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Key Points:

. We updated the subgrid-scale temperature parameterization to include non-orographic
gravity waves from frontal activity and convection

. The non-orographic gravity waves increase the daytime variability of the ozone
concentration, particularly in the lower mesosphere

. The non-orographic waves also enhance cirrus cloud formations in the upper troposphere

across tropical to extratropical latitudes
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Abstract:

Atmospheric gravity waves can play a significant role on atmospheric chemistry through
temperature fluctuations. A recent modeling study introduced a method to implement subgrid-
scale orographic gravity-wave-induced temperature perturbations in the Whole Atmosphere
Community Climate Model (WACCM). The model with a wave-induced temperature
parameterization was able to reproduce for example, the influence of mountain wave events on
atmospheric chemistry, as highlighted in previous literature. Here we extend the subgrid-scale
wave-induced temperature parameterization to also include non-orographic gravity waves
arising from frontal activity and convection. We explore the impact of these waves on middle
atmosphere chemistry, particularly focusing on reactions that are strongly sensitive to
temperature. The non-orographic gravity waves increase the variability of chemical reaction
rates, especially in the lower mesosphere. As an example, we show that this, in turn, leads to
increases in the daytime ozone variability. To demonstrate another impact, we briefly investigate
the role of non-orographic gravity waves in cirrus cloud formation in this model. Consistent with
findings from the previous study focusing on orographic gravity waves, non-orographic waves
also enhance homogeneous nucleation and increase cirrus clouds. The updated method used
enables the global chemistry-climate model to account for both orographic and non-orographic

gravity-wave-induced subgrid-scale dynamical perturbations in a consistent manner.
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Plain Language Summary

Atmospheric gravity waves can affect atmospheric chemistry by inducing temperature changes.
A recent study improved the Whole Atmosphere Community Climate Model (WACCM) to
better account for these temperature changes caused by orographic gravity waves. Here we
extend the method to also account for non-orographic gravity waves from frontal activity and
convection. With this updated method, the model now simulates how these waves 1) influence
chemical reactions in the middle atmosphere, as well as 2) affect cirrus cloud formation in the
upper troposphere. The updated method allows the model to consistently incorporate the effects

of both mountain-related and other types of gravity waves.

Main Text:

1. Introduction

Atmospheric gravity waves play an important role in the dynamical and thermal structure of
the middle atmosphere (Holton 1983; Lindzen and Holton 1968; Andrews et al., 1987;
Alexander et al., 2010). Gravity waves arise from different sources including orography,
convection and jet/frontal systems, propagate both horizontally and vertically in a thermally
stratified atmosphere, and transport horizontal momentum and energy from the troposphere to
the middle atmosphere (Lilly and Kennedy 1973; Dornbrack et al. 1999; Dewan et al. 1998;
Piani and Durran 2000; O’Sullivan and Dunkerton, 1995; Fritts and Nastrom 1992a, b; Jiang et
al. 2005). The acceleration resulting from the dissipation of the gravity waves (i.e., gravity wave

drag) is one of the primary drivers of the large-scale circulation and affects transport of
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chemicals in the middle atmosphere (Holton 1983; Lindzen and Holton 1968; Andrews et al.,

1987; Garcia and Solomon, 1985; Alexander et al., 2010).

Gravity waves can also play a key role in photochemistry and microphysical processes in the
atmosphere by changing atmospheric temperature and pressure. Wave-induced temperature
fluctuations affect aerosol formation and growth (e.g., Peter et al. 1994; Meilinger et al. 1995;
Borrmann et al. 1997; Tsias et al. 1997), polar stratospheric cloud formation (PSC; Carslaw et al.
1998a,b), cirrus cloud formation (Potter and Holton 1995; Jensen et al. 1996), and chemical
reaction rates. This is because the chemical and microphysical processes exhibit strong non-
linear dependence on temperature (e.g., Tabazadeh et al. 1994; Carslaw et al. 1994; Meilinger et
al. 1995; Tsias et al. 1997). Cooling from wave-like temperature fluctuations can lead to cloud
formation even though the mean temperature averaged across the wave motion remains above
the cloud formation threshold. Several heterogeneous reactions, such as chlorine activation
occurring on the surface of aerosol and PSCs (Borrmann et al. 1997), as well as gas-phase
reactions, such as thermal decomposition of the C1O dimer (McKenna et al., 1990), are non-
linearly dependent on temperature. Thus, net chemical rates can be significantly affected by

gravity waves.

