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Abstract   
 
A major next step in hematopoietic stem cell (HSC) biology is to enhance our 
quantitative understanding of cellular and evolutionary dynamics involved in undisturbed 
hematopoiesis. Mathematical models have been and continue to be key in this respect, 
and are most powerful when parameterized experimentally and containing sufficient 
biological complexity. In this paper, we use data from label propagation experiments in 
mice to parameterize a mathematical model of hematopoiesis that includes homeostatic 
control mechanisms as well as clonal evolution. We find that non-linear feedback control 
can drastically change the interpretation of kinetic estimates at homeostasis. This 
suggests that short-term HSC and multipotent progenitors (MPPs) can dynamically 
adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they 
differentiate more often than they self-renew in undisturbed homeostasis.  Additionally, 
the presence of feedback control in the model renders the system resilient against 
mutant invasion. Invasion barriers, however, can be overcome by a combination of age-
related changes in stem cell differentiation and evolutionary niche construction 
dynamics based on a mutant-associated inflammatory environment. This helps us 
understand the evolution of e.g. TET2 or DNMT3A mutants, and how to potentially 
reduce mutant burden. 
  
 
Significance statement   
The maintenance of the hematopoietic system is a complex process where different 
types of stem cell divisions are regulated by homeostatic control networks. A 
mathematical model, parameterized with detailed mouse data, is used to capture this 
complexity. We investigate conditions under which advantageous mutants emerge. The 
model predicts a mutant invasion barrier in cell populations where mutants are most 
likely generated (e.g. progenitor cells), requiring mutants to have a large fitness 
advantage. It further suggests that age-related changes in the stem cell dynamics can 
promote mutant invasion, especially if mutants generate a favorable environment for 
themselves (evolutionary niche construction). This has relevance for understanding and 
managing the growth of TET2 and DNMT3A mutants, which are associated with chronic 
health conditions. 
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  1. Introduction 
 

The biology of hematopoietic stem cells has been subject to much investigation, and an 

increasingly detailed picture has been emerging, which includes the hierarchical 

structure of the hematopoietic system (1), the mechanisms underlying the associated 

cell fate decisions (2-6), and the kinetics of these processes (7-14). At the same time, it 

has become clear that the dynamics within the hematopoietic system are characterized 

by complex interactions among cells, involving homeostatic control mechanisms (15, 

16). Further complexity is added through evolutionary processes (17-19), resulting in 

the emergence of specific cell clones that can potentially increase the risk of 

subsequent malignant transformation and also trigger a number of non-malignant 

chronic health conditions (20). Mathematical models have been used to parse the 

complexity of the interactions occurring within the hematopoietic system, and to 

investigate the principles according to which mutant cell clones emerge and give rise 

to tumors (21-37).  

 

Building mathematical models of the hematopoietic system has been a large-scale 

continuous effort with a wealth of results contributed by many groups around the world. 

Starting with pioneering work by Mackey, Loeffler, Roeder and colleagues in the early 

2000s and before (32, 38-43), HSC modeling has gained further complexity and 

sophistication in the following decades, including a focus on non-linear control 

mechanisms (21-31, 33-37, 44-49). Among major contributions are models by 

Marciniak-Czochra, Stiehl and colleagues who have created a mathematical foundation 

for the dynamics of hematopoiesis (11, 21, 23, 50-53); further significant efforts included 

the studies of leukemias and other hematopoietic disorders in the context of cell 

evolution and drug treatments (22, 36, 37, 54-65). Many of these models were 

calibrated based on the experimental information that was available at the time. With 

the advances of experimental techniques, the ability to parameterize models of different 

degrees of complexity has been continuously improving. A major breakthrough came 

with the neutral label propagation data made available by Busch et al (7). These data 

have recently informed mathematical models in select settings (66, 67). In the current 
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paper, we provide the next step, which bridges between homeostatic cell regulation and 

evolution. Specifically, we use neutral label propagation data to parameterize a model of 

hematopoiesis at homeostasis that contains both non-linear homeostatic control 

mechanisms and cellular evolutionary dynamics. This results in new insights that allow 

a more comprehensive interpretation of kinetic data resulting from the label propagation 

studies, and identifies evolutionary barriers to mutant emergence that indicate resilience 

against mutant invasion during homeostasis. The model further identifies mechanisms 

that enable mutant cells to overcome these invasion barriers, based on evolutionary 

niche construction and age-related changes.     

 

                

 

2. Model-based interpretation of estimated self-renewal rates of ST-
HSCs and MPPs.  
 

Our analysis is based on a mathematical model of hematopoiesis that has been 

extensively used in the literature (21-37), illustrated in Figure 1 and given by a set of 

ordinary differential equations that describe the dynamics of cell populations over time. 

We explicitly describe the dynamics of LT-HSCs (x0), ST-HSCs (x1), and MPPs (x2). 

These cells are assumed to divide with a rate ri. A division is assumed to result in self-

renewal (two daughter stem cells) with a probability pi, and in differentiation (two 

daughter downstream cells) with a probability 1-pi. We also include populations of 

common myeloid progenitor (CMP, x3(1)) and common lymphoid progenitor (CLP, x3(2)) 

cells.  
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 This model is parameterized with the help of existing neutral label propagation 

data in mice at homeostatic setpoint, first published by Busch et al (7), and expanded 

with additional data in a subsequent study (68). There, 1% of LT-HSCs was labeled, 

and the progression of the neutral label in ST-HSCs, MPPs, CMPs, and CLPs was 

documented for about 450 days. The model was fit to these data as described in the SI 

Appendix, and the best fitting parameters as well as their confidence intervals are given 

in Table 1. The fits and the data are presented in SI Figure S2. A similar model fitting 

approach was taken to estimate parameters by Busch et al (7), but the model we use is 

structurally different (due to our focus on evolutionary dynamics), thus necessitating the 

parameter estimation procedures performed here.  

 

 We will first briefly consider the scenario where the estimated parameters are  

constants. We subsequently examine the dynamics under the assumption that the 

estimated parameters (in particular, the cells’ probability of self-renewal) at homeostasis 

are subject to feedback control.    

