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Abstract

In the realm of urban science, scaling laws are essential for understanding the
relationship between city population and urban features, such as socioeconomic outputs.
Ideally, these analyses would utilize complete datasets; however, researchers often face
challenges related to data availability and reporting practices, resulting in datasets that
include only the highest observations of urban features (top-k). A key question that
emerges is: Under what conditions can an analysis based solely on top-k observations
accurately determine whether a scaling relationship is truly superlinear or sublinear? To
address this question, we conduct a numerical study to explore how relying exclusively
on reported values can lead to erroneous conclusions, revealing a selection bias that
favors sublinear over superlinear scaling. In response, we develop a method that
provides robust estimates of the minimum and maximum potential scaling exponents
when only top-k observations are available. We apply this method to two case studies
involving firearm violence, a domain notorious for its suppressed datasets, and
demonstrate how this approach offers a reliable framework for analyzing scaling
relationships with censored data.

Author summary

Over the past two decades, urban scaling has become essential for understanding the
rural-urban continuum by quantifying how urban characteristics evolve with a city’s
population size. For example, more populous cities are expected to have more patents
and wages per capita, but fewer gas stations and road surfaces. Nonetheless, access to
incomplete datasets about urban features systematically skews the conclusions derived
from this theory. This issue is particularly relevant for features related to health
outcomes, which are regularly obtained from partially censored datasets. For instance,
data on firearms in the United States remain inaccessible to the public. To address this
limitation, we developed a framework that enables urban researchers to draw reliable
conclusions about urban scaling, even when dealing with censored datasets. We
demonstrate this framework with data on firearm homicide and the number of firearms
recovered by authorities in American cities.
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1 Introduction

Scaling laws are ubiquitous in nature, describing many of the phenomena and processes
that surround us. A scaling law describes the behavior of a system through a power-law,
connecting certain properties of the system with its size [1]. Scaling laws have been
instrumental in characterizing relationships across a wide range of domains, including
biological and physical systems. For example, Kleiber’s law illustrates how metabolic
rates of organisms scale with their body mass [2]. Likewise, scaling laws in the field of
ecology indicate that the number of species supported by an ecosystem relates to its
area [3]. In the ideal gas law, scaling describes the relationships between pressure,
volume, temperature, and the number of molecules [4].

As urbanization rates are ever-increasing [5], understanding scaling of urban features
with city population is critical to urban science, management, and planning. Many
scaling relationships between the population of a city X and urban feature Y have been
documented, which have led to the development of urban scaling theory. Given N cities,
an urban scaling law takes the form of ¥; = C’Xfesi7 with ¢ =1,..., N, where C'is a
common baseline, 8 is the scaling exponent that illustrates how an urban feature varies
with city size, e is the Napier’s constant, and ¢; represents the deviation of city ¢ from
its nominal behavior [6]. The scaling parameters C' and 8 are typically computed by
logarithmically transforming the scaling law to InY; = InC + 81n X; + ¢; and fitting a
linear model [6].

Researchers have shown that urban features can scale differently with population
size, reflecting systematic relationships across urban and societal metrics. Empirical
studies demonstrate that socioeconomic features such as GDP, property values, patents,
homicides, and violent crimes exhibit a superlinear dependence on city population
(8 > 1) [5-12], meaning that larger (smaller) cities exhibit higher (lower) rates of these
features per capita. In contrast, the space occupied by urban infrastructure such as

roads, cables and built area scales sublinearly with city population (0 < g < 1) [13,14].

Household and individual needs like total employment, housing, and water consumption,
instead, typically show a linear dependency on city population (8 = 1) [5,15].

Over the years, several studies have refined urban scaling and expanded its
framework to address methodological limitations. For example, Bettencourt et al.
distinguished cross-sectional from temporal scaling to capture temporal dynamics
beyond pure scale effects [16]. Cross-sectional scaling compares cities at a fixed point in
time, whereas temporal scaling tracks changes within cities but can be unstable in cities
with slow or negative growth. Finance and Cottineau addressed the issue of null
observations in cities during scaling analysis [17]. Although these values may be valid
(for example, a city where no patents were filed), the standard practice was to remove
them, as the logarithm of zero is undefined [18]. The authors explored alternative
methods to ordinary least squares (OLS) for fitting urban models to avoid the exclusion
of zero counts. Xiao and Gong argued that spatial dependencies exist between cities
that are geographically proximate [19]. They designed a spatial filtering method to
account for such dependencies in urban scaling and found that models that do not
account for spatial interactions may overestimate GDP in developed regions and
underestimate it in underdeveloped ones. In spite of the great strides made in the
growing field of urban scaling, the vast majority of existing analyses assume access to a
complete data set when fitting the model.

When working with city-level data, access to complete datasets becomes a common
challenge. One cause of incomplete data is the obligation of government agencies to
prevent the identifiability of sensitive information. For example, the Centers for Disease
Control and Prevention Wide-Ranging Online Data for Epidemiological Research (CDC
WONDER) publishes data on the underlying causes of death among United States
(U.S.) citizens. They provide the yearly counts of each cause of death at the resolution
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of the entire country, states, and counties. However, to protect individuals’ privacy, the
agency suppresses counts of nine and lower. Hence, urban scaling research on causes of
death in the U.S. are difficult to perform. Similarly, the Tiahrt Amendments [20]
impose restrictions on the reporting of data by the U.S. Bureau of Alcohol, Tobacco,
Firearms and Explosives (ATF), limiting the disclosure of trace data related to firearms
used in crimes to the public. Instead of sharing complete data, the ATF is only allowed
to report limited information, such as the top ten cities in each state with the highest
number of gun recoveries and the total number of firearms recovered in that state. For
both the CDC WONDER and ATF cases, data is censored because they fall below a
certain threshold, a situation known as “left-censoring”. Such data censoring poses a
serious challenge to urban scaling studies on firearm recoveries in the U.S.

