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In the realm of large-scale spatiotemporal data, abrupt changes are commonly occurring across 
both spatial and temporal domains. To address the concurrent challenges of detecting change 
points and identifying spatial clusters within spatiotemporal count data, an innovative method is 
introduced based on the Poisson regression model. The proposed method employs doubly fused 
penalization to unveil the underlying spatiotemporal change patterns. To efficiently estimate 
the model, an iterative shrinkage and threshold based algorithm is developed to minimize the 
doubly penalized likelihood function. The reliability and accuracy is confirmed by the statistical 
consistency properties. Furthermore, extensive numerical experiments are conducted to validate 
the theoretical findings, thereby highlighting the superior performance of the proposed method 
when compared to existing competitive approaches.

1. Introduction

In disease and epidemiology studies, datasets are commonly represented in the format of spatiotemporal count data (Schmid 
and Held, 2004; Tzala and Best, 2008). This data format encapsulates the total number of identified cases within contiguous non
overlapping areal units over consecutive time periods, offering a comprehensive perspective on the spatial and temporal dynamics 
of disease prevalence (Ansari et al., 2020). One salient characteristic in the spatiotemporal count data is that observations from geo
graphically proximate areal units and temporally close periods tend to exhibit more similar values than those farther apart (Hardisty 
and Klippel, 2010). The explicit identification and quantification of fluctuating and changing patterns over both spatial and temporal 
domains emerge as critical research objectives. This is particularly essential in disease management, where timely insights derived 
from data mining facilitate the swift implementation of prevention and control measures (Kulldorff, 2001; Kulldorff et al., 2005). 
Beyond public health and epidemiology, the implications of spatiotemporal count data change detection reverberate across diverse 
domains, including agriculture (Besag and Higdon, 1999; Paradinas et al., 2017; Zhang and Wang, 2023), environment (Gusev, 2008; 
Lee et al., 2021), and social science (Law et al., 2014).

Within spatiotemporal count data, the exploration of changes reveals two prominent dimensions: alterations in spatial relationships 
and shifts in the temporal domain. First, for spatial relationships, clustering has been widely studied and applied, and Ansari et al. 
(2020) gave a comprehensive review of spatiotemporal clustering approaches. Anderson et al. (2017) employed a Poisson regression 
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model to identify spatial clusters in the yearly counts of respiratory admissions to hospitals. Napier et al. (2019) proposed a new 
Bayesian approach to identify groups of areal units with similar temporal disease trends. Siljander et al. (2022) used a Poisson space--
time scan statistic to detect clusters varied over both time and space in Helsinki. Kulldorff (2001) introduced a space-time scan 
statistic based on Poisson likelihood, which was applied in different studies (Rogerson, 2001; Güemes et al., 2021; Mohammadi et 
al., 2022). Assuncäo et al. (2007) proposed a scored based space-time scan for point processes data. Frévent et al. (2021) and Smida 
et al. (2022) proposed distribution-free scan statistics for detecting spatial clusters in functional data. Kamenetsky et al. (2022) used 
a regularized approach to detect spatial clusters, considering time effects through a Poisson regression model. Furthermore, there 
are methods taking into consideration the effects of covariates in the context of spatiotemporal count data. Jung (2009) constructed 
a scan statistic based on generalized linear models to adjust the effects of covariates for spatial data. Lee et al. (2017) and Lee et 
al. (2020) considered spatial cluster detection for regression coefficients based on hypothesis tests. Lee et al. (2021) extended the 
approach to spatiotemporal data based on a varying coefficient regression model. In recent studies, the penalization method has been 
adopted to discover model-based clusters through regression coefficients in spatial data (Li and Sang, 2019; Wang, 2024; Ma et al., 
2020; Wang et al., 2023b; Lin et al., 2022; Wang and Zhang, 2024). Specifically, these approaches incorporate the fusion penalty 
to have sparsity in the differences of model coefficients. A zero coefficient difference implies that two locations will have the same 
estimated coefficients, which indicates that they come from the same cluster.

When delving into the changes over the time domain, temporal changes are often studied separately from spatial clustering 
through change point detection. For example, the CUSUM procedure (or cumulative summation) is a well-known method for temporal 
change-point detection (Cho and Fryzlewicz, 2015; Cho, 2016; Gromenko et al., 2017; Wang and Samworth, 2018). The CUSUM 
transformation generates test statistics, which will be compared with the standard Brownian Bridge to test the existence of the change 
point. However, the traditional CUSUM method cannot be easily applied to detect temporal change points over large-scale spatial 
domains. Altieri et al. (2015) introduced the Bayesian approach by log-Gaussian Cox process model, and the posterior distribution 
of the potential change-point distribution assumed the spatial homogeneous setup. Score statistics that capture changes in the mean 
and/or the spatiotemporal covariance were discussed under the spatiotemporal data in Xie and Siegmund (2012). Harchaoui and 
Lévy-Leduc (2010) used fused lasso to detect multiple change points in time series data and was extended to autoregressive time 
series models (Chan et al., 2014) and least absolute deviation based models (Li and Wang, 2020). Zhao et al. (2024) proposed an 
approach based on a composite likelihood to detect multiple change points in a nonstationary spatio-temporal process. Note that 
none of the temporal change-point detection methods mentioned above can handle the covariate effects.

However, to the best of our knowledge, there is currently no penalization method in the literature aforementioned that can 
simultaneously address the tasks of change points detection and spatial clusters identification with the consideration of covariates. 
In this work, we propose a novel penalized approach to simultaneously address the tasks of detecting change points and identifying 
spatial clusters for count data. We formulate an optimization problem based on Poisson likelihood and two penalty terms: a fused 
penalty for detecting change points and an adaptive spanning tree based fusion penalty for identifying spatial clusters. We develop an 
algorithm to solve the doubly-penalized estimation problem. We also investigate the theoretical properties of our proposed estimator. 
It is shown that our estimator is statistically consistent and has the capability to reveal spatial clusters and temporal changes with 
probability one. Our theoretical findings are also validated by thorough numerical experiments. Besides that, covariates are also 
incorporated in the modeling to ensure that the detected spatial and temporal changes are robust and appropriately adjusted for 
relevant covariate influences.

The article is organized as follows. In Section 2, we will propose our model and develop the model estimation method. In Section 3, 
we will establish the theoretical properties of our proposed estimator. In Section 4, we will conduct simulation studies to evaluate 
our proposed approach under different scenarios. The proposed approach will be applied to a real example in Section 5.

2. Methodology

In Section 2.1, we introduce the statistical model and the optimization problem. And in Section 2.2, we present the proposed 
algorithm to solve the optimization problem.

2.1. Statistical model

Let 𝑦𝑖𝑡 be the observed count and 𝑛𝑖𝑡 be the population size for location 𝑖 at time 𝑡, where 𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 . Consider 
the following Poisson regression model,

𝑦𝑖𝑡 ∼ Poisson
(
𝑛𝑖𝑡𝜇𝑖𝑡

)
, (1)

where 𝜇𝑖𝑡 is the rate with 𝐸(𝑦𝑖𝑡) = 𝑛𝑖𝑡𝜇𝑖𝑡. If 𝑦𝑖𝑡 denotes the number of deaths for a specific cancer, then 𝜇𝑖𝑡 represents the mortality rate. 
We will model 𝜇𝑖𝑡 based on covariates effects and time effects. Generally, we assume two types of covariates, as in Ma et al. (2020) 
and Wang et al. (2023b). Specifically, 𝒛𝑖𝑡 is the covariate vector with dimension 𝑞, which has common effects across all locations, 
and 𝒙𝑖𝑡 is the covariate vector with dimension 𝑝, which has location-specific effects. Assume the following model for 𝜇𝑖𝑡 ,

log𝜇𝑖𝑡 = 𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝜷𝑖 + 𝜂𝑡, (2)

where 𝜶 represents the vector of common regression coefficients shared by global effects, 𝜷 𝑖 ’s are location-specific regression coeffi
cients, and 𝜂𝑡 is the time effect. A special case is that 𝒙𝑖𝑡 = 1, which represents the location-specific intercept. Then, the model will 
have a simplified form,
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log𝜇𝑖𝑡 = 𝒛⊤
𝑖𝑡
𝜶 + 𝛽𝑖 + 𝜂𝑡. (3)

Assume that 𝑁 locations are from 𝐾 underlying spatial clusters {𝑘}𝐾𝑘=1, where 𝑘 contains locations belonging to cluster 𝑘. That 
is 𝜷𝑖 = 𝜷𝑖′ if location 𝑖 and location 𝑖′ are both in cluster 𝑘, for 𝑘 = 1,… ,𝐾 . Furthermore, assume that there are 𝐽 change points 
𝑡∗
𝑗
such that 𝜂𝑡 = 𝜏𝑗 if 𝑡∗𝑗−1 ≤ 𝑡 ≤ 𝑡

∗
𝑗
− 1 for 𝑗 = 1,… , 𝐽 + 1 with 𝑡∗0 = 1 and 𝑡∗

𝐽+1 = 𝑇 + 1. For an identifiability purpose, we assume 
that 𝜂1 = 0, indicating that 𝜏1 = 0. Our goal is to use observed data to estimate the number of clusters 𝐾̂ , the corresponding cluster 
structure ̂ = {̂1,… , ̂

𝐾̂
}, the estimated regression coefficients 𝜶̂, 𝜷̂𝑖, the number of changed points 𝐽 , and the corresponding time 

effects 𝜂̂𝑡.
To achieve the goal, we will construct an optimization problem based on the following likelihood function and two sets of penalty 

functions. Let 𝜼 = (𝜂1, 𝜂2,… , 𝜂𝑇 )⊤ and 𝜷 = (𝜷⊤1 ,… ,𝜷⊤
𝑁
)⊤, the negative loglikelihood function based on the model in (1) and (2) is

𝑙0 (𝜶,𝜼,𝜷) =
𝑁∑
𝑖=1 

𝑇∑
𝑡=1 

[
−𝑦𝑖𝑡

(
log𝑛𝑖𝑡 + 𝒛⊤

𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝜷𝑖 + 𝜂𝑡

)
+ 𝑛𝑖𝑡 exp

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝜷 𝑖 + 𝜂𝑡

)]
. (4)

To find change points, we consider a fused type penalty on time effects as proposed in Harchaoui and Lévy-Leduc (2010), which 
has the following form,

𝑇∑
𝑡=2 

𝛾1

(|𝜂𝑡 − 𝜂𝑡−1|, 𝜆1) , (5)

where 𝛾1 (⋅, 𝜆1) is a penalty function. There are different penalty functions in the literature, such as 𝐿1 (Tibshirani, 1996), the 
adaptive lasso (Zou, 2006), the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and the minimax concave 
penalty (MCP) (Zhang, 2010). Ma and Huang (2017) compared different penalty functions in terms of clustering performance under 
the linear regression setups and found that SCAD and MCP perform similarly, and 𝐿1 tended to give more clusters. In our work, we 
use MCP. Note that the algorithm can be easily adapted to the SCAD penalty and the theoretical properties also hold for the SCAD 
penalty. In particular, the MCP has the following form

𝛾 (𝑡, 𝜆) =

{
𝜆|𝑡|− 𝑡2

2𝛾 , |𝑡| ≤ 𝛾𝜆,
1
2 𝛾𝜆

2, |𝑡| > 𝛾𝜆. (6)

𝛾 is a built-in parameter, which is fixed at 3 as in the literature (Ma et al., 2020), 𝜆 is a tuning parameter, which will be selected 
based on data driven criteria.

If |𝜂𝑡 − 𝜂𝑡−1| is shrunk to zero, no change point is identified at time 𝑡. If |𝜂𝑡 − 𝜂𝑡−1| is not shrunk to zero, then a change point at 
time 𝑡 is detected. Let 𝝃 = (𝜉2,… , 𝜉𝑇 )⊤ =

(
𝜂2 − 𝜂1, 𝜂3 − 𝜂2,… , 𝜂𝑇 − 𝜂𝑇−1

)⊤
, then, (𝜂2,… , 𝜂𝑇 )⊤ =𝑴𝝃, where 𝑴 is a (𝑇 − 1) × (𝑇 − 1)

lower triangular matrix with nonzero elements equal to one. Thus (5) can be written as,

𝑇∑
𝑡=2 

𝛾1

(|𝜂𝑡 − 𝜂𝑡−1|, 𝜆1) = 𝑇∑
𝑡=2 

𝛾1

(|𝜉𝑡|, 𝜆1) . (7)

(7) implies that detecting zero differences between 𝜂𝑡 and 𝜂𝑡−1 is equivalent to detecting zero values of 𝜉𝑡.
To find the spatial cluster pattern, we will consider a graph based fusion penalty. Let  be an undirected connected graph  =

( ,0), where  = {𝑣1,⋯ , 𝑣𝑁} is the set of vertices with 𝑣𝑖 representing location 𝑖, and 0 = {(𝑣𝑖, 𝑣𝑖′ ) ∶ 𝑣𝑖 ≠ 𝑣𝑖′ } is the edge set. In 
areal data, we can construct this graph based on neighbor structure: if area 𝑖 and area 𝑖′ share a boundary, then (𝑣𝑖, 𝑣𝑖′ ) ∈ 0. In 
geostatistical data, we can construct this graph based on Delaunay triangulation (Lee and Schachter, 1980). A spanning tree  of the 
graph  is a connected undirected subgraph of  with no cycles and includes all the vertices of . A special spanning tree is a minimum 
spanning tree (MST). Denote 𝑑(𝑣𝑖, 𝑣𝑖′ ) as the associated weight to each edge (𝑣𝑖, 𝑣𝑖′ ) in 0, then a MST is defined as  = ( ,) such 
that this subgraph is a spanning tree and 

