months. Center: Colorization of points corresponding to different weeks. Right: Colorization of points corresponding to different hours in a day.

This approach allows us to process and classify new samples using a k-
NN classifier. In Fig. 7 we can see more than 2 million samples trans-
formed by the models and colorized by month, week, hour, and amount
of bird activity.

Different aspects of the data, such as calendar, time, location, and
bird activity, have a pronounced effect on the output features high-
lighted by the network, confirming the output of t-SNE (Fig. 7). In DINO,
for example, points representing months May to August are encountered
in order when moving gradually from left to right horizontally in the
PCA output. There are also time intervals that are concentrated in
different regions of the output space (previously seen in Fig. 5). t-SNE
showed a better isolation of spectrograms by month, week, and hour.
The high bird detections plot highlights clusters in which more than 60 %
of spectrograms are classified with some bird detection by BirdNET. The
low bird detections plot highlights clusters in which less than 40 % of
spectrograms are classified with some bird detection by BirdNET. As can
be seen in both Figs. 6 and 7, there is a clear separation in the locations
of clusters with dense and sparse birdsong activity.

The network retains the semantic content of the spectrograms in the
dimension-reduced feature vectors from DINO (Fig. 8). We show the
results of a similarity function that finds the 400 most similar samples to
a reference spectrogram. The similarity between spectrograms is
measured in the original space by using Euclidean distance on 384 di-
mensions; then, the chosen points are reduced to our two-dimensional
PCA mapping. The projected features of the similar samples are indi-
cated by colored ellipses. The features are from non-overlapping regions
in the original space but the projection to 2D results in overlapping el-
lipses (Fig. 8). The model identifies and isolates different kinds of

environmental and biological activity in different zones of the output
space, such as rain, different kinds of insects, and birds.

We observed a correspondence between the semantic content of the
spectrograms with respect to their location in the output space and the
classification returned by BirdNET (Fig. 8). This suggests that the
network is learning important features present in the birdsong shapes, as
well as spectrogram features such as background noise, insects, low-
frequency noise, and accompanying background birds, in order to in-
crease the performance on the assigned pretext task. We found two blue
jay instances in different locations of the output space. Even though the
most frequent birdsong classification using BirdNET was the same (blue
jay) in both regions, there are different bird calls, differences in the
background noise, and overlapping birdsongs. The network seemed to
be capable of handling these capturing variations beyond the predomi-
nant foreground birdsong patterns.

3.1.1. Evaluation with k-NN

Through various experiments and visualizations we observed that
the model exhibited semantic coherency, clustering certain aspects of
the visual appearance of the spectrograms close together in the output
space. One of the common practices adopted in SSL for validation is the
use of the k-NN algorithm to objectively measure how well and under
what aspects the input data is characterized by the model. Following this
practice, we evaluated the clustering performance of the model analyzed
using the k-NN algorithm. We explore the potential relationship be-
tween the clustering results and the data distribution.

Heatmaps of the k-NN performance in predicting the month or week
in which a given sample was recorded is shown in Fig. 9. The high
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Fig. 6. Output feature vectors from VICReg (top) and DINO (bottom) reduced to 2 components using t-SNE. Left: Highlighted clusters with less than 30 % of bird
detections using BirdNET. Right: Highlighted clusters with more than 70 % of bird detections using BirdNET.
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Fig. 7. PCA visualization of the complete Morton Arboretum dataset. From left to right, samples are colorized to highlight different aspects, such as month, week,
and hour. In the fourth plot, k-means clusters with bird detection rates larger than 0.6 are displayed; in the fifth plot, k-means clusters with bird detection rates

smaller than 0.4 are displayed.

performance of the k-NN model confirmed the phenomena observed in
the clustering of the output features. The average performance in the
classification decreases for larger number of neighbors, but the classi-
fication performance generally remains above 90 % for month and
above 80 % for week granularities.

k-NN classification performance for different hours of the day
(Fig. 10) confirmed our earlier observation (Fig. 5) that spectrograms
recorded at a similar time of day contain similar acoustic content and

thus form clusters in the feature space. The average k-NN classification
performance for this benchmark was always 50 % and above.

