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Abstract

In the realm of urban science, scaling laws are essential for understanding the
relationship between city population and urban features, such as socioeconomic outputs.
Ideally, these analyses would utilize complete datasets; however, researchers often face
challenges related to data availability and reporting practices, resulting in datasets that
include only the highest observations of urban features (top-k). A key question that
emerges is: Under what conditions can an analysis based solely on top-k observations
accurately determine whether a scaling relationship is truly superlinear or sublinear? To
address this question, we conduct a numerical study to explore how relying exclusively
on reported values can lead to erroneous conclusions, revealing a selection bias that
favors sublinear over superlinear scaling. In response, we develop a method that
provides robust estimates of the minimum and maximum potential scaling exponents
when only top-k observations are available. We apply this method to two case studies
involving firearm violence, a domain notorious for its suppressed datasets, and
demonstrate how this approach offers a reliable framework for analyzing scaling
relationships with censored data.

Author summary

Over the past two decades, urban scaling has become essential for understanding the
rural-urban continuum by quantifying how urban characteristics evolve with a city’s
population size. For example, more populous cities are expected to have more patents
and wages per capita, but fewer gas stations and road surfaces. Nonetheless, access to
incomplete datasets about urban features systematically skews the conclusions derived
from this theory. This issue is particularly relevant for features related to health
outcomes, which are regularly obtained from partially censored datasets. For instance,
data on firearms in the United States remain inaccessible to the public. To address this
limitation, we developed a framework that enables urban researchers to draw reliable
conclusions about urban scaling, even when dealing with censored datasets. We
demonstrate this framework with data on firearm homicide and the number of firearms
recovered by authorities in American cities.
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1 Introduction 1

Scaling laws are ubiquitous in nature, describing many of the phenomena and processes 2

that surround us. A scaling law describes the behavior of a system through a power-law, 3

connecting certain properties of the system with its size [1]. Scaling laws have been 4

instrumental in characterizing relationships across a wide range of domains, including 5

biological and physical systems. For example, Kleiber’s law illustrates how metabolic 6

rates of organisms scale with their body mass [2]. Likewise, scaling laws in the field of 7

ecology indicate that the number of species supported by an ecosystem relates to its 8

area [3]. In the ideal gas law, scaling describes the relationships between pressure, 9

volume, temperature, and the number of molecules [4]. 10

As urbanization rates are ever-increasing [5], understanding scaling of urban features 11

with city population is critical to urban science, management, and planning. Many 12

scaling relationships between the population of a city X and urban feature Y have been 13

documented, which have led to the development of urban scaling theory. Given N cities, 14

an urban scaling law takes the form of Yi = CXβ
i e

εi , with i = 1, ..., N , where C is a 15

common baseline, β is the scaling exponent that illustrates how an urban feature varies 16

with city size, e is the Napier’s constant, and εi represents the deviation of city i from 17

its nominal behavior [6]. The scaling parameters C and β are typically computed by 18

logarithmically transforming the scaling law to lnYi = lnC + β lnXi + εi and fitting a 19

linear model [6]. 20

Researchers have shown that urban features can scale differently with population 21

size, reflecting systematic relationships across urban and societal metrics. Empirical 22

studies demonstrate that socioeconomic features such as GDP, property values, patents, 23

homicides, and violent crimes exhibit a superlinear dependence on city population 24

(β > 1) [5–12], meaning that larger (smaller) cities exhibit higher (lower) rates of these 25

features per capita. In contrast, the space occupied by urban infrastructure such as 26

roads, cables and built area scales sublinearly with city population (0 < β < 1) [13, 14]. 27

Household and individual needs like total employment, housing, and water consumption, 28

instead, typically show a linear dependency on city population (β = 1) [5, 15]. 29

Over the years, several studies have refined urban scaling and expanded its 30

framework to address methodological limitations. For example, Bettencourt et al. 31

distinguished cross-sectional from temporal scaling to capture temporal dynamics 32

beyond pure scale effects [16]. Cross-sectional scaling compares cities at a fixed point in 33

time, whereas temporal scaling tracks changes within cities but can be unstable in cities 34

with slow or negative growth. Finance and Cottineau addressed the issue of null 35

observations in cities during scaling analysis [17]. Although these values may be valid 36

(for example, a city where no patents were filed), the standard practice was to remove 37

them, as the logarithm of zero is undefined [18]. The authors explored alternative 38

methods to ordinary least squares (OLS) for fitting urban models to avoid the exclusion 39

of zero counts. Xiao and Gong argued that spatial dependencies exist between cities 40

that are geographically proximate [19]. They designed a spatial filtering method to 41

account for such dependencies in urban scaling and found that models that do not 42

account for spatial interactions may overestimate GDP in developed regions and 43

underestimate it in underdeveloped ones. In spite of the great strides made in the 44

growing field of urban scaling, the vast majority of existing analyses assume access to a 45

complete data set when fitting the model. 46

When working with city-level data, access to complete datasets becomes a common 47

challenge. One cause of incomplete data is the obligation of government agencies to 48

prevent the identifiability of sensitive information. For example, the Centers for Disease 49

Control and Prevention Wide-Ranging Online Data for Epidemiological Research (CDC 50

WONDER) publishes data on the underlying causes of death among United States 51

(U.S.) citizens. They provide the yearly counts of each cause of death at the resolution 52
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of the entire country, states, and counties. However, to protect individuals’ privacy, the 53

agency suppresses counts of nine and lower. Hence, urban scaling research on causes of 54

death in the U.S. are difficult to perform. Similarly, the Tiahrt Amendments [20] 55

impose restrictions on the reporting of data by the U.S. Bureau of Alcohol, Tobacco, 56

Firearms and Explosives (ATF), limiting the disclosure of trace data related to firearms 57

used in crimes to the public. Instead of sharing complete data, the ATF is only allowed 58

to report limited information, such as the top ten cities in each state with the highest 59

number of gun recoveries and the total number of firearms recovered in that state. For 60

both the CDC WONDER and ATF cases, data is censored because they fall below a 61

certain threshold, a situation known as “left-censoring”. Such data censoring poses a 62

serious challenge to urban scaling studies on firearm recoveries in the U.S. 63

Data on cities may also be incomplete due to “missingness”, where data points are 64

not available because they are not recorded. The reasons underlying missing data are 65

commonly known as “missing data mechanisms”. These mechanisms, as described 66

in [21], fall into three categories: missing completely at random (MCAR), missing at 67

random (MAR), and missing not at random (MNAR). Data MCAR occurs when there 68

is no relationship between whether a data point is missing and any values in the dataset, 69

either missing or observed. When the probability of a missing value is dependent on 70

other observed variables but not the value itself, it is considered MAR. In the case of 71