In general, current climate models still do not have enough horizontal resolution to explicitly
simulate the mesoscale and smaller scale gravity waves. Thus, the main effects of the unresolved
gravity waves on large-scale circulation need to be parameterized if they are to be included (Kim
et al., 2003; Holt et al., 2016; Jewtoukoff et al., 2015). Several gravity wave schemes have been
developed to represent sub-grid scale orographic gravity wave drag in different climate models
(Alexander & Ortland, 2010; Alpert, 2004; Kim et al., 2003; McFarlane, 1987). Orographic

gravity wave parameterization in Community Earth System Model (CESM) has been developed



90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

based on the McFarlane theory, which assumes a two-dimensional steady-state hydrostatic wave
with vertical propagation only (McFarlane, 1987). The CESM’s orographic wave scheme has
been improved to account for anisotropic orography including orientation, height, and size of

orographic ridges (see appendix B in Weimer et al., 2023).

Gravity wave parameterizations have also been developed to represent non-orographic
gravity waves generated by two dominant sources: 1) convectively generated gravity waves
based on the theoretical relationship between convective heating and wave momentum fluxes
(Beres et al., 2004; 2005; Bushell et al., 2015; Chun et al., 2008), and 2) frontally generated
gravity waves using the frontogenesis function (Hoskins 1982) as a diagnostic for wave
momentum flux induced by frontal activity (Charron and Manzini, 2002; Richter et al., 2010;

Richter et al., 2014).

In global climate models, implementing the unresolved gravity wave perturbations in
chemical and microphysical processes has been considered challenging; however, some studies
have developed parameterizations of the sub-grid scale perturbations on cirrus formation (Dean
et al., 2007; Barahona et al., 2017; Penner et al., 2018; Lyu et al., 2023), as well as PSC

formation and middle atmospheric chemistry (Orr et al., 2020; Weimer et al., 2021, 2023).

Two recent studies, Weimer et al. (2023) and Lyu et al. (2023), developed a similar method
to account for the temperature and vertical velocity fluctuations induced by sub-grid scale
gravity waves in the Community Earth System Model version 2 (CESM2; Danabasoglu et al.,
2020). They both estimated the amplitude of wave-induced fluctuations based on parameterized
wave momentum fluxes from orographic gravity-wave schemes and grid-scale dynamical fields
(temperature and wind fields). Weimer et al. (2023) converted the sub-grid scale wave

momentum flux to temperature fluctuations and included them in the chemistry, and Lyu et al.
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(2023) applied the vertical velocity fluctuations to the microphysics of cirrus cloud formation.
While Weimer et al. (2023) and Lyu et al. (2023) mainly focused on the role of orographic
waves, it has been suggested that gravity waves originating from non-orographic sources can
also play an important role in global atmospheric circulation, as well as in chemical and
microphysical processes (e.g., Kércher & Strom, 2003; Schoeberl et al., 2016; Dinh et al., 2016;

Wright, 2019; Zou et al., 2021).

Building on the method from previous studies, we aim to account for the sub-grid scale
dynamical fluctuations induced by gravity waves from different sources including non-
orographic gravity waves arising from frontal activity and convection. Then, we explore
examples of their role in global atmospheric modeling. Section 2 describes the model,
experiments, and method to estimate the amplitude of sub-grid scale temperature fluctuations.
Section 3 explores the impacts of the gravity waves on example chemical concentrations and ice

clouds. Section 4 summarizes the results and discusses future implications.
2. Method
2.1. WACCM6

The Whole Atmosphere Community Climate Model (WACCM®6) of the Community
Earth System Model (CESM2.1) is used in this study (Danabasoglu et al., 2020; Gettelman et al.,
2019). The FWSD compset (refer to Gettelman et al., 2019) based on the Specified Dynamics
(SD) version of the model (Davis et al., 2022) with a relaxation time of 50 hours is used
following Weimer et al. (2023). Thus, in all experiments, the modeled winds and temperatures
between the surface to 1 hPa are relaxed toward reference meteorology from Modern-Era
Retrospective Analysis for Research and Applications version 2 (MERRA2, Gelaro et al., 2017).

The chemistry scheme for WACCM includes detailed chemistry for the Troposphere,
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Stratosphere, Mesosphere and Lower Thermosphere (TSMLT scheme) and includes 158
photochemical species, 117 photolysis reactions, 331 gas-phase reactions, 2 aqueous-phase
reactions, and 10 heterogeneous reactions (Mills et al., 2016; Marsh et al., 2013; Emmons et al.,
2020; Kinnison et al., 2007). The SD-WACCM simulations are run with a horizontal resolution
of 1.25° x 0.9°, 88 vertical levels, a model top at about 140 km, and prescribed ocean and ice

models.
2.2. Parameterization of non-orographic gravity waves in WACCM®6

The non-orographic gravity wave parameterization in WACCMS6 includes separate
source specifications of convective and frontal gravity waves (Richter et al., 2010; Gettelman et
al., 2019). The convective gravity wave parameterization employs the “Beres scheme” to specify
the gravity wave source spectrum (Beres et al., 2004; Beres et al., 2005). The model’s deep
convection parameterization scheme (Zhang & McFarlane, 1995) provides information about the
depth and rate of convective heating, and then the phase speed spectrum of gravity wave
momentum flux is determined by the Beres scheme based on the convective heating rate and the
mean horizontal wind in the heating region. Thus, the convective gravity wave source
specification in WACCMBS6 is coupled to the model's internal representation of convective
processes. The convective gravity waves generated by the Beres scheme in WACCM6 were

validated using tropical observations (Alexander et al., 2023).