∑
(𝑣𝑖,𝑣𝑖′ )∈

𝑑(𝑣𝑖, 𝑣𝑖′ ) is minimized (Li and Sang, 2019). The construction of MST relies on 
the edge weights for all edges in  . If there is some prior knowledge of the weights, the weights can be constructed based on local 
estimates as used in Zhang et al. (2024), Wang et al. (2023a) and Wang and Zhang (2024). If there are no local estimates, one can 
use distance to define weights for geographical data as used in Li and Sang (2019). If the weights are not properly defined, MST will 
be constructed based on equal weights. The tree based penalty for a given an MST,  , is defined as∑

(𝑖,𝑖′)∈
𝛾2

(‖𝜷 𝑖 − 𝜷𝑖′‖, 𝜆2) , (8)

where ‖ ⋅ ‖ is the Euclidean norm,𝛾2 (⋅, 𝜆2) is the MCP with 𝛾2 = 3 and 𝜆2 is a tuning parameter that will be selected later.
Based on the property of MST, we can establish an incident matrix 𝑯 for  , which is an (𝑁 − 1) ×𝑁 full rank matrix. And 

the (𝑙, 𝑖)th entry in 𝑯 is defined as: 𝑯 𝑙,𝑖 =
⎧⎪⎨⎪⎩
1, if 𝑖 = 𝑠(𝑙),
−1, if 𝑖 = 𝑒(𝑙),
0, otherwise,

where 𝑠(𝑙) and 𝑒(𝑙) denote the starting and ending node indices of 

edge 𝑙 in  , respectively, with 𝑠(𝑙) < 𝑒(𝑙). Then, 
(
𝜷⊤
𝑖
− 𝜷⊤

𝑖′ ,
(
𝑖, 𝑖′
)
∈ 

)
=
(
𝑯 ⊗ 𝑰𝑝

)
𝜷 , where ⊗ represents the Kronecker product. Let 
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𝑯̃ =

( 1 √
𝑁
𝟏⊤

𝑯

)
, which is an 𝑁 ×𝑁 full rank matrix. Then, we can define 𝝇 = (𝝇⊤1 ,𝝇

⊤
2 ,… ,𝝇⊤

𝑁
)⊤ = (𝑯̃⊗𝑰𝑝)𝜷 . And 𝜷 = (𝑯̃⊗𝑰𝑝)−1𝝇 =

(𝑯̃−1
⊗ 𝑰𝑝)𝝇 . Thus, (8) can be written as

∑
(𝑖,𝑖′)∈

𝛾2

(‖𝜷 𝑖 − 𝜷𝑖′‖, 𝜆2) = 𝑁∑
𝑖=2 

𝛾2

(‖𝝇 𝑖‖, 𝜆2) . (9)

And (9) implies that detecting zero differences between 𝜷 𝑖 and 𝜷𝑖′ is equivalent to detecting zero values of 𝝇 𝑖.
To achieve the goal of identifying change points and finding cluster patterns simultaneously, we consider minimizing the following 

objective function, which combines the likelihood function in (4), the penalty functions for identifying change points in (5) and the 
penalty functions for finding clusters in (8),

𝐿(𝜶,𝜼,𝜷) = 1 
𝑁𝑇

𝑁∑
𝑖=1 

𝑇∑
𝑡=1 

[
−𝑦𝑖𝑡

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝜷𝑖 + 𝜂𝑡

)
+ 𝑛𝑖𝑡 exp

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝜷𝑖 + 𝜂𝑡

)]
+

𝑇∑
𝑡=2 

𝛾1

(|𝜂𝑡 − 𝜂𝑡−1|, 𝜆1)+ ∑
(𝑖,𝑖′)∈

𝛾2

(‖𝜷 𝑖 − 𝜷𝑖′‖, 𝜆2) . (10)

Let 𝜽 = (𝜶⊤,𝝃⊤,𝝇⊤)⊤, which is a (𝑞 + 𝑇 − 1 +𝑁𝑝) × 1 vector. Based on (7) and (9), the objective function (10) can be expressed 
in terms of 𝜽 as follows:

𝑄(𝜽) = 1 
𝑁𝑇

𝑁∑
𝑖=1 

𝑇∑
𝑡=1 

[
−𝑦𝑖𝑡

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝒉𝑖𝝇 +𝒎⊤

𝑡
𝝃
)
+ 𝑛𝑖𝑡 exp

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝒉𝑖𝝇 +𝒎⊤

𝑡
𝝃
)]

+
𝑇∑
𝑡=2 

𝛾1

(|𝜉𝑡|, 𝜆1)+ 𝑁∑
𝑖=2 

𝛾2

(‖𝝇 𝑖‖, 𝜆2) , (11)

where 𝒎⊤
𝑡
is the (𝑡− 1)th row of 𝑴 for 𝑡 = 2,… , 𝑇 , 𝒎1 = 𝟎𝑇−1, a (𝑇 − 1) × 1 zero vector, and 𝒉𝑖 = 𝒉̃

⊤

𝑖
⊗ 𝑰𝑝 with 𝒉̃

⊤

𝑖
is the 𝑖th row of 

𝑯̃
−1
.

2.2. Computation algorithm

Let 𝜽̂ = (𝜶̂⊤, 𝝃̂⊤, 𝝇̂⊤)⊤ be the solution to the following minimization problem for a given tree  and given 𝜆1 and 𝜆2 based on the 
objective function in (11),

𝜽̂ = argmin
𝜽
𝑄(𝜽;𝜆1, 𝜆2). (12)

To solve the minimization problem, we develop an algorithm based on the general iterative shrinkage and thresholding algorithm 
(GIST) (Gong et al., 2013). The details are outlined below.

Denote 𝑙(𝜽) = 1 
𝑁𝑇

∑𝑁
𝑖=1
∑𝑇
𝑡=1
[
−𝑦𝑖𝑡

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝒉𝑖𝝇 +𝒎⊤

𝑡
𝝃
)
+ 𝑛𝑖𝑡 exp

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝒉𝑖𝝇 +𝒎⊤

𝑡
𝝃
)]
. Given the current values of parameters 

𝜽(𝑟) at the 𝑟th step, then the (𝑟+ 1)th update 𝜽(𝑟+1) is given by,

𝜽(𝑟+1) =argmin
𝜽

𝑙
(
𝜽(𝑟)
)
+
⟨
∇𝑙
(
𝜽(𝑟)
)
,𝜽− 𝜽(𝑟)

⟩
+ 𝜌

(𝑟)

2 
‖𝜽− 𝜽(𝑟)‖2

+
𝑇∑
𝑡=2 

𝛾1

(|𝜉𝑡|, 𝜆1)+ 𝑁∑
𝑖=2 

𝛾2

(‖𝝇 𝑖‖, 𝜆2) ,
where ∇𝑙

(
𝜽(𝑟)
)
is the first order derivative of 𝑙(⋅), ⟨⋅, ⋅⟩ is the inner product and 1∕𝜌(𝑟) is the step size. The step size is determined by 

the line search criterion used in Gong et al. (2013). The detail is provided in Remark 1. Following the GIST algorithm, the problem 
is equivalent to the following proximal operator problem:

𝜽(𝑟+1) = argmin
𝜽

1
2
‖𝜽− 𝒖(𝑟)‖2 + 1 

𝜌(𝑟)

𝑇∑
𝑡=2 

𝛾1

(|𝜉𝑡|, 𝜆1)+ 1 
𝜌(𝑟)

𝑁∑
𝑖=2 

𝛾2

(‖𝝇𝑖‖, 𝜆2) , (13)

where 𝒖(𝑟) = 𝜽(𝑟) −∇𝑙
(
𝜽(𝑟)
)
∕𝜌(𝑟), and 𝜉𝑡 and 𝝇𝑖 are part of 𝜽, which need to be updated. Since there are no penalties applied to 𝜶 and 

𝝇1, 𝜶(𝑟+1) and 𝝇(𝑟+1)1 are updated based on the values in 𝒖𝑟 directly. In particular, 𝜶(𝑟+1) = 𝒖
(𝑟)
[1∶𝑞], where 𝒖

(𝑟)
[1∶𝑞] is first 𝑞 values in 𝒖

(𝑟)

correspond to 𝜶. 𝝇(𝑟+1)1 = 𝒖
(𝑟)
[(𝑞+𝑇 )∶(𝑞+𝑇+𝑝−1)], where 𝒖

(𝑟)
[(𝑞+𝑇 )∶(𝑞+𝑇+𝑝−1)] is the 𝑞 + 𝑇 to 𝑞 + 𝑇 + 𝑝− 1 elements, corresponding to 𝝇1 in 𝜽.
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Fig. 1. Two spanning trees with 25 nodes. Different shapes represent two different clusters. Dashed lines represent edges connecting two nodes. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

To update 𝜉(𝑟+1)
𝑡

, 𝑡 = 2,…𝑇 , it is equivalent to the following minimization problem,

𝜉
(𝑟+1)
𝑡

= argmin
𝜉𝑡

𝜌(𝑟)

2 

(
𝜉𝑡 − 𝑢

(𝑟)
[𝑞+𝑡−1]

)2
+𝛾1

(|𝜉𝑡|, 𝜆1) ,
where 𝑢(𝑟)[𝑞+𝑡−1] the (𝑞 + 𝑡− 1)the element in 𝒖(𝑟). To update 𝝇(𝑟+1)

𝑖
, 𝑖 = 2,…𝑁 , it is equivalent to the following minimization problem,

𝝇
(𝑟+1)
𝑖

= argmin
𝝇𝑖

𝜌(𝑟)

2 
‖𝝇 𝑖 − 𝒖(𝑟)

𝝇𝑖
‖2 +𝛾2

(‖𝝇𝑖‖, 𝜆2) ,
where 𝒖(𝑟)𝝇𝑖 is the value in 𝒖

(𝑟) corresponding to 𝝇𝑖. For MCP (Zhang, 2010), the solutions for 𝜉𝑡 and 𝝇𝑖 are

𝜉
(𝑟+1)
𝑡

=
⎧⎪⎨⎪⎩
𝑆

(
𝑢
(𝑟)
[𝑞+𝑡−1],𝜆1∕𝜌

(𝑟)
)

1−1∕
(
𝛾1𝜌(𝑟)

) if |𝑢(𝑟)[𝑞+𝑡−1]| ≤ 𝛾1𝜆1,
𝑢
(𝑟)
[𝑞+𝑡−1] if |𝑢(𝑟)[𝑞+𝑡−1]| > 𝛾1𝜆1, (14)

and

𝝇
(𝑟+1)
𝑖

=
⎧⎪⎨⎪⎩
𝑆

(
𝒖
(𝑟)
𝝇𝑖
,𝜆2∕𝜌(𝑟)

)
1−1∕

(
𝛾2𝜌(𝑟)

) if ‖𝒖(𝑟)𝝇𝑖 ‖ ≤ 𝛾2𝜆2,
𝒖
(𝑟)
𝝇𝑖

if ‖𝒖(𝑟)𝝇𝑖 ‖ > 𝛾2𝜆2, (15)

where 𝑆(𝒙, 𝜆) = (1 − 𝜆∕‖𝒙‖)+𝒙, and (𝑥)+ = 𝑥 if 𝑥 > 0, 0 otherwise.
The estimates 𝝇̂ highly depend on the pre-selected tree  , which has been discussed in Li and Sang (2019), Zhang et al. (2024) 

and Lin et al. (2022). Fig. 1 illustrates two examples of spanning trees. In these two figures, there are two clusters within 25 nodes 
(locations). In Fig. 1a, with a properly constructed tree, there is one edge between two clusters. Then, the graph can be partitioned 
into two subgraphs by removing the edge between them (the red cross in the figure), representing two clusters. However, in Fig. 1b, 
if the tree is not properly constructed, there are two edges between these two clusters. By removing these two edges (red crosses in 
the figure), the graph is partitioned into three subgraphs, leading to three clusters.

Here, we propose an adaptive approach to improve the constructed MST, which is not studied in the literature. Consider an initial 
MST based on neighbors or locations,  = ( ,). 𝜽̂ is the estimator obtained from minimizing (10) based on the given tree  . 
According to the relationship between 𝜷 and 𝝇 , we can obtain the estimator 𝜷̂ =

(
𝑯̃

−1
⊗ 𝑰𝑝

)
𝝇̂ . For any two locations in the 

original graph , we define the following weights based on estimates 𝜷̂ ,

𝑤𝑖𝑖′ =

{‖𝜷̂ ,𝑖 − 𝜷̂ ,𝑖′‖, if (𝑖, 𝑖′) ∈ 0,

∞, otherwise.
(16)

Then, a new MST  ∗ = ( ,∗) is constructed using the updated weights in (16). In the end, the final estimator 𝜽̂∗ = (𝜶̂∗, 𝝃̂
∗
, 𝝇̂∗)

is obtained by solving a minimization problem similar to (12) based on the new MST,  ∗. In particular, the penalized likelihood 
function has the following form

𝐿(𝜶,𝜼,𝜷) = 1 
𝑁𝑇

𝑁∑
𝑖=1 

𝑇∑
𝑡=1 

[
−𝑦𝑖𝑡

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝜷𝑖 + 𝜂𝑡

)
+ 𝑛𝑖𝑡 exp

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝜷𝑖 + 𝜂𝑡

)]
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+
𝑇∑
𝑡=2 

𝛾1

(|𝜂𝑡 − 𝜂𝑡−1|, 𝜆1)+ ∑
(𝑖,𝑖′)∈∗

𝛾2

(‖𝜷 𝑖 − 𝜷𝑖′‖, 𝜆2) , (17)

where the fusion type penalty is applied to the edges in ∗. Note that, compared to (10), the difference is that the penalty function 
is imposed on different edges, which are defined based on different trees. Based on the same arguments, the optimization problem is 
equivalent to minimizing the following objective function,

𝑄∗(𝜽) = 1 
𝑁𝑇

𝑁∑
𝑖=1 

𝑇∑
𝑡=1 

[
−𝑦𝑖𝑡

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝒉∗
𝑖
𝝇 +𝒎⊤

𝑡
𝝃
)
+ 𝑛𝑖𝑡 exp

(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝒉∗
𝑖
𝝇 +𝒎⊤

𝑡
𝝃
)]

+
𝑇∑
𝑡=2 

𝛾1

(|𝜉𝑡|, 𝜆1)+ 𝑁∑
𝑖=2 

𝛾2

(‖𝝇 𝑖‖, 𝜆2) , (18)

where 𝒉∗
𝑖
= 𝒉̃

∗⊤
𝑖
⊗ 𝑰𝑝, and 𝒉̃

∗⊤
𝑖

is the 𝑖th row of (𝑯̃∗)−1. Here, 𝑯̃∗ =

( 1 √
𝑁
𝟏⊤

𝑯∗

)
, and 𝑯∗ is the incident matrix corresponding 

to  ∗. With the estimator (𝜶̂∗, 𝝃̂
∗
, 𝝇̂∗) = argmin𝜽𝑄∗(𝜽), the estimated time effect and regression coefficients are 𝜼̂∗ = 𝑴𝝃̂

∗
and 

𝜷̂
∗ =

(
𝑯̃

∗
⊗ 𝑰𝑝

)−1
𝝇̂∗ =

(
𝑯̃

∗−1
⊗ 𝑰𝑝

)
𝝇̂∗.