Data on cities may also be incomplete due to “missingness”, where data points are
not available because they are not recorded. The reasons underlying missing data are
commonly known as “missing data mechanisms”. These mechanisms, as described
in [21], fall into three categories: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). Data MCAR occurs when there
is no relationship between whether a data point is missing and any values in the dataset,
either missing or observed. When the probability of a missing value is dependent on
other observed variables but not the value itself, it is considered MAR. In the case of
MNAR, the missingness is systematically related to unobserved data or factors not
measured by the researcher. For instance, for the CDC WONDER or ATF datasets,
data are missing not at random as they are not available when falling below a certain
threshold.

Various methods have been devised to address the issue of incomplete data. Recent
methodological research [22,23] has focused on maximum likelihood estimation
(MLE) [24,25], Bayesian estimation [26,27], and multiple imputation [28,29]. However,
most advanced statistical imputation methods mainly aim at imputing MCAR and
MAR and are not suitable for MNAR [30]. Some statistical methods have also been
developed for regression analyses when data are MNAR, such as the Tobit model and

its variations [31], Powell quantile estimators [32], or othe nonparametric estimators [33].

While effective, these methods are quite general and fail to utilize key information
provided by the reporting entity that may be accessible to researchers (for example, the
sum of the censored data). Moreover, in the context of urban scaling, the primary focus
of a model is whether scaling is superlinear or sublinear, making the precise value of a
scaling exponent less critical than its bounds.

In this paper, we aim to address censored data in the context of urban scaling. We
focus on data related to firearms and mortality, only available for the highest (“top-k”)
observations due to privacy reasons. We propose a rigorous, yet simple, method tailored
for urban scaling analysis that estimates scaling behavior. Along with the top-k
observations, the method incorporates the total counts of the feature across the dataset
in the form of a constraint, taking advantage of the aggregated observations reported in
existing datasets. By solving an optimization problem, we bound the regression slope by
providing its minimum and the maximum possible values. This approach not only
simplifies the estimation process compared to existing methods, but also provides robust
bounds necessary for determining whether an urban feature scales superlinearly or
sublinearly. Our method offers a powerful tool for urban researchers, ensuring reliable
assessment of scaling behaviors even when working with incomplete data.

In the following, we first conduct numerical simulations using both complete and
incomplete synthetic datasets to explore how the use of incomplete data could bias the
estimation of scaling laws. We then present an algorithm that iteratively distributes
missing values to unknown cities. We apply the developed framework to two case
studies. In the first, we inspect suppressed data on firearm homicides from CDC
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WONDER and complete data from National Center for Health Statistics’ (NCHS) 105
Restricted-Use Vital Statistics Data. We compare the estimates of the scaling exponent 106
when using the incomplete and complete data and validate our S-bounding method. In 107
the second case study, we apply the bounding method on the partially reported data to 10

conclude whether firearms recovered by the ATF follow a superlinear or sublinear 100
scaling. Our results demonstrate the value of this bounding process in the study of 110
urban scaling laws when datasets suffer from censored observations. m
2 Results 2
2.1 Assessing bias in urban scaling due to censored data 13
As a first step to understand how incomplete data can bias the estimation of scaling 114

laws and the inference of superlinearity and sublinearity, we conduct a numerical study us
using both complete and incomplete synthetic datasets. We simulate the typical case of 1
health-related outcomes where data are only available for a subset of k cities with the 17
highest value of the urban feature reported (top-k), and no other information is given s
regarding other cities except for the total value of the outcome variable in larger spatial 119
units (as reported by CDC WONDER and ATF). 120

We aim to quantify the deviation of the estimated regression slope Bk (where a hat 1
refers to an estimated value and superscript k& denotes the known partial data) from the 12
true value 8 due to censored data. To this end, we compute the error of the estimation 1
(Bk — f3) over a range of changes to key factors that could impact the estimation of 3, 12

including the true scaling law exponent (3), proportion of known data (top-k%), 125
standard deviation of the error (¢), and complete dataset size (N). In addition, we 126
consider two distributions for the population data: normal and log-normal. We generate 1
random synthetic observations while systematically varying these parameters in a 128
factorial design (see Methods for details). 120

First, by using censored data, we find that the error of the estimation of 8 can be 130
relatively high, and similar for different values of 5 (Fig 1A). Interestingly, we find that =
the error of the estimation is asymmetric and biased toward sublinear scaling, such that 1
one is more likely to infer a sublinear scaling relationship although a truly superlinear 1
one exists. This asymmetry is engendered by the selection of the top-k cities based on 1
their urban feature (Fig 1B). Specifically, the top-k cities are more likely to have a 135
positive residual with respect to the linear fit on the complete dataset, so that 136
considering only them leads to underestimation of the scaling exponent. In agreement 1
with our expectations, we find that regardless of the population distribution (normal or 13
log-normal) or the value of 3, the magnitude of the error tends to increase as the 139
percent of known data becomes smaller (Fig 2A-B), and as the standard deviation of 10
the noise increases (Fig 2C-D). The error does not change with the size of the complete 1

dataset (Fig 2E-F), although we notice that for larger datasets, the variance of the 142
estimator decreases. Such a decrease does not guarantee the consistency of 3¥ (see 143
Section A of S1 Appendix). 144

November 29, 2024 4/26



top — k% =50, 0=0.05, N =500

0.0
TPR =1.0 TPR =1.0 TPR =0.0 TPR =0.166
o TPR =110 TPR=10 TPR =0.0 TPR =0.326
-0.21
Q.
J 031
<QQ
-0.41
_0.5<
I Normal I Log-normal
06 2/3 5/6 7/6 4/3
B B