MNAR, the missingness is systematically related to unobserved data or factors not 72

measured by the researcher. For instance, for the CDC WONDER or ATF datasets, 73

data are missing not at random as they are not available when falling below a certain 74

threshold. 75

Various methods have been devised to address the issue of incomplete data. Recent 76

methodological research [22,23] has focused on maximum likelihood estimation 77

(MLE) [24,25], Bayesian estimation [26,27], and multiple imputation [28,29]. However, 78

most advanced statistical imputation methods mainly aim at imputing MCAR and 79

MAR and are not suitable for MNAR [30]. Some statistical methods have also been 80

developed for regression analyses when data are MNAR, such as the Tobit model and 81

its variations [31], Powell quantile estimators [32], or othe nonparametric estimators [33]. 82

While effective, these methods are quite general and fail to utilize key information 83

provided by the reporting entity that may be accessible to researchers (for example, the 84

sum of the censored data). Moreover, in the context of urban scaling, the primary focus 85

of a model is whether scaling is superlinear or sublinear, making the precise value of a 86

scaling exponent less critical than its bounds. 87

In this paper, we aim to address censored data in the context of urban scaling. We 88

focus on data related to firearms and mortality, only available for the highest (“top-k”) 89

observations due to privacy reasons. We propose a rigorous, yet simple, method tailored 90

for urban scaling analysis that estimates scaling behavior. Along with the top-k 91

observations, the method incorporates the total counts of the feature across the dataset 92

in the form of a constraint, taking advantage of the aggregated observations reported in 93

existing datasets. By solving an optimization problem, we bound the regression slope by 94

providing its minimum and the maximum possible values. This approach not only 95

simplifies the estimation process compared to existing methods, but also provides robust 96

bounds necessary for determining whether an urban feature scales superlinearly or 97

sublinearly. Our method offers a powerful tool for urban researchers, ensuring reliable 98

assessment of scaling behaviors even when working with incomplete data. 99

In the following, we first conduct numerical simulations using both complete and 100

incomplete synthetic datasets to explore how the use of incomplete data could bias the 101

estimation of scaling laws. We then present an algorithm that iteratively distributes 102

missing values to unknown cities. We apply the developed framework to two case 103

studies. In the first, we inspect suppressed data on firearm homicides from CDC 104
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WONDER and complete data from National Center for Health Statistics’ (NCHS) 105

Restricted-Use Vital Statistics Data. We compare the estimates of the scaling exponent 106

when using the incomplete and complete data and validate our β-bounding method. In 107

the second case study, we apply the bounding method on the partially reported data to 108

conclude whether firearms recovered by the ATF follow a superlinear or sublinear 109

scaling. Our results demonstrate the value of this bounding process in the study of 110

urban scaling laws when datasets suffer from censored observations. 111

2 Results 112

2.1 Assessing bias in urban scaling due to censored data 113

As a first step to understand how incomplete data can bias the estimation of scaling 114

laws and the inference of superlinearity and sublinearity, we conduct a numerical study 115

using both complete and incomplete synthetic datasets. We simulate the typical case of 116

health-related outcomes where data are only available for a subset of k cities with the 117

highest value of the urban feature reported (top-k), and no other information is given 118

regarding other cities except for the total value of the outcome variable in larger spatial 119

units (as reported by CDC WONDER and ATF). 120

We aim to quantify the deviation of the estimated regression slope β̂k (where a hat 121

refers to an estimated value and superscript k denotes the known partial data) from the 122

true value β due to censored data. To this end, we compute the error of the estimation 123

(β̂k − β) over a range of changes to key factors that could impact the estimation of β, 124

including the true scaling law exponent (β), proportion of known data (top-k%), 125

standard deviation of the error (σ), and complete dataset size (N). In addition, we 126

consider two distributions for the population data: normal and log-normal. We generate 127

random synthetic observations while systematically varying these parameters in a 128

factorial design (see Methods for details). 129

First, by using censored data, we find that the error of the estimation of β can be 130

relatively high, and similar for different values of β (Fig 1A). Interestingly, we find that 131

the error of the estimation is asymmetric and biased toward sublinear scaling, such that 132

one is more likely to infer a sublinear scaling relationship although a truly superlinear 133

one exists. This asymmetry is engendered by the selection of the top-k cities based on 134

their urban feature (Fig 1B). Specifically, the top-k cities are more likely to have a 135

positive residual with respect to the linear fit on the complete dataset, so that 136

considering only them leads to underestimation of the scaling exponent. In agreement 137

with our expectations, we find that regardless of the population distribution (normal or 138

log-normal) or the value of β, the magnitude of the error tends to increase as the 139

percent of known data becomes smaller (Fig 2A-B), and as the standard deviation of 140

the noise increases (Fig 2C-D). The error does not change with the size of the complete 141

dataset (Fig 2E-F), although we notice that for larger datasets, the variance of the 142

estimator decreases. Such a decrease does not guarantee the consistency of β̂k (see 143

Section A of S1 Appendix). 144
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Fig 1. Bias in estimating the urban scaling exponent with censored data. (A)