In summary, the computational algorithm for a given 𝜆1 and a given 𝜆2 is outlined as follows:

Algorithm 1 Adaptive algorithm.
Require: : Initialize  and 𝜽(0) .
1: for 𝑟 = 0,1,2,… do 
2: Initialize 𝜌(𝑟) = 1.
3: repeat 
4: Update 𝜽(𝑟+1) based on (13), (14) and (15).
5: 𝜌(𝑟+1) = 2𝜌(𝑟) .
6: until some line search criterion is satisfied.
7: if convergence criterion is met then 
8: Stop and get the estimates 𝜽̂ .
9: else 
10: 𝑟 = 𝑟+ 1
11: end if
12: end for
13: Obtain the updated MST,  ∗ , based on 𝜽̂ .

14: Repeat steps 1 - 12 to obtain the final estimates based on  ∗ .

Remark 1. Gong et al. (2013) discussed the linear search criterion in detail. Here we follow their procedure, that is 𝑄(𝜽(𝑟+1)) ≤
𝑄(𝜽(𝑟))− 𝜎

2 𝜌
(𝑟)‖𝜽(𝑟+1) −𝜽(𝑟)‖2, where 𝜎 = 10−5 as used in Gong et al. (2013). And the convergence criterion we use here is max{|𝜃(𝑟+1)

𝑙
−

𝜃
(𝑟)
𝑙
|} < 10−4.

Remark 2. In each iteration of Algorithm 1, it conducts the updates of 𝜽 based on (13)-(15). Note that the updating in (13)-(15) is 
element-wise and the dimension of 𝜽 is (𝑞 + 𝑇 − 1 +𝑁𝑝). Thus, the per-iteration computation complexity is 𝑂(𝑇 +𝑁). Following 
Theorem 2 in Gong et al. (2013), it would requires 𝑂(1∕

√
𝜖) iterations to meet the convergence criterion max{|𝜃𝑟+1

𝑙
− 𝜃𝑟

𝑙
|} ≤ 𝜖

(𝜖 = 10−4 in our case). Thus, the total computation complexity for the iterative shrinkage and thresholding algorithm is 𝑂((𝑇 +𝑁)∕
√
𝜖)

Remark 3. The initial values can be obtained by fitting a Poisson regression model with location-specific effects 𝜷 𝑖 and individual 
time effect 𝜂𝑡.

Recall that by changing the values of 𝜆1 and 𝜆2, we can obtain the estimates of the number of changed points 𝐽 and the number 
of clusters 𝐾̂ . Following the literature Ma et al. (2020), 𝜆1 and 𝜆2 are selected based on minimizing the following modified BIC,

𝐵𝐼𝐶(𝜆1, 𝜆2) = 2𝑙0(𝜶̂, 𝜼̂, 𝜷̂) +𝐶𝑁 log(𝑁𝑇 )(𝐾̂𝑝+ 𝐽 ), (19)

where 𝑙(⋅) is the negative loglikelihood in (4), 𝐽 is the estimated number of changed points, 𝐾̂ is the estimated number of clusters, 𝑝
is the dimension of 𝒙, and 𝐶𝑁 = log(𝑁𝑝+ 𝑇 − 1).

A two-step procedure is implemented to select these two tuning parameters similar to Tang and Li (2023). First, we set 𝜆2 = 0
and select 𝜆1 for a given tree  based on BIC in (19). Specifically, 𝜆1 will be chosen from a grid of values of 𝜆1 . Second, given the 
selected 𝜆1, for each 𝜆2, we implement the algorithm described in Algorithm 1. Then, 𝜆2 will be selected based on the BIC in (19). 
Thus, we can have the final estimates.
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3. Theoretical properties

In this section, we study the theoretical properties of our proposed estimator. We will study the properties in two steps. In the first 
step, we will present the theoretical properties for a given tree  . In the second step, we will provide the properties for the estimator 
based on the adaptive tree  ∗.

First, we will introduce some notations. Let 𝜶0,𝜼0,𝜷0 be the true parameters vectors, where 𝜷0 =
(
𝜷0
1,… ,𝜷0

𝑁

)
, and the true cluster 

structure is 0 =
{
0
𝑘

}𝐾
𝑘=1, where 𝐾 is the number of clusters. For a given MST,  = ( ,), define ℂ =

{(
𝑖, 𝑖′
)
∈  ∶ 𝜷0

𝑖
≠ 𝜷0

𝑖′
}
, which 

corresponds to the edges in  and the nodes (locations) are not in the same cluster. For example, ℂ defined based on Fig. 1a will 
contains one edge, and ℂ defined based on Fig. 1b will contains two edges. Then by removing |ℂ | number of edges, we can obtain 
𝐾 ≡ |ℂ |+1 number of clusters, and the corresponding cluster structure is denoted as  . Note that, 𝐾 may not be the same as 𝐾
as discussed in Fig. 1. Let 𝜽 = (𝜶⊤,𝝃⊤,𝝇⊤)⊤ be the transformed parameter vector depending on  . Recall that 𝝇 𝑙 represents 𝜷 𝑖 − 𝜷′

𝑖

for (𝑖, 𝑖′) ∈  , where  is the edge set for the tree  . If the nonzero 𝝇 𝑙 can be identified, then the corresponding cluster structure 
can then be identified. As discussed above, if MST is properly constructed, such that by removing |ℂ | edges, we can recover the true 
cluster structure 0. Because of the one-to-one mapping relationship between 𝝇 and 𝜷 , 𝝃 and 𝜼, thus estimating 𝝇 and 𝝃 is equivalent 
to estimating 𝜷 and 𝜼. Thus, we will focus on the properties of 𝜽̂, the estimator of 𝜽 = (𝜶⊤,𝝃⊤,𝝇⊤)⊤.

Let 𝜽 ,0 be the transformed true parameters vector based on 𝜶0,𝜼0,𝜷0 for a given tree  . Let 𝑁 = {𝑖 ∈ {2,3,… ,𝑁};‖𝝇 𝑖‖ ≠
0} and 𝑁 = {𝑖 ∈ {2,3,… ,𝑁},‖𝝇 𝑖‖ = 0}, which represent the nonzero and zero sets of 𝝇 𝑖, for 𝑖 = 2,3… ,𝑁 and have penalties 
applied in the objective function. Denote 𝝇(1) and 𝝇(2) as the parameter vectors for 𝑁 and 𝑁 , respectively. Let 𝑇 and 𝑇 be 
the nonzero and zero sets of 𝜉𝑡. And denote 𝝃(1) and 𝝃(2) as the parameter vectors for 𝑇 and 𝑇 , respectively. Furthermore, denote 

𝜽 ,0 = (𝜽⊤
 ,1,0,𝜽

⊤
 ,2,0)

⊤, where 𝜽 ,1,0 =
(
𝜶⊤,𝝇⊤1 ,𝝇

⊤
(1),𝝃

⊤
(1)

)⊤
is the true nonzero parameters vector and 𝜽 ,2,0 = 𝟎 is the zero parameters 

vector. 𝑑 = 2−1 min
{‖𝝇 𝑖‖, 𝑖 ∈ 𝑁, |𝜉𝑡|, 𝑡 ∈ 𝑇

}
, represents the signal.

Let 𝑿̃ = diag(𝒙1,𝒙2,… ,𝒙𝑁 ), where 𝒙𝑖 =
(
𝒙𝑖1,…𝑥𝑖𝑇

)⊤
, 𝕏 = 𝑿̃

(
𝑯̃

−1
⊗ 𝑰𝑝

)
and 𝕄 = 𝟏𝑁 ⊗𝑴 . Let 𝕌 = (𝒁,𝕏,𝕄) =

(
𝕌1,𝕌2

)
, 

where 𝕌1 is the design matrix corresponding to 𝜽 ,1,0, and 𝕌2 is the design matrix corresponding 𝜽 ,2,0. In particular, 𝕌1 is the 
submatrix of 𝕌 corresponding to 𝜶, and nonzero 𝝇𝑖 ’s, and nonzero 𝜉𝑡’s. Then, the negative loglikelihood can be written as a matrix 
form for a Poisson regression model,

𝑙 (𝜽) = 1 
𝑁𝑇

(
−𝒚⊤ (𝒁𝜶 +𝕏𝝇 +𝕄𝝃) + 𝟏⊤𝝁 (𝜽)

)
= 1 
𝑁𝑇

(
−𝒚⊤𝕌𝜽+ 𝟏⊤𝝁 (𝜽)

)
,

where 𝝁(𝜽) is the vector of expected values of 𝑦𝑖𝑡 for 𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 evaluated at 𝜽, which is 𝑛𝑖𝑡 exp
(
𝒛⊤
𝑖𝑡
𝜶 + 𝒙⊤

𝑖𝑡
𝒉𝑖𝝇 +𝒎⊤

𝑡
𝝃
)

from the definition of a Poisson random variable. Then, the optimization problem in (11) can be considered as a penalized regression 
problem. When we know the sparsity of 𝜽 = (𝜽⊤1 ,𝜽

⊤
2 )
⊤, that is, if we know that 𝜽2 = 𝟎, then we can have the oracle estimator (Fan 

and Li, 2001; Fan and Lv, 2011) of 𝜽1 by minimizing

𝑙𝑜𝑟
(
𝜽1
)
= 1 
𝑁𝑇

(
−𝒚⊤𝕌1𝜽1 + 𝟏⊤𝝁

(
𝜽1
))
,

which becomes a traditional Poisson regression problem. In Fan and Lv (2011), they discussed the conditions for penalized regres
sion problems for generalized linear regression models in detail. Our model can be considered under their model structure after 
transformations. The existence of the oracle estimator is an important part in these problems, thus, the design matrix 𝕌1 should 
have conditions to guarantee the existence of the oracle estimator. We followed the study in Fan and Lv (2011) and adjusted their 
conditions to our model.

Furthermore, for any positive numbers, 𝑥𝑇 and 𝑦𝑇 , 𝑥𝑇 ≫ 𝑦𝑇 means that 𝑥−1𝑇 𝑦𝑇 = 𝑜(1). And for a vector 𝒛, ‖𝒛‖∞ = sup𝑗 |𝑧𝑗 |.
Below are the assumptions.

(C1) The design matrix 𝕌 satisfies that 𝜆min

[
1 
𝑁𝑇

𝕌⊤1𝕌1

]
≥ 𝑐1 for some positive constant 𝑐1, where 𝜆min(⋅) is the corresponding mini

mum eigenvalue. In addition, ‖𝒙𝑖𝑡‖max and ‖𝒛𝑖𝑡‖max are bounded, where ‖ ⋅ ‖max denotes the largest element.
(C2) 𝝁 (𝜹) is bounded by some constants 𝑀1 and 𝑀2 with 𝑀1 <𝑀2 for 𝜹 ∈0, where 𝝁(𝜹) is the vector of expected values of 𝑦𝑖𝑡

for 𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 , 0 =
{
𝜹 ∈ℝ𝑠 ∶ ‖𝜹− 𝜽 ,1,0‖∞ ≤ 𝑑

}
and 𝑠 is the dimension of 𝜽 ,1,0, and 𝜽 ,1,0 is the subvector 

of nonzero parameters.
(C3) 𝑑 ≫max

(
𝜆1, 𝜆2

)
, 𝜆1≫𝑢𝑁

−1∕2
0 , and 𝜆2≫𝑢𝑁

−1∕2
0 , where 𝑢𝑁−1∕2

0 = 𝑜 (1), 𝑢≫
√
log𝑁0, and 𝑁0 =𝑁𝑇 .

(C4) For any two locations 𝑖 and 𝑖′ in the given connected network  = ( ,0), if they are from the same cluster, then there exists a 
path connecting them such that all locations on the path belong to the same cluster.