O Complete Data

1 @ Partial Data o o ° =
—-=- y=Bx o ©°

J A . -
) e 00 . 5o®

o —’o’oo
¢9’" 8 o

”’,0"8 °
-

-

-
o

X
Fig 1. Bias in estimating the urban scaling exponent with censored data. (A)
Assessment of the estimate of the scaling exponent (Bk) from data generated using a
true scaling law (Y; = XZfB e for i =1,--- ,N) with X following either a normal
distribution (blue) or log-normal (orange), as a function of the true scaling exponent.
The proportion of known data points is selected based on the k-highest percent value of
the response variables Y. The violin plots represent the distribution of the error, while
the boxes inside represent the first (Q1) and third (Q3) quartiles, and their whiskers
extend to 1.5 times the interquartile range from Q1 and Q3. Each violin plot contains
500 data points. For each violin plot, we also report the true positive rate (TPR) for
the inference of sublinear (8 < 1) and superlinear (8 > 1) scaling. (B) Illustration of
the reason for bias towards sublinear scaling discovered in (A). Using a censored dataset
that only uses the top values of a selected urban feature (red filled circles) incorrectly
discounts observations in the complete dataset (open circles) that have negative residual
with respect to the true fit (black dashed line), thereby leading to biased model
estimation (red solid line).

November 29, 2024 5/26



0? B=5/6, 0=0.05, N=500 OZB B=17/6, 0=0.05, N="500
TPR=1.0 TPR=1.0 TPR=1.0 TPR=0.0 TPR = 0.0 TPR = 0.034
TPR=1.0 TPR=1.0 TPR=1.0 TPR=0.0 TPR=0.0 TPR = 0.046
0.0 0.0
02 “ 02 *’
@ @
.¥I .¥|
‘@ ‘@
-0.4 -0.4
-0.6 -0.6
I Normal [ Log-normal I Normal 0 Log-normal
-0.8 -0.8
25 50 75 25 50 75
top — k% top — k%
020 B=5/6, N =500, top — k% = 50 02D B=7/6, N =500, top — k% = 50
TPR=1.0 TPR=1.0 TPR=1.0 TPR=1.0 TPR =0.0 TPR =0.0
TPR=1.0 TPR=1.0 TPR=1.0 TPR=1.0 TPR =0.0 TPR =0.0
0.0 ” 0.0 “
-0.2 -0.2
@ @
I 1
& &
-0.4 -0.4
-0.6 -0.6
Il Normal [ Log-normal I Normal [ Log-normal
-0.8 -0.8
0.01 0.05 0.1 0.01 0.05 0.1
o4 o
04E B=5/6, 0=0.05, top — k% =50 04F B=17/6, 0=0.05, top — k% =50
TPR =0.998 TPR=1.0 TPR=1.0 TPR=0.0 TPR=0.0 TPR=0.0
TPR=1.0 TPR=1.0 TPR=1.0 TPR = 0.008 TPR=0.0 TPR=0.0
0.2 0.2
0.0
@
J-02
S = P
-0.4
-0.6
I Normal I Log-normal I Normal I Log-normal
-0.8 -0.8
100 500 3000 100 500 3000
N N

Fig 2. Factors influencing bias in estimating the urban scaling exponent

with censored data. Assessment of the estimate of the scaling exponent (Bk) from
data generated using a true scaling law (Y; = Xiﬂesi fori=1,---,N,and 8 =5/6 or
B =17/6) with X following either a normal distribution (blue) or log-normal (orange), as
a function of (A-B) proportion of known data, (C-D) standard deviation of the true
error, and (E-F) complete dataset size. The proportion of known data points is selected
based on the k-highest percent value of the response variables Y. The violin plots
represent the distribution of the error, while the boxes inside represent the first (Q1)
and third (Q3) quartiles, and their whiskers extend to 1.5 times the interquartile range
from Q1 and Q3. Each violin plot contains 500 data points. For each violin plot, we
also report the true positive rate (TPR) for the inference of sublinear (8 = 5/6) and
superlinear (8 = 7/6) scaling.
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In all of the simulations, we consider whether regressing with incomplete data causes
urban scaling classification errors by looking at the true positive rate (TPR) for true
superlinear and sublinear scaling relationships (Fig 1 and Fig 2). The TPR measures
the proportion of sublinear (superlinear) cases correctly identified by a model as such,
allowing us to evaluate the performance of hypothesis testing regarding sublinear or
superlinear dependence on population. For instance, in the case of true superlinear
scaling relations, the TPR represents the proportion of correctly identified superlinear
relations when only a certain proportion of the data is known (8 > 1 and Bk > 1; see
Methods). Due to the asymmetry in the errors (3% is underestimated), we find that the
TPR for superlinear scaling is less than that for sublinear scaling, potentially being as
low as zero.

In Section B of S1 Appendix, we present results in Fig 2 for 8 = 2/3 and 4/3 where
similar trends are observed. We also show the relationship between the error in the
estimation of the scaling exponent when using censored data and the coefficient of
determination of the censored data estimation (R*)2, where we see that the higher
(R*)?2, the lower the bias.

2.2 Greedy algorithm to bound the scaling exponent

We devise a general bounding framework that uses a greedy optimization to estimate
the minimum and maximum possible scaling exponents, Bmin < B < Bmax. By
computing these bounds, we aim to reach a more reliable conclusion about a scaling
behavior, while effectively addressing the biases encountered when using OLS on the
censored data. Within a system of N cities, we address the case in which the researcher
has only access to urban measurements in a subsystem of k < N cities, and the total
count of the urban feature S across all N cities. In order to find the upper bound of the
scaling exponent (Bmax), we solve the constrained optimization problem

k N
Binax = max{ fs (X YSY™) (8= Y+ Y V™ Viing < V™ < Yo}, (1)
i=1 i=k+1
where the column vector X = [X7,---, Xx|? contains the population sizes of all N
cities, Y¥ = [Ylk, e ,Ykk]T comprises the k known values of the urban feature,
YUk = [V, YR consists of the N — k unknown values for which we are

optimizing. Similar to city population data, we also consider the urban features to be
positive integer numbers. We denote vectors and matrices in bold and use T for matrix
transpose. The function fg (X, Yk,Yuk) represents the OLS estimator of the scaling
exponent (for further details, see Methods).