Assessment of the estimate of the scaling exponent (β̂k) from data generated using a

true scaling law (Yi = Xβ
i e

εi for i = 1, · · · , N) with X following either a normal
distribution (blue) or log-normal (orange), as a function of the true scaling exponent.
The proportion of known data points is selected based on the k-highest percent value of
the response variables Y . The violin plots represent the distribution of the error, while
the boxes inside represent the first (Q1) and third (Q3) quartiles, and their whiskers
extend to 1.5 times the interquartile range from Q1 and Q3. Each violin plot contains
500 data points. For each violin plot, we also report the true positive rate (TPR) for
the inference of sublinear (β < 1) and superlinear (β > 1) scaling. (B) Illustration of
the reason for bias towards sublinear scaling discovered in (A). Using a censored dataset
that only uses the top values of a selected urban feature (red filled circles) incorrectly
discounts observations in the complete dataset (open circles) that have negative residual
with respect to the true fit (black dashed line), thereby leading to biased model
estimation (red solid line).
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Fig 2. Factors influencing bias in estimating the urban scaling exponent
with censored data. Assessment of the estimate of the scaling exponent (β̂k) from

data generated using a true scaling law (Yi = Xβ
i e

εi for i = 1, · · · , N , and β = 5/6 or
β = 7/6) with X following either a normal distribution (blue) or log-normal (orange), as
a function of (A-B) proportion of known data, (C-D) standard deviation of the true
error, and (E-F) complete dataset size. The proportion of known data points is selected
based on the k-highest percent value of the response variables Y . The violin plots
represent the distribution of the error, while the boxes inside represent the first (Q1)
and third (Q3) quartiles, and their whiskers extend to 1.5 times the interquartile range
from Q1 and Q3. Each violin plot contains 500 data points. For each violin plot, we
also report the true positive rate (TPR) for the inference of sublinear (β = 5/6) and
superlinear (β = 7/6) scaling.
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In all of the simulations, we consider whether regressing with incomplete data causes 145

urban scaling classification errors by looking at the true positive rate (TPR) for true 146

superlinear and sublinear scaling relationships (Fig 1 and Fig 2). The TPR measures 147

the proportion of sublinear (superlinear) cases correctly identified by a model as such, 148

allowing us to evaluate the performance of hypothesis testing regarding sublinear or 149

superlinear dependence on population. For instance, in the case of true superlinear 150

scaling relations, the TPR represents the proportion of correctly identified superlinear 151

relations when only a certain proportion of the data is known (β > 1 and β̂k > 1; see 152

Methods). Due to the asymmetry in the errors (β̂k is underestimated), we find that the 153

TPR for superlinear scaling is less than that for sublinear scaling, potentially being as 154

low as zero. 155

In Section B of S1 Appendix, we present results in Fig 2 for β = 2/3 and 4/3 where 156

similar trends are observed. We also show the relationship between the error in the 157

estimation of the scaling exponent when using censored data and the coefficient of 158

determination of the censored data estimation (Rk)2, where we see that the higher 159

(Rk)2, the lower the bias. 160

2.2 Greedy algorithm to bound the scaling exponent 161

We devise a general bounding framework that uses a greedy optimization to estimate 162

the minimum and maximum possible scaling exponents, β̂min ≤ β̂ ≤ β̂max. By 163

computing these bounds, we aim to reach a more reliable conclusion about a scaling 164

behavior, while effectively addressing the biases encountered when using OLS on the 165

censored data. Within a system of N cities, we address the case in which the researcher 166

has only access to urban measurements in a subsystem of k < N cities, and the total 167

count of the urban feature S across all N cities. In order to find the upper bound of the 168

scaling exponent (β̂max), we solve the constrained optimization problem 169

β̂max = max
Yuk

{fβ
(
X,Yk,Yuk

)
| S =

k∑

i=1

Y k
i +

N∑

i=k+1

Y uk
i , Ymin,i ≤ Y uk

i ≤ Ymax,i}, (1)

where the column vector X = [X1, · · · , XN ]T contains the population sizes of all N 170

cities, Yk = [Y k
1 , · · · , Y

k
k ]

T comprises the k known values of the urban feature, 171

Yuk = [Y uk
k+1, · · · , Y

uk
N ]T consists of the N − k unknown values for which we are 172

optimizing. Similar to city population data, we also consider the urban features to be 173

positive integer numbers. We denote vectors and matrices in bold and use T for matrix 174

transpose. The function fβ
(
X,Yk,Yuk

)
represents the OLS estimator of the scaling 175

exponent (for further details, see Methods). 176

In this greedy approach, we pose that the sum of Y k
i and Y uk

i over i is equal to the 177

total of the urban feature S. In addition, we constrain Y uk
i between Ymin,i and Ymax,i, 178

the values of which will depend on the reporting and censoring process. The lower 179

bound of the scaling exponent (β̂min) can be written equivalently to Eq (7) (see 180

Methods), with “min” instead. Once obtained, the upper and lower bounds can be used 181

to verify the validity of inferences based on partial datasets. In fact, β̂max < 1 will offer 182

backing to the inference of sublinear scaling and β̂min > 1 to the inference of superlinear 183

scaling. Some insight into the optimal Yuk can be garnered by linearizing the objective 184

function and solving the optimization problem analytically (see Section C of S1 185

Appendix). Such an analysis suggests that bigger cities should be assigned values close 186

to Ymax,i and smaller cities values close to Ymin,i, thereby maximizing the contrast 187

between them. 188
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2.3 Case studies of urban scaling with censored data 189

To demonstrate the value of the our bounding scheme in urban research, we apply it to 190

two real datasets with partial observations: firearm homicides from the CDC and 191

firearms recovered by the ATF. In the CDC case study, we obtained access to the 192

uncensored dataset from the National Center for Health Statistics (NCHS) [34] allowing 193

us to validate the scaling conclusions. Such privilege is not granted with the ATF study 194

case. Applying our framework to these datasets, we not only gain a deeper 195

understanding of firearm-related violence and crimes in the U.S., but also demonstrate 196

how this optimization process can be generalized to other censored datasets for 197

estimating scaling laws. 198

2.3.1 Firearm homicides 199

Similar to Bettencourt et al. [16], we perform cross-sectional scaling of firearm 200

homicides with population for U.S. cities, over the five-year period between 2016 and 201

2020 (Fig 3). The results are presented for cities, encompassing both Metropolitan 202

Statistical Areas (MSAs) and Micropolitan Statistical Areas (MicroSAs). While urban 203

scaling relations are highly sensitive to the spatial boundaries defining a city [35], there 204

is no standardized definition for a city in the U.S. Consequently, both MSAs and 205

MicroSAs are commonly used as functional cities in analyses [36]. 206

Urban scaling for firearm homicides in the U.S. exhibits a power-law relation with 207

city population using both the censored and complete datasets. Using a censored 208

dataset leads to the inference of a sublinear relationship across all years, with the true 209

exponent being consistently underestimated β̂k < β̂ (Fig 3). With the complete dataset, 210