The frontal gravity wave source specification is based on the frontogenesis function
(Miller 1948; Hoskins 1982). At each time step, the frontogenesis function is calculated using
information about the dynamical fields at a 600 hPa level, which corresponds to a typical

steering level of fronts (Charron and Manzini, 2002). Then, the frontal gravity waves are
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launched in all grid points where the frontogenesis function at 600 hPa exceeds a specific

threshold (Richter et al., 2010).
2.3. Sub-grid scale dynamical fluctuations due to gravity waves

We provide a brief summary of the subgrid-scale temperature parameterization and the
sub-stepping method (for details see Weimer et al., 2023). The peak wave displacement
amplitude (8) is calculated based on the wave properties, including wave momentum flux (),
phase speed, and wavelength derived from the wave drag scheme and other information about

the background dynamical fields as follows (Lindzen, 1981),

A ’ T
5: T —E— 1
pN|U — c|ky, @

where p, N, U, ¢ and k;, denotes air density, the Brunt-Vaisala frequency, horizontal wind speed,
wave phase speed, and the horizontal wave number, respectively. Then, the amplitude of
temperature fluctuation (T') by the subgrid-scale gravity wave is estimated using the peak wave

displacement amplitude as follows,
7] = 58, @)
where S denotes the static stability.

Our method for estimating temperature fluctuation closely follows that outlined in
Weimer et al. (2023), except for the following differences in how we estimate the total
momentum flux. For orographic waves, Weimer et al. (2023) used a single vertical wavenumber
component corresponding to the largest amplitude to estimate the peak wave displacement.
However, for non-orographic gravity waves, we used a full spectrum of vertical wavenumbers

after applying few simplifications. Although it is well known that complex wave-wave
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interactions among waves with different wavenumbers significantly influence the shape and
evolution of the total gravity wave spectrum (Fritts and Alexander, 2003), we simplify the total
momentum flux of the wave spectrum by summing momentum fluxes over a phase speed
spectrum in each cardinal direction, and then selecting the direction with the highest magnitude.
The peak wave displacement (8) is calculated using the total momentum flux (7) at each grid
point, together with the vertical wavenumber corresponding to the maximum momentum flux in
the spectrum and background dynamical fields. We acknowledge that our calculations involve
certain simplifications, such as selecting a single vertical wavenumber corresponding to the
maximum momentum flux, rather than accounting for the superposition of different
wavenumbers. The results are not sensitive to the simplification of using a single vertical
wavenumber corresponding to the maximum momentum flux instead of the full spectrum of
phase speeds, for the peak wave displacement calculation (Fig. S1). In future work, applying a
scaling approach similar to that in Weimer et al. (2023) by comparing with observations could

help reduce model biases in the amplitude of wave-induced temperature fluctuations.

Following Lyu et al. (2023), we estimate subgrid-scale vertical velocity variances (¢.2) as

below,
2 T N 2
oy~ (kplU — c[6)”. (3)

For calculating the subgrid-scale vertical velocity variances, we also adopted Lyu et al.’s (2023)
modification of setting the horizontal wavelength to 10 km as a scaling factor, as well as their
approach for implementing the wave-induced vertical velocity variance in the second version of
the two-moment Morrison and Gettelman microphysics scheme (MG2; Gettelman et al., 2010,

2019; Gettelman & Morrison, 2015).
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The wave-induced 1) temperature perturbations and 2) vertical velocity variances are
estimated individually for each gravity wave source (orographic, convective, and frontal). The
perturbation with the largest amplitude is then selected at each grid point to represent the peak
amplitude of temperature fluctuations (|7A" |) and total wave-induced vertical velocity variances.
We note that the different types of gravity wave perturbations from each wave source can be
used together or separately, by specifying the corresponding CESM namelist variables. The
wave-induced fluctuations are limited to inputs for the chemistry module and the MG2

microphysics scheme but are not incorporated into the model's resolved dynamical fields.