In this greedy approach, we pose that the sum of VX and Y;"* over i is equal to the
total of the urban feature S. In addition, we constrain Yi“k between Ypini and Ymax,i,
the values of which will depend on the reporting and censoring process. The lower
bound of the scaling exponent (Bmin) can be written equivalently to Eq (7) (see
Methods), with “min” instead. Once obtained, the upper and lower bounds can be used
to verify the validity of inferences based on partial datasets. In fact, Bmax < 1 will offer
backing to the inference of sublinear scaling and Bmin > 1 to the inference of superlinear
scaling. Some insight into the optimal Y'¥ can be garnered by linearizing the objective
function and solving the optimization problem analytically (see Section C of S1
Appendix). Such an analysis suggests that bigger cities should be assigned values close
t0 Yax,i and smaller cities values close to Yy i, thereby maximizing the contrast
between them.
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2.3 Case studies of urban scaling with censored data

To demonstrate the value of the our bounding scheme in urban research, we apply it to
two real datasets with partial observations: firearm homicides from the CDC and
firearms recovered by the ATF. In the CDC case study, we obtained access to the
uncensored dataset from the National Center for Health Statistics (NCHS) [34] allowing
us to validate the scaling conclusions. Such privilege is not granted with the ATF study
case. Applying our framework to these datasets, we not only gain a deeper
understanding of firearm-related violence and crimes in the U.S., but also demonstrate
how this optimization process can be generalized to other censored datasets for
estimating scaling laws.

2.3.1 Firearm homicides

Similar to Bettencourt et al. [16], we perform cross-sectional scaling of firearm
homicides with population for U.S. cities, over the five-year period between 2016 and
2020 (Fig 3). The results are presented for cities, encompassing both Metropolitan
Statistical Areas (MSAs) and Micropolitan Statistical Areas (MicroSAs). While urban
scaling relations are highly sensitive to the spatial boundaries defining a city [35], there
is no standardized definition for a city in the U.S. Consequently, both MSAs and
MicroSAs are commonly used as functional cities in analyses [36].

Urban scaling for firearm homicides in the U.S. exhibits a power-law relation with
city population using both the censored and complete datasets. Using a censored
dataset leads to the inference of a sublinear relationship across all years, with the true
exponent being consistently underestimated ,é’k < B (Fig 3). With the complete dataset,
B reflects a strictly sublinear relationship for all years, except in the year 2020. In this
year, when the reported MSAs and MicroSAs account for about three quarters of the
total firearm homicides, 8 = 0.967, with a 95% confidence interval of [0.921;1.013]
(Table 1). Given the confidence interval, we cannot reject the hypothesis that 5 = 1.
We also note that the coefficient of determination of the complete model (R?) is larger
than that of the partial data ((R*)?), indicating that using OLS regression on the
complete dataset could yield better-fitted results (Table 1).
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Fig 3. Urban scaling exponent of firearm homicides in the U.S. MSAs and
MicroSAs (2016-2020). Yellow dots and orange diamonds represent the minimum
(Bmin) and maximum (Bmax) scaling exponent, respectively, obtained by implementing
the optimization strategy on the reported data (CDC suppresses firearm homicides in
cities where there are fewer than ten incidents). These serve as bounds for the actual B
(dark purple open circles) and Bk (light purple squares) obtained using only the
reported data; horizontal lines (whiskers) denote the limit of the 95% confidence
interval. The horizontal dashed line represents the limit above which the scaling relation
is superlinear.

Table 1. Results on urban scaling exponent for firearm homicides in the U.S. MSAs and MicroSAs from 2016
to 2020, using suppressed and complete data.

Firearm Homicides - MSA and MicroSA

Year _ _ . _
tOp—k% Bk (Rk)2 6 R2 Bmin 6max
2016 79.5 0.578 [0.463; 0.694] 0.615 0.912 [0.865; 0.959] 0.6869 0.402 1.175
2017 79.8 0.601 [0.479; 0.723]  0.610 0.936 [0.891; 0.981] 0.7087 0.439 1.183
2018 79.3 0.611 [0.496; 0.727]  0.635 0.902 [0.856; 0.948] 0.6863 0.402 1.175
2019 80.4 0.506 [0.406; 0.606] 0.600 0.896 [0.850; 0.941] 0.6863 0.399 1.153
2020 76.7 0.594 [0.492; 0.697]  0.597 0.967 [0.921; 1.013] 0.7026 0.490 1.229

The second column shows the ratio of reported firearm homicides (top-k%). The third and fourth columns provide the % and
its adjusted (R¥)2. The fifth column presents 3 estimates for the complete data along with the adjusted R2. The last two
columns refer to the minimum and maximum bounds for 3, Bnin and Bmax, computed using only the censored data reported

by the CDC

We apply our bounding scheme assuming each suppressed county had between one
and nine counts of homicide. Our results indicate that Bmax > 1 and Bmin < 1 across all
years so that when working with partial data, one should be prudent in interpreting
their results (Fig 3 and Table 1). In particular, the fact that the upper bound is always
greater than 1 indicates that one should not exclude the possibility that their inference
based on partial data is incorrect. This is the case for the year 2020, when partial data
would yield B = 0.594 with confidence [0.492;0.697] and real data are instead

supportive of a linear scaling B = 0.967, with a 95% confidence interval of [0.921;1.013].
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2.3.2 Recovered firearms

In the second case study, we investigate the scaling of firearms recovered across the U.S.

in 2022 with city population. These yearly data are made available by the ATF, where
the top-k cities per state with the most firearms recovered are reported, along with the
total number of firearms recovered in the entire state. Using only the reported values, it
is difficult to conclude whether firearms recoveries scale sublinearly or superlinearly
with population across the U.S states. The small sample size (10 cities for each state
except Vermont and Washington) does not allow for precise estimation, resulting in
wide confidence intervals (Table 2).
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To address this issue and bound the exponent B, we apply the developed
optimization algorithm with the assumption that each city has at least one firearm
recovered. For 11 of the 49 states (all states except of Hawaii, see Methods), it is not
possible to apply the optimization scheme since the number of cities other than the
reported top-k exceeds the number of recovered firearms outside of the top-k cities,
violating the underlying assumption. Out of the remaining 38 states, only three
(Arizona, California, and Rhode Island) have Bumax > 1. Therefore, we cannot reject the
hypothesis of superlinearity or linearity for these states. For the remaining states,
Bmax < 1, indicating a sublinear behavior of firearm recoveries with respect to city
population.