β̂ reflects a strictly sublinear relationship for all years, except in the year 2020. In this 211

year, when the reported MSAs and MicroSAs account for about three quarters of the 212

total firearm homicides, β̂ = 0.967, with a 95% confidence interval of [0.921; 1.013] 213

(Table 1). Given the confidence interval, we cannot reject the hypothesis that β = 1. 214

We also note that the coefficient of determination of the complete model (R2) is larger 215

than that of the partial data ((Rk)2), indicating that using OLS regression on the 216

complete dataset could yield better-fitted results (Table 1). 217
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Fig 3. Urban scaling exponent of firearm homicides in the U.S. MSAs and
MicroSAs (2016–2020). Yellow dots and orange diamonds represent the minimum

(β̂min) and maximum (β̂max) scaling exponent, respectively, obtained by implementing
the optimization strategy on the reported data (CDC suppresses firearm homicides in

cities where there are fewer than ten incidents). These serve as bounds for the actual β̂

(dark purple open circles) and β̂k (light purple squares) obtained using only the
reported data; horizontal lines (whiskers) denote the limit of the 95% confidence
interval. The horizontal dashed line represents the limit above which the scaling relation
is superlinear.

Table 1. Results on urban scaling exponent for firearm homicides in the U.S. MSAs and MicroSAs from 2016
to 2020, using suppressed and complete data.

Year
Firearm Homicides - MSA and MicroSA

top-k% β̂k (Rk)2 β̂ R2 β̂min β̂max

2016 79.5 0.578 [0.463; 0.694] 0.615 0.912 [0.865; 0.959] 0.6869 0.402 1.175
2017 79.8 0.601 [0.479; 0.723] 0.610 0.936 [0.891; 0.981] 0.7087 0.439 1.183
2018 79.3 0.611 [0.496; 0.727] 0.635 0.902 [0.856; 0.948] 0.6863 0.402 1.175
2019 80.4 0.506 [0.406; 0.606] 0.600 0.896 [0.850; 0.941] 0.6863 0.399 1.153
2020 76.7 0.594 [0.492; 0.697] 0.597 0.967 [0.921; 1.013] 0.7026 0.490 1.229

The second column shows the ratio of reported firearm homicides (top-k%). The third and fourth columns provide the β̂k and

its adjusted (Rk)2. The fifth column presents β̂ estimates for the complete data along with the adjusted R2. The last two

columns refer to the minimum and maximum bounds for β̂, β̂min and β̂max, computed using only the censored data reported
by the CDC.

We apply our bounding scheme assuming each suppressed county had between one 218

and nine counts of homicide. Our results indicate that β̂max > 1 and β̂min < 1 across all 219

years so that when working with partial data, one should be prudent in interpreting 220

their results (Fig 3 and Table 1). In particular, the fact that the upper bound is always 221

greater than 1 indicates that one should not exclude the possibility that their inference 222

based on partial data is incorrect. This is the case for the year 2020, when partial data 223

would yield β̂k = 0.594 with confidence [0.492; 0.697] and real data are instead 224

supportive of a linear scaling β̂ = 0.967, with a 95% confidence interval of [0.921; 1.013]. 225
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2.3.2 Recovered firearms 226

In the second case study, we investigate the scaling of firearms recovered across the U.S. 227

in 2022 with city population. These yearly data are made available by the ATF, where 228

the top-k cities per state with the most firearms recovered are reported, along with the 229

total number of firearms recovered in the entire state. Using only the reported values, it 230

is difficult to conclude whether firearms recoveries scale sublinearly or superlinearly 231

with population across the U.S states. The small sample size (10 cities for each state 232

except Vermont and Washington) does not allow for precise estimation, resulting in 233

wide confidence intervals (Table 2). 234
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To address this issue and bound the exponent β̂, we apply the developed 235

optimization algorithm with the assumption that each city has at least one firearm 236

recovered. For 11 of the 49 states (all states except of Hawaii, see Methods), it is not 237

possible to apply the optimization scheme since the number of cities other than the 238

reported top-k exceeds the number of recovered firearms outside of the top-k cities, 239

violating the underlying assumption. Out of the remaining 38 states, only three 240

(Arizona, California, and Rhode Island) have β̂max > 1. Therefore, we cannot reject the 241

hypothesis of superlinearity or linearity for these states. For the remaining states, 242

β̂max < 1, indicating a sublinear behavior of firearm recoveries with respect to city 243

population. 244

Figure 4 shows the bounds for the scaling relation when considering the combined 38 245

states and the District of Columbia (D.C.), where β̂min = −0.284 and β̂max = 0.556, 246

reflecting the trend of sublinearity in the country. For this case study, we numerically 247

explore the global optimality of the solution through exhaustive perturbations (see 248

Section D of S1 Appendix). 249

Fig 4. Urban scaling results for recovered firearms in the U.S. in 2022 after
optimization. The dots identify the optimal number of recovered firearms as a
function of the population in 28,970 Census Incorporated Places and Minor Civil
Divisions. The number of unknown recovered firearms in each of the 38 states and D.C.
was optimally distributed among the different states to compute the minimum (A) and
the maximum (B) scaling exponent β. All places were assumed to have at least one

recovered firearm. Of the 49 states, it was not possible to compute β̂min and β̂max for
11. This issue arises because, in these 11 states, the number of cities not in top-k
exceeds the number of recovered firearms there, indicating some of them had zero
firearms recovered. The bounding procedure used to compute β̂min and β̂max operates
under the assumption that every city within a state has at least one firearm recovered.
When this assumption is violated, these bounds cannot be computed.
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2.4 Sensitivity analysis 250

The proposed bounds may be prone to error due to noise in the data. In order to assess 251

the robustness of these bounds, we conduct Monte Carlo simulations to estimate 95% 252

confidence intervals in the ATF dataset. We perform two variations of the simulations. 253

The first assumes the sum of simulated values are within 5% difference with respect to 254

the real data, and the second that the top-k% of the synthetic data matches the real. 255