 

 

 

Figure 1: A	schematic	of	the	mathematical	model	showing	the	four	compartments	and	the	associated	
division	rates	and	self-renewal	probabilities.	The	system	of	ordinary	differential	equations	used	to	describe	
the	dynamics	is	provided	on	the	right.	 
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Notation	 Parameter	de-inition	 Value	 95%	C.I.	 Units	
!! 	 Division	rate	of	LT-HSCs	 0.0107	 (0.0084,0.014)	 days-1	
!"	 Division	rate	of	ST-HSCs	 0.067	 (0.021,0.10)	 days-1	
!#	 Division	rate	of	MPPs	 0.136	 (0.066,0.95)	 days-1	
"̅!	 Self-renewal	probability	of	LT-HSCs	 0.5	 	 1	
"̅"	 Self-renewal	probability	of	ST-HSCs	 0.473	 (0.40,0.48)	 1	
"̅#	 Self-renewal	probability	of	MPPs	 0.416	 (0.323,0.49)	 1	
$$(")	 Removal	rate	of	CMPs	 0.034	 (0.017,0.22)	 days-1	

$$(#)	 Removal	rate	of	CLPs	 0.007	 (0.005,0.017)	 days-1	

%̅!	 Equilibrium	number	of	LT-HSCs	 17,000*	 	 cells	

 

 

2.1 Constant parameter values 
In the most basic setting, we can assume that the rate of cell division and self-renewal 

at homeostasis are constants, “programmed” into the cells. Hence, we can use the 

estimated parameter values to simply set  "' = !'! (Table 1). Note that the self-renewal 

probability of LT-HSCs was set to be !̅"=0.5, because in this type of model without 

feedback, this is the only way in which a homeostatic population is maintained at 

equilibirum (p0>0 leads to exponential cell growth, while p0<0.5 leads to extinction, see 

SI Section 1).   The self-renewal rates of the downstream compartments were estimated 

by model fitting and are both below one half (!̅#=0.472, !̅$=0.416). Under the current 

assumptions, this means that the ST-HSC and the MPP compartments cannot maintain 

themselves, and that their persistence strictly depends on the input from the LT-HSCs. 

This has also been the conclusion of (7).  

 

 

2.2. Parameter values are determined by feedback control at homeostasis 
An alternative, and biologically more complex assumption is that the observed 

equilibrium rates of cell division and self-renewal are maintained dynamically through 

Table 1: Definitions	of	model	parameters	and	their	values.	The	bar	over	values	!! 	and	""	is	used	to	
indicate	that	these	are	constants,	and	to	distinguish	these	from	functions	pi(x0,…)	and	x0(t).			*	There	is	a	
degree	of	uncertainty	about	the	number	of	LT-HSCs	(7),	but	none	of	the	qualitative	results	depend	on	this	
value:	all	the	values	simply	scale	with	the	number	of	LT-HSCs	and	a	change	in	this	value	would	result	in	a	
multiplicative	factor.	
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feedback control mechanisms. Experimental data indicate that both the rate of cell 

division, ri, and the probability of self-renewal, pi, might be subject to feedback control, 

because these processes seem to accelerate during tissue reconstitution compared to 

homeostatic setpoint (7). Here we assume that the self-renewal probability, pi, of LT-

HSCs, ST-HSCs, and MPPs can be influenced by feedback regulation. For simplicity, 

we continue to treat the division rate of cells, ri, as constants. The reason is that in the 

current study we focus on dynamics at homeostasis, and in this context, only 

assumptions about the self-renewal probability of cells have an impact on the stability 

properties of the model (69). 

 

Modeling feedback control: Since the exact functional form of feedback on the self-

renewal probability, pi, is not known, different possibilities have been explored in the 

literature. For example, in previous studies (21-23) it was assumed that the final, most 

differentiated cell population reduces the self-renewal probability of cells (importantly 

p0), which then results in the presence of stable equilibria. There are many other 

possible ways in which the self-renewal probability of cells could be regulated. We could 

write in general that in compartment i, the probability of self-renewal of cells is some 

function of cell populations in the same and other compartments: pi=pi(x0,x1,x2,x3). At 

healthy, homeostatic equilibrium, the value of this function is assumed to be equal to the 

experimentally measured self-renewal probability, !̅% (Table 1).   

 

  Here, we explore how the interpretation of the estimated self-renewal 

probabilities can change if we assume that homeostasis is driven by feedback control. 

In the SI Appendix, we provide calculations using different types of control. We show 

that results reported here hold true generally, for a large class of feedback regulation 

functions that satisfy some mild conditions (such as the existence of a stable 

equilibrium). Here, for illustration purposes, we will discuss results in the context of one 

specific feedback loop, where homeostasis is maintained by feedback of LT-HSCs on 

their own self-renewal probability, p0, and similar feedback by populations of the 

downstream compartments on their own self-renewal probability.  Mathematically, this is 

expressed by assuming that p0 is a decreasing function of x0, for example, 
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p0=c0/(h0x0+1), where c0 is the LT-HSC self-renewal probability in the absence of 

feedback, and h0 is the strength of the feedback regulation. While this alone is sufficient 

to achieve a stable equilibrium, we will assume that the ST-HSC and MPP cell 

populations (x1 and x2) can potentially limit their own self-renewal probabilities in a 

similar way, i.e. p1=c1/(h1x1+1) and p2=c2/(h2x2+1). While this formulation can 

correspond to feedback mediated by the cells themselves, it can also be interpreted to 

represent feedback from the microenvironment, which senses the number of cells.  

 

Model calibration in the presence of feedback: Using our estimated parameters 

(Table 1), we have p0=c0/(h0X0+1)=0.5, where X0 is the LT-HSC population at 

homeostasis. It has been estimated that a mouse contains approximately 1.7x104 

hematopoietic stem cells (7) (our conclusions do not depend on the accuracy of this 

number, see Table 1 and SI Appendix). For an assumed (and unknown) value of h0, 

which quantifies the amount of regulation that takes place in the system (the higher h0, 

the stronger the control), we determine the value of c0 such that the LT-HSC population 

equals 1.7x104. Similarly, setting the values of h1 and h2 to a desired level (describing 

the strength of the control loops for ST-HSCs and MPPs), and using the equations 

!#($#) = !̅#, !$($$) = !̅$, we can calculate the values of c1 and c2 such that the effective 

self-renewal probabilities at equilibrium matches the experimentally observed ones. The 

following choices guarantee that at the equilibrium, the self-renewal probabilities 

coincide with their experimentally measured values for LT-HSCs, ST-HSCs, and MPPs: 

 
(For calibration under more general assumptions on the feedback function, see SI 

Section 1). Note that if we set hi=0 (no control, constant self-renewal probabilities), we 

simply obtain that the self-renewal probabilities p0, p1, and p2 are equal to the 

experimentally measured values (!" = 1/2, !# = !̅#, !$ = !̅$).  
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Can ST-HSCs and MPPs self-maintain? Given that the estimated self-renewal 

probabilities of ST-HSCs and MPPs are less than one-half (Table 1), the first 

interpretation that comes to mind is that these populations cannot maintain themselves 

in the absence of input from the LT-HSC compartment. According to the model with 

feedback control, however, this need not be the case. Let us consider ST-HSCs as an 

example.  Let us assume that the self-renewal probability of ST-HSC in the absence of 

negative feedback inhibition, c1, is greater than one half. This means that the ST-HSC 

cell population can maintain itself even without the input from LT-HSCs. At the same 

time, in the context of our model, the negative feedback will result in an equilibrium 

value of p1<0.5 (and equal to the experimentally measured rate of self-renewal, "̅"), 
giving the false impression that this cell compartment cannot persist in the absence of 

LT-HSCs.        
A biological interpretation of the above mathematical statement is as follows.  

The experimentally measured effective self-renewal probability of ST-HSCs and MPPs 

(!̅# and !̅$) at equilibrium is determined by both (i) the basic division dynamics of the 

cells in these compartments and (ii) the influx of cells from the upstream compartment. 