2.4. Sub-stepping method and stochastic approach

Using information about the temperature fluctuations, we applied the sub-stepping
method to the chemistry module as follows: the time evolution of temperature fluctuation is
assumed to have a form of sine wave with an estimated amplitude of |f| and a period of one
model time step (30 minutes); the temperature for the chemistry is sampled at 10 intermediate
sub-time steps (every 3 minutes); and the chemistry and associated processes are updated with
the changing temperature at each sub-time step to represent the changes in multiple chemical
species as the wave-induced temperature fluctuations evolve. The limitation of choosing 30
minutes as the wave intrinsic period was discussed in Weimer et al. (2023), and a 30-minute
wave period could be reasonable under limited conditions (e.g., strong background wind

conditions for mesoscale gravity waves, such as those in the polar vortex).

Weimer et al. (2023) have developed an alternative way of simulating wave-driven

temperature perturbations other than the sub-stepping method: a stochastic approach using sine-
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wave-distributed random |7A" | In the stochastic approach, the phase of the wave is chosen as a
random variable between -n/2 and 7/2 to simulate various phases of gravity waves at each model
time step (for details, see Section 2 in Weimer et al., 2023). Stochastically selecting |f| at each
model time step (30 minutes) is equivalent to assuming that the intrinsic period of the wave is
equal to or greater than 30 minutes. Since the stochastic approach does not involve any sub-
stepping, it can reduce computational costs while reproducing similar results compared to the
sub-stepping method in long-term statistics. In this study, we confine the analysis to the sub-
stepping method to assess changes in chemistry occurring over a time scale of a few hours;
however, the stochastic approach is also available as an alternative option for future studies. For
example, it can be used to examine the influence of different initial phases of wave-induced

perturbations on chemical species at the model's dynamical time step.

2.5. Experiments

We ran two sets of historical experiments, one implementing the sub-grid scale non-
orographic gravity wave perturbations on the chemistry through sub-stepping (GW), and another
reference simulation without the sub-grid scale wave parameterizations (REF). To highlight the
influence of non-orographic gravity waves, we set the scaling factor for temperature
perturbations induced by orographic waves to zero in the GW runs. However, as mentioned in an
earlier section, temperature perturbations from different types of wave sources can be used
together or separately, depending on the research focus. We chose to analyze the year 2007,
following Weimer et al. (2023). The sub-stepping is also applied in the REF simulation but
without temperature fluctuations in order to maintain consistency with the GW simulation by

accounting for any variability that may be due to the sub-stepping process itself. The chemistry
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responses to sub-grid scale gravity wave parameterizations are dependent on internal climate
variability. Here we use 5 ensemble members for each set of experiments, run with slightly
different initial dates ranging from December 15, 2006 to December 23, 2006 with two days
interval, to isolate the signatures of gravity waves from other forms of internal climate

variability. All ensemble members were integrated until December 31, 2007.

We also run another experiment (MG2-GW) applying wave-induced vertical velocity
fluctuations to the MG2 scheme, following Lyu et al. (2023). In the MG2-GW runs,
configurations other than the vertical velocity fluctuations were identical to the REF runs (i.e.,
the temperature perturbations were set to zero) to highlight the difference arising from the
vertical variance perturbations only. The MG2-GW runs were integrated for four months, from
January 1, 2007, to April 30, 2007, as we focus on demonstrating any changes occurring on a

seasonally averaged time scale.

3. Results

We present the global distribution of gravity wave-induced temperature perturbations, T,
in Figure 1. We first consider the maximum value of daily-mean T from all five ensemble
members of the GW simulation. The amplitude of temperature fluctuations increases with height
at all latitudes, as atmospheric density decreases (Fig. 1a). Temperature fluctuations are
pronounced over the extratropical latitudes, with large amplitudes of approximately 15 K
estimated at 0.14 hPa level. These temperature fluctuation patterns over the extratropics indicate
significant contributions by waves generated from frontal systems (Figs. 1b; Figs. S2a-c). At the
tropical latitudes, temperature perturbations are particularly pronounced over the western Pacific

warm pool region as well as the eastern equatorial Pacific, reaching maximum amplitudes of ~5

12
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K at 15 hPa level. This suggests a major influence of waves generated by convective heating
sources (Fig. 1c; Figs. S2d-f). While non-orographic gravity waves exhibit some features over
the mountains (likely amplified due to significant orographic precipitation biases in CESM, as
reported in previous studies; Sakaguchi et al., 2018; Reboita et al., 2024), they also exhibit
pronounced signatures over the tropical latitudes and over the ocean (Fig. 1), where the
influences of orographic waves were limited or zero (see Figs. 2 and 7 in Weimer et al., 2023).
Thus, the results in Fig. 1 suggest that non-orographic waves need to be accounted for to achieve

a more realistic representation of the wave-induced temperature variability.