Each of these methods preserves different characteristics of the data (see Methods for 256

details) and allows us to estimate the 95% confidence intervals of β̂min and β̂max. We 257

observe narrow confidence intervals for both simulations, indicating robustness of the 258

bounding scheme (Table 2). For all states where β̂max < 1, the confidence intervals are 259

below 1, reinforcing our claim of sublinear scaling (Table 2). For Rhode Island, despite 260

β̂max > 1, the confidence interval using different methods are below 1, indicating 261

potential ambiguity in the scaling interpretation for this state. 262

3 Discussion 263

Urban scaling is a fundamental tool used in urban science, yielding interesting power 264

laws that capture the relationship between urban features and city population. Ideally, 265

urban scaling needs a complete dataset to derive accurate scaling exponents; however, 266

legal and ethical considerations often lead to censoring of data, thereby presenting 267

significant challenges to the estimation of urban scaling relationships. Censored data 268

differently affect cities as a function of their count of an urban feature, whereby small 269

cities are more prone to be characterized by smaller value of some urban features, 270

potentially below the minimum that agencies can share with the public. 271

In numerical simulations, we explore five factors that could impact the estimation of 272

the scaling exponent. Our results indicate that two factors critically affect the 273

estimation of scaling exponents: the proportion of known data and the variance of the 274

noise. While the role of these factors in the estimation of scaling is intuitive as both 275

determine the quality of a dataset, we also find that scaling exponents are consistently 276

underestimated. Therefore, one is more likely to correctly infer a sublinear relationship 277

and fail to infer a superlinear one. Arguably, performing OLS fitting using a top-k 278

dataset leads to systematic underestimation of the scaling exponent. For sufficiently 279

dispersed datasets (ones with high noise), the cities experiencing the largest values of 280

the urban feature under investigation may not be the most populous ones. Thus, a 281

linear model with only the top-k cities could omit cities with large populations but 282

values of the urban feature lower than the top-k. These cities have a negative residual 283

with respect to the fit on the complete dataset; discarding them will lead to 284

underestimating the scaling exponent. In real datasets, such a discrepancy may also 285

result from data segmentation, where different population segments have been found to 286

exhibit different scaling behaviors [37–39]. To address the biases that result from 287

censored data, we devise a bounding method that determines the minimum and 288

maximum possible scaling exponents, and apply it to two case studies. 289

The first case study focuses on the scaling of firearm homicides over the five-year 290

period between 2016 and 2020, where we compare the performance of a left-censored 291

dataset against that of a complete one. For the complete dataset, we find a sublinear 292

relationship for all years except for 2020, when the COVID-19 pandemic started and an 293

increase in firearm purchases and violence has been documented [40,41]. In 2020, the 294

data are, in fact, indicative of a linear scaling. Using the left-censored dataset, we are 295

not able to recover such a change in time, whereby we consistently register sublinear 296

scaling of firearm homicides for all the years. Our bounding scheme successfully casts a 297

doubt on the validity of the sublinear trend. In fact, our lower bound is below one and 298
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our upper bound is above one, so that prudence is needed when drawing conclusion on 299

the scaling exponent with partial data. Interestingly, aggregating the data over multiple 300

years to mitigate zero counts may not resolve the issue of data missingness in the 301

scaling. First, aggregation could skew the inference towards superlinear scaling, by 302

systematically under counting firearm homicides in small cities without affecting the 303

counting in large cities. Second, the aggregation does not capture time trends in the 304

scaling, such as the one observed herein due to the COVID-19 pandemic (see Section E 305

of S1 Appendix). Both these factors are likely the reasons for which several studies 306

support firearm homicides to be more frequent in urban rather than rural 307

settings [12, 42–45]. 308

In the second case study, we investigate the scaling of recovered firearms in the year 309

2022. In the absence of a complete dataset, the fit of an OLS model produces extremely 310

wide confidence intervals, ranging from negative to values greater than one in some 311

cases. Thus, conclusive interpretations of scaling behavior become virtually impossible. 312

However, implementing our proposed bounding scheme allows to shed light on scaling of 313

firearm recoveries. Our results support the sublinear scaling of firearm recoveries in the 314

U.S., hinting that firearms might be more prevalent in rural areas. This notion aligns 315

with the sublinear behavior of firearm ownership and federal firearm-selling licenses 316

reported by Succar and Porfiri [12]. Similarly, a recent Pew Research Center survey has 317

shown that 46% of people who reside in rural areas reported themselves as firearm 318

owners, compared to 19% of people who live in urban areas [46]. The observed sublinear 319

scaling in firearm recoveries could also be attributed to varying strategies for tracking 320

and recovering firearms across different jurisdictions. The Tiahrt Amendment prohibits 321

federal agencies from creating searchable firearm databases, making the ATF’s firearm 322

recovery efforts extremely inefficient [47]. Under these circumstances, records of 323

completed firearm sales have become invaluable for regional law enforcement, especially 324

when maintained and retained permanently in a central database. For instance, 325

handgun sales records in California are stored in a state Department of Justice 326

database, enabling law enforcement agencies to swiftly trace the ownership of handguns 327

recovered in crimes [48]. California is also one of the three states where we observe a 328

potential superlinear relationship between city population and the number of firearms 329

recovered by the ATF (β̂max = 1.324). Additionally, it is tenable that recovering 330

firearms in smaller cities is easier than in larger ones due to familiarity among 331

locals [49, 50], their investment in creating a safe environment through community 332

policing [51, 52], and higher trust and cooperation between citizens and authorities [51]. 333

While both study cases demonstrate its value in firearm research, our bounding 334

method could also be implemented in domains other than urban science. For example, 335

recent work suggests that metabolic rates of eusocial systems scale sublinearly with the 336

mass of a colony [53,54]. Yet, practical limitations have hindered validation of this 337

proposition across a wide range of colony sizes, as measurements of metabolic rates for 338

small colonies are difficult to capture by typical respirometry apparatuses. Similarly, 339

performing experiments on large colonies is challenged by housing requirements in the 340

laboratory. As such, data in these metabolic studies are left- and right-censored. Our 341

approach could help overcome those data limitations by bounding the scaling exponents 342

of partial datasets and inferring the metabolism laws of colonies. Another possible 343

application is in the field of environmental studies, where concentration of pollutants or 344

chemicals is often left-censored because analytical instruments have detection limits 345

below which pollutants cannot be accurately measured [55]. Instead of reporting an 346

exact concentration, values below the detection limit are commonly recorded as “less 347

than” the limit or the percent detected [56,57]. By applying our approach to these 348

left-censored datasets, environmental scientists could bound the scaling exponents that 349

describe the relationship between chemical concentrations and various environmental 350
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factors. 351