If there is no influx from cells upstream in the differentiation pathway (as is the case for 

LT-HSCs), the self-renewal probability at equilibrium in the presence of negative 

feedback is exactly one half, that is, at the population level, half of the cell divisions 

result in self renewal, and half result in downstream differentiation. The presence of cell 

influx from an upstream compartment, however, changes this balance, reducing the 

effective self-renewal probability at equilibrium to a value less than one half. The 

stronger the cell influx from the upstream compartment, the lower the equilibrium self-

renewal probability falls below one half. This is because the influx increases the number 

of cells in this compartment beyond what division events alone would achieve, thus 

raising the overall amount of negative feedback.  

Since cells now differentiate more often than self-renew, it gives the impression 

that these cell populations cannot maintain themselves. It follows from our model, 

however, that if the upstream compartment is removed and the cell influx stops, the cell 

population that previously differentiated more often than it self-renewed might now 

effectively act like a stem cell compartment with equal self-renewal and differentiation 
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rates. This is shown in Figure 2. The simulation starts at homeostasis, where population 

sizes are at equilibrium and the self-renewal probability of LT-HSCs is one half, while 

the self-renewal probability of ST-HSCs and MPPs is less than one half, using the 

estimated parameters (Table 1). At the indicated time point, the LT-HSCs (blue line) are 

removed in Figure 2A. Consequently, the cell populations adjust but do not go extinct 

(Figure 2A, top). The self-renewal probability of the ST-HSCs rises to exactly one half 

(Figure 2A, bottom), because the influx of LT-HSCs due to differentiation has stopped. 

The self-renewal probability of MPP also increases, but remains below one half, due to 

the continued influx of ST-HSCs. In Figure 2B, the same kind of simulation is repeated, 

but both LT-HSCs and ST-HSCs are depleted, as indicated. Now, the self-renewal 

probability of MPPs rises to exactly one half, due to the lack of influx from upstream cell 

populations, allowing the MPPs to maintain the system.    
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Figure 2. Computer simulation of stem cell depletion. LT-HSCs, ST-HSCs, MPPs, and the sum of 
CMPs and CLPs are shown in blue, yellow, green, and purple lines. Initially, the system is at 
homeostatic equilibrium. (A) At 100 days, the LT-HSC population is removed. (B) At 100 days, 
both the LT-HSCs and the ST-HSCs are removed. We note that this simulation does not include 
replication limits. If replication limits were included, population extinction would eventually occur 
when the cells have exhausted their replicative capacity. Negative feedback on the self-renewal 
probabilities by cells in the same compartment was used, with h0=10-5, h1=10-5.5, h2=10-5.5. The 
rest of the parameters are given in Table1.   
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 The same result can be derived for a more general functional form of feedback 

control (SI Appendix). The important point is that in models with control that are 

consistent with experimentally measured parameters, compartments that exhibit a self-

renewal probability <1/2 may still be able to self-maintain, due to the adjusted increase 

of this probability in the absence of an upstream compartment. 

 

We note that the ability of these downstream cell populations to “maintain 

themselves” indefinitely in the absence of LT-HSCs in our model is due to the absence 

of replication limits in the equations that describe the dynamics of these cell 

populations. If, however, down-stream cell populations are subject to replication limits 

(see SI Section 4), maintenance of these cell populations in the absence of LT-HSCs is 

only temporary. Once their replicative potential is exhausted, the cell populations are 

predicted to go extinct. These model properties are consistent with experimental data in 

which ST-HSCs or MPPs can at least temporarily maintain a functional hematopoietic 

system even if the LT-HSC population is compromised (70-73).   

 

 

 3. Evolutionary Dynamics in the estimated parameter space          
Next, we investigate the evolutionary dynamics in this model using the estimated 

parameters. Denoting wild-type LT-HSCs, ST-HSCs, MPPs and further downstream 

CMP and CLP cells by x0, x1, x2, x3(1), and x3(2), respectively, and the corresponding 

mutant cells by y0, y1, y2, y3(1) and y3(2), the model with feedback control is given by the 

following set of ODEs: 
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Mutant-specific parameters are denoted by superscript (m). WT and mutant cells are 

assumed to compete with each other through shared feedback control, e.g. the self-

renewal probability for WT and mutant LT-HSCs is given by p0=c0/(h0(x0+y0)+1) and 

p0(m)= c0(m)/(h0(m)(x0+y0)+1), respectively, and similarly for ST-HSCs and MPPs. We will 

study the invasion dynamics of an advantageous mutant assuming that it arises in 

different cell compartments, including LT-HSCs, ST-HSCs, and MPPs. In the above 

system, de-novo mutations are not included (see SI Section 2 for equations describing 

continuous mutant generation). Instead, here we investigate the fate of mutants by 

placing them in different compartments and studying the resulting competition dynamics 

between wild-type and mutant cells, asking under which conditions the mutant can 

invade from low numbers. 

 We focus on advantageous mutants. In general, mutants may have properties 

different from those of wild-type cells, including an increased replication rate, an 

increased probability of self-renewal, or an increased replication limit. It has been shown 

(22, 37, 69) that in models of the type employed here, a mutant whose replication rate is 

increased (but the probability of self-renewal is unaffected) does not behave as an 

advantageous mutant. Therefore, in what follows we will assume that mutants’ overall 

replication rate is the same as that of the wild type, but that parameters determining the 

self-renewal probability differ.   

  

 

3.1 Invasion barriers for mutants originating in different compartments 

LT-HSC compartment: If the mutant emerges in the LT-HSC compartment, the 

evolutionary dynamics have been investigated previously in a similar model (22, 37). 

Assume that mutants are characterized by an increased probability of self-renewal. 

Suppose that the basic probability of self-renewal in the absence of feedback, c0, is the 

only parameter that varies between wild-type and mutant cells, and denote the 

equivalent mutant parameter by c0(m)  . Then the condition for mutant invasion is c0(m) > 

c0. The cell population with the larger basic self-renewal probability wins and replaces 

the competing cell population. Another parameter that determines fitness in our model is 
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the strength of feedback inhibition of self-renewal, denoted by h0 in the LT-HSC 

compartment. If this is the only parameter that varies between WT and mutant cells, 

then a mutant invades and replaces the wild-type population if h0(m)<h0. In the most 

general case, where the mutant self-renewal probability is given by 	!!(#),	 the condition 

for the mutant winning is given by  !!(#) > !!,  where both quantities are measured at the 

wild-type equilibrium. This straightforward result is consistent with the previous literature 

(22).  

  

Downstream replicating compartments: If the mutant arises in either the ST-HSC or the 

MPP compartments, the conditions for mutant invasion are different. Although mutant 

and WT cells compete with each other in these compartments, the mutant does not 

necessarily invade if it has a reproductive fitness advantage (e.g., a higher self-renewal 

probability compared to the wild type). Instead, the reproductive advantage of the 

mutant needs to be sufficiently large and lie above a threshold for invasion to be 

successful. Let us suppose that the self-renewal rate of mutants in the ST-HSC 

compartment differs from that of wild-types by a constant factor: !%(#) = (1 + .)!%, where 

s is the selection coefficient. The condition for the mutant to succeed (that is, to 

establish a nonzero presence) in the ST-HSC compartment is given by: . > .&(%), where 

.&(%) =
%

'(̅!,
− 1 (note that this condition is general and does not depend on the specifics of 

the feedback function, see SI Section 2).  