Conditions (C1) - (C2) are commonly used conditions for the design matrix in penalized problems (Fan and Lv, 2011; Wang et al., 
2023b; Kwon and Kim, 2012) to guarantee the existence of the oracle estimator. It is reasonable to assume that the elements in the 
design matrix are bounded, which is also used in Kwon and Kim (2012) when discussing logistic regression models. The assumption 
for the minimum eigenvalue is needed for regression problems related to the Fisher information. In Condition (C2), 𝝁(⋅) represents the 
vector of the expected value of 𝑦𝑖𝑡, and it is reasonable to assume that the expected values of Poisson random variables are bounded 
in the small ball of the true parameter space. If we assume that the true parameter space is bounded, then Condition (C2) holds if 
assuming the elements in the design matrix are bounded as in Condition (C1). Note that in Fan and Lv (2011), they discussed general 
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theoretical properties for exponential families. In their Condition 4, they have the assumptions for the design matrix, which included 
the minimum and maximum eigenvalues of the design matrix. In particular, the assumption of the largest eigenvalue was defined 
within 0. Here, since we assumed ‖𝒙𝑖𝑡‖max and ‖𝒛𝑖𝑡‖max are bounded, and the 𝝁(𝜹) is bounded, Condition (C1) and Condition 
(C2) together can guarantee the Condition 4 in Fan and Lv (2011). Li and Sang (2019) and Zhang et al. (2025) also discussed the 
assumptions on the design matrix under the transformed setting. For the original design matrix, let 𝕎 be an 𝑁 ×𝐾 matrix with 
elements defined by 𝑤𝑖𝑘 = 1 if 𝑖 belongs to cluster 𝑘, 𝑤𝑖𝑘 = 0 otherwise. Define 𝕎̃ =𝕎 ⊗ 𝑰𝑝 and 𝕏̃ = 𝑿̃𝕎̃, which is a 𝑁𝑇 ×𝐾 𝑝

matrix that determines the oracle estimator based on  . Let 𝕌̃1 = (𝒁, 𝕏̃). If we assume that 𝜆min

[
1 
𝑁𝑇

𝕌̃⊤1 𝕌̃1

]
≥ 𝑐1, and that the change 

point satisfies 𝑡∗
𝑗
= 𝑐2𝑇 for some constant 0 < 𝑐2 < 1, which implies that condition (C1) holds.

Condition (C3) for tuning parameters 𝜆1, 𝜆2 and the minimum signal 𝑑 guarantee the oracle properties of the estimator, which 
are adjusted based on those in Fan and Lv (2011). The assumption between the signal (𝑑) and tuning parameters is used in models 
using penalty functions, such as lasso, SCAD and MCP (Fan and Li, 2001; Kim et al., 2008; Kwon and Kim, 2012; Zhang, 2010), in 
order to identify the nonzero values in parameters. In these type of problems, the theoretical properties of estimators are discussed 
when tuning parameters go to zero. Thus, we have 𝑢𝑁−1∕2

0 = 𝑜(1) in Condition (C3). The assumption of 𝑢 ≫
√
log𝑁0 is due to that 

the number of parameters in the model is a function of 𝑁0. The assumptions about 𝜆1≫𝑢𝑁
−1∕2
0 and 𝜆2≫𝑢𝑁

−1∕2
0 are from the proof 

as Theorem 1, which is due to the number of parameters in the model divergences and has been used in Fan and Lv (2011).
Condition (C4) is used in Zhang et al. (2024) to ensure that the locations within the same cluster are not separated by other clusters 

in the graph . In Fig. 1, we illustrate the role of MST. And if the MST is like Fig. 1a, we know that we can recover the true cluster 
structure. Since the recovery of the cluster structure depends on the structure of the MST, Condition (C4) requires that there exists 
a path or MST such that the true cluster structure can be identified by identifying nonzero edges. We can use a full graph with all 
pairwise connections or based on adjacency matrices, where the adjacency matrix presents the neighborhood structure of locations. 
In particular, if location 𝑖 and 𝑖′ are neighbors, then (𝑖, 𝑖′) ∈ 0. Moreover, based on the neighborhood structure, we can also define 
a graph based on 𝑘-nearest neighbors. Condition (C4) guarantees that by removing inner-cluster connections, the original graph can 
be reduced to 𝐾 subgraphs, which correspond to 𝐾 clusters.

Theorem 1 shows the theoretical properties of the estimator based on the objective function in (11) for a given tree  . The proof 
is provided in Appendix B.1.

Theorem 1. Assume conditions (C1)-(C3) hold, 𝑝, 𝑞, 𝑁 and the number of change points 𝐽 are fixed. Then there exists a strict local 

minimizer 𝜽̂ =
(
𝜽̂
⊤

1 , 𝜽̂
⊤

2

)⊤
of 𝑄 (𝜽) in (11) such that 𝜽̂2 = 𝟎 with probability tending to 1 as 𝑇 →∞ and ‖𝜽̂1 − 𝜽 ,1,0‖ = 𝑂𝑃 (√𝑠∕𝑁0

)
, 

where 𝑁0 =𝑁𝑇 .

Remark 4. Theorem 1 gives the sparsity and consistency of the estimator for a given tree  . The sparsity property indicates that the 
cluster structure  based on  can be recovered. But  may not be the same as 0. Under  , the corresponding tree structure can 
be the tree in Fig. 1b. Under this  , 𝑁 represents two edges with the red cross. Theorem 1 guarantees that we can estimate these 
two nonzero edges consistently, which presents three clusters.

Lemma 2 in Appendix A.2 discussed the property of the adaptive MST,  ∗, constructed based on weights in (16). Lemma 2 implies 
that the cluster structure  ∗ based on  ∗ will be the same as the true cluster structure 0 with probability approaching 1. Under  ∗, 
the corresponding tree structure can be the tree in Fig. 1a. ∗

𝑁
is the index of nonzero 𝝇𝑖 based on  ∗, which represents the one edge 

with the red cross. If the estimated index ̂∗
𝑁
is consistent, it indicates that the red cross edge is identified and the cluster structure 

is identified. Under  ∗, let 𝜽∗0 = (𝜽∗⊤1,0,𝜽
∗⊤
2,0)

⊤ be the transformed true parameters, where 𝜽∗1,0 is the subvector of nonzero parameters. 
We have the following theorem to summarize the theoretical properties of the adaptive tree based estimator based on (18). The proof 
is provided in Appendix B.2.

Theorem 2. Assume conditions (C1) - (C4) hold, 𝑝, 𝑞, 𝑁 and the number of change points 𝐽 are fixed. Based on the MST,  ∗, the 
adaptive tree based estimator 𝜽̂1 satisfies that ‖𝜽̂1 − 𝜽∗1,0‖ =𝑂𝑃 (√𝑠∕𝑁0

)
and 𝜽̂2 = 𝟎 as 𝑇 →∞. Furthermore, the sparsity property is that 

lim𝑇→∞ 𝑃
(
̂∗
𝑁
= ∗

𝑁

)
= 1 and lim𝑇→∞ 𝑃

(
̂𝑇 = 𝑇

)
= 1.

Remark 5. In Theorem 2, 𝜽∗1,0 depends on the structure of 
∗. Due to the one-to-one mapping relationship between 𝝇 and 𝜷 , when 

the sparsity structure of 𝝇 is recovered, the cluster structure of 𝜷 , 0, is also recovered.

Recall that, ∗
𝑁
is index set of nonzero 𝝇 𝑖, which represent the nonzero differences between 𝜷 𝑖 and 𝜷𝑖′ . The number of clusters 𝐾

is the number of nonzero index in ∗
𝑁
plus 1. Thus, if ∗

𝑁
is recovered, the number of clusters is properly estimated. Similarly, 𝑇 is 

the index set of nonzero 𝜉𝑡, which represents the difference between 𝜂𝑡 − 𝜂𝑡−1. Thus, if 𝑇 is recovered, the number of change points 
is properly estimated. We have the following corollary to present the results.

Corollary 1. Under the assumption in Theorem 2, we have lim𝑇→∞ 𝑃 (𝐾̂ = 𝐾) = 1 and lim𝑇→∞ 𝑃 (𝐽 = 𝐽 ) = 1, where 𝐾̂ is the estimated 
number of clusters, and 𝐽 is the estimated number of change points.
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Fig. 2. True cluster structures for simulated data. The color and shape show the underlying cluster structure. The solid lines separate the 2 clusters. 

Note that the order in our theorems is the theoretical error upper bound that can be achieved with proper 𝜆1 and 𝜆2 selection. In 
practice, the numerical error bound would be affected by the selected values of 𝜆1 and 𝜆2.

4. Simulation

In this section, we use several simulation examples to evaluate the performance of our proposed estimator. First, we compare 
our proposed method to the traditional approaches in Section 4.1 when the number of clusters is 2. Then, we evaluate our proposed 
method for different setups in Section 4.2.

4.1. Comparison to existing approaches

In this section, we will compare our proposed method to spatial scan approaches and a change point detection approach when 
the number of clusters is 2 and the number of change points is 1. To evaluate the performance of recovering cluster structure, we 
use the estimated number of clusters (𝐾̂) and adjusted Rand Index (ARI) (Hubert and Arabie, 1985). ARI computes the degree of 
overlapping between two partitions and is widely used to evaluate the clustering performance against the ground truth. ARI ranges 
from -1 to 1, and its value is equal to 1 only if a partition is completely identical to the intrinsic structure; its value is equal to -1 
when the partition is completely different from the intrinsic structure; its value is close to 0 for a random partition. To evaluate the 
performance of detecting change points, Hausdorff distance (Delfour and Zolésio, 2011) is used to calculate the distance between the 
true change point set and the estimated change point set. A zero value means that these two sets are matched. Since there is only one 
changed point under this simple case, the Hausdorff distance measures the absolute value between the true time of the change point 
and the estimated time.

We simulate our data from the model in (3) with clustered intercepts. The population value 𝑛𝑖𝑡 is generated from a lognormal 
distribution with parameters of center 10 and standard deviation 0.7. 𝑧𝑖𝑡 ’s, for 𝑖 = 1,2,… ,𝑁 and 𝑡 = 1,… , 𝑇 , are simulated from the 
standard normal distribution, and the regression coefficient 𝛼 = 0.5. For time effect 𝜂𝑡, we consider one change point with 𝜂𝑡 = 0 for 
𝑡 = 1,… ,10 and 𝜂𝑡 = −0.5 for 𝑡 = 11,… , 𝑇 = 20. For location-specific effect 𝛽𝑖, we consider two clusters with 𝑁 = 100 and the two 
spatial structures as shown in Fig. 2. Fig. 2a is a 10 × 10 grid lattice and Fig. 2b contains 100 random locations uniformly generated 
from (-1,1). In both structures, the center cluster is smaller than the outside cluster. We consider two sets of values of 𝛽𝑖 as below:

Setting 1: 𝛽𝑖 = −7 for 𝑖 in the smaller cluster and 𝛽𝑖 = −7.5 for 𝑖 in the big one; 
Setting 2: 𝛽𝑖 = −7 for 𝑖 in the smaller cluster and 𝛽𝑖 = −7.25 for 𝑖 in the big one.

We compare our proposed adaptive method (denoted as ``adaptive'') with several spatial scan statistics for functional data imple
mented in the R package HDSpatialScan (Frévent et al., 2022), including nonparametric functional scan statistic (NPFSS) (Smida et al., 
2022), parametric functional scan statistic (PFSS) (Frévent et al., 2021), distribution-free functional scan statistic (DFFSS) (Frévent et 
al., 2021) and univariate rank-based functional scan statistic (URBFSS) (Frévent et al., 2023). Besides these approaches, we consider 
two methods in the R package scanstatistics (Allevius, 2018), one is the space-time permutation scan statistic (PSS) (Kulldorff et al., 
2005) and the other one is population-based Poisson scan statistic (PPSS) (Kulldorff, 2001). The change point detection method in 
Lindeløv (2020) is denoted as ``rmcp''. Note that ``rmcp'' cannot handle change point detection for a multivariate time series and 
needs to specify the number of change points. In our simulation, we set the number of change points as the true value of 1, and use 
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Table 1
Average ARI, average 𝐾̂ and average Hausdorff distance over 100 simulations under spatial grid lattice in 
Fig. 2a. Standard deviation values are in parentheses.
Method Setting 1 Setting 2 

ARI 𝐾̂ dist ARI 𝐾̂ dist 
tree 0.569(0.052) 8.75(1.64) 0.24(1.24) 0.388(0.241) 6.07(3.21) 0.24(1.37) 
adaptive 0.994(0.064) 2.01(0.10) 0.11(0.78) 0.767(0.273) 2.60(0.71) 0.08(0.80) 
NPFSS 0.517(0.261) 1.84(0.44) - -0.005(0.017) 1.08(0.27) -

PFSS 0.019(0.109) 1.03(0.17) - -0.001(0.006) 1.02(0.14) -

DFFSS 0.003(0.028) 1.02(0.14) - 0.001(0.008) 1.01(0.10) -

URBFSS 0.192(0.281) 1.37(0.49) - 0.042(0.156) 1.08(0.27) -

PSS 0.669(0.023) 2.00(0.00) - 0.525(0.206) 2.00(0.00) -

PPSS 0.669(0.023) 2.00(0.00) - 0.525(0.206) 2.00(0.00) -

rmcp - - 3.29(0.20) - - 3.16(0.22) 

Table 2
Average ARI, average 𝐾̂ and average Hausdorff distance over 100 simulations under spatial random loca
tions in Fig. 2b. Standard deviation values are in parentheses.
Method Setting 1 Setting 2 

ARI 𝐾̂ dist ARI 𝐾̂ dist 
tree 0.179(0.011) 9.68(0.74) 0.05(0.50) 0.188(0.016) 6.25(1.38) 0.56(2.07) 
adaptive 1.000(0.000) 2.00(0.00) 0.05(0.50) 0.752(0.250) 2.52(0.59) 0.28(1.41) 
NPFSS 0.800(0.123) 1.98(0.14) - 0.027(0.140) 1.06(0.24) -

PFSS 0.143(0.307) 1.20(0.40) - 0.002(0.019) 1.02(0.14) -

DFFSS 0.003(0.030) 1.01(0.10) - 0.000(0.000) 1.00(0.00) -

URBFSS 0.079(0.175) 1.26(0.44) - 0.008(0.038) 1.04(0.20) -

PSS 0.516(0.055) 2.00(0.00) - 0.400(0.172) 2.00(0.00) -

PPSS 0.516(0.055) 2.00(0.00) - 0.400(0.172) 2.00(0.00) -

rmcp - - 3.23(0.20) - - 3.13(0.22) 

the method to detect change points for each location separately. We also consider the method using MST based on locations, denoted 
as ``tree''.