Our study has five significant limitations. First, in the numerical simulations we 352

consider the residuals to be normally distributed. This assumption may not always be 353

appropriate [58], hindering the generalization of our conclusions to scenarios where the 354

errors do not follow a normal distribution. The second limitation concerns the 355

acquisition of data on city populations in the firearm recoveries case study. The ATF 356

does not have a consistent definition of a city. While most of the cities included in the 357

top-k list correspond to census incorporated places and minor civil divisions, some do 358

not. This is the case for 22 areas, such as Eagle River in Alaska (a community within 359

the Municipality of Anchorage). In our analysis we consider only census incorporated 360

places and minor civil divisions [59], thereby excluding these 22 other areas. This 361

inconsistency in defining cities complicates the analysis, making it challenging to 362

accurately define all possible cities not mentioned in the top-k list. The third limitation 363

relates to our bounding method’s assumption that there is at least one observation in 364

each city. For the ATF case study, we were unable to bound the scaling exponent for 11 365

states because the number of cities not included in the top-k list exceeds the number of 366

firearms recovered in those areas. This limitation could be addressed in a future study 367

by combining the proposed problem with the work of Finance and Cottineau [17] that 368

employ estimation techniques to handle datasets with zero counts so that our bounding 369

method accounts for the possibility of zero observations. Fourth, our approach assumes 370

that cities are independent of each other in line with classical urban scaling theory. As a 371

result, we apply standard OLS for the estimation. We envision integrating our approach 372

with the one proposed by Xiao and Gong [19] to account for spatial interactions between 373

cities, by generalizing the objective function of our optimization. Finally, the proposed 374

optimization framework based on a greedy algorithm was developed for scaling with 375

specific cases, which may limit the generalization of the algorithm to other problems. 376

These problems may include datasets with large variances or a high number of outliers, 377

different types of constraints, or scaling that requires estimators other than OLS. 378

In conclusion, our work identifies a potential flaw in the current use of partial data 379

to draw conclusions about scaling relationships in urban data. We offer compelling 380

evidence that censored data may lead to inaccurate predictions of scaling exponents, 381

where sublinear relationships could be erroneously identified as superlinear ones. We 382

put forward a simple methodology to bound the scaling exponent from censored 383

observations, based on the solution of a constrained optimization problem that assumes 384

absence of zeros in the dataset and leverages information on the sum of all counts. We 385

propose that future reporting of urban scaling relationships in technical papers 386

(especially sublinear ones) include explicit information about the number of inaccessible 387

data points along with an estimation of the expected effect of such a data missingness. 388

The latter can be pursued through the implementation of a bounding scheme like the 389

one proposed in this work (when possible) or stress tests on the scaling exponent 390

through Monte Carlo simulations. 391

4 Methods 392

4.1 Urban scaling law 393

Given N cities, an urban scaling law is a relationship between some urban feature of 394

interest and the city population of the form 395

Yi = CXβ
i e

εi (2)

where i = 1, . . . , N , Yi and Xi are the urban feature and population size for city i, C is 396

a common baseline, and εi is the deviation of city i from its nominal behavior. This 397
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scaling law can be written in linear form [15], 398

yi = α+ βxi + εi, (3)

where we introduce log-transformed variables yi = lnYi, xi = lnXi, and α = lnC. Since 399

urban scaling relations are linear on the log-log scale, we can estimate the parameters of 400

the scaling relationship by using OLS, which minimizes the sum of squared errors [6]. 401

Such a minimization yields 402

β̂ =

∑N

i=1(xi − x̄)(yi − ȳ)
∑N

i=1(xi − x̄)2
, (4)

403

α̂ = ȳ − β̂x̄, (5)

where α̂ and β̂ are the estimated values of α and β, and x̄ and ȳ are the averages of the 404

log-transformed population size and urban feature, respectively. One of the limitations 405

of OLS regression is that it requires complete data for all variables included in the 406

model to ensure unbiased estimation. If there are missing data points, OLS may result 407

in biased and unreliable regression coefficients [21]. 408

4.2 Assessing bias in urban scaling due to censored data 409

The synthetic data are simulated according to a true scaling law, 410

Y = Xβeε, ε ∼ N (0, σ), with zero intercept (lnC = 0). This true scaling law serves as 411

a baseline for comparing estimated scaling laws when using β̂k, allowing us to quantify 412

the bias more accurately. The synthetic data are generated to account for different 413

scenarios of scaling that could be produced by a real dataset. Specifically, we identify 414

the population distribution, the true slope (β), standard deviation of the error (σ), size 415

of the dataset (N), and the proportion of known data points (top-k%) out of the dataset 416

as parameters that could meaningfully alter the estimation of the scaling exponent. 417

To assess whether the marginal distribution of X affects the estimated β̂k, two 418

population distributions are considered, normal (N (105, 104)) and log-normal 419

(LN (10, 0.1)), and sampled using numpy (version 1.26.4; [60]). For each population 420

distribution, we employ a factorial design varying the other four parameters: 421

β ∈ {2/3, 5/6, 7/6, 4/3}, σ ∈ {0.01, 0.05, 0.1}, N ∈ {100, 500, 3000}, and 422

top−k% ∈ {25%, 50%, 75%}. The values of β were selected based on the literature on 423

urban scaling laws, which have helped identify typical scaling exponents as a function of 424

the city organization and type of urban feature [13, 61]. In total, the factorial design for 425

each distribution contains 108 combinations (216 in total). 426

For each possible combination in the factorial design, linear regression is performed 427

on the subset of the known top−k% data points to obtain a value of β̂k. We simulate 428

the experiment on the entire design 500 times, totaling 108, 000 observations. To further 429

assess how the bias resulting from using censored data affects the estimation of scaling 430

relationships, we also look at the TPR of real superlinear and sublinear scaling relations. 431