 

  For the parameter values in Table 1, the invasion threshold for the ST-HSC 

compartment is approximately 0.0582. This means that if a mutant is generated in the 

ST-HSC compartment, its fitness advantage must exceed 5.82% for those cells to be 

able to establish a presence among the ST-HSC population, and subsequently invade 

the downstream compartments. Similarly, if a mutant originates in the MPP 

compartment, its fitness threshold under parameter values in Table 1 is given by .&(') =
%

'(̅",
− 1 ≈ 0.203, that is, fitness advantage must exceed 20.3%. At the same time, note 

that confidence intervals for the estimates can be relatively large (especially for MPPs), 
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indicating a degree of uncertainty regarding the exact magnitude of the invasion 

threshold. 

  

 

The reason for the threshold behavior is as follows. For the sake of the 

argument, assume that mutant cells originate in the ST-HSC compartment. In this case, 

they have an inherent disadvantage compared to the wild-type ST-HSCs, despite their 

larger self-renewal potential. The fitness of the wild-type cells in the ST-HSC 

compartment is determined by the combination of cell influx from the LT-HSCs (through 

differentiation) and the self-renewal of the wild-type ST-HSCs. In contrast, the fitness of 

the mutant ST-HSCs is determined only by their self-renewal rate (because no mutants 

are present among the upstream LT-HSCs). To overcome this inherent disadvantage of 

the mutant, the self-renewal potential of the mutant must be sufficiently large relative to 

that of the wild-type among the ST-HSCs for the mutant cells to invade there. 

 

 

 

 

Figure 3 illustrates these concepts with computer simulations (see SI Section 3 

for details of the mathematical analysis). The simulations start with the wild-type cell 

population at equilibrium (solid lines), and a small amount of advantageous mutant cells 

Figure 3: Simulated invasion dynamics of mutant cells. LT-HSCs, ST-HSCs, MPPs, and the sum of CMPs and 
CLPs are shown in blue, yellow, green, and purple lines, respectively. Solid line are wild-type cells, dashed line 
mutants. (A) A mutant with a 2% advantage is placed among LT-HSCs. (B) A mutant with a 2% advantage is 
placed among MPPs. (C) A mutant with a 25% advantage is placed among MPPs. Negative feedback on the self-
renewal probabilities by cells in the same compartment was used, with h0=10-5, h1=10-5.5, h2=10-5.5. The rest of the 
parameters are given in Table1.   
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(dashed lines) are introduced. First, a single mutant characterized by a 2% advantage is 

introduced among the LT-HSCs (Figure 3A). Over time, the mutants invade, although 

this takes a time frame longer than the life-span of a laboratory mouse (2.5 years) under 

the estimated parameters. Notably, although the mutant was introduced among LT-

HSCs, it first rises among the downstream cells, because differentiation propagates the 

mutant into these compartments, where cell reproduction occurs with a faster rate. In 

Figure 3B, the same kind of mutant (2% advantage) is placed among the MPP cells. 

Due to the invasion barrier, however, the mutants fail to invade. In contrast, if a mutant 

with a very large advantage is placed among the MPPs (e.g. 25% advantage, Figure 

3C), the invasion barrier is overcome and the mutant invades within a relatively short 

time span.    

 

 

3.2 Evolutionary mechanisms to break the mutant invasion barrier in downstream 
compartments. 
Let us consider mutant invasion in the ST-HSC cell population. According to the best 

fitting parameter estimate, a mutant would have to enjoy a >5.8% advantage to invade 

from low numbers. While possible for certain types of mutants, smaller fitness 

advantages (e.g. 2% or less) are more common. Here we explore mechanisms that 

could lead to the emergence of mutants with a relatively small fitness advantage.  

 

According to our model, the mutant invasion barrier arises due to the influx of 

wild-type cells from upstream compartments through differentiation. A mutant that arises 

downstream, e.g. among ST-HSCs, lacks that influx, conferring an inherent 

disadvantage. Therefore, one way to reduce the mutant invasion barrier is to reduce the 

influx of wild-type cells from upstream compartments. This is what might occur during 

the aging process.  Experimental data indicate that aging in mice results in a reduced 

rate at which HSCs divide and differentiate (8, 74, 75). In terms of our model, this can 

be expressed by an age (time)-dependent reduction of r0x0. The model then predicts 

that an advantageous mutant arising among ST-HSCs or MPPs, which might not be 
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able to invade at a younger age, could successfully invade at an older age when the 

influx of upstream wild-type cells is diminished.  

This is illustrated by computer simulations in Figure 4, using our base model 

where cells in each compartment exert negative feedback on their own self-renewal 

probabilities.  A mutant with a 2% advantage is placed into the ST-HSC population at 

equilibrium. In a basic simulation, the mutant fails to grow due to the calculated invasion 

barrier (Figure 4A). In Figure 4B, the simulation is run such that the influx of wild-type 

cells from the LT-HSC compartment through differentiation (proportional to r0x0) is 

reduced by a small amount every time unit. Once the influx rate r0x0 falls below a 

Figure 4. Computer simulations showing how mutants might overcome the invasion barrier in our model. 
A small amount of mutant cells is placed among ST-HSCs, while the wild-type cells are at equilibrium. In 
the top graphs, the dynamics of cell populations are shown, where LT-HSCs, ST-HSCs, MPPs, and the 
sum of CMPs and CLPs are shown in blue, yellow, green, and purple lines. Wild-type cells are shown by 
solid lines, mutant cells by dashed lines. The bottom graphs show the influx rate of LT-HSCs to ST-HSCs 
through differentiation (r0x0) over time. (A) model simulation without added mechanisms. The mutants fail 
to invade due to the barrier. (B) Aging-induced reduction of the rate of wild-type influx from LT-HSCs to 
ST-HSCs is modeled, by reducing the value of r0x0 by a factor of 1.0075 every day. Once the value of r0x0 
has been sufficiently reduced, the mutant can invade, albeit slowly. (C) In addition to the reduction of r0x0, 
we also assume that the most differentiated mutant cells in our model, y3(1)+y3(2), induce inflammation, 
which reduces the self-renewal probability of wild-type cells in all compartments, but not of mutant cells. 
Hence, p0=c0/(h0(x0+y0)+h(y31+ y32)+1), p1=c1/(h1(x1+y1)+h(y3(1)+ y3(2))+1), p2=c2/(h2(x2+y2) )+h(y3(1)+ 
y3(2))+1), where h denotes rate at which wild-type cells are inhibited by mutant-induced inflammation. Now, 
mutant cells can emerge on a relatively fast time scale. We assumed that h=0.01. Negative feedback on 
the self-renewal probabilities by cells in the same compartment was used, with h0=10-5, h1=10-5.5, h2=10-5.5. 
The rest of the parameters are given in Table1.   
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threshold, the mutant cells start to grow from low numbers, meaning that the invasion 

barrier has been sufficiently reduced. At the same time, however, the mutant grows 

slowly and does not reach significant levels within the life-span of a laboratory mouse 

(about 2.5 years) in this parameter regime. 