Tables 1 and 2 show the average ARI, average estimated number of cluster 𝐾̂ and average Hausdorff distance based on 100 
simulations for different methods, along with standard deviation values in parentheses. Note that the scan approaches don’t have a 
change point detection component, thus the Hausdorff distance is not reported. And ``rmcp'' is only for change point detection without 
spatial clustering component, thus ARI and 𝐾̂ are not reported. We observe that approaches based on scan statistics cannot identify 
the cluster structure well. This is because these approaches do not consider the effects of covariates and the changes in the temporal 
domain. When ignoring the spatial pattern and the covariates, ``rmcp'' cannot detect the change points correctly. When comparing 
the adaptive method to the tree based approach, we can achieve better performance in terms of estimating cluster structure. When 
comparing the results for these two settings of 𝛽𝑖 , the ARI of the adaptive approach in Setting 2 is smaller than that in Setting 1, 
which is because the cluster difference is smaller in Setting 2.

4.2. Evaluation of model performance

In this section, we will evaluate the performance of our proposed adaptive approach when the number of clusters is 5, and the num
ber of change points is 2. We will compare the adaptive approach to the tree based approach. Besides the estimated number of clusters 
𝐾̂ and ARI, we also report the estimated number of changed points (𝐽 ) and the F1 score (Sasaki, 2007) to evaluate the performance 
of detecting changed points. F1 score measures classification accuracy (changed or nonchanged) with the highest value of 1 and the 
smallest value of 0. The higher the value of the F1 score is, the better the accuracy of temporal trend detection is. The F1 score is 
defined as 𝐹1 = 2𝑃𝑅 

𝑃+𝑅 , where 𝑃 is precision and 𝑅 is recall, 𝑃 = number of true detected change-points
number of total detected change-points and 𝑅 = number of true detected change-points

number of total change-points . 
To evaluate the estimation accuracy, we report the root mean square error (RMSE) for estimating 𝜷 , 𝜼 and 𝜶. RMSE is defined as √

1 |𝜽| ‖𝜽̂− 𝜽‖2, where 𝜽 can be 𝜷 , 𝜼 or 𝜶, 𝜽̂ is an estimate of 𝜽 and |𝜽| is the dimension of 𝜽.
Similar to the setup in Section 4.1, we consider two spatial cluster structures: one is a grid lattice, and the other one is based on 

random locations. Fig. 3 shows the two underlying true cluster structures. 
We simulate data as follows: let 𝒙𝑖𝑡 = [1, 𝑥𝑖𝑡]⊤ with 𝑥𝑖𝑡 ’s are generated from 𝑁(0,1) and 𝑧𝑖𝑡’s are generated from 𝑁(0,1), for 

𝑖 = 1,2,… ,100 and 𝑡 = 1,2,… ,25. For model parameters, we set 𝛼 = 0.5, and 𝜷𝑖 takes two set of parameters for five clusters 1, 2, 
3, 4 and 5:

Setting 1: 𝜷 𝑖 = (−8,−1)𝑇 if 𝑖 ∈ 1; 𝜷𝑖 = (−7.7,−0.5)𝑇 if 𝑖 ∈ 2; 𝜷𝑖 = (−7.5,0)𝑇 if 𝑖 ∈ 3; 𝜷𝑖 = (−7.2,0.5)𝑇 if 𝑖 ∈ 4; 𝜷𝑖 = (−7,1)𝑇 if 
𝑖 ∈ 5;

Setting 2: 𝜷 𝑖 = (−8,−0.5)𝑇 if 𝑖 ∈ 1; 𝜷𝑖 = (−7.7,−0.25)𝑇 if 𝑖 ∈ 2; 𝜷𝑖 = (−7.5,0)𝑇 if 𝑖 ∈ 3; 𝜷𝑖 = (−7.2,0.25)𝑇 if 𝑖 ∈ 4; 𝜷𝑖 =
(−7,0.5)𝑇 if 𝑖 ∈ 5.
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Fig. 3. True cluster structures for simulated data. The color and shape show the underlying cluster structure. The solid lines separate the 5 clusters. 

Table 3
Summary of results over 100 simulations under spatial grid lattice in Fig. 3a.

algorithm ARI 𝐾̂ F1 dist 𝐽

S1
tree 0.597(0.025) 16.700(1.314) 0.998(0.020) 0.040(0.400) 2.010(0.100) 
adaptive 0.998(0.009) 5.010(0.100) 0.998(0.020) 0.050(0.500) 2.010(0.100) 

S2
tree 0.576(0.022) 14.620(0.850) 0.996(0.028) 0.080(0.563) 2.020(0.141) 
adaptive 0.962(0.049) 5.070(0.293) 1.000(0.000) 0.000(0.000) 2.000(0.000) 

Table 4
Summary of results over 100 simulations under spatial random locations in Fig. 3b.

algorithm ARI 𝐾̂ F1 dist 𝐽

S1
tree 0.763(0.004) 13.070(1.018) 1.000(0.000) 0.000(0.000) 2.000(0.000) 
adaptive 0.999(0.004) 5.010(0.100) 1.000(0.000) 0.000(0.000) 2.000(0.000) 

S2
tree 0.763(0.009) 12.030(0.223) 1.000(0.000) 0.000(0.000) 2.000(0.000) 
adaptive 0.985(0.016) 5.000(0.000) 1.000(0.000) 0.000(0.000) 2.000(0.000) 

The cluster difference of setting 2 is smaller than that of setting 1. We assume there are 2 changed points, one is at 𝑡 = 5 with a 
change from 0 to -0.5, and the other one is at 𝑡 = 15 with a change from -0.5 to -0.8.

Table 3 and Table 4 show the average ARI, 𝐾̂ , F1 score and 𝐽 over 100 simulations, along with standard deviations in parentheses, 
for two different spatial cluster structures. Fig. 4a and Fig. 4b show the RMSE for estimating 𝛼, 𝜷 and 𝜼 under two spatial cluster 
structures. It can be seen that the structure of trees does not affect change point detection but significantly affects cluster identification. 
The adaptive method has larger ARI values and smaller RMSE values compared to the tree based approach. The tree based approach 
tends to identify more clusters. This is because that the initial MST may not reflect the true spatial structure.

We also report the computational time for Setting 2 under the spatial random locations. The computational time is based on 30 
𝜆1 values and 30 𝜆2 values and implemented on a cluster server with Intel Xeon E5-2650 v4 (2.2 GHz). Note that the running time 
also depends on the machines. The real data analysis was implemented on a MacBook Pro with Apple M2 Chip, which is faster. Fig. 5
gives the computational time in minutes for the tree based approach and the adaptive approach. It can be seen that the computational 
time of adaptive approach is longer due to an extra estimation step. As discussed in Section 2.2, we use a two-step procedure to select 
tuning parameters, and the computational time is proportional to the number of tuning parameters. The computational time would 
be proportional to the product of the number of two tuning parameters when using a bivariate grid, which would lead to a long 
computational time.

5. Real data analysis

In this section, we apply our proposed method to data from Surveillance, Epidemiology, and End Results (SEER) program (SEER, 
2023; Duggan et al., 2016). SEER program provides cancer statistics for the U.S. population, with data collected in several states since 
1973. Currently, there are 22 registries, including states and metropolitan areas, which can cover approximately 47.9% of the U.S. 
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Fig. 4. RMSE of different parameters for spatial lattice grid (left) spatial random locations (right). In (a) and (b), the left three figures are for 𝛼, 𝜷 and 𝜼 under Setting 
1 and the right three figures are for 𝛼, 𝜷 and 𝜼 under Setting 2.

Fig. 5. Computational time in minutes for Setting 2 under the spatial random locations. 

population. SEER data are widely used in different studies for different cancers, such as breast cancer (Guha et al., 2022), lung cancer 
(Tolwin et al., 2020), colon and rectum cancer (Daly and Paquette, 2019), and respiratory system cancer (Azevedo et al., 2021). 
There are also some existing studies about cluster detection in SEER data. For example, Geng and Hu (2022) conducted an analysis of 
personal-level data on respiratory cancer to find clusters in Louisiana counties. Chernyavskiy et al. (2019) used multilevel age-period 
cohort models to analyze the heterogeneity of colon and rectum cancer incidence across different counties and age groups. Exploring 
the spatial cluster structure of incidence can help to allocate resources for interventions and enhance the understanding of spatially 
varying risk factors (Chernyavskiy et al., 2019; Amin et al., 2019).

As an illustration, we consider colon and rectum cancer in Iowa from 1995 to 2020. The response variable 𝑦𝑖𝑡 is the number of 
deaths with an age greater than 30 in each county. Under our proposed model, the covariate is poverty from the Small Area Income 
and Poverty Estimates (SAIPE) Program. The poverty data are obtained from the R package censusapi, which has a complete time 
series record from 1995 to 2020. We consider the following model for the 99 counties in Iowa from the year 1995 to 2020,

𝑦𝑖𝑡 ∼ Poisson(𝑛𝑖𝑡𝜇𝑖𝑡), log𝜇𝑖𝑡 = 𝑧𝑖𝑡𝛼 + 𝛽𝑖 + 𝜂𝑡, (20)

where 𝑛𝑖𝑡 is the population for age greater than 30 for county 𝑖 at year 𝑡, 𝑧𝑖𝑡 presents the estimated poverty for county 𝑖 at year 𝑡 from 
SAIPE, 𝛼 is the common regression coefficient, 𝛽𝑖 the county effect, and 𝜂𝑡 is the time effect. Our goal is to find the cluster structure 
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Fig. 6. Estimated cluster structure of county effect. 

of 𝛽𝑖, and to detect the change points of 𝜂𝑡 . In this analysis, we use 45 values of 𝜆1 and 45 values of 𝜆2 with 10 different initial trees 
and select the model with the smallest BIC. The computational time of these 10 models ranges from 23.88 to 26.74 minutes, which 
are implemented on a MacBook Pro with Chip Apple M2.

The estimated coefficient for poverty is 𝛼̂ = 0.0241 with standard error 0.0088, which indicates that as poverty increases, the 
expected death rate increases. Fig. 6 gives the estimated cluster structure of county effects. There is one isolated county, Johnson 
County, which has the smallest estimated 𝛽𝑖 = −8.218 with a standard error of 0.0537. This county is where Iowa City and the 
University of Iowa are located. The cluster with 𝛽𝑖 = −8.020 with a standard error of 0.0242 has the second smallest county effect. 
This cluster includes four counties: Warren, Dallas, Polk, and Story. Among these four counties, Des Moines is the capital of Iowa and 
is in Polk County; Ames is in Story County and it is the city where Iowa State University is located. The potential reasons for smaller 
intercepts, therefore, lower expected death rates in these five counties after adjusting the effect of the covariate, can be education and 
income. Note that the University of Iowa and Iowa State University are the two largest public universities in Iowa. The University of 
Iowa (Johnson County) has hospitals and a public health college; Iowa State University (Story County) also has research related to 
public health. Warren, Dallas, and Polk counties are the top three counties in terms of average median income during the analyzed 
period from the SAIPE. Besides these two small clusters, there are two larger clusters that have larger county effects with estimated 
𝛽𝑖 = −7.822 (with standard error 0.0180) and 𝛽𝑖 = −7.598 (with standard error 0.0146). The heterogeneity of county effects suggests 
more resources can be allocated to counties with higher death rates, as access to medical resources in cities and educational facilities 
can positively influence these rates.

Two change points are detected. One was in 2004, changed from 0 to -0.2133 with a standard error of 0.02; the other was in 
2012, changed from -0.2133 to -0.3765 with a standard error of 0.0202. The estimated negative changes indicate that the death rate 
has a large decline in 2004 and 2012. Retrospective research on medical policies can be conducted to understand the reasons behind 
the declines. Possible reasons for change points can be nutrition and insurance. For example, the Nutrition Labeling and Education 
Act in 1990 required nutrition labeling of most foods. For insurance policies, starting 2001, Medicare coverage for colonoscopy was 
expanded from the high-risk group to the average-risk group (Harewood and Lieberman, 2004), and the Affordable Care Act (ACA) 
enacted in 2010 required both private insurers and Medicare to cover preventive services (Richman et al., 2016). All of these policies 
are likely to contribute to the reduction in mortality from colon and rectum cancer in Iowa over the years.

6. Conclusion and discussions

In this article, we proposed a new method for clustering locations based on covariate effects and identifying temporal change 
points for count data based on a Poisson regression model. To achieve the goal, we designed a doubly penalized likelihood approach. 
In the proposed approach, an adaptive minimum spanning tree (MST) was used to identify spatial clusters, and a fused penalty was 
used to detect change points. In the simulation study, we used several numerical examples to investigate the performance of the 
proposed approach. The numerical results showed that the proposed approach outperforms traditional scan statistics in recovering 
spatial structures. We also found that the adaptive MST can perform better than a random tree in terms of recovering spatial cluster 
structure.