Figure 4 shows the bounds for the scaling relation when considering the combined 38
states and the District of Columbia (D.C.), where Bunin = —0.284 and Bmax = 0.556,
reflecting the trend of sublinearity in the country. For this case study, we numerically
explore the global optimality of the solution through exhaustive perturbations (see
Section D of S1 Appendix).

A

10° 10°
B = -0.285 . B.a = 0.556 .
RZ2=0.624 {-9 *

> >~ 10° 4
© ©
(0] (0]
N N
£ £
e a
®) @) 101 J

10™ - - - 10™ - - -

10° 102 10* 10° 108 10° 102 10* 10° 10°
Population Population

Fig 4. Urban scaling results for recovered firearms in the U.S. in 2022 after
optimization. The dots identify the optimal number of recovered firearms as a
function of the population in 28,970 Census Incorporated Places and Minor Civil

Divisions. The number of unknown recovered firearms in each of the 38 states and D.C.

was optimally distributed among the different states to compute the minimum (A) and
the maximum (B) scaling exponent 5. All places were assumed to have at least one
recovered firearm. Of the 49 states, it was not possible to compute Bmin and Bmax for
11. This issue arises because, in these 11 states, the number of cities not in top-k
exceeds the number of recovered firearms there, indicating some of them had zero
firearms recovered. The bounding procedure used to compute Bmin and Bmax operates
under the assumption that every city within a state has at least one firearm recovered.
When this assumption is violated, these bounds cannot be computed.
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2.4 Sensitivity analysis

The proposed bounds may be prone to error due to noise in the data. In order to assess
the robustness of these bounds, we conduct Monte Carlo simulations to estimate 95%
confidence intervals in the ATF dataset. We perform two variations of the simulations.
The first assumes the sum of simulated values are within 5% difference with respect to
the real data, and the second that the top-k% of the synthetic data matches the real.
Each of these methods preserves different characteristics of the data (see Methods for
details) and allows us to estimate the 95% confidence intervals of Bmin and Bmax. We
observe narrow confidence intervals for both simulations, indicating robustness of the
bounding scheme (Table 2). For all states where Bmax < 1, the confidence intervals are
below 1, reinforcing our claim of sublinear scaling (Table 2). For Rhode Island, despite
/S’max > 1, the confidence interval using different methods are below 1, indicating
potential ambiguity in the scaling interpretation for this state.

3 Discussion

Urban scaling is a fundamental tool used in urban science, yielding interesting power
laws that capture the relationship between urban features and city population. Ideally,
urban scaling needs a complete dataset to derive accurate scaling exponents; however,
legal and ethical considerations often lead to censoring of data, thereby presenting
significant challenges to the estimation of urban scaling relationships. Censored data
differently affect cities as a function of their count of an urban feature, whereby small
cities are more prone to be characterized by smaller value of some urban features,
potentially below the minimum that agencies can share with the public.

In numerical simulations, we explore five factors that could impact the estimation of
the scaling exponent. Our results indicate that two factors critically affect the
estimation of scaling exponents: the proportion of known data and the variance of the
noise. While the role of these factors in the estimation of scaling is intuitive as both
determine the quality of a dataset, we also find that scaling exponents are consistently
underestimated. Therefore, one is more likely to correctly infer a sublinear relationship
and fail to infer a superlinear one. Arguably, performing OLS fitting using a top-k
dataset leads to systematic underestimation of the scaling exponent. For sufficiently
dispersed datasets (ones with high noise), the cities experiencing the largest values of
the urban feature under investigation may not be the most populous ones. Thus, a
linear model with only the top-k cities could omit cities with large populations but
values of the urban feature lower than the top-k. These cities have a negative residual
with respect to the fit on the complete dataset; discarding them will lead to
underestimating the scaling exponent. In real datasets, such a discrepancy may also
result from data segmentation, where different population segments have been found to
exhibit different scaling behaviors [37-39]. To address the biases that result from
censored data, we devise a bounding method that determines the minimum and
maximum possible scaling exponents, and apply it to two case studies.

The first case study focuses on the scaling of firearm homicides over the five-year
period between 2016 and 2020, where we compare the performance of a left-censored
dataset against that of a complete one. For the complete dataset, we find a sublinear
relationship for all years except for 2020, when the COVID-19 pandemic started and an
increase in firearm purchases and violence has been documented [40,41]. In 2020, the
data are, in fact, indicative of a linear scaling. Using the left-censored dataset, we are
not able to recover such a change in time, whereby we consistently register sublinear
scaling of firearm homicides for all the years. Our bounding scheme successfully casts a
doubt on the validity of the sublinear trend. In fact, our lower bound is below one and
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our upper bound is above one, so that prudence is needed when drawing conclusion on
the scaling exponent with partial data. Interestingly, aggregating the data over multiple
years to mitigate zero counts may not resolve the issue of data missingness in the
scaling. First, aggregation could skew the inference towards superlinear scaling, by
systematically under counting firearm homicides in small cities without affecting the
counting in large cities. Second, the aggregation does not capture time trends in the
scaling, such as the one observed herein due to the COVID-19 pandemic (see Section E
of S1 Appendix). Both these factors are likely the reasons for which several studies
support firearm homicides to be more frequent in urban rather than rural
settings [12,42-45].