 

Another mechanism that might contribute to overcoming the mutant invasion 

barrier is based on the observation that certain mutants in the hematopoietic system 

(such as TET2 or DNMT3A mutants) are associated with an increased inflammatory 

environment, which has been investigated both mathematically and experimentally (76-

79). Data indicate that inflammation might negatively influence the self-renewal capacity 

of wild-type cells, while affecting mutant cells to a lesser extent or not at all (80, 81).  

Indeed, it is thought that differentiated mutant cells themselves can induce increased 

inflammation (82, 83), thus turning conditions in favor of the mutant lineage (evolutionary 

niche construction). We incorporated this into our mathematical model by assuming that 

the self-renewal probability of wild-type (but not mutant) LT-HSCs, ST-HSCs, and MPPs 

is reduced proportionally to the number of mutant cells in the most differentiated 

compartments in our model (see Figure 4 for details of the formulation). We 

simultaneously assumed that the influx of wild-type cells from LT-HSCs to ST-HSCs is 

reduced due to aging, as described above. In this simulation, the reduction of wild-type 

influx from LT-HSCs to ST-HSCs eventually allows the mutant cell population to grow. 

First, this growth is slow as before (Figure 4C). Over time, however, mutant cell growth 

accelerates due to a positive feedback effect. An increase in the mutant population 

leads to increased inflammation levels, which in turn raises the relative fitness of 

mutants, and hence accelerates their growth. Through a combination of the reduced 

wild-type cell differentiation from LT-HSCs to ST-HSCs and mutant-induced 

inflammation, we can observe a significant rise in mutant abundance during the life-

span of a laboratory mouse (Figure 4C). Note that although the mutant was placed 

among the ST-HSCs, mutant invasion is predicted to be visible first in the downstream 

cell populations, due to their higher reproduction rates.  
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If the extent of mutant-induced inflammation is very strong, such that one mutant 

cell can already significantly increase the amount of inflammation, then the reduction of 

wild-type cell influx from LT-HSCs to ST-HSCs might not be needed to observe 

successful mutant growth. This, however, is probably not biologically realistic, because 

a certain amount of mutant growth is likely needed for them to sufficiently amplify 

inflammation levels. A generally high background level of chronic inflammation (e.g. due 

to an underlying disease or condition), however, might enable successful mutant 

invasion in the absence of an age-related reduction in wild-type cell influx from LT-

HSCs to ST-HSCs.              

  

We point out that longer-term sustained mutant presence might further require an 

increase in the cells’ replicative capacity. As shown in SI Section 4, mutant invasion can 

be temporary if a mutant cell arising downstream (e.g. among ST-HSCs or MPPs) has 

limited replication capacity. In this case, further mutations might be needed to extend 

the replication capacity of mutant cells, thus enabling their long-term persistence. There 

is evidence that tet2 and dnmt3a mutants already have an extended replicative capacity 

in mice (84, 85), meaning that with these mutants, no further increase in the cellular 

replication capacity might be needed for long-term mutant success.   

 

4. Discussion and Conclusion 
Quantitative data about the kinetics of cell division, self-renewal, and differentiation in 

LT-HSCs, ST-HSCs, and MPPs in mice (e.g. arising from label propagation experiments 

(7)) represent an invaluable source for the parameterization of mathematical models 

that describe hematopoiesis. Our analysis, however, has shown that the interpretation 

of these estimated parameters can change drastically if the mathematical models 

include non-linear homeostatic feedback control mechanisms.  Without explicitly 

implementing homeostatic control mechanisms in mathematical models, the parameter 

estimates appear to suggest that while the LT-HSC population can maintain itself 

because self-renewal and differentiation processes are exactly balanced at 

homeostasis, this is not the case for ST-HSCs or MPPs: among those cells, 

differentiating divisions occur more frequently than self-renewal divisions at equilibrium, 
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implying that in the absence of LT-HSCs, these downstream populations will wash out. 

If feedback control is assumed to operate in the ST-HSC and MPP compartments, 

however, the dominance of differentiation divisions is compatible with the ability of these 

downstream cells to maintain themselves during homeostasis, even in the absence of 

LT-HSCs. The reason is that in the model, the dominance of differentiation divisions is 

the consequence of increased negative feedback on self-renewal that results from the 

influx of upstream cells (e.g. LT-HSC) through differentiation. If the upstream cells are 

removed, this feedback will be weaker, leading to an exact balance between self-

renewal and differentiation events, as long as replication capacities are not exhausted. 

The model can thus reconcile the observation that transplanted ST-HSCs and MPPs (in 

the absence of upstream cells) can reconstitute a partial hematopoietic system and 

maintain it at homeostasis, before these cells reach their replication capacity (70-72). 

Similarly, following HSC and progenitor ablation in mice, HSC did not recover beyond 

10% of normal numbers, while the progenitor cell population rebounded quickly and 

steady state hematopoiesis was for the most part not disrupted (73).    

 

 The model further suggests that feedback regulation in the ST-HSC and MPP 

compartments has important implications for the potential of advantageous mutants to 

emerge there. These compartments are thought to be important for mutant evolution 

because the cells replicate more frequently than LT-HSCs. Hence, chances to generate 

mutants are higher among ST-HSCs and MPPs compared to LT-HSCs. Due to the 

influx of wild-type cells from upstream compartments, however, competition among ST-

HSCs and MPPs is more challenging for mutants. If a mutant is generated in one of 

those populations, the mutant competes with wild-type cells on two levels: (i) Through 

cell replication / loss dynamics within the compartment. If the mutant has a higher self-

renewal rate than the wild-type, it will be advantageous in this respect. (ii) Through cell 

influx from the upstream compartments through differentiation. The mutant will be 

disadvantageous in this respect if it arose among the ST-HSCs or MPPs, because WT 

cells experience an influx from upstream compartments, while this is not the case for 

mutants (since they were only generated downstream). Therefore, to be able to spread 

in this setting, the replicative advantage of the mutants must be high enough to 
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overcome this mutant disadvantage.  We have derived a simple formula for the mutant 

invasion threshold, in which the selection coefficient, s, of mutants must be higher than 

1/(2p)-1, where p is the equilibrium self-renewal probability of the WT cells in the 

mutant’s compartment of origin. 

  

In contrast, mutants that arise among the LT-HSCs can grow to dominance in 

this model if they have any degree of advantage compared to the wild-type cells, no 

matter how small (note that setting p=1/2 in the formula above gives a zero threshold). 

The reason is that there are no upstream compartments, and hence no influx of wild-

type cells. However, LT-HSCs are less likely to produce mutants due to infrequent cell 

divisions. Therefore, the model suggests that there is a tradeoff: It is unlikely for mutants 

to be created among LT-HSCs, but if they do emerge they can invade if they are 

advantageous. In contrast, it is more likely for mutants to be generated downstream, but 

the extent of the fitness advantage must lie above a threshold for them to be able to 

take-off.  