k-NN classification performance when labeling the data according to
the classifications assigned by BirdNET, and labeling the data according
to recording location also showed high accuracy. We plot results for all
recording locations and for the birds species where the model demon-
strated its best performance (Fig. 11). The k-NN classification of
recording location is high (generally above 90 % with all above 80 %).
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Fig. 8. Analysis of the feature space produced by DINO. Spectrograms exhibiting similar phenomena, such as birdsongs, insects, and rain, exhibit proximity in the
dimension-reduced feature space.
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Fig. 9. Classification accuracy of k-NN for VICReg (top) and DINO (bottom) for predicting the month or week of a given sample. Experiments were performed using
5, 10, 15, and 20 neighbors.

There was a high variability in the performance of k-NN (Fig. 9-11), complete dataset is shown in Fig. 12. The month with the least data is
depending on the ground truth class of the sample. This variability can May, followed by June and the accuracy of k-NN is lower for these two
be accounted for in part by dataset imbalance. The distribution of our months. We observed relatively poor k-NN performance for weeks 25
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Fig. 11. Classification accuracy of k-NN for VICReg (top) and DINO (bottom) for predicting the bird species or location of a given sample.

and 27 and there is a corresponding smaller amount of data for those
weeks. The data distribution also explains some of the patterns in the k-
NN classification accuracy for location. Device MIC 6 has most of the
spectrograms, followed by device MIC 1 (Forest 2 and Grassland 1 lo-
cations, respectively) and these two locations present the best k-NN
classification performances. Both approaches (VICReg and DINO) had
the most accurate classification for blue jay, eastern wood-pewee, indigo
bunting, no detection, Ovenbird, and scarlet tanager. The models can
predict with high accuracy whether a given spectrogram contains a
birdsong (No detection) and this is likely due to the large number of
training samples that are classified by BirdNET as background with no
bird calls. The superior performance in classifying indigo bunting,
eastern wood-pewee, blue jay, and scarlet tanager can also be explained
by the data distribution (Fig. 12). Such is not the case for the Ovenbird,
however, which is in the 23rd ranking position with less than 14,000
BirdNET detection events and has one of the best k-NN classification
performances.
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The dataset imbalance only in part explains the variability in classi-
fication performance. The are examples counter to this — a few examples
include (1) k-NN classification for time of day was most accuarte be-
tween hours 4 and 7, and least accurate between hours 10 and 19
however, the dataset is relatively balanced with regard to the hours of
recording; (2) Week 34 has high k-NN classification performance but a
smaller number of samples; (3) k-NN performance on the data from
device MIC 2 deployed in Grassland 2 location is one of the best, but this
device collected a relatively small number of samples; and (4) the
Ovenbird ranked 23rd with less than 14,000 BirdNET detection events
and has one of the best k-NN classification performances (potentially the
call is sufficiently distinct but requires additional study). These exam-
ples show that data imbalance contributes to, but does not fully explain
k-NN classification performance.

3.1.2. Linear evaluation
Another commonly used evaluation protocol in SSL is linear
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Fig. 12. Distribution by hour, month, week, device, and bird detections, of the complete dataset collected at the Morton Arboretum natural reserve.

evaluation. Linear evaluation consists of classifying samples by fixing
the weights of the pretrained model and training an additional linear
layer responsible for classification. We pursue this evaluation for DINO,
using the sklearn multi-layer perceptron (MLP) classifier with a 20-unit
hidden layer. We trained the model on BirdNET detection, month, week,
hour, and location classification. We ran experiments using three
different optimizers and obtained similar results with each (adam, Ibfgs,
and sgd); here, we present results using the Ibfgs optimizer.

We took a sub-sample of 100,000 spectrograms from the dataset and
conducted 10 k-folds cross-validation steps. We calculated the average
performance computed on the 10 different test portions. The results are
compiled in Table 1. For BirdNET detection classification performance
in Table 1, only the classes shown in Fig. 11 were evaluated.