In the second case study, we investigate the scaling of recovered firearms in the year
2022. In the absence of a complete dataset, the fit of an OLS model produces extremely
wide confidence intervals, ranging from negative to values greater than one in some

cases. Thus, conclusive interpretations of scaling behavior become virtually impossible.

However, implementing our proposed bounding scheme allows to shed light on scaling of
firearm recoveries. Our results support the sublinear scaling of firearm recoveries in the
U.S., hinting that firearms might be more prevalent in rural areas. This notion aligns
with the sublinear behavior of firearm ownership and federal firearm-selling licenses
reported by Succar and Porfiri [12]. Similarly, a recent Pew Research Center survey has
shown that 46% of people who reside in rural areas reported themselves as firearm
owners, compared to 19% of people who live in urban areas [46]. The observed sublinear
scaling in firearm recoveries could also be attributed to varying strategies for tracking
and recovering firearms across different jurisdictions. The Tiahrt Amendment prohibits
federal agencies from creating searchable firearm databases, making the ATF’s firearm
recovery efforts extremely inefficient [47]. Under these circumstances, records of
completed firearm sales have become invaluable for regional law enforcement, especially
when maintained and retained permanently in a central database. For instance,
handgun sales records in California are stored in a state Department of Justice
database, enabling law enforcement agencies to swiftly trace the ownership of handguns
recovered in crimes [48]. California is also one of the three states where we observe a
potential superlinear relationship between city population and the number of firearms
recovered by the ATF (Bmax = 1.324). Additionally, it is tenable that recovering
firearms in smaller cities is easier than in larger ones due to familiarity among

locals [49,50], their investment in creating a safe environment through community

policing [51,52], and higher trust and cooperation between citizens and authorities [51].

While both study cases demonstrate its value in firearm research, our bounding
method could also be implemented in domains other than urban science. For example,
recent work suggests that metabolic rates of eusocial systems scale sublinearly with the
mass of a colony [53,54]. Yet, practical limitations have hindered validation of this
proposition across a wide range of colony sizes, as measurements of metabolic rates for
small colonies are difficult to capture by typical respirometry apparatuses. Similarly,
performing experiments on large colonies is challenged by housing requirements in the
laboratory. As such, data in these metabolic studies are left- and right-censored. Our
approach could help overcome those data limitations by bounding the scaling exponents
of partial datasets and inferring the metabolism laws of colonies. Another possible
application is in the field of environmental studies, where concentration of pollutants or
chemicals is often left-censored because analytical instruments have detection limits
below which pollutants cannot be accurately measured [55]. Instead of reporting an
exact concentration, values below the detection limit are commonly recorded as “less
than” the limit or the percent detected [56,57]. By applying our approach to these
left-censored datasets, environmental scientists could bound the scaling exponents that
describe the relationship between chemical concentrations and various environmental
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factors.

Our study has five significant limitations. First, in the numerical simulations we
consider the residuals to be normally distributed. This assumption may not always be
appropriate [58], hindering the generalization of our conclusions to scenarios where the
errors do not follow a normal distribution. The second limitation concerns the
acquisition of data on city populations in the firearm recoveries case study. The ATF
does not have a consistent definition of a city. While most of the cities included in the
top-k list correspond to census incorporated places and minor civil divisions, some do
not. This is the case for 22 areas, such as Eagle River in Alaska (a community within
the Municipality of Anchorage). In our analysis we consider only census incorporated
places and minor civil divisions [59], thereby excluding these 22 other areas. This
inconsistency in defining cities complicates the analysis, making it challenging to
accurately define all possible cities not mentioned in the top-k list. The third limitation
relates to our bounding method’s assumption that there is at least one observation in
each city. For the ATF case study, we were unable to bound the scaling exponent for 11
states because the number of cities not included in the top-k list exceeds the number of
firearms recovered in those areas. This limitation could be addressed in a future study
by combining the proposed problem with the work of Finance and Cottineau [17] that
employ estimation techniques to handle datasets with zero counts so that our bounding
method accounts for the possibility of zero observations. Fourth, our approach assumes
that cities are independent of each other in line with classical urban scaling theory. As a
result, we apply standard OLS for the estimation. We envision integrating our approach
with the one proposed by Xiao and Gong [19] to account for spatial interactions between
cities, by generalizing the objective function of our optimization. Finally, the proposed
optimization framework based on a greedy algorithm was developed for scaling with
specific cases, which may limit the generalization of the algorithm to other problems.
These problems may include datasets with large variances or a high number of outliers,
different types of constraints, or scaling that requires estimators other than OLS.

In conclusion, our work identifies a potential flaw in the current use of partial data
to draw conclusions about scaling relationships in urban data. We offer compelling
evidence that censored data may lead to inaccurate predictions of scaling exponents,
where sublinear relationships could be erroneously identified as superlinear ones. We
put forward a simple methodology to bound the scaling exponent from censored
observations, based on the solution of a constrained optimization problem that assumes
absence of zeros in the dataset and leverages information on the sum of all counts. We
propose that future reporting of urban scaling relationships in technical papers
(especially sublinear ones) include explicit information about the number of inaccessible
data points along with an estimation of the expected effect of such a data missingness.
The latter can be pursued through the implementation of a bounding scheme like the
one proposed in this work (when possible) or stress tests on the scaling exponent
through Monte Carlo simulations.