The idea of the proposed approach can be extended to semiparametric or nonparametric regression models, which can model the 
effects of covariates more flexibly, as discussed in linear regression models (Liu and Lin, 2019). In addition, there is a potential to 
explore the patient level in the SEER data to identify the heterogeneity for both individual patient and spatial levels.
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Appendix A. Lemmas

In this part, we introduce two lemmas, which will be used later in the proof of Theorem 1 and Theorem 2.

A.1. Lemma 1

Some notations are defined as below before introducing Lemma 1.
Denote 𝜽̂ as an estimator of 𝜽. Let ̂𝑁 = {𝑖 ∈ {2,3,… ,𝑁};‖𝝇̂ 𝑖‖ ≠ 0}, and ̂𝑁 = {𝑖 ∈ {2,3,… ,𝑁};‖𝝇̂ 𝑖‖ = 0} be the nonzero 

and zero sets of estimates 𝝇̂ . Denote 𝝇̂(1) and 𝝇̂(2) as the parameter vectors for ̂𝑁 and ̂𝑁 , respectively. Similarly, ̂𝑇 = {𝑖 ∈
{2,3,… , 𝑇 }; |𝜉𝑡| ≠ 0}, and ̂𝑇 = {𝑖 ∈ {2,3,… , 𝑇 }; |𝜉𝑖| = 0} be the nonzero and zero sets of estimates 𝝃̂. And denote 𝝃̂(1) and 𝝃̂(2) as 
the parameter vectors for ̂𝑇 and ̂𝑇 , respectively.

Recall that the first column of 𝑯̃−1
is 1 √

𝑁
𝟏, then the column in 𝕏 corresponds to 𝝇1 is 𝑿∗ =

(
𝒙⊤1 ,𝒙

⊤
2 ,… ,𝒙⊤

𝑁

)⊤
. Let 𝕏1 and 𝕏2

denote the submatrices of 𝕏 formed by columns ̂𝑁 and ̂𝑁 . 𝕄1 and 𝕄2 denote the submatrices of 𝕄 formed by columns ̂𝑇 and 
̂𝑇 .

For MCP penalty, we have

 ′
𝛾
(𝑡, 𝜆) =

{
𝜆sign (𝑡) − 𝑡 

𝛾
=
(
𝜆− |𝑡|

𝛾

)
sign (𝑡) |𝑡| ≤ 𝛾𝜆,

0 |𝑡| > 𝛾𝜆,
and  ′

𝛾
(0+, 𝜆) = 𝜆. For 𝒗∈ℝ𝑠 with ‖𝒗‖0 = 𝑠, we also introduce 𝜅𝛾 (𝒗) as follows (Fan and Lv, 2011),
𝜅𝛾 (𝒗) = lim 

𝜖→0+
max
𝑗

sup 
0<𝑡1<𝑡2∈(|𝑣𝑗 |−𝜖,|𝑣𝑗 |+𝜖)−

 ′
𝛾

(
𝑡2, 𝜆

)
− ′

𝛾

(
𝑡1, 𝜆

)
𝑡2 − 𝑡1

,

which corresponds to the second order derivative of −𝛾 (𝑡, 𝜆) when the second order derivative exists. Note that, for MCP, the second
order derivative does not exist for a finite number of values of 𝑡, they are 0 and 𝛾𝜆. 𝜅𝛾 (𝒗) = max1≤𝑗≤𝑠− ′′(|𝑣𝑗 |, 𝜆) provided that the 
second-order derivative is continuous. Note that,  ′′(|𝑣𝑗 |, 𝜆) = 0 if |𝑣𝑗 | > 𝛾𝜆, and  ′′(|𝑣𝑗 |, 𝜆) = −1 

𝛾
if 0 < |𝑣𝑗 | < 𝛾𝜆. If all |𝑣𝑗 | > 𝛾𝜆, 

then 𝜅𝛾 (𝒗) = 0. And 𝜅𝛾 (𝒗) =
1 
𝛾
if some 0 < |𝑣𝑗 | ≤ 1 

𝛾
.

Furthermore, for a vector 𝒖, we have the derivative with respect to 𝒖 as

𝑑𝛾 (𝒖, 𝜆)
𝒖

= 𝒖‖𝒖‖ ′
𝛾
(‖𝒖‖, 𝜆) .

When considering the second-order derivative, we have[
𝒖‖𝒖‖ ′

𝛾
(‖𝒖‖, 𝜆)]′ = 𝒖𝒖⊤‖𝒖‖2  ′′

𝛾

(‖𝒖‖, 𝜆)+  ′
𝛾

(‖𝒖‖, 𝜆)‖𝒖‖ 𝑰𝑝 −
𝒖𝒖⊤ ′

𝛾

(‖𝒖‖, 𝜆)‖𝒖‖3 .

Note that, when ‖𝒖‖ > 𝛾𝜆, the value is 0. Then, for 𝒖= (𝒖⊤1 ,… ,𝒖⊤
𝑠
)⊤, we can define 𝜅′(𝒖) = max1≤𝑗≤𝑠−

[
𝒖𝑗‖𝒖𝑗‖ ′

𝛾

(‖𝒖𝑗‖, 𝜆)]′. And we 
know that if ‖𝒖𝑗‖ > 𝛾𝜆 for all 𝑗, then 𝜅′(𝒖) = 0.

Let 𝒃 =𝒁𝜶+𝕏𝝇 +𝕄𝝃, 𝝁 (𝜽) =
(
𝑛𝑖𝑡 exp

(
𝑏𝑖𝑡
))

1≤𝑖≤𝑁,1≤𝑡≤𝑇 , and 𝚺 (𝜽) = diag
(
𝑛𝑖𝑡 exp

(
𝑏𝑖𝑡
)
; 1 ≤ 𝑖 ≤𝑁,1 ≤ 𝑡 ≤ 𝑇

)
. 𝝁(𝜽) corresponds to 

the expected values vector of 𝑦𝑖𝑡 for 𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇 , and 𝚺 (𝜽) is the covariance matrix. We have the following lemma 
that gives sufficient conditions on the strict local minimizer of 𝑄(𝜽). The proof follows that in Fan and Lv (2011).

Lemma 1. 𝜽̂ is a strict local minimizer of 𝑄(𝜽) if
1 
𝑁𝑇

𝒁⊤
(
𝒚 − 𝝁(𝜽̂)

)
= 𝟎 (21)

1 
𝑁𝑇

𝑿∗⊤ (𝒚 − 𝝁(𝜽̂)
)
= 𝟎 (22)

1 
𝑁𝑇

𝕏⊤1
(
𝒚 − 𝝁(𝜽̂)

)
−
(

𝝇̂𝑖‖𝝇̂ 𝑖‖ ′
𝛾2

(‖𝝇̂𝑖‖, 𝜆2) ; 𝑖 ∈ ̂𝑁

)
= 𝟎 (23)

1 
𝑁𝑇

𝕄⊤1
(
𝒚 − 𝝁(𝜽̂)

)
−
(
 ′
𝛾1

(
𝜉𝑡, 𝜆1

)
; 𝑡 ∈ ̂𝑇

)
= 𝟎 (24)

max
𝑖 ‖ 1 

𝑁𝑇
𝕏⊤2(𝑖)

(
𝒚 − 𝝁(𝜽̂)

)‖ <  ′
𝛾2
(0+) = 𝜆2 (25)

‖ 1 
𝑁𝑇

𝕄⊤2
(
𝒚 − 𝝁(𝜽̂)

)‖∞ <  ′
𝛾1
(0+) = 𝜆1 (26)

𝜆min

( 1 
𝑁𝑇

𝒁⊤𝚺(𝜽̂)𝒁
)
> 0 (27)
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𝜆min

( 1 
𝑁𝑇

𝑿∗⊤𝚺(𝜽̂)𝑿∗⊤
)
> 0 (28)

𝜆min

( 1 
𝑁𝑇

𝕏⊤1𝚺(𝜽̂)𝕏1

)
> 𝜅′

𝛾2
(𝝇̂(1)) (29)

𝜆min

( 1 
𝑁𝑇

𝕄⊤1𝚺(𝜽̂)𝕄1

)
> 𝜅𝛾1

(𝝃̂(1)) (30)

where 𝕏2(𝑖) corresponds to the submatrix of 𝕏2 formed by 𝝇̂𝑖 for 𝑖 ∈ ̂𝑁 , and 𝜽̂1 is the nonzero subvector of 𝜽̂.

Proof. First, we write the likelihood function in (4) as 𝑙(𝜽) in the following way

𝑙 (𝜽) = 1 
𝑁𝑇

(
−𝒚⊤ (𝒁𝜶 +𝕏𝝇 +𝕄𝝃) + 𝟏⊤𝝁 (𝜽)

)
= 1 
𝑁𝑇

(
−𝒚⊤𝕌𝜽+ 𝟏⊤𝝁 (𝜽)

)
. (31)

Then, the first order derivative and the second order derivative have the following forms,

∇𝑙 (𝜽) = − 1 
𝑁𝑇

𝕌⊤ (𝒚 − 𝝁 (𝜽)) ,

∇2𝑙 (𝜽) = 1 
𝑁𝑇

𝕌⊤𝚺 (𝜽)𝕌.

Recall 𝕌 = (𝒁,𝕏,𝕄) = (𝒁,𝑿∗,𝕏1,𝕏2,𝕄1,𝕄2), 𝜽̂ is a local minimizer of the objective function 𝑄 (𝜽) if it satisfies the Karush
Kuhn-Tucker (KKT) conditions, that is

1 
𝑁𝑇

𝕌⊤
(
𝒚 − 𝝁

(
𝜽̂
))

− 𝒗 = 𝟎.

For 𝜶 and 𝝇1, there are no penalty terms so the corresponding 𝑣𝑗 = 0. Thus, we have conditions (21) and (22). For 𝑖∈ ̂𝑁 , ‖𝝇̂𝑖‖ ≠ 0, the 
corresponding values in 𝒗 is 𝝇̂𝑖‖𝝇̂𝑖‖ ′

𝛾2

(‖𝝇̂𝑖‖, 𝜆2); for 𝑡 ∈ ̂𝑇 , the corresponding element in 𝒗 is  ′
𝛾1

(
𝜉𝑡, 𝜆1

)
. Thus, we have conditions (23)

and (24). For 𝑖∈ ̂𝑁 , the elements in 𝒗 are ‖𝒗𝑖‖, which is any value between [− ′ (0+) , ′ (0+)] =
[
−𝜆2, 𝜆2

]
(Loh and Wainwright, 

2015), and for 𝑡 ∈ ̂𝑇 , the element in 𝒗 is between [−𝜆1, 𝜆1]. Thus, we have the conditions in (25) and (26).
Now consider the second order conditions. For the parameters without penalty terms, we have (27) and (28). For 𝝇̂(1) and 𝝃̂(1), 

we have

𝜆min

( 1 
𝑁𝑇

𝕏⊤1𝚺
(
𝜽̂
)
𝕏1

)
≥ 𝜅′

𝛾2
(𝝇̂(1)), (32)

𝜆min

( 1 
𝑁𝑇

𝕄⊤1𝚺
(
𝜽̂
)
𝕄1

)
≥ 𝜅𝛾1 (𝝃̂(1)). (33)

Note that (32) and (33) are nonstrict inequalities. Next, we will show that strict inequalities are sufficient conditions for strict 
local minimizer.

First consider the 𝑄(𝜽) on the ‖𝜽̂‖0 dimensional subspace  =
{
𝜽 ∈ℝ𝑞+𝑁𝑝+𝑇−1 ∶ 𝜽𝑐 = 𝟎

}
, where 𝜽𝑐 is the subvector of 𝜽 formed 

by components in ̂𝑁 and ̂𝑇 . Based on second order conditions, 𝑄 (𝜽) is strictly convex in a ball 0 in the subspace  centered 
at 𝜽̂. Thus, 𝜽̂ is a unique minimizer of 𝑄 (𝜽) in the neighborhood 0.