The results presented here are based on temperature fluctuations internally generated by
the model, without any additional scaling applied to compare with observations. This is because
the amplitudes of temperature fluctuations induced by non-orographic waves are poorly
constrained quantities on a global scale, as it is challenging to distinguish non-orographic from
orographic wave influences in observations. Thus, in practice, the amplitudes of fluctuations can
be considered as parameters that can be tuned to the extent observations are available. We note
that new datasets, based on observations from satellites and superpressure balloons, have
recently become available, offering comprehensive statistics on temperature fluctuations
associated with both orographic and non-orographic gravity waves (Ern et al., 2018; Hindley et
al., 2020; Corcos et al., 2021; Bramberger et al., 2022). Future investigations could include

comparisons with observations using both orographic and non-orographic parameterizations.

We next explore the influences of gravity waves on middle atmosphere chemistry,
particularly focusing on ozone concentrations, which are known to be strongly sensitive to
temperature in the upper stratosphere and lower mesosphere (Barnett et al., 1975; Prather, 1981;

Brasseur and Solomon, 2005). Figure 2 reveals ratios of variance in daily minimum ozone
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concentrations between the GW and REF runs. The daily minimum ozone value reflects the
lowest instantaneous ozone concentration occurring at the sub-stepping time scale (3 minutes).
All available time steps based on five ensemble members from each simulation are used to
calculate the variances; thus, the variances are estimated over 5 ensemble members X 31 days X
288 longitudinal grid points = 44640 samples for Figure 2a, and over 165 samples (5 ensemble
members X 31 days) for Figure 2b. The F statistic is used to assess the statistical significance of
the ratios between variances (p < 0.05). The seasonal cycle was not removed in order to highlight
regions where changes in variability due to waves exceed the amplitudes of variation following
the seasonal cycle during the analysis period. We analyze July 2007, but the results are not
sensitive to a specific period as similar results were found from August to October of the same

year (not shown).

We focus on the daily minimum ozone concentration for the following reasons.
Observational and modeling studies have shown that the diurnal cycle of ozone above ~1 hPa is
characterized by substantially smaller daytime ozone concentrations compared to nighttime
concentrations (Lean, 1982; Haefele et al., 2008; Huang et al., 2008; Sakazaki et al., 2013;
Schanz et al. 2014). This is because the ozone distribution in that region can be described by
ozone photochemistry in a pure oxygen atmosphere (i.e., the Chapman mechanism), where the
daytime ozone concentration is smaller than the nighttime concentration due to photolysis by UV
light (Chapman, 1930; Prather, 1981; Brasseur and Solomon, 2005). Some photochemical
reactions in the Chapman mechanism (e.g., the recombination of atomic oxygen and ozone),
which are highly temperature-sensitive, occur primarily during the daytime. Thus, to investigate
the influence of gravity waves on ozone variability, we focus on minimum ozone concentration

during daytime and its sensitivity to the wave-induced temperature variations.
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The key result in Figure 2a is that the non-orographic gravity waves increase the
variability of daily minimum ozone concentrations in the lower mesosphere between ~0.3 hPa
and 0.07 hPa around 60°N. In Figure 2b, we focus on a single pressure level (0.14 hPa) to
exclude the influences of the variances arising from the longitudinally asymmetric component of
the ozone distribution. At the 0.14 hPa level, local variances of daily minimum ozone increase by

a factor of up to ~2 over the North Pacific (Fig. 2b).

We further explore the connection between changes in chemistry and gravity wave
temperature fluctuations. Figure 3 exhibits the time series of daily minimum ozone
concentration, daily mean wave-induced temperature fluctuations, and daily mean temperature,
focusing on a specific grid point representing a hot spot of frontal gravity wave activity near the
North Pacific. Figure 3a reveals an average decrease of roughly ~13 ppbv in the daily minimum
ozone concentration in the GW runs compared to the REF runs during the first 10 days of July.
The difference in minimum ozone concentrations between the GW and REF runs (i.e., difference
between red and blue lines) in early July is also larger than the internal variability among

different ensembles (i.e., the red or blue shading).

More importantly, substantial increases in sub-grid scale temperature fluctuations are also
shown over the periods that correspond to significant differences in the minimum ozone
concentrations in the two experiments (Figs. 3a and 3b). The amplitudes of T (> ~5 K) are larger
than changes due to the internal variability of daily-mean temperature, and thus can have some
local effects on strongly temperature dependent chemical reactions. Larger decreases in

minimum ozone concentration are revealed in the sensitivity experiments run with larger

amplitudes of temperature perturbations (with scaling factor=v/3; Fig. S3), further suggesting a
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causal relationship between them. In the following section, we explore the influences of waves

on the ozone concentration and chemical reactions exhibiting temperature dependency.

Figure 4 presents timeseries of ozone concentration, wave-induced temperature
fluctuations, and reaction rates that drive ozone chemistry at the same location over the North
Pacific as in Figure 3 but focusing on 2-hour intervals around the time when the daily minimum
ozone occurs. The results in Figure 4 are based on an additional experiment run with the same
configuration as in the GW runs, but the integration was started from June 21, 2007, and the
variables were outputted at a higher frequency (3-minute intervals) to investigate the influences

of waves on the fluctuations in ozone concentration.