 

With respect to the mutant invasion threshold calculated for the best fitting 

parameters (Table 1), it is important to keep in mind the confidence intervals. In 

particular, the estimate for the self-renewal probability of MPPs is characterized by 

relatively large confidence intervals, meaning that there is a degree of uncertainty 

regarding the exact magnitude of this invasion threshold (which was estimated to be 

around 20% from the best-fitting parameters). Hence, it is possible that this invasion 

threshold might be lower, and therefore more likely to be overcome by mutated cells. 

Even if a mutated cell does overcome the invasion threshold, however, our simulations 

indicate that mutant invasion would occur on a rather slow time scale relative to the life-

span of the organism. According to the parameterized model, robust mutant invasion 

within a biologically meaningful time frame would require the mutant advantage to be 

significantly larger than the invasion threshold (even for mutants emerging among 

MPPs), again pointing towards a strong barrier against mutant invasion. 
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This analysis suggests the existence of a strong resilience against mutant 

evolution in the hematopoietic system under biologically realistic parameters, and 

indicates that more complex conditions need to be present for mutant cell clones to 

grow. This has implications for the emergence of mutants that give rise to clonal 

hematopoiesis of indeterminate potential (CHIP), such as TET2 and DNMT3A mutants. 

These mutants evolve in the hematopoietic system at homeostasis and increase the 

chances that hematological malignancies as well as other chronic health conditions 

develop (20).  For these and other mutants in the hematopoietic system, inflammation 

has been identified as a possible selective force that drives their emergence (79-81), 

and this has also been formulated in previous mathematical models (76-79). Beyond 

this, it has been suggested that the mutants themselves induce an inflammatory 

environment (82, 83), which negatively affects wild-type cells but to a lesser extent 

mutant cells (80, 81), thus creating an increasingly advantageous environment for 

mutants (evolutionary niche construction). We investigated the effect of mutant-induced 

inflammation on the ability of mutant cells to overcome the invasion barrier in the model. 

The model suggested that mutant-induced inflammation on its own is unlikely to be 

sufficient to overcome the invasion barrier, because the mutant cell population first has 

to increase to a certain extent to induce sufficient inflammation. However, if additionally, 

aging results in a reduced influx of wild-type stem cells into downstream cell populations 

through differentiation (as has been shown experimentally (20)), the model suggests 

that this can reduce the invasion barrier to allow an initially slow mutant growth, which 

can then accelerate due to rising levels of mutant-induced inflammation (evolutionary 

niche construction). This suggests that complex dynamics are involved in the evolution 

of mutant cell clones in the hematopoietic system, and provides a guide for 

experimental testing. A better understanding of these complex dynamics will open doors 

for the design of evolution-based treatment interventions that can potentially reduce 

mutant burden and hence alleviate chronic health conditions and reduce the incidence 

of malignancies. 

 

Our analysis of evolutionary dynamics occurred under the assumption that 

hematopoietic cell lineages are regulated by feedback control mechanisms during 
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homeostasis, in particular feedback on the self-renewal rate of cells. It is instructive to 

compare these evolutionary dynamics to those occurring in the absence of feedback 

control, a setting in which mathematical models parameterized by experimental kinetic 

data have been analyzed in the past (66). Without feedback, only carcinogenic mutants 

can emerge, i.e. cell clones that grow uncontrolled, with a self-renewal rate that is larger 

than the differentiation rate. Because the self-renewal rate of LT-HSCs is exactly 

balanced by the differentiation rate, any degree of fitness advantage will result in 

uncontrolled mutant expansion without negative feedback. Because downstream cell 

populations (ST-HSCs and MPPs) differentiate more than they self-renew, models 

without feedback are also characterized by a mutant invasion threshold, although this is 

simply due to the fact that uncontrolled growth requires the self-renewal rate to exceed 

the rate of differentiation, which is more difficult to achieve in downstream 

compartments. The emergence of non-carcinogenic mutants (such as TET2 or 

DNMT3A mutants in CHIP) is not possible in models without feedback, and the invasion 

threshold for carcinogenic mutants is then not connected to the influx of wild-type cells 

from upstream compartments.  In contrast, the presence of significant negative 

feedback in our model ensures that the population remains around a homeostatic 

steady state as evolution proceeds, and hence non-malignant mutants can emerge, 

competing with the wild-type cells through the shared feedback inhibition. The mutant 

invasion barrier for ST-HSCs and MPPs described here arises in our models with 

feedback due to a different mechanism compared to models without feedback (66). The 

invasion threshold in our models with feedback control is connected to competition 

dynamics, and occurs because the influx of wild-type cells from upstream compartments 

(and a corresponding lack of influx of mutant cells) confers an inherent disadvantage to 

the mutant cells, even though they have a higher reproductive fitness in the 

compartment in which they arise (ST-HSCs or MPPs).  

 

In our model with feedback, the development of uncontrolled cell growth would 

require further mutations that allow cells to escape feedback-mediated homeostasis 

(69). If the degree of negative feedback is significantly weakened (but not absent) in our 

model, however, the equilibrium level to which invading advantageous mutants grow in 
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the system becomes higher (see SI Appendix Section 3, Figures S7 and S9), which 

could represent an intermediate stage in the loss of homeostasis.    

  

 While the model structure used in this study is based on the previous literature 

on modeling the hematopoietic system (21-25) and other tissues (86, 87), there are 

uncertainties regarding the exact processes that should be included in such models for 

maximal biological realism. All cell divisions in our model are symmetric, and the 

balance between self-renewal (e.g. a stem cell giving rise to two stem cells) and 

differentiation (e.g. a stem cell giving rise to two differentiated cells) is determined on 

the population level. For example, at homeostasis, half of all LT-HSC divisions are self-

renewing symmetric divisions, and half are differentiating symmetric divisions. Even 

though there is empirical evidence for this mechanism in mammalian tissues (88, 89), it 

is possible that asymmetric cell divisions also take place in the hematopoietic system 

(90), e.g. a stem cell giving rise to one daughter stem cell and one daughter 

differentiated cell. When asymmetric stem cell divisions are added to the type of models 

analyzed here, many properties remain the same (91), and we do not expect 

conclusions to change if asymmetric cell divisions occur among the LT-HSCs. With 

downstream cells, asymmetric cell divisions are unlikely to play a significant role 

because at homeostasis, self-renewal and differentiating divisions are not balanced.  

A related issue is the mechanism underlying differentiation processes. In our 

model, differentiation is coupled to cell division. There is experimental evidence that 

HSC fate decisions are connected to the cell cycle, e.g. through changes in metabolism 

(92, 93), thus supporting our model assumptions. On the other hand, the differentiation 

of LT-HSCs has been shown to occur in the absence of cell division in certain 

circumstances (94), although it is not clear how frequently division-independent 

differentiation events occur. More complex assumptions about differentiation 

mechanisms can be incorporated into models as more biological information becomes 

available in the future. Another source of uncertainty concerns the mechanisms that 

contribute to homeostasis. We modeled feedback in a general way, analyzing a 

multitude of ways in which feedback control can contribute to homeostasis. Biologically, 

this can account for both signals that are secreted from the cell lineage itself, and from 
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the microenvironment that senses the abundance of various cell linage sub-populations. 