4 Methods

4.1 Urban scaling law

Given N cities, an urban scaling law is a relationship between some urban feature of
interest and the city population of the form

Y, = CXPes (2)

where i =1,..., N, Y; and X; are the urban feature and population size for city ¢, C' is
a common baseline, and ¢; is the deviation of city ¢ from its nominal behavior. This
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scaling law can be written in linear form [15],
yi = a+ Pr; + e, (3)

where we introduce log-transformed variables y; = InY;, x; = In X;, and a = In C. Since
urban scaling relations are linear on the log-log scale, we can estimate the parameters of
the scaling relationship by using OLS, which minimizes the sum of squared errors [6].
Such a minimization yields

I zilgi - é)(yi 7). (4)

& =14 — Bz, (5)

where & and B are the estimated values of o and 3, and  and y are the averages of the
log-transformed population size and urban feature, respectively. One of the limitations
of OLS regression is that it requires complete data for all variables included in the
model to ensure unbiased estimation. If there are missing data points, OLS may result
in biased and unreliable regression coefficients [21].

4.2 Assessing bias in urban scaling due to censored data

The synthetic data are simulated according to a true scaling law,

Y = XP8e®, e ~ N(0,0), with zero intercept (InC' = 0). This true scaling law serves as
a baseline for comparing estimated scaling laws when using Bk, allowing us to quantify
the bias more accurately. The synthetic data are generated to account for different
scenarios of scaling that could be produced by a real dataset. Specifically, we identify
the population distribution, the true slope (3), standard deviation of the error (o), size
of the dataset (IV), and the proportion of known data points (top-k%) out of the dataset
as parameters that could meaningfully alter the estimation of the scaling exponent.

To assess whether the marginal distribution of X affects the estimated 3¥, two
population distributions are considered, normal (N'(10%,10%)) and log-normal
(LN (10,0.1)), and sampled using numpy (version 1.26.4; [60]). For each population
distribution, we employ a factorial design varying the other four parameters:

B €{2/3,5/6,7/6,4/3}, o € {0.01,0.05,0.1}, N € {100, 500, 3000}, and

top—k% € {25%, 50%, 75%}. The values of 8 were selected based on the literature on
urban scaling laws, which have helped identify typical scaling exponents as a function of
the city organization and type of urban feature [13,61]. In total, the factorial design for
each distribution contains 108 combinations (216 in total).

For each possible combination in the factorial design, linear regression is performed
on the subset of the known top—k% data points to obtain a value of Bk. We simulate
the experiment on the entire design 500 times, totaling 108, 000 observations. To further
assess how the bias resulting from using censored data affects the estimation of scaling

relationships, we also look at the TPR of real superlinear and sublinear scaling relations.

Specifically, for sublinear scaling cases (8 < 1), we consider estimates as true only when
the upper bound of Bk < 1. Similarly, for superlinear cases (8 > 1), we consider
estimates as true only when the lower bound of B% > 1. TPR is then computed as the
fraction of correct estimates out of all 500 estimates.
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4.3 Greedy algorithm to bound the scaling exponent

The bounding method consists of optimizing over Y"¥ to estimate the scaling exponent
using the OLS estimator derived from Eq (4), denoted as

N (S X vE+ Y, X Y

2
NEX, X, - (T X,
N k N u
doimg In X <Zi:1 In Yz‘k + Zi:k+l InY; k)
- 2
NEX (X (T, X,

To find the maximum or minimum regression slopes, we construct the unknown
observations Yi“k. As an initial step, we assign Yillk = Yhin,i, where Ypin,; > 1in
accordance with the assumption that all cities must have non-zero values for their
feature, which may be violated in reality. To find the Y"¥ entries that result in Bmax
(Bmin)7 we iteratively increase the value of each entry by one, without surpassing Ymax i,
and seek the largest increase (decrease) of fz. In other words, for each iteration over the
entries of Y, we compare the values of fz for all updated entries and identify the

fﬁ (X, 'Yk7 Yuk) —

entry that results in the largest (or smallest) value of B If two or more entries produce
the same result for fg, the algorithm will select the first entry that appears in the order
of iteration. We end the process when the sum of known and unknown values matches
S. This greedy scheme is detailed in Algorithms 1 and 2. To gain a better intuition
about the procedure, we describe it using the following equation:

yVi=y"'y argnéax{f,g (X, Y5, V" +e) | Yinin, < V7' < Yinaxii}s (7)
ec

for t = 1. atf ) where tf =85— Ef;l Y;',k - ZZZ'V:kJrl le’ yO = [Ymin,k+17 c aYmin,N]T7
and ¢ is the set of all standard basis vectors of length N — k, that is,
{[1,0,..., O]T , 10,0, ..., l]T}. The maximum regression slope is found during the last

iteration, Bmax = f3 (X, Yk, ytf). The optimization in Eq (7) is executed through
exhaustive search, that is, searching over the entire set &.

Algorithm 1 Greedy algorithm to find Brmax
Input: Xa Yk7 Ymin7 Ymax7 fﬁ7 S
Output: SBhax
Initialization: YK < Y .., sum_unknown « S — Zle YZ-k
for iteration from 1 to sum_unknown — Zi]\;kﬂ Yinin,; do

Bmax &~ —00
tmax < 0
for ¢ from k£ +1 to N do
Yaux . Yuk
Y'iaux % Y'ia.ux + 1
Ensure: Y < Yiaxi
if f5 (X, Y5, Y*™) > B, then
Bmax — fﬁ (Xva7Yaux) 77;max 1
end if
end for
MANEED A
end for
return Bmax
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Algorithm 2 Greedy algorithm to find Bmin
Input: X,Yk,YmimYmamf/%S
Output: SBuin
Initialization: Y < Y i, sum_unknown « S — Y25 | vk
for iteration from 1 to sum_unknown — Zf\ikﬂ Yinin,; do

ﬁmin <~ 00
imin <~ 0
for ¢ from k+ 1 to N do
Yaux . Yuk
}/iaux — Kaux 4+ 1
Ensure: Y*"™ < Y axi
if f5 (X, Y*, Y*%) < B, then
Bunin Fo (X, Y5 Y5 iy
end if
end for
Yok Y +1
end for
return Bmin

4.4 Case studies of urban scaling with censored data
4.4.1 Firearm homicides

Firearm homicide data are obtained from the CDC WONDER database and NCHS’s
Restricted-Use Vital Statistics Database. For both data sets, we query for incidents of
firearm homicides using the following ICD-10 Codes: X93 (Assault by handgun
discharge), X94 (Assault by rifle, shotgun, and larger firearm discharge), and X95
(Assault by other and unspecified firearm discharge). We filter the data for years
between 2016 and 2020, and group the results by year and county. Population counts in
each county are returned with the query.