Specifically, for sublinear scaling cases (β < 1), we consider estimates as true only when 432

the upper bound of β̂k < 1. Similarly, for superlinear cases (β > 1), we consider 433

estimates as true only when the lower bound of β̂k > 1. TPR is then computed as the 434

fraction of correct estimates out of all 500 estimates. 435
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4.3 Greedy algorithm to bound the scaling exponent 436

The bounding method consists of optimizing over Yuk to estimate the scaling exponent 437

using the OLS estimator derived from Eq (4), denoted as 438

fβ
(
X,Yk,Yuk

)
=
N

(∑k

i=1 lnXi lnY
k
i +

∑N

i=k+1 lnXi lnY
uk
i

)

N
∑N

i=1 (lnXi)
2 −

(∑N

i=1 lnXi

)2

−

∑N

i=1 lnXi

(∑k

i=1 lnY
k
i +

∑N

i=k+1 lnY
uk
i

)

N
∑N

i=1 (lnXi)
2 −

(∑N

i=1 lnXi

)2
.

(6)

To find the maximum or minimum regression slopes, we construct the unknown 439

observations Y uk
i . As an initial step, we assign Y uk

i = Ymin,i, where Ymin,i ≥ 1 in 440

accordance with the assumption that all cities must have non-zero values for their 441

feature, which may be violated in reality. To find the Yuk entries that result in β̂max 442

(β̂min), we iteratively increase the value of each entry by one, without surpassing Ymax,i, 443

and seek the largest increase (decrease) of fβ . In other words, for each iteration over the 444

entries of Yuk, we compare the values of fβ for all updated entries and identify the 445

entry that results in the largest (or smallest) value of β̂. If two or more entries produce 446

the same result for fβ , the algorithm will select the first entry that appears in the order 447

of iteration. We end the process when the sum of known and unknown values matches 448

S. This greedy scheme is detailed in Algorithms 1 and 2. To gain a better intuition 449

about the procedure, we describe it using the following equation: 450

Y
t = Y

t−1 + argmax
e∈ξ

{fβ
(
X,Yk,Yt−1 + e

)
| Ymin,i ≤ Y

t−1
i ≤ Ymax,i}, (7)

for t = 1, · · · , tf , where tf = S −
∑k

i=1 Y
k
i −

∑N

i=k+1 Y
0
i , Y

0 = [Ymin,k+1, · · · , Ymin,N ]T , 451

and ξ is the set of all standard basis vectors of length N − k, that is, 452

{[1, 0, ..., 0]T , ..., [0, 0, ..., 1]
T}. The maximum regression slope is found during the last 453

iteration, β̂max = fβ
(
X,Yk,Ytf

)
. The optimization in Eq (7) is executed through 454

exhaustive search, that is, searching over the entire set ξ. 455

Algorithm 1 Greedy algorithm to find β̂max

Input: X,Yk,Ymin,Ymax, fβ ,S

Output: β̂max

Initialization: Yuk ← Ymin, sum unknown← S −
∑k

i=1 Y
k
i

for iteration from 1 to sum unknown−
∑N

i=k+1 Ymin,i do

β̂max ← −∞
imax ← 0
for i from k + 1 to N do
Yaux ← Yuk

Y aux
i ← Y aux

i + 1
Ensure: Y aux

i ≤ Ymax,i

if fβ
(
X,Yk,Yaux

)
> β̂max then

β̂max ← fβ
(
X,Yk,Yaux

)
, imax ← i

end if
end for
Y uk
imax
← Y uk

imax
+ 1

end for
return β̂max
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Algorithm 2 Greedy algorithm to find β̂min

Input: X,Yk,Ymin,Ymax, fβ ,S

Output: β̂min

Initialization: Yuk ← Ymin, sum unknown← S −
∑k

i=1 Y
k
i

for iteration from 1 to sum unknown−
∑N

i=k+1 Ymin,i do

β̂min ←∞
imin ← 0
for i from k + 1 to N do
Yaux ← Yuk

Y aux
i ← Y aux

i + 1
Ensure: Y aux

i ≤ Ymax,i

if fβ
(
X,Yk,Yaux

)
< β̂min then

β̂min ← fβ
(
X,Yk,Yaux

)
, imin ← i

end if
end for
Y uk
imin
← Y uk

imin
+ 1

end for
return β̂min

4.4 Case studies of urban scaling with censored data 456

4.4.1 Firearm homicides 457

Firearm homicide data are obtained from the CDC WONDER database and NCHS’s 458

Restricted-Use Vital Statistics Database. For both data sets, we query for incidents of 459

firearm homicides using the following ICD-10 Codes: X93 (Assault by handgun 460

discharge), X94 (Assault by rifle, shotgun, and larger firearm discharge), and X95 461

(Assault by other and unspecified firearm discharge). We filter the data for years 462

between 2016 and 2020, and group the results by year and county. Population counts in 463

each county are returned with the query. 464

We conduct scaling analyses for each year, at the level of MSA and MicroSA. We 465

begin with an OLS regression on logarithmically transformed variables to compute β̂k
466

from the left-censored dataset and β̂ from the complete dataset. The bounds β̂min and 467

β̂max for β̂ are estimated using the greedy optimization algorithm described earlier for 468

the censored data. Cities with null values are removed from the analysis. 469

For the MSA and MicroSA level analysis, we first convert county level data to MSAs 470

and MicroSAs. We rely on the U.S. Bureau of Labor Statistics’ Quarterly Census of 471

Employment and Wages County-MSA-CSA Crosswalk [62] to aggregate counts of 472

firearm homicides in counties to MSAs and MicroSAs, based on county codes. The total 473

number of homicides (S) in all the MSAs and MircroSAs is also reported. After 474

grouping the counties into their respective MSA or MicroSA, we take the ones that do 475

not have any suppressed counties and construct the vector Yk. Each element of Yuk
476

consists of an MSA/MicroSA that has at least one suppressed county. Let hi represent 477

the total homicides reported in MSA/MicroSA i, and sci represent the number of 478

suppressed counties. Within each MSA/MicroSA i, the entries of Yuk are constrained 479

by Ymin,i = hi + sci and Ymax,i = hi + 9sci, since the CDC suppresses values between 480

one and nine for each county, while reporting the counties with zero homicides. For 481

example, if MSA/MicroSA i has 3 suppressed counties and 14 homicides reported in 482

total, we constrain the entries of i in the range 17 to 41, corresponding to one or nine 483

homicides in each of the suppressed counties. 484
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4.4.2 Recovered firearms 485