Other aspects that might limit the number of cells at homeostasis and that are not part 

of our model could be spatial constraints (95), as well as interactions with the 

extracellular matrix (96). Incorporating these into the current model is a more complex 

effort and beyond the scope of our study. 

  

 The insights obtained from our model can suggest new mouse transplant 

experiments to test some of these notions, where mutant and wild-type cells tagged with 

different luciferases are transplanted together, and the relative fraction of mutants is 

monitored non-invasively over the long-term. Mutant cells can be purified to only include 

mutant ST-HSCs or MPPs (based on markers), and the fate of the mutants in the 

different compartment can be tracked. Due to the invasion barriers, we expect the 

relative fraction of the mutants to decline over time. This experiment could be repeated 

in the presence of various degrees inflammation, for example induced by LPS. Based 

on our model, we hypothesize that sufficient inflammation levels help mutants overcome 

the invasion barrier. This set of experiments could then be repeated, where mutants are 

present in all cell compartments, including LT-HSCs. Based on our model analysis, we 

hypothesize that in this case, the mutant fraction will not decline over time even without 

any inflammation, due to both wild-type and mutant cells being present among the LT-

HSCs.      

 

5. Materials and methods 
The mathematical model used in this work is based on ordinary differential equations, 

where we keep track of cell dynamics in the 5 compartments: LT-HSCs, SH-HSCs, 

MPPs, CMPs, and CLPs, and include the processes of cell self-renewal, cell 

differentiation (assumed to be associated with cell divisions), and cell removal from the 

CMP and CLP compartments. The details are presented in SI Appendix. The model is 

calibrated by using previously published experimental data (SI Section 1). The 

probabilities of self-renewal in the LT-HSC, SH-HSC, and MPP compartments are 

assumed to be functions of cell populations in different compartments. In order to study 

evolutionary dynamics, we incorporate mutant cells in the system of ODEs and consider 
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the stability of a mutant-free equilibrium. We assume that advantageous mutants can be 

characterized by (i) an increased rate of cell divisions and (ii) an increased probability of 

self-renewal, SI Section 2. We then proceed to show that differences of type (i) cannot 

result in mutants growing from low numbers. On the other hand, type (ii) differences can 

lead to a positive selection of mutants. While a standard stability analysis yields that 

mutants with any degree of type (ii) advantage will destabilize the equilibrium, a more 

detailed set of calculations shows that mutants that originate in SH-HSC or MPP 

compartments have to overcome an invasion barrier. SI Section 2 demonstrates this 

result, which is independent of specific assumptions about the shape of control 

functions. Several scenarios of mutant dynamics are studied in SI Section 3, including 

an example of stochastic modeling. Replication limits are included in the model in 

Section 4, when we also consider a third type of mutants, characterized by (iii) an 

increased replication limit. It is shown that in the presence of replication limits, the 

invasion threshold result still holds, but now type (iii) differences are required for the 

mutants to make a longer lasting impact on system dynamics.  
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1 Wild-type ODE models and their proper-

ties

1.1 Model parameterization

We describe hematopoietic turnover by the following system of ODEs:

dx0

dt
= r0x0(2p0 � 1), (1)

dx1

dt
= 2r0x0(1� p0) + r1x1(2p1 � 1), (2)

dx2

dt
= 2r1x1(1� p1) + r2x2(2p2 � 1), (3)

dx(1)
3

dt
= 2r2x2(1� p2)�

(1) � d(1)3 x(1)
3 , (4)

dx(2)
3

dt
= 2r2x2(1� p2)�

(2) � d(2)3 x(2)
3 , (5)

where the variables x0(t), x1(t) and x2(t) denote the populations of the LT-

HSC, ST-HSC, and MPP compartments respectively, and variables x(1)
3 and

x(2)
3 describe the CMP and CLP compartments. The corresponding schematic

can be found in figure S1(a).
We assume that the probabilities of self-renewal, p0, p1 and p2 are some

functions of the cell populations:

pi = pi(x0, x1, x2, x
(1)
3 , x(2)

3 ), 0  i  2.

We will denote the equilibrium population sizes by capital letters. Solving
equations (1-5) in steady state, we obtain:

X1 =
r0X0

r1(1� 2p̄1)
, (6)

X2 =
2r0X0(1� p̄1)

r2(1� 2p̄1)(1� 2p̄2)
, (7)

X(1)
3 =

4r0X0(1� p̄1)(1� p̄2)�(1)

d(1)3 (1� 2p̄1)(1� 2p̄2)
, (8)

X(2)
3 =

4r0X0(1� p̄1)(1� p̄2)�(2)

d(2)3 (1� 2p̄1)(1� 2p̄2)
, (9)
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Figure S1: Schematic representations of the compartment system and the processes/rates
included in the model. (a) The model with separate CMP and CLP compartments. (b)
The model with compartments CMP and CLP combined into compartment C3.

where we denoted

p̄i = pi(X0, X1, X2, X
(1)
3 , X(2)

3 ), 0  i  2,

the equilibrium values of the probabilities of self-renewal.
To determine numerical parameters of the model, we used the neutral

label propagation data and the relative compartment size data, measured
in [1] and [2]. Let us denote the numbers of cells marked with a neutral
label as zi(t) in each of the compartments. The equations for zi are in
this case identical to equations (1-5), and the probabilities of self-renewal
/di↵erentiation are evaluated at the equilibrium (and are thus constants).

Denote by fi ⌘ zi
Xi

the fraction of labeled population in each compart-
ment. We have

ḟ0 = 0, (10)

ḟ1 =
1

⌧1
(f0 � f1), (11)

ḟ2 =
1

⌧2
(f1 � f2), (12)

ḟ (1)
3 =

1

⌧ (1)3

(f2 � f (1)
3 ), ḟ (2)

3 =
1

⌧ (2)3

(f2 � f (2)
3 ), (13)
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where

⌧1 =
1

r1(1� 2p̄1)
, ⌧2 =

1

r2(1� 2p̄2)
, ⌧ (1)3 =

1

d(1)3

, ⌧ (2)3 =
1

d(2)3

. (14)

The ratios of the compartment sizes at the equilibrium satisfy:

X1

X0
=

r0
r1(1� 2p̄1)

,
X2

X1
=

2r1(1� p̄1)

r2(1� 2p̄2)
,

X(1)
3

X2
=

2r2�
(1)
2

d(1)3

,
X(2)

3

X2
=

2r2�
(2)
2

d(2)3

.

(15)
Following the methodology described in [1], we fitted the analytical solutions
of equations (10-13) to the time-series of the neutral label proportions in
compartments ST-HSC,MPP, CMP, and CLP (using proportions relative to
that in the LT-HSC compartment); in addition, the relative compartment
sizes were fitted. The prediction for the relative compartment sizes, ⌫1 =
X1/X0, ⌫2 = X2/X1, ⌫

(1)
3 = X(1)

3 /X2, and ⌫(2)
3 = X(2)

3 /X2 were obtained
from solutions (6-9), and fitted to the quantities reported in [1], which were
determined by cell counting of cell suspensions. Note that despite di↵erences
in the equations for cell populations used here and in [1], the equations for
cell fractions, system (10-13), are identical for our model. In the fitting
procedure, we used a larger, updated dataset for the time-series in the ST-
HSC and MPP compartments, see [2].