3.1.3. High bird density dataset

To study birdsongs detection in more detail, we performed a third
phase of training using DINO. We extracted data from three clusters with
the densest bird activity (from our PCA analysis, Fig. 7), and trained a
new model using it. The dataset contained more than 100,000 spectro-
grams, mostly populated with birdsong activity. We trained the new
model for 200 epochs. We used DBSCAN to cluster the outputs and used
BirdNET for classification.

When visualizing the results we saw high correlation between dense
patches of birdsong classification with the 97 clusters produced by
DBSCAN. Fig. 14 shows some example spectrograms from clusters
highlighted with colored circles in Fig. 13. Using birdNET we found:

Table 1
Linear evaluation performance for different classification tasks.
Linear Validation Architecture
VICReg DINO
BirdNET detection 0.86 0.83
Month 0.94 0.92
Task Week 0.82 0.73
Hour 0.41 0.33
Location 0.97 0.92
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cluster number 77 contains spectrograms classified as indigo bunting
(over 70 %); clusters 64 and 29 are mostly populated with spectrograms
classified as blue jay; and clusters 28 and 94 are populated with eastern
wood-pewee and rose-breasted grosbeak, respectively. Clusters of
spectrograms reflected clear differences in birdsong classification and in
properties such as the background noise, the frequency of the birdsong
repetition, and the distance to the microphone (signal-to-noise ratio
(SNR)) (Fig. 14).

Some regions that did not overlap with DBSCAN clusters contained
outputs with similar BirdNET classification for the samples in the region
(we have indicated some of these regions with colored squares in Fig. 13,
right).

One region showed a highly concentrated patch with indigo bunting
spectrograms (red square), another tiny cluster of densely packed
spectrograms that are mostly classified as northern cardinal by BirdNET
(light purple square), and another region had spectrograms with a bio-
logical pattern similar in morphology and frequency range to a birdsong
but is not detected by BirdNET (purple square) (Fig. 15).

As above (§3.1.1) we evaluated the embedding using k-NN. We iso-
lated the spectrograms with the highest classification accuracy (blue jay,
eastern wood-pewee, indigo bunting, and no detection and analyzed
these using k-NN (Fig. 16). With this new dataset, we observed an
asymptotic performance (Fig. 16 left) whose minimum value is below
the one seen when using the full dataset (Fig. 11 left). The decline in k-
NN performance arises from poor classification of the no detection class,
most likely because this dataset had a significant decrease in the relative
number of samples with no detection classification. The k-NN classifi-
cation performance of Blue jay increased by 30 %, while indigo bunting
classification showed a 10 % improvement.

A linear evaluation was also conducted on the dataset with high bird
activity density. We obtained a performance score of about 71 % for all
the solvers and for only classes shown in Fig. 16.

3.2. NIPS4Bplus dataset

To validate our approach, an additional evaluation was performed
using a balanced labeled dataset of birdsong identified by experts called
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Fig. 13. Output from a model trained on dense birdsong activity spectrograms. Left: t-SNE plus DBSCAN clustering. Right: Colorization by BirdNET classification.
Circles indicate clusters highly correlated with certain birdsong classified by BirdNET for blue jay (black circle), indigo bunting (red circle), eastern wood-pewee
(blue circle), and rose-breasted grosbeak (green circle). Squares highlight other highly dense phenomena that did not overlap well with DBSCAN clusters on the
left. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

NIPS4Bplus (Morfi et al., 2018). NIPS4Bplus is composed of 687 five-
second recordings containing 87 classes with species tags and annota-
tions. We produced spectrograms from one-second segments. We
computed embeddings by conducting inference using the third-phase
model, trained on the filtered Morton Arboretum dataset § 3.1.3).