For the analyses of the total number of firearms recovered, we manually collect data 486

from the “U.S. Firearms Trace Data by State” provided by the ATF [63]. The dataset 487

includes the total number of firearms recovered and traced by state in 2022, along with 488

the top-k cities in terms of recoveries within each state (k=10 for all states, except for 489

Vermont and Washington where k=15 and 11, respectively). Due to limited data on 490

population size in its cities, Hawaii is excluded from this analysis. The population data 491

are collected from the Census “Incorporated Places and Minor Civil Divisions 492

Datasets” [59]. Although there is no standardized definition for a city in the U.S. [36], 493

the cities included in this dataset encompass various administrative divisions such as 494

incorporated places, minor civil divisions, and census-designated places, among others, 495

leading to an inconsistent definition of what constitutes a city. 496

The scaling estimates β̂k for each state are calculated using OLS regression on 497

logarithmically transformed data. The bounds β̂min and β̂max could not be computed for 498

11 states because they have more cities than recovered firearms, indicating that in some 499

places no firearm is recovered. This situation is not accounted for in the algorithms 500

because we assume that the number of firearms recovered in each of the unknown cities 501

is between one and the smallest of the top-k, that is, Ymin,i = 1 and Ymax,i = min(Yk). 502

To extend the scaling analyses to the entire U.S., we must account for the fact that 503

each state has a different total number of recoveries. We re-define S in Equation (7) as 504

S =

G∑

j=1




kj∑

i=1

Y k
j,i +

Nj∑

i=kj+1

Y uk
j,i


 . (8)

Here, the observations are organized into G states such that there are kj reported cities 505

out of the total of Nj cities in state j. We apply the optimization algorithm with 506

vectors Yk and Yuk being constructed by stacking each state’s Yk
j and Yuk

j , 507

respectively, where j = 1, ..., 38 is the index of each state. We constrain the elements of 508

Yuk
j so that 1 ≤ Y uk

j,i ≤ min(Yk
j ), where we account for the different states having 509

different constraints depending on the top cities reported. 510

4.5 Sensitivity analysis 511

To investigate the effects of small perturbations on the optimal bounds, we compute the 512

95% confidence intervals for the ATF case study for each state separately. We rely on 513

Monte Carlo simulation to estimate the variance and the confidence intervals. 514

Specifically, for each simulation, we generate a set data points that resembles the known 515

real data reported by the ATF by sampling k synthetic urban features from the 516

power-law distribution Ỹ k
i = exp (α̂k)X β̂k

i exp (εi), with ε ∼ N (0, σ). Here, α̂k, β̂k, and 517

σ̂k are the parameters estimated from the real known data. Each time we sample the 518

vector Ỹk, we optimize accordingly to obtain a distribution for β̂min and β̂max. We 519

estimate the variance of β̂min and β̂max from 1, 000 realizations of the Monte Carlo 520

simulations using the var(·) function in R. Assuming the distributions of β̂min and β̂max 521

to be Gaussian, we compute the confidence intervals using the standard normal 522

approximation, which calls for scaling the standard error by 1.96 [64]. 523

We note that sampling Ỹk according to the estimated power law may not preserve 524

the sum of the unknown values. We propose two methods to address this issue. In 525

Method One, we disregard samples with more than a 5% difference with respect to the 526

sum of the known data, specifically 527

∣∣∣
∑k

i=1 Y
k
i −

∑k

i=1 Ỹ
k
i

∣∣∣
∑k

i=1 Y
k
i

≤ 0.05. (9)
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Hence, while optimizing, we assume that the sum of the entries of Ỹuk equals the 528

difference between the reported total and the sum of our generated indicators, 529

N∑

i=k+1

Ỹ uk
i = S −

k∑

i=1

Ỹ k
i . (10)

In Method Two, we posit that 530

N∑

i=k+1

Ỹ uk
i =

∑k

i=1 Ỹ
k
i∑k

i=1 Y
k
i

−
k∑

i=1

Ỹ k
i , (11)

retaining all samples and ensuring that the top-k% of the generated known data 531

matches the real one, 532∑k

i=1 Ỹ
k
i

S̃
=

∑k

i=1 Y
k
i

S
. (12)
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50. Belanche D, Casaló LV, Rubio MA. Local place identity: A comparison between
residents of rural and urban communities. J Rural Stud. 2021;82:242–252.
doi:10.1016/j.jrurstud.2021.01.003.

51. Sozer MA, Merlo AV. The impact of community policing on crime rates: Does the
effect of community policing differ in large and small law enforcement agencies?
Police Pract Res. 2013;14(6):506–521. doi:10.1080/15614263.2012.661151.

November 29, 2024 24/26



52. Everytown Research Policy. Community-Led Public Safety Strategies; 2022
[cited 2024 Aug 14]. Available from:
http://www-cs-faculty.stanford.edu/~uno/abcde.html.

53. Waters JS, Holbrook CT, Fewell JH, Harrison JF. Allometric scaling of
metabolism, growth, and activity in whole colonies of the seed-harvester ant
Pogonomyrmex californicus. Am Nat. 2010;176(4):501–510. doi:10.1086/656266.

54. Porfiri M, De Lellis P, Aung E, Meneses S, Abaid N, Waters JS, et al. Reverse
social contagion as a mechanism for regulating mass behaviors in highly
integrated social systems. PNAS Nexus. 2024;3(7).
doi:10.1093/pnasnexus/pgae246.

55. Hernandez-Vargas G, Sosa-Hernández JE, Saldarriaga-Hernandez S,
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Supporting information

S1 Appendix. This appendix consists of five sections that provide additional details
supporting the claims made in the main manuscript. Section A: Assessing consistency
in urban scaling. Section B: Assessing bias in urban scaling with alternative 12 values of
β and N . Section C: Optimization problem. Section D: Validity of the greedy algorithm
solution. Section E: Urban scaling of firearm homicides with complete data.
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