Black dots in Fig. 4a indicate instantaneous ozone mixing ratio outputted at each sub-
time step. The ozone mixing ratio shows a nearly sinusoidal oscillation with a period of 30
minutes (which is equal to one sub-stepping cycle and the WACCM dynamical time step) and a
peak-to-peak amplitude of ~60 ppbv on July 2, 2007 (Fig. 4a). This oscillation in ozone
concentration is shown only in the GW runs, not in the REF runs (Fig. S4a), which in turn leads
to increases in the daytime ozone variability in the GW runs, compared to variability in the REF
runs (Figs. 3a and S4a). It is noteworthy that satellite measurements with sufficient temporal and
horizontal resolution may be able to sample variations in ozone comparable to these chemical

changes over the wave-induced fluctuations.

Ozone concentrations (Fig. 4a) and temperature perturbations (Fig. 4b) are anti-correlated
with each other. To assess the cause of the relationship between the ozone concentration and
temperature, we first identify the chemical reactions that are primary drivers of the ozone
variations, and then explore their temperature dependencies. Red dots in Fig. 4c represent

ozone’s chemical tendency estimated as a sum of the three-body recombination reaction rate
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(Fig. 4d), ozone’s photolysis rate (Fig. 4e), atomic oxygen-ozone recombination rate and ozone-
hydrogen reaction rate (Fig. 4f). These processes in Figs. 4d-f are known to be the dominant

ozone sources and sinks in the lower mesosphere (Brasseur and Solomon, 2005).

Red dots in Fig. 4a are shown to compare the ozone concentration calculated by the time
integration of the net chemical tendency mentioned above (Fig. 4c), with the actual ozone
concentration time series (black dots in Fig. 4a). Again, the ozone’s chemical tendency is
estimated as the sum of the chemical rates shown in Figs. 4d-f. The integration starts from the
initial ozone concentration at local time 17:30 to avoid potential long-term drift due to dynamical
transport and chemical losses from reactions not included in the calculation. We note that the
absence of dynamical tendency (green dots in Figs. S4e-f) and chemical losses from other
reactions (red dots in Figs. S4e-f) can accumulate errors in the predicted ozone concentration
when integrated over time (Fig. S4d). However, we consider these errors are negligible in our

30-minute analysis interval (i.e., within a sub-stepping cycle).

What are the main drivers of the simulated ozone variations? Close similarity between
red and black dots in Fig. 4a highlights that the calculation based on the net chemical rate
captures most of the simulated ozone variations. Thus, the results in Fig. 4a confirm that changes
in ozone concentration are largely driven by the processes listed in Figs. 4d-f, with the three-
body recombination reaction (Fig. 4d) and photolysis (Fig. 4e) respectively being the main

source and sink of ozone at this location given their large amplitudes.

We now explore the temperature dependencies of the photochemical reactions in Figs 4d-
f. Both the rates of ozone production (Fig. 4d) and the photolysis (Fig. 4¢) display distinct
oscillatory pattern as well as an out-of-phase relationship with the temperature perturbation

(Figs. 4b, d, and e). This temperature dependencies of ozone reaction rates are due to the
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combined effects of 1) the temperature dependency of reaction rate coefficients and 2) the
temperature induced air density variations, following the ideal gas law (Chapman, 1930; Prather,
1981; Brasseur and Solomon, 2005; Lean 1982). The temperature dependencies of ozone
photochemistry (Figs. 4d-f), in turn, lead to oscillatory behavior in the net ozone tendency (Fig.
4c), as the net changes in ozone are governed by a balance between these processes. Together,
the results in Fig. 4 reveal that the gravity wave-induced temperature perturbations 1) cause the
sinusoidal oscillation in the ozone mixing ratio, and 2) lead to increases in the daytime ozone

variability in the GW runs compared to the variability in the REF runs.

Figure 5 exhibits the vertical structure of changes in ozone mixing ratio (Fig. Sa,
production rate (Fig. 5b), and loss rate (Fig. 5¢) during a sub-stepping cycle between local time
18:30-19:00 between 1 and 0.05 hPa. The red, black, and blue lines represent values
corresponding to the maximum, zero, and minimum during a cycle of the wave, respectively.
Large variations in the ozone mixing ratio and chemical rates are obtained above the ~0.2 hPa
level. The results here indicate that the increase in daily minimum ozone in the GW runs shown
in Figure 2 is primarily due to the wave-induced temperature fluctuations that affect the
temperature-dependent chemical rates involved in ozone chemistry, which in turn lead to
increases in daily ozone variability. Together, the results in Figs. 2-5 demonstrate an example of
many instantaneous processes associated with sub-grid scale gravity wave activity that were not
simulated in the standard version of WACCM simulations. This highlights the role of sub-grid

scale waves on atmospheric chemistry.