Next, we need to show that 𝜽̂ is a strict local minimizer of 𝑄 (𝜽) on the space ℝ𝑞+𝑁𝑝+𝑇−1. Consider a sufficiently small ball 1
in ℝ𝑞+𝑁𝑝+𝑇−1 centered at 𝜽̂ such that 1 ∩  ⊂0. So we need to show that 𝑄(𝜽̂) < 𝑄

(
𝝓1
)
for any 𝝓1 ∈1∖0. Let 𝝓2 be the 

projection of 𝝓1 onto the subspace . Then, 𝝓2 ∈0, thus 𝑄(𝜽̂) <𝑄
(
𝝓2
)
for 𝝓2 ≠ 𝜽̂ since 𝝓̂ is a local strict minimizer in 0. Next, 

we will show that 𝑄
(
𝝓2
)
<𝑄

(
𝝓1
)
. By the mean-value theorem,

𝑄
(
𝝓1
)
−𝑄

(
𝝓2
)
=
[
𝑄′ (𝝓0

)]⊤ (
𝝓1 −𝝓2

)
, (34)

where 𝝓0 is a vector between 𝝓1 and 𝝓2, that is 𝝓0 = 𝛼0𝝓1 +
(
1 − 𝛼0

)
𝝓2 and 𝛼0 ∈ (0,1). Based on the definition of 𝝓1 and 𝝓2, and 

that 𝜶,𝝇1,𝝇(1),𝝃(1) are the elements of 𝝓1 in , then 𝝓0 =
(
𝜶,𝝇1,𝝇(1),𝝃(1), 𝛼0𝝇(2), 𝛼0𝝃(2)

)
. Thus, the right hand side of (34) can be 

expressed as

−
[ 1 
𝑁𝑇

𝕌⊤2
(
𝒚 − 𝝁(𝝓̂0)

)]⊤
𝛼0

(
𝝇⊤(2),𝝃

⊤
(2)

)⊤
+
∑
𝑖∈̂𝑁

𝛼0‖𝝇 𝑖‖ ′
𝛾2

(‖𝛼0𝝇𝑖‖, 𝜆2)+ ∑
𝑡∈̂𝑇

𝛼0
′
𝛾1

(|𝛼0𝜉𝑡|, 𝜆1) |𝜉𝑡|. (35)

Based on the conditions, there exists some 𝛿 > 0 such that for any 𝜽 in a ball centered at 𝜽̂ with radius 𝛿,

‖ 1 
𝑁𝑇

𝕏⊤2(𝑖) (𝒚 − 𝝁 (𝜽))‖∞ <  ′
𝛾2

(
𝛿, 𝜆2

)
= 𝜆2 −

𝛿

𝛾2
,

‖ 1 
𝑁𝑇

𝕄⊤2 (𝒚 − 𝝁 (𝜽))‖∞ <  ′
𝛾1

(
𝛿, 𝜆1

)
= 𝜆1 −

𝛿

𝛾1
.
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Consider the radius of the ball 1 less than 𝛿, then |𝜉𝑡| < 𝛿 for 𝑡 ∈ ̂𝑇 and ‖𝝇𝑖‖ < 𝛿 for 𝑖 ∈ ̂𝑁 , and above holds for any 
𝜽 ∈1. Thus,  ′

𝛾2

(‖𝛼0𝝇𝑖‖, 𝜆2) >  ′
𝛾2

(
𝛿, 𝜆2

)
and  ′

𝛾1

(|𝛼0𝜉𝑡|, 𝜆1) >  ′
𝛾1

(
𝛿, 𝜆1

)
. Together with 𝝓0 ∈1, (35) is strictly greater than 

the following

− 𝛼0
(
𝜆2 −

𝛿

𝛾2

) ∑
𝑖∈̂𝑁

‖𝝇 𝑖‖− 𝛼0(𝜆1 − 𝛿

𝛾1

) ∑
𝑡∈̂𝑇

|𝜉𝑡|
+ 𝛼0

(
𝜆2 −

𝛿

𝛾2

) ∑
𝑖∈̂𝑁

‖𝝇 𝑖‖+ 𝛼0(𝜆1 − 𝛿

𝛾1

) ∑
𝑡∈̂𝑇

|𝜉𝑡| = 0.

Thus, 𝑄
(
𝝓1
)
>𝑄

(
𝝓2
)
>𝑄(𝜽̂). This completes the proof. □

A.2. Lemma 2

Lemma 2. Under the conditions in Theorem 1, given the MST based on the weights in (16), consider any two locations i and 𝑖′ in the same 
cluster. Under Condition (C4), there exists a path in the MST connecting 𝑖 and 𝑖′ such that all the locations on the path belong to the same 
cluster with probability approaching 1 as local sample size 𝑇 →∞.

Proof. For a given tree  , we have ‖𝜽̂−𝜽 ,0‖ =𝑂𝑃 (√𝑠∕𝑁0

)
from Theorem 1. Recall that 𝝇 𝑖 represents difference between 𝜷 𝑖−𝜷𝑖′ , (

𝑖, 𝑖′
)
∈  . And the 𝜷 =

(
𝑯̃

−1
⊗ 𝑰𝑝

)
𝝇 , then ‖𝜷̂ 𝑖 − 𝜷0

𝑖
‖ = 𝑂𝑃 (√𝑠∕𝑇). Thus, we can calculate the difference between ‖𝜷̂ 𝑖 − 𝜷̂𝑖′‖ in 

0. Recall the weights in (16),

𝑤𝑖𝑖′ =

{‖𝜷̂ ,𝑖 − 𝜷̂ ,𝑖′‖ (
𝑖, 𝑖′
)
∈ 0,

∞ otherwise.

For (𝑖, 𝑖′) ∈ 0, we have

‖𝜷̂ ,𝑖 − 𝜷̂ ,𝑖′‖ = ‖𝜷̂ ,𝑖 − 𝜷0
𝑖
− (𝜷̂ ,𝑖′ − 𝜷0

𝑖′
) + 𝜷0

𝑖
− 𝜷0

𝑖′
‖ (36)

If 𝑖 and 𝑖′ are in the same cluster, that means 𝜷0
𝑖
= 𝜷0

𝑖′
, then (36) becomes

‖𝜷̂ ,𝑖 − 𝜷̂ ,𝑖′‖ ≤ ‖𝜷̂ ,𝑖 − 𝜷0
𝑖
‖+ ‖𝜷̂ ,𝑖′ − 𝜷0

𝑖′
‖ =𝑂𝑃 (√𝑠∕𝑇) .

This implies that ‖𝜷̂ ,𝑖 − 𝜷̂ ,𝑖′‖ will converge to 0 with probability approaching 1 if 𝑖 and 𝑖′ are in the same cluster.
If 𝑖 and 𝑖′ are in different clusters, then we have,

‖𝜷̂ ,𝑖 − 𝜷̂ ,𝑖′‖ ≥ ‖𝜷0
𝑖
− 𝜷0

𝑖′
‖− ‖𝜷̂ ,𝑖 − 𝜷0

𝑖
‖− ‖𝜷̂ ,𝑖′ − 𝜷0

𝑖′
‖

= ‖𝜷0
𝑖
− 𝜷0

𝑖′‖−𝑂𝑃 (√𝑠∕𝑇) .
This implies that ‖𝜷̂ ,𝑖 − 𝜷̂ ,𝑖′‖ will converge to a constant depending on the cluster difference with probability approaching 1 if 𝑖
and 𝑖′ are in different clusters.

Then, by the same arguments of Zhang et al. (2024), the result in Lemma 2 holds. □

Lemma 2 indicates that the graph will be separated into 𝐾 subgraphs, corresponding to 𝐾 clusters, by removing edges among 
clusters.

Appendix B. Theorems

B.1. Proof of Theorem 1

In this proof, we use 𝜽1,0 instead of 𝜽 ,1,0 for simplicity. And 𝜽0 = (𝜽⊤1,0,𝜽
⊤
2,0)

⊤.

Proof. Without loss of generality, assume there are 𝑠1 𝜉𝑡 ’s are nonzero, they are 𝜉2,… , 𝜉𝑠1+1, and there are 𝑠2 ‖𝝇𝑖‖ are nonzero, they 
are ‖𝝇2‖,… ,‖𝝇𝑠2+1‖. And 𝑠 = 𝑠1 + 𝑠2𝑝 is the number of nonzero parameters. We will prove the result in two steps.
Step 1: Consistency in the 𝑠-dimensional subspace.

Consider the objective function 𝑄 (𝜽) on the 𝑠-dimensional subspace 
{
𝜽 ∈ℝ𝑞+𝑁𝑝+𝑇−1 ∶ 𝜽𝑐0 = 𝟎

}
, where 0 = supp

(
𝜽0
)
, which 

is the nonzero set of the parameters, and 𝑐0 is the complement. Then, the constrained objective function is



Computational Statistics and Data Analysis 212 (2025) 108240

17

Z. Zhang, X. Wang, X. Zhang et al. 

𝑄̄ (𝜹) = 𝑙 (𝜹) +
𝑠1+1∑
𝑡=2 

𝛾1

(|𝜉𝑡|, 𝜆1)+ 𝑠2+1∑
𝑖=2 

𝛾2

(‖𝝇𝑖‖, 𝜆2) ,
where 𝑙 (𝜹) = 1 

𝑁𝑇

(
−𝒚⊤𝕌1𝜹+ 𝟏⊤𝝁 (𝜹)

)
= 1 
𝑁𝑇

(
−𝒚⊤

(
𝒁𝜶 +𝕏1𝝇(1) +𝕄1𝝃(1)

)
+ 𝟏⊤𝝁 (𝜹)

)
, here 𝝁 (𝜹) =

(
𝑛𝑖𝑡 exp

(
𝑏𝑖𝑡
))

1≤𝑖≤𝑁,1≤𝑡≤𝑇 , with 

𝒃 = 𝕌1𝜹. We now show that there exists a strict local minimizer of 𝜽̂1 of 𝑄̄ (𝜹) such that ‖𝜽̂1 −𝜽1,0‖ =𝑂𝑃 (√𝑠∕𝑁0

)
, where 𝑁0 =𝑁𝑇 .

Define an event

𝐻1 =
{
𝑄̄
(
𝜽1,0

)
< min 

𝜹∈𝜕𝐶

𝑄̄ (𝜹)
}
,

where 𝜕𝐶 denotes the boundary of the closet set 𝐶 =
{‖𝜹− 𝜽1,0‖ ≤ 𝐶√𝑠∕𝑁0

}
and 𝐶 ∈ (0,∞). On event 𝐻1, there exists a local 

minimizer 𝜽̂1 of 𝑄̄ (𝜹) in 𝐶 . We need to show that 𝑃
(
𝐻1
)
is close to 1 as 𝑇 →∞ when 𝐶 is large.

Let 𝑇 be sufficiently large such that 
√
𝑠∕𝑁0𝐶 ≤ 𝑑 by Condition (C3), 𝛿𝜉𝑡 is the element in 𝜹 in 𝐶 corresponds to 𝜉𝑡, and 𝜹𝝇𝑖 is 

the element in 𝜹 in 𝐶 corresponds to 𝝇𝑖. By Taylor expansion, for 𝜹 ∈ 𝜕𝐶 ,

𝑄̄ (𝜹) − 𝑄̄
(
𝜽1,0

)
=
(
𝜹− 𝜽1,0

)⊤
𝒗+ 1

2
(
𝜹− 𝜽1,0

)⊤
𝑫
(
𝜹− 𝜽1,0

)
,

where 𝒗 is the first order derivative of 𝑄̄ (𝜹) evaluated at 𝜽1,0, and 𝑫 is the second order derivative of 𝑄̄ (𝜹) evaluated at 𝜽∗1 with 
𝜽∗1 = 𝛼1𝜹+

(
1 − 𝛼1

)
𝜽1,0 and 𝛼1 ∈ (0,1). We have

𝒗 =− 1 
𝑁𝑇

𝕌⊤1
(
𝒚 − 𝝁

(
𝜽1,0

))
+
(
𝟎,

𝝇𝑖‖𝝇𝑖‖ ′
𝛾2

(‖𝝇𝑖‖, 𝜆2) ; 𝑖 = 2,… , 𝑠2 + 1, ′
𝛾1

(
𝜉𝑡, 𝜆1

)
; 𝑡 = 2,… , 𝑠1 + 1

)
,

and

𝑫 = 1 
𝑁𝑇

𝕌⊤1𝚺
(
𝜽∗1
)
𝕌1

+diag

(
𝟎,
[

𝝇∗
𝑖‖𝝇∗
𝑖
‖ ′

𝛾2

(‖𝝇∗
𝑖
‖, 𝜆2)]′ ; 𝑖 = 2,… , 𝑠2 + 1, ′′

𝛾1

(
𝜉∗
𝑡
, 𝜆1
)
; 𝑡 = 2,… , 𝑠1 + 1

)
.

Recall that 𝜹 ∈ 𝜕𝐶 , thus ‖𝜹− 𝜽1,0‖ = 𝐶√𝑠∕𝑁0. Since 𝜽∗1 = 𝛼1𝜹+
(
1 − 𝛼1

)
𝜽1,0, we have ‖𝜽∗1 − 𝜽1,0‖ = ‖𝛼1 (𝜹− 𝜽1,0

)‖ = 𝛼1‖𝜹−
𝜽1,0‖, thus 𝜽∗1 ∈0. When 𝑇 is sufficiently large, since 𝑑 ≫

√
𝑠∕𝑁0, then, |𝜉∗𝑡 | ≥ |𝜉𝑡|−𝐶√𝑠∕𝑁0 ≥ 𝑑, and ‖𝝇∗𝑖 ‖ ≥ ‖𝝇 𝑖‖−𝐶√𝑠∕𝑁0 ≥ 𝑑

based on Condition (C3). Based on the definition of MCP and assumption that 𝑑 ≫max
(
𝜆1, 𝜆2

)
, we have 𝑑 ≫max

(
𝛾1𝜆1, 𝛾2𝜆2

)
, thus 

 ′′
𝛾1

(
𝜉∗
𝑡
, 𝜆1
)
= 0 and  ′′

𝛾2

(‖𝝇∗
𝑖
‖, 𝜆2) = 0 and  ′

𝛾2

(‖𝝇∗
𝑖
‖, 𝜆2) = 0. Then, we have the following result:[

𝝇∗
𝑖‖𝝇∗
𝑖
‖ ′

𝛾2

(‖𝝇∗
𝑖
‖, 𝜆2)]′ = 𝝇∗

𝑖
𝝇∗⊤
𝑖‖𝝇∗
𝑖
‖2  ′′

𝛾2

(‖𝝇∗
𝑖
‖, 𝜆2)+  ′

𝛾2

(‖𝝇∗
𝑖
‖, 𝜆2)‖𝝇∗
𝑖
‖ 𝑰𝑝 −

𝝇∗
𝑖
𝝇∗⊤
𝑖
 ′
𝛾2

(‖𝝇∗
𝑖
‖, 𝜆2)‖𝝇∗

𝑖
‖3 = 𝟎.