The k-NN classification performance obtained for 11 of the 87 birds
in the dataset is shown in Fig. 17. We chose the birds for which the
network presented the highest classification performance to demon-
strate the upper bounds of the model's capabilities. Keeping in mind its
SSL nature, the model tested here was never trained on labeled data for
birdsong classification, furthermore, this model was never exposed to
this data during training. That being said, the global k-NN performance
of the model on the 87 labels was around 37 %. The k-NN classification
performance is essentially perfect for 4 of the 11 classes and is above 90
% for 7 of the 11 classes. The average k-NN performance is well above
80 % for up to 20 neighbors (Fig, 17 left). We conducted linear valida-
tion using the embeddings returned by the pre-trained network on the
classes (Fig. 17 right) and obtained a classification performance of about
88 %. This classification performance, using a pre-trained model from a
different dataset, indicates that our SSL approach combined with expert-
assigned labels can identify birdsong with performance similar to bird-
NET (which reported an average precision of 0.791 (Kahl et al., 2021)).

3.3. Exploring the relationship with acoustic indices

SSL embedding vectors extract features from the audio data, how-
ever, biologists often study soundscapes using acoustic indices. Acoustic
indices characterize and quantify spectral and temporal features that are
correlated with certain human-interpretable aspects of the audio data.
Soundscapes are divided into three main components: the biophony
(biologically produced sounds), the geophony (geophysically produced
sounds), and the anthrophony (human produced sounds) (Pijanowski
et al., 2011a; Pijanowski et al., 2011b; Sueur et al., 2014). A simplified
approach divides the spectral profile of the soundscape into two main
regions where the anthrophony occupies the frequency band between
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0.2 and 2 kHz and the frequency band between 2 and 8 kHz is generally
occupied by animal sounds (biophony). Sounds produced by wind or
rain mostly cover the entire spectrum, with more energy concentrated in
the lower frequencies (Qi et al., 2008).

Other acoustic indices include the acoustic entropy index (AEI),
acoustic complexity index (ACI), acoustic gradient index (AGI), and
acoustic diversity index (ADI). AEI shows a logarithmic correlation with
the number of species within the acoustic community (Sueur et al.,
2009), and unharmed forests of Tanzania had significantly higher AEI
values than degraded forests (Sueur et al., 2009). The ACI returns the
quantification of the complex vocalizations or sounds produced by living
organisms and, in particular, animals, by computing the variability of
the intensities registered in audio recordings, despite the presence of
constant human-generated noise (Pieretti et al., 2011). ADI measures
the energy level in each of the 1 kHz bands in a spectrogram, indicating
the extent to which different acoustic niches are occupied in the
recording (Pekin et al., 2012). AGI is the real derivative of the spec-
trogram in time, normalized by the median derivative, which should
correspond to the background (noise) derivative (Ulloa et al., 2021). For
our analysis, we use scikit-maad, an open source Python package
devoted to the analysis of environmental audio recordings (Ulloa et al.,
2021). We used the Morton Arboretum dataset. To eliminate back-
ground noise, only sounds above —50 decibels relative to full scale were
used.

We used the acoustic indices for characterizing the output feature
vectors from the spectrograms obtained from two dates July 2, 2021
(Fig. 18a) and May 26, 2021 (Fig. 18b). Panels A show false color
spectrograms with plots of ACI, AGI, and the temporal mean of the en-
ergy in the soundscape. Panels B plot anthropic energy, biological en-
ergy, AEI, ACI, AGI, and ADI. Panels C show all the output feature
vectors from DINO colored by the hour of the day. On July 2, the mean
energy of the spectrogram was concentrated in the lowest frequencies;
on May 26, between hours 5 and 11, the mean energy tends toward
higher frequencies. This energy dispersion is produced by rain in the
soundscapes, which was confirmed by listening to the corresponding
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Fig. 14. Sample Birdsong spectrograms from different clusters from Fig. 13.

audio samples. In Fig. 18b C, the orange and yellow points in the plot
correspond with feature vectors associated with hours 5 to 11; these
points form a distinct “tail” in the series of embeddings and correspond
to rain.

On July 2, the indices do not change much between the hours of 0 to
3 and 17 to 23, but they vary during the hours 3 to 17. Mapping the
hours from 0 to 3 (red to orange) and from 17 to 23 (green to blue to
purple) to the output space we observed that the features were more
concentrated in the lower sections of the space; in contrast, the points
corresponding with changing acoustic indices, from 3 to 17 (orange to
yellow to green), tended to be distributed toward the top of the output
space (Fig. 18a, C). From our spectrogram visualization, one can clearly
see an increase in biological activity between hours 3 and 17, specif-
ically arising from birdsongs.