The role of non-orographic gravity waves in cirrus cloud formation is briefly summarized
in Figure 6 as another implication of gravity wave perturbations in climate modeling. In

WACCMS6, the MG2 scheme predicts ice nucleation in cirrus cloud formation using sub-grid
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vertical velocity variances. In the default setting, the vertical velocity variances are associated
with the amplitudes of sub-grid scale turbulent motion derived from CLUBB (Cloud Layers
Unified by Binormals; Golaz et al., 2002a, 200b). Here, we also estimated sub-grid vertical
velocity variances associated with convective and frontal gravity waves and introduced them into

the ice nucleation parameterization.

Figs. 6a, 6¢, and 6e compare the sub-grid scale vertical velocity variances for the ice
nucleation parameterization between the MG2-GW and REF simulations. Both runs show high
values of the vertical velocity variances over tropical latitudes, consistent with a previous study
based on 7-km high-resolution modeling (Barahona et al., 2017). Vertical velocity variances are
increased in the upper troposphere over the tropical and extratropical latitudes (60°S-60°N) with
inclusion of the wave-induced vertical velocity fluctuations (Fig. 6e). As expected, cloud ice
mixing ratio also increases in the same regions (Fig. 6f), suggesting that the onset of ice
supersaturation is triggered by the sub-grid scale gravity waves. Our results highlight that the
influence of non-orographic waves is pronounced over tropical and extratropical latitudes in the
upper troposphere. This finding is consistent with a previous study based on observational
analyses and trajectory modeling (Schoeberl et al., 2016), which found that gravity waves
increase the upper tropical tropopause cloud fraction. Another study based on numerical
simulations using balloon-observed temperature data (Dinh et al., 2016) also suggests that high-
frequency temperature fluctuations due to gravity waves can control the homogeneous nucleation

of cloud ice in the vicinity of the tropical tropopause.

We find that the main results presented here (scaling factor=1; Figs. 2,3, and 6) remain

qualitatively similar to results from the sensitivity experiments run with larger amplitudes of

wave-induced perturbations (scaling factor=v/3; Figs. S3, S5 and S6).
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Summary and Conclusions

Recent modeling studies introduced a method to account for the effects of subgrid-scale
orographic gravity-wave-induced dynamical perturbations in community climate models: 1)
temperature perturbations on the atmospheric chemistry in WACCM6 (Weimer et al., 2023), and
2) vertical velocity perturbations on cirrus cloud formations in CAM6 (Lyu et al., 2023). The
methods estimate the dynamical perturbations of gravity waves based on the model’s gravity
wave parameterizations and introduce them into the chemistry module and microphysics scheme
(respectively). Here we extended the method to also include perturbations by non-orographic
gravity waves arising from frontal activity and convection. The sub-grid scale temperature
fluctuations are estimated in a similar manner to the method outlined in Weimer et al. (2023),
except that the momentum fluxes were calculated based on a wave spectrum instead of a
monochromatic wave. We integrated momentum fluxes over a phase speed spectrum to estimate
the total wave momentum flux from different wavenumbers and used the results to calculate
peak wave displacement amplitudes. The wave-induced fluctuations were then applied to
chemistry as a sine-wave perturbation using a time interval sub-stepping method. Similarly, sub-
grid vertical velocity perturbations were derived following the method by Lyu et al. (2023), and

then applied to the MG2 scheme for the ice nucleation parameterization.

Two sets of 1-year long simulations were conducted with WACCM®6: one based on the
default WACCMS6, and a second one with the sub-grid scale gravity wave perturbations. We
compared the simulation in the two experiments to assess the global pattern of temperature

fluctuations induced by non-orographic waves, as well as the role of wave-induced dynamical
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perturbations on an example case of middle atmosphere chemistry and cirrus cloud formation in

the upper troposphere. The key implications of the method are as follows:

1) The non-orographic gravity waves increase the variability of chemical reaction rates,
particularly in the upper stratosphere and lower mesosphere, which, in turn, leads to

an increase in the daytime variability of the ozone concentration.

2) The non-orographic waves also enhance homogeneous nucleation and thus increase

cirrus clouds in the upper troposphere across tropical to extratropical latitudes.