Thus, 𝜆min (𝑫) = 𝜆min

(
1 
𝑁𝑇

𝕌⊤1𝚺
(
𝜽∗1
)
𝕌1

)
≥ 𝑐1𝑀1 based on Condition (C1) and (C2). Also within 𝐶 , we have |𝛿𝜉𝑡 | ≥ |𝜉𝑡|−𝐶√𝑠∕𝑁0 ≥

𝑑, and ‖𝜹𝝇𝑖‖ ≥ ‖𝝇 𝑖‖−𝐶√𝑠∕𝑁0 ≥ 𝑑, ‖𝝇𝑖‖ ≥ 𝑑 and |𝜉𝑡| ≥ 𝑑, thus  ′
𝛾2

(‖𝝇𝑖‖, 𝜆2) = 0 and  ′
𝛾1

(
𝜉𝑡, 𝜆1

)
= 0 based on 𝑑 ≫max

(
𝛾1𝜆1, 𝛾2𝜆2

)
. 

Thus, we have

min 
𝜹∈𝜕𝐶

𝑄̄ (𝜹) − 𝑄̄
(
𝜽1,0

)
≥− ‖ 1 

𝑁𝑇
𝕌⊤1
(
𝒚 − 𝝁

(
𝜽1,0

))‖‖𝜹− 𝜽1,0‖+ 𝑐1𝑀1
1
2
‖𝜹− 𝜽1,0‖2

= −𝐶
√
𝑠∕𝑁0‖ 1 

𝑁𝑇
𝕌⊤1
(
𝒚 − 𝝁

(
𝜽1,0

))‖+ 𝑐1𝑀1
1
2
‖𝜹− 𝜽1,0‖2

= −𝐶
√
𝑠∕𝑁0

[‖ 1 
𝑁𝑇

𝕌⊤1
(
𝒚 − 𝝁

(
𝜽1,0

))‖− 𝑐1𝑀1𝐶
√
𝑠∕𝑁0

2 

]
.

Based on Markov’s inequality,

𝑃
(
𝐻1
)
≥ 𝑃

[‖ 1 
𝑁𝑇

𝕌⊤1
(
𝒚 − 𝝁

(
𝜽1,0

))‖2 < 𝑐21𝑀2
1𝐶

2𝑠

4𝑁0

]

≥ 1 −
4𝑁0𝐸‖ 1 

𝑁𝑇
𝕌⊤1
(
𝒚 − 𝝁

(
𝜽1,0

))‖2
𝑐21𝑀

2
1𝐶

2𝑠 
.
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We know that 𝐸 (𝒚) = 𝝁
(
𝜽0
)
, 𝑉 𝑎𝑟 (𝒚) = 𝚺

(
𝜽0
)
= diag

(
𝝁
(
𝜽1,0

))
, and 𝐸‖ 1 

𝑁𝑇
𝕌⊤1
(
𝒚 − 𝝁

(
𝜽1,0

))‖2 = 1 
𝑁2

0
tr
(
𝕌⊤1𝚺

(
𝜽0
)
𝕌1
)
≤
𝑠𝑐2𝑀2
𝑁0

by Condition (C1) and (C2). Thus

𝑃
(
𝐻1
)
≥ 1 −

4𝑁0𝑠𝑐2𝑀2

𝑁0𝑐
2
1𝑀

2
1𝐶

2𝑠
= 1 −

4𝑐2𝑀2

𝑐21𝑀
2
1

1 
𝐶2 .

As 𝐶 →∞, 𝑃
(
𝐻1
)
→ 1. This proves that ‖𝜽̂1 − 𝜽1,0‖ =𝑂𝑃 (√𝑠∕𝑁0).

Step 2: Sparsity.
Let 𝜽̂ =

(
𝜽̂1, 𝜽̂2

)
, where 𝜽̂1 ∈𝐶 ⊂0 is a strict local minimzer of 𝑄̄ (𝜹) and 𝜽̂2 = 𝟎. We need to show that 𝜽̂ is a strict local 

minimzer of 𝑄 (𝜽).
Based on conditions (C1) and (C2) and the definition of 𝜽̂1, conditions in (21), (22), (23), (24) (27), (28), (29) and (30) are 

satisfied. Thus, it suffices to check conditions (25) and (26).
Let 𝝋 = 𝕌⊤

(
𝒚 − 𝝁

(
𝜽0
))
, and consider the event

1 =

{
max 

𝑖=𝑠2+2,…𝑁
‖𝕏2(𝑖)

(
𝒚 − 𝝁

(
𝜽0
))‖ ≤ 𝑢√𝑁0; sup 

𝑡=𝑠1+2,…,𝑇
|𝕄2(𝑡−1)

(
𝒚 − 𝝁

(
𝜽0
)) | ≤ 𝑢√𝑁0

}
.

From Fan and Lv (2011), we have

𝑃
(|𝒂⊤ (𝒚 − 𝝁

(
𝜽0
)) | > ‖𝒂‖𝜖) ≤ 2𝑒−𝑐3𝜖2 , (37)

where 𝑐3 is a positive constant. Let 𝕄(𝑗) be the 𝑗th column of 𝕄 and satisfy max𝑗 ‖𝕄(𝑗)‖ =√(𝑇 − 1)𝑁 based on the construction 
of 𝕄. Let 𝕏2(𝑖𝑗) be the 𝑗th column of 𝕏2(𝑖) and max𝑖,𝑗 ‖𝕏2(𝑖,𝑗)‖ = 𝑂(√𝑁0

)
based on condition (C1). It follows from Bonferroni’s 

inequality, we have

𝑃
(
1
)
≥ 1 −

𝑁∑
𝑖=𝑠2+2

𝑝 ∑
𝑗=1 
𝑃

(‖𝕏⊤2(𝑖𝑗) (𝒚 − 𝝁
(
𝜽0
))‖ > 𝑢√𝑁0

)

−
𝑇∑

𝑡=𝑠1+2
𝑃

(|𝕄⊤2(𝑡−1) (𝒚 − 𝝁
(
𝜽0
)) | > 𝑢√𝑁0

)
,

where 𝑢≫
√
log𝑁0 and 𝑢𝑁

−1∕2
0 = 𝑜 (1).

From (37), we have

𝑃

(‖𝕏⊤2(𝑖𝑗) (𝒚 − 𝝁
(
𝜽0
))‖ > 𝑢√𝑁0

)
= 𝑃

(‖𝕏⊤2(𝑖𝑗) (𝒚 − 𝝁
(
𝜽0
))‖ > ‖𝕏⊤2(𝑖𝑗)‖ 𝑢

√
𝑁0‖𝕏2(𝑖𝑗)‖

)

≤ 𝑃

(‖𝕏⊤2(𝑖𝑗) (𝒚 − 𝝁
(
𝜽0
))‖ > ‖𝕏⊤2(𝑖𝑗)‖ 𝑢

√
𝑁0

max𝑖,𝑗 ‖𝕏2(𝑖𝑗)‖
)

≤ 2𝑒−𝑐3𝑢2

and

𝑃

(|𝕄⊤2(𝑡−1) (𝒚 − 𝝁
(
𝜽0
)) | > 𝑢√𝑁0

)
= 𝑃

(|𝕄⊤2(𝑡−1) (𝒚 − 𝝁
(
𝜽0
)) | > ‖𝕄⊤2(𝑡−1)‖ 𝑢

√
𝑁0‖𝕄2(𝑡−1)‖

)

≤ 𝑃

(|𝕄⊤2(𝑡−1) (𝒚 − 𝝁
(
𝜽0
)) | > ‖𝕄⊤2(𝑡−1)‖ 𝑢

√
𝑁0

max𝑗 ‖𝕄2(𝑡−1)‖
)

≤ 𝑃

(|𝕄⊤2(𝑡−1) (𝒚 − 𝝁
(
𝜽0
)) | > ‖𝕄⊤2(𝑡−1)‖𝑢

√
𝑁0√
𝑁0

)
≤ 2𝑒−𝑐3𝑢2 .

Thus

𝑃
(
1
)
≥ 1 − 2

(
(𝑁 − 𝑠2 − 1)𝑝+ 𝑇 − 𝑠1 − 1

)
𝑒−𝑐3𝑢

2
≥ 1 − 2𝑁𝑝+ 𝑇

𝑒𝑐3𝑢
2 ≥ 1 − 2 

𝑒𝑐3𝑢
2−log𝑁0

→ 1.

Under event 1, now consider the following in (25),

max
𝑖 ‖ 1 

𝑁𝑇
𝕏⊤2(𝑖)

(
𝒚 − 𝝁(𝜽̂)

)‖ ≤max
𝑖 ‖ 1 

𝑁𝑇
𝕏⊤2(𝑖)

(
𝒚 − 𝝁

(
𝜽0
))‖+max

𝑖 ‖ 1 
𝑁𝑇

𝕏⊤2(𝑖)
(
𝝁
(
𝜽0
)
− 𝝁(𝜽̂)

)‖.
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The first part is bounded by 𝑢
√
𝑁0
𝑁0

= 𝑢𝑁−1∕2
0 ≪𝜆2 by condition (C3) under 1.

Next, consider the second part 1 
𝑁𝑇

𝕏⊤2(𝑖)
(
𝝁(𝜽̂) − 𝝁

(
𝜽0
))
. According to the Taylor expansion,

𝕏⊤2(𝑖)
(
𝝁(𝜽̂) − 𝝁

(
𝜽0
))

=𝕏⊤2(𝑖)
(
𝝁(𝜽̂1) − 𝝁

(
𝜽1,0

))
=𝕏⊤2(𝑖)𝚺

(
𝜽1,0

)
𝕏1
(
𝜽̂1 − 𝜽1,0

)
+𝒘,

where 𝑤𝑗 =
1
2

(
𝜽̂1 − 𝜽1,0

)⊤∇𝑗 (𝜽̂1 − 𝜽1,0
)
, ∇𝑗 =𝕏⊤1 diag

(
𝑥2(𝑖𝑗)𝝁

(
𝜽∗1
))

𝕏1 and 𝜽∗1 is a vector lying on the line segment jointing 𝜽̂1 and 

𝜽1,0. Since all 𝑥 are bounded, then ‖𝒘‖∞ ≤
1
2𝑀𝑥𝑁0𝜆max

[
1 
𝑁𝑇

𝕏⊤1𝕏1

]‖𝜽̂1 − 𝜽1,0‖2 = 𝑂 (𝑁0
)‖𝜽̂1 − 𝜽1,0‖2, where 𝑀𝑥 is a positive 

constant. Similarly,

‖𝕏⊤2(𝑖)𝚺(𝜽1,0)𝕏1
(
𝜽̂1 − 𝜽1,0

)‖ =𝑂 (𝑁0
)‖𝜽̂1 − 𝜽1,0‖.

Thus,

max
𝑖 ‖ 1 

𝑁𝑇
𝕏⊤2(𝑖)

(
𝒚 − 𝝁

(
𝜽̂
))‖ = 𝑜(𝜆2)+𝑂 (‖𝜽̂1 − 𝜽1,0‖+ ‖𝜽̂1 − 𝜽1,0‖2) .

Since 𝜆2≫
√
𝑠∕𝑁0, thus ‖𝜽̂1 −𝜽1,0‖+ ‖𝜽̂1 −𝜽1,0‖2 = 𝑜(𝜆2). Thus max𝑖 ‖ 1 

𝑁𝑇
𝕏⊤2(𝑖)

(
𝒚 − 𝝁

(
𝜽̂
))‖ = 𝑜(𝜆2). The condition in (25) holds.

By similar arguments, we can have (26) hold. This completes the proof. □

B.2. Proof of Theorem 2

Proof. Let  be an event that for a given MST,  , for any two locations 𝑖 and 𝑖′ in the same cluster, there exists a path in the MST 
connecting 𝑖 and 𝑖′ such that all the locations on the path belong to the same cluster. This means that in event  , when the nonzero 
values of 𝝇 𝑖 are identified, which means the nonzero edges are identified. This implies that the true cluster structure of 𝜷 can be 
recovered.

For 𝐶0 ∈ (0,∞), we have

𝑃

(‖𝜽̂− 𝜽∗0‖ ≤ 𝐶0
√
𝑠∕𝑁0

)
≥ 𝑃

(
(‖𝜽̂− 𝜽∗0‖ ≤ 𝐶0

√
𝑠∕𝑁0) ∩

)
= 𝑃

(‖𝜽̂− 𝜽∗0‖ ≤ 𝐶0
√
𝑠∕𝑁0|)𝑃 () .

Since given  , we know that 𝑃
(‖𝜽̂− 𝜽∗0‖ ≤ 𝐶0

√
𝑠∕𝑁0|)→ 1 as 𝑇 →∞ from Theorem 1. And 𝑃 ()→ 1 as 𝑇 →∞ from Lemma 2. 

Thus 𝑃
(‖𝜽̂− 𝜽∗0‖ ≤ 𝐶0

√
𝑠∕𝑁0

)
→ 1 as 𝑇 →∞.

Besides this, we also have the following results.

𝑃
(
̂∗
𝑁
= ∗

𝑁

)
= 𝑃

(
̂∗
𝑁
= ∗

𝑁
|)𝑃 () + 𝑃

(
̂∗
𝑁
= 𝑁 |𝑐

)
𝑃 (𝑐)

→ 1,

since 𝑃 ()→ 1 and 𝑃 (𝑐)→ 0. We can also have 𝑃 (̂∗
𝑇
= 𝑇 )→ 1 by the same arguments. □

Appendix C. Scan approaches in real data analysis

When no covariate is considered, NPFSS, PSS and PPSS perform better than other approaches among the scan approaches, so 
we also use NPFSS, PSS and PPSS to analyze the dataset. PSS and PPSS give the same estimated cluster structure. Fig. 7 shows the 

Fig. 7. Estimated cluster structures based on scan approaches. 
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estimated cluster structures based on NPFSS and PPS, respectively. They give very different cluster structures. And in our analysis, 
we consider the effects after adjusting the covariates, which is different from these scan approaches.
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