We conduct scaling analyses for each year, at the level of MSA and MicroSA. We
begin with an OLS regression on logarithmically transformed variables to compute Bk
from the left-censored dataset and B from the complete dataset. The bounds Bmin and
Bmax for B are estimated using the greedy optimization algorithm described earlier for
the censored data. Cities with null values are removed from the analysis.

For the MSA and MicroSA level analysis, we first convert county level data to MSAs
and MicroSAs. We rely on the U.S. Bureau of Labor Statistics’ Quarterly Census of
Employment and Wages County-MSA-CSA Crosswalk [62] to aggregate counts of
firearm homicides in counties to MSAs and MicroSAs, based on county codes. The total
number of homicides (S) in all the MSAs and MircroSAs is also reported. After
grouping the counties into their respective MSA or MicroSA, we take the ones that do
not have any suppressed counties and construct the vector Y¥. Each element of YUK
consists of an MSA /MicroSA that has at least one suppressed county. Let h; represent
the total homicides reported in MSA /MicroSA 4, and sc; represent the number of
suppressed counties. Within each MSA /MicroSA i, the entries of Y"¥ are constrained
by Yiin,i = i + s¢; and Yinax; = hi + 9sc;, since the CDC suppresses values between
one and nine for each county, while reporting the counties with zero homicides. For
example, if MSA /MicroSA i has 3 suppressed counties and 14 homicides reported in
total, we constrain the entries of i in the range 17 to 41, corresponding to one or nine
homicides in each of the suppressed counties.
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4.4.2 Recovered firearms

For the analyses of the total number of firearms recovered, we manually collect data
from the “U.S. Firearms Trace Data by State” provided by the ATF [63]. The dataset
includes the total number of firearms recovered and traced by state in 2022, along with
the top-k cities in terms of recoveries within each state (k=10 for all states, except for
Vermont and Washington where k=15 and 11, respectively). Due to limited data on
population size in its cities, Hawaii is excluded from this analysis. The population data
are collected from the Census “Incorporated Places and Minor Civil Divisions
Datasets” [59]. Although there is no standardized definition for a city in the U.S. [36],
the cities included in this dataset encompass various administrative divisions such as
incorporated places, minor civil divisions, and census-designated places, among others,
leading to an inconsistent definition of what constitutes a city.

The scaling estimates 3% for each state are calculated using OLS regression on
logarithmically transformed data. The bounds Bmin and Bmax could not be computed for
11 states because they have more cities than recovered firearms, indicating that in some
places no firearm is recovered. This situation is not accounted for in the algorithms
because we assume that the number of firearms recovered in each of the unknown cities
is between one and the smallest of the top-k, that is, Yiin; =1 and Yiax,; = min(YX).

To extend the scaling analyses to the entire U.S., we must account for the fact that
each state has a different total number of recoveries. We re-define S in Equation (7) as

k; N;
S=> (> v+ Y v (8)
j=1 \i=1 i=k;+1

Here, the observations are organized into G states such that there are k; reported cities
out of the total of NV cities in state j. We apply the optimization algorithm with
vectors Y* and Y being constructed by stacking each state’s Y and Y},
respectively, where 7 = 1, ..., 38 is the index of each state. We constrain the elements of
Y}lk so that 1 < Y]“lk < min(Y;‘), where we account for the different states having
different constraints depending on the top cities reported.

4.5 Sensitivity analysis

To investigate the effects of small perturbations on the optimal bounds, we compute the
95% confidence intervals for the ATF case study for each state separately. We rely on
Monte Carlo simulation to estimate the variance and the confidence intervals.
Specifically, for each simulation, we generate a set data points that resembles the known
real data reported by the ATF by sampling k& synthetic urban features from the
power-law distribution 172»1‘ = exp (o}k)ka exp (g;), with e ~ N(0, ). Here, &, %, and
&% are the parameters estimated from the real known data. Each time we sample the
vector Y¥, we optimize accordingly to obtain a distribution for Bmin and Bmax. We
estimate the variance of Bmin and Bmax from 1,000 realizations of the Monte Carlo
simulations using the var(:) function in R. Assuming the distributions of Bmin and Bmax
to be Gaussian, we compute the confidence intervals using the standard normal
approximation, which calls for scaling the standard error by 1.96 [64].

We note that sampling Yk according to the estimated power law may not preserve
the sum of the unknown values. We propose two methods to address this issue. In
Method One, we disregard samples with more than a 5% difference with respect to the
sum of the known data, specifically

Zf:l }/ik - Zf:l i}ik
S Yk

< 0.05. 9)
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Hence, while optimizing, we assume that the sum of the entries of Y uk equals the
difference between the reported total and the sum of our generated indicators,

N ko
DR B (10
i=k+1 i=1
In Method Two, we posit that
k S k
Z Yuk 1, 1 Z (11)
i=k+1 21 1 Yk i=1

retaining all samples and ensuring that the top-k% of the generated known data
matches the real one,

S s
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https://github.com/dynamicalsystemslaboratory /Urban-scaling-with-missing-data,
Accession Number Link: https://github.com/dynamicalsystemslaboratory/Urban-
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Supporting information

S1 Appendix. This appendix consists of five sections that provide additional details
supporting the claims made in the main manuscript. Section A: Assessing consistency
in urban scaling. Section B: Assessing bias in urban scaling with alternative 12 values of
B and N. Section C: Optimization problem. Section D: Validity of the greedy algorithm
solution. Section E: Urban scaling of firearm homicides with complete data.
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