Our method provides estimates of the amplitudes of the temperature perturbations based
on WACCM’s internal physics and parameterizations. This has various possible implications for
climate and chemistry. Convective gravity waves are known to play an important role in the cold
point tropopause temperature as well as stratospheric water vapor abundances (Jensen and
Pfister, 2004; Kim and Alexander, 2013; 2015). While beyond the scope of the current work, our
method could be used to address the effects of sub-grid scale gravity waves on the variability of
simulated cold point temperatures. Future work could also compare the detailed statistics of
simulated wave-induced temperature fluctuations, such as amplitudes, frequencies, and spatial

patterns, with the characteristics of observed gravity waves on a global scale.
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Figure 1. Maximum values of daily mean T in 2007 for the “non-orographic gravity wave”

(GW) runs. The results displayed are the maximum value of all grid points as a function of

latitude (top), maximum value at each grid point at the 0.14 hPa level (middle), and 15 hPa level

(bottom).
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Figure 2. Ratio of the variance in daily minimum ozone concentration between GW and REF

runs. The results displayed are the daily minimum values in all grid points as a function of

latitude (top) and values at each grid point at the 0.14 hPa level (bottom) in July 2007. Note the

non-linear color scale in both panels. Regions within the troposphere are masked out in the upper
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temperature perturbation (middle), and daily mean temperature (bottom) at a single WACCM
grid point over the North Pacific (144°W, 60°N) at 0.14 hPa level. Each colored line and range
represents the results based on the ensemble mean and spread of the (red) GW and (blue) REF
runs. The spread is defined as one standard deviation among ensemble members for each field on

each day.
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Figure 4. Timeseries of daytime (a) ozone concentration, (b) wave-induced temperature
perturbation, (c) net chemical rate for ozone, (d) three-body recombination reaction rate, (e)
ozone photolysis rate (the sum of two indicated pathways producing O°P and O'D, respectively),
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corresponding values estimated based on the sum of chemical rates in rows d-f. All results are
instantaneous values sampled at 3-minute intervals. The timing for the absolute daily minimum

ozone is indicated by black shading and timings for relative minimum values in each sub-step
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cycle are marked by gray shading. All reaction rate coefficients, ki, and photolysis rates, Ji,

followed the notation used by Brasseur and Solomon (2005). The results are derived from the
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mixing ratio
(@)o.1
03
Predicted O3
w 0.2
1 T T T T T T T T I T T
102 103
[ppbv]
b o1 production rate
T 0.2 -
1 IIII| T IIIIIII| T IIIIIII| T IIIIIII| T T
10° 10° 107 108
[cm~3s71]
loss rate
(c) 0.1
Jo,
——————— (k2) + (a2)
5 0.2
2 >
g ?
1 IIII| T T IIIIII| T T IIIIII| T T IIIIII| T T T
10° 106 107

[cm~3s1]

108

Figure 5. Vertical profile of ozone’s (a) mixing ratio, (b) production rate, and (c) loss rate during

a sub-stepping cycle between local time 18:00-19:00. The results are derived from the same

location over the North Pacific as in Figures 3-4. The red, black, and blue lines represent values

corresponding to the maximum, zero, and minimum displacement phase, respectively. The

dashed-dotted line in panel (b) shows the three-body recombination rate, the solid line in panel

(c) exhibits the photolysis rate, and the dashed line in panel (c) exhibits the sum of atomic
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544  oxygen-ozone recombination rate and ozone-hydrogen reaction rate. Dashed lines in panel (a)

545  show predicted ozone abundances based on the net chemical rates defined as the sum of the three
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Introduction

This supporting information illustrates the following: 1) the gravity wave-induced sub-
grid scale temperature fluctuations are not sensitive to the simplification method applied
for the peak wave displacement calculation (Fig. S1), 2) the global distribution of
temperature perturbations from frontal and convective waves (Fig. S2), 3) ozone
variations due to dynamical processes and chemical losses from reactions that are not
included in Fig. 4c (Fig. S4), and 4) the results based on the sensitivity experiments run
with larger amplitudes of wave-induced perturbations (scaling factor = v3; Figs. S3, S5,
and S6).
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Figure S1. Standard deviation of daily mean T at each grid point during 1 January 2007
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momentum flux divided by phase speed of each vertical wavenumber.
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Figure S3. As in Figure 3, but for the results based on the sensitivity experiments run

with /3 times larger amplitudes of temperature perturbations.
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Figure S4. (a) and (b): As in Figs. 4a and 4b, but for black and blue dots representing the
GW and REF runs, respectively. (c) and (d): As in Figs. 4c and 4a, but for the difference
between 1) the net ozone tendency calculated as the change in ozone mixing ratio
between two adjacent sub-time steps, and 2) the net chemical rate shown in Fig. 4c. Thus,
the results in panels (c) and (d) represent residual changes in ozone that are not explained
by the net chemical rate in Fig. 4c. (e) and (f): As in panels (c) and (d), but separately for
residual components due to dynamical transport (green) and other chemical reactions not
included in the chemical rate in Fig. 4c (yellow). Thus, the sum of values represented by

the green and red circles at each time step in (e) and (f) is equal to the value of each filled

circle in (¢) and (d), respectively.
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with /3 times larger amplitudes of temperature perturbations.
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