On May 26 the acoustic indices are relatively flat between hours 5
and 11. Anthropic and biological energy attain their maximum values
between these hours. After hour 19, and between hours 0 and 4, the
acoustic indices present lower variability. In the output space visuali-
zation these points are mostly located on the left of the output space and
form vertical bands. Low-variability intervals are from hours 0 to 4
(colors red to orange) and from hours 19 to 23 (colors light blue to
purple) (Fig. 18b C).

Acoustic indices deliver hand-crafted features based on human
expertise which summarize biologically accountable aspects of sound-
scapes. We explored correspondence between acoustic indices and the
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embedding vectors returned by our pre-trained models and envision two
future investigations. First, one might explore directly mapping
embedding vectors to acoustic indices. This may be possible but is
beyond the scope of our current efforts. Second, the SSL embedding
vectors encode properties of the soundscape and one might explore
determining the relationship between the output feature space and
ecological health or activity. There is potential for additional insights
beyond the hand-crafted features when using automated feature
extraction.

4. Discussion

Our study explores the application of SSL techniques in audio clas-
sification, particularly for identifying birdsongs and other environ-
mental sounds in ecological contexts. While numerous studies have
employed supervised learning for birdsong identification and audio
classification (Kahl et al., 2021), the exploration of SSL in this domain
has been limited. Our work contributes to this emerging field by
demonstrating the efficacy of two SSL techniques—DINO and
VICReg—that do not require large annotated datasets, making them
particularly suitable for ecosystem studies.

Recent advancements in ML and deep learning (DL), specifically in
SSL techniques, have shown promise in separating soundscape compo-
nents using various clustering methods. For instance, Morales et al.
(2022) employed UMAP and a deep neural network for passive acoustic
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Fig. 15. High-density clusters in Fig. 13 right, which do not overlap well with single DBSCAN clusters on the left. Left: BirdNet classifications histogram. Right: Some

example spectrograms.

monitoring of bird communities (Morales et al., 2022), while Michaud
et al. (2023) used unsupervised classification to improve the quality of
bird song recording datasets (Michaud et al., 2023). Our approach aligns
with these studies but focuses on the application of JE frameworks,
namely DINO and VICReg, to generate embedding vectors that represent
audio spectrogram data.

Similar to the work of Rowe et al. (2021), who used acoustic auto-
encoders for biodiversity assessment (Rowe et al., 2021), our SSL
approach demonstrates the ability to classify various sounds (such as
birdsong, rain, insects) from acoustic signals collected in natural set-
tings. The clustering techniques applied to our embedding outputs
separated the data in meaningful ways, comparable to the results ach-
ieved by Thomas et al. (2021) using spectrogram-based latent space
representations (Thomas et al., 2021).
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A key advantage of our SSL approach, shared by studies like Sun et al.
(2022) (Sun et al., 2022), is its potential to discover new classes in the
data based on what was sensed, rather than being limited to pre-
programmed classes as in supervised learning. This feature is particu-
larly valuable in ecological studies where unexpected or rare sounds
may be present.

Our findings regarding data imbalance and its effect on classification
performance echo those of Sun et al. (2022), who concluded that the
combination of transfer learning and data augmentation could be
essential for classifying species' vocalizations in tropical forests (Sun
et al., 2022). Our suggestion of a multi-step process (applying SSL,
extracting samples of interest, and retraining the model) aligns with the
approach proposed by Wisdom et al. (2020) for unsupervised sound
separation (Wisdom et al., 2020).



D. Dematties et al.

o o
~ N
v o

o
~
N

o
~
w

Performance

e
~
N

10 15
Number of neighbors

20

Fig. 16. k-NN classification performance on birdsongs on filtered spectrograms with high birdsong detection

neighbors increase from 1 to 20. Right: Heat map desegregated by birdsong.

0.94 w095 1.00 0.96
4
2
0.93 &S 092 0.96 0.96
]
[ c
2 ‘s
50.92 N
E 2w 089 0.96 0.94
g £
t =]
& 0.91 2
S | 078 0.96 0.89
0.90
o o =
2 2 T
& @ ;
0.89 5 é E
5 10 15 20 & s

Number of neighbors

Number of neighbors

20

10

15

Ecological Informatics 83 (2024) 102823

-1.0
0.86 0.78
-0.8
0.81 0.6
0.78 0.4
0.2
0.0
- Q o c
) g < S
3 & = g
@ = @ 3
8 ) b
= 2 =
c £
]
B
o
w
Birds

density. Left: Performance evolution as the number of

-10
0.91 0.89 1.00 1.00 0.86 0.97 0.94 0.79
-0.8
0.94 0.84 1.00 1.00 0.80 0.99 0.91 r
0.88 0.87 1.00 1.00 0.84 0.97 0.89 0.4
0.2
0.87 0.87 1.00 1.00 0.84 0.96
0.0
o i= = o o o o =
= [ © c e [ = ©
2 a < a a 2 2 =
2 N g 3 5 E 2 s
= o kg > E 3 =3 E
3 & & & & @
Birds

Fig. 17. k-NN classification performance on NIPS4Bplus dataset. Left: Average classification performance evolution as the number of neighbors increase. Right:

Disaggregated classification performance per class.

While we used PCA and t-SNE for dimensionality reduction and
DBSCAN and k-NN for clustering, future work could explore other al-
gorithms, such as the uniform manifold approximation and projection
(UMAP) used by Morales et al. (2022) (Morales et al., 2022). The po-
tential of our approach for within-species classifications, as demon-
strated by McGinn et al. (2023) using BirdNET algorithm embeddings
(McGinn et al., 2023), warrants further investigation.

The relationship between embedding vectors and acoustic indices,
which we propose as an avenue for future studies, could build upon
work like that of Morita et al. (2022), who used artificial neural net-
works to measure context-dependency in birdsong (Morita et al., 2022).
This could provide deeper insights into the ecological significance of the
sounds we classify.

Our work contributes to the growing body of research applying
advanced ML techniques to ecological data (Ghani et al., 2023). Like the
study by Dematties et al. (2023) on cloud image analysis (Dematties
et al., 2023), our approach demonstrates the potential of self-supervised
methods in environmental monitoring, showing the growing relevance
and transferability of these techniques that the community is adopting in
different environments (such as analyzing the auditory settlement
behavior of coral reef fishes (Google | SurfPerch | Kaggle, n.d.; Gordon
et al., 2018)). As edge computing continues to grow (Edge Computing
Market Size, Share, and Growth Report, 2030, n.d.), these techniques
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could become increasingly valuable for real-time, in-situ ecological
monitoring and analysis.

It is important to note that this research, while demonstrating SSL's
potential as a key component in edge-based ecosystem monitoring,
cannot be directly applied without further development. Our study
employs batch processing to validate the method, acknowledging that
real-world applications require real-time analysis. Transitioning to a
deployable edge infrastructure necessitates additional research, partic-
ularly in continual learning for adapting to dynamic ecosystems (Parisi
et al., 2019). Future work should focus on adapting SSL models for
continuous processing, integrating lifelong learning, and developing
strategies for edge-based pretraining and inference. These advance-
ments are essential for realizing flexible, label-efficient monitoring
systems capable of real-time adaptation, bridging the gap between our
current research and practical applications.

In conclusion, our study demonstrates the potential of SSL tech-
niques in audio classification for ecological applications, offering a
promising alternative to supervised learning approaches that require
large annotated datasets. By building on and contributing to the work of
researchers across the field of ecological informatics, we hope to
advance the use of ML in understanding and monitoring ecosystems. Our
future work will focus on optimizing these techniques, exploring their
application to a wider range of ecological sounds, and investigating their
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Fig. 18. Comparison between acoustic features and embedding vectors. (A) False color spectrograms, (B) acoustic indices, and (C) embedding vectors for two
different days of audio in the output feature space. Colored legend on the right represents daily hours.

potential for real-time, edge-based environmental monitoring systems.
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