In order to investigate confidence intervals of the fitted parameters, and
also the confidence intervals of the fit, we used the bootstrapping method to
resample the data, assuming the beta-distribution of the quantities f1, f2, f

(1)
3 ,

and f (2)
3 (the usual assumption of normality does not hold in the case where

the variables are fractions). The two parameters of the beta-distribution
were calculated from the mean and standard deviation information provided
in the data. The best fits together with the confidence intervals are shown
in figure S2. The results for the best-fitting parameters together with the
confidence intervals are presented in Table 1 of the main text.

In what follows we will combine compartments CMP and CLP into a
single compartment, which allows for a simpler model, see the schematic
of figure S1b. To generalize the description, suppose that there are n + 1
compartments, C0, . . . , Cn, that have increasing degree of di↵erentiation (in
our case n = 3). Denote by xi the number of wild type cells in compartment

4



Figure S2: The relative proportions of the neutral label in the four compartments:
ST-HSC, MPP, CLP, and CMP. Blue points show the data from [1, 2], with error bars
representing the standard error. The red curves are the best fits, and the green shaded
areas represent the 95% confidence intervals of the fits.

Ci. The corresponding system in then given by

dx0

dt
= r0x0(2p0 � 1), (16)

dxi

dt
= 2ri�1xi�1(1� pi�1) + rixi(2pi � 1), 1  i  n� 1, (17)

dxn

dt
= 2rn�1xn�1(1� pn�1)� dnxn. (18)

Parameter d3 in equation (18) (with n = 3) was obtained as d3 = (d(1)3 ⌫(1)
3 +

d(2)3 ⌫(2)
3 )/(⌫(1)

3 + ⌫(2)
3 ). The best fit value is d3 = 0.0274 days�1, with the 95%

C.I. (0.015, 0.17).

1.2 The self-renewal probability functions and model

calibration

In system (16-18), the quantity pi is the probability of self renewal of cells in
compartment Ci. We assume that these are functions of the cell populations.
Most generally, we write

pi = pi(x0, . . . , xn), 0  i  n� 1. (19)

We will assume that these functions are such that a stable, positive steady
state exists:

x0(t) = X0 > 0, . . . , xn(t) = Xn > 0,
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which is given by

Xi = Xi�1
2ri�1(1� p̄i�1)

ri(1� 2p̄i)
= X0

iY

m=1

2rm�1(1� p̄m�1)

rm(1� 2p̄m)
, 1  i  n� 1, (20)

Xn =
2rn�1(1� p̄n�1)

dn
Xn�1 (21)

(note that p̄0 = 1/2).

The minimal requirements on the functions pi are as follows:

(i) Functions pi are probabilities, that is, they satisfy 0  pi  1 for the
relevant range of their arguments.

(ii) The self-renewal probabilities are non-increasing functions of the down-
stream compartment as well as its own compartment, and they are
non-decreasing functions of the upstream compartments (whenever ap-
plicable).

Here we will consider several special cases of the dependencies of pi on cell
populations. The first three examples below contain two constant nonneg-
ative coe�cients per function (those are denoted by ci and hi). The last
example is characterized by a larger number of parameters.

1. Control from within each compartment, which we will refer to as “self”
for a short-hand notation:

pi = pi(xi), 0  i  n� 1.

For example, we will use the following functional form:

pi =
ci

1 + hixi
. (22)

2. Control from the downstream compartment, which we will refer to as
“next” for a short-hand notation:

pi = pi(xi+1), 0  i  n� 1.

An example is the following functional form:

pi =
ci

1 + hixi+1
.

6



3. Control from the most di↵erentiated compartment, which we will refer
to as “last” for a short-hand notation:

pi = pi(xn), 0  i  n� 1,

for example,

pi =
ci

1 + hixn

To satisfy constraint (i) above, we will assume that the functional form is
relevant in some vicinity of the positive equilibrium, and away from the equi-
librium the function is modified such that the probabilities are within [0, 1].

We note that the equilibrium compartment size, equations (20-21), does
not depend on our choice of the control strength or type. The constraints on
the control parameters come from the self-consistency requirements:

pi(X0, . . . , Xn) = p̄i, 0  i  n� 1. (23)

For the examples of functional forms studied here, if we assume certain values
for all the control strength parameters such as hi, equations (23) comprise
a linear system system of n equations for n unknowns, c0, . . . , cn�1. For the
examples listed above, we have:

1. Control from within each compartment, “self”:

c0 =
1

2
+

h0x̄0

2
, (24)

c1 = p̄1 +
r0x̄0h1p̄1

r1(1� 2p̄1)
, (25)

c2 = p̄2 +
2r0x̄0h2(1� p̄1)p̄2

r2(1� 2p̄1)(1� 2p̄2)
. (26)

2. Control from the downstream compartment, “next”:

c0 =
1

2
+

h0r0x̄0

2r1(1� 2p̄1)
, (27)

c1 = p̄1 +
2h1p̄1r0x̄0(1� p̄1)

r2(1� 2p̄1)(1� 2p̄2)
, (28)

c2 = p̄2 +
4h2p̄2r0x̄0(1� p̄1)(1� p̄2)

d3(1� 2p̄1)(1� 2p̄2)
. (29)
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3. Control from the most di↵erentiated compartment, “last”:

c0 =
1

2
+

2h0r0x̄0(1� p̄1)(1� p̄2)

d3(1� 2p̄1)(1� 2p̄2)
, (30)

c1 = p̄1 +
4h1p̄1r0x̄0(1� p̄1)(1� p̄2)

d3(1� 2p̄1)(1� 2p̄2)
, (31)

c2 = p̄2 +
4h2p̄2r0x̄0(1� p̄1)(1� p̄2)

d3(1� 2p̄1)(1� 2p̄2)
. (32)

Note that these expressions hold in the absence of control, when we simply
set hi = 0.

Figure S3 illustrates convergence of the three control models to equilib-
rium (20-21), by showing the dynamics of the ODEs starting from a small
number of cells in the LT-HSC compartment. In all simulations, we fixed con-
trol parameters hi and used the above formulas for the parameters ci. Panel
(a) corresponds to the “self” control model, panel (b) to the “next” control
model, and panel (c) to the “last” control model. We observe that all three
models are capable of reaching the stable equilibrium (values X0, . . . , X3,
equations (20-21), indicated by dashed horizontal lines in figure S3). These
simulations however are not meant to represent the process of development,
where di↵erent types of feedback control are involved and di↵erent parameter
values must be used for a realistic description.

Figure S3: The ODE dynamics of the wild-type system for the three specific assump-
tions on the control of the self-renewal probabilities: (a) “self”, (b)“next”, and (c) “last”.
Populations shown are x0 (blue), x1 (yellow), x2 (green), and x3 (red). The initial condi-
tions are x0(0) = 100, xi(0) = 0 for i � 1. The dashed horizontal lines are the equilibrium
values, Xi, equations (20-21). h = 10�7, and the rest of the parameters are as in table 1
of the main text.
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2 Modeling wild-type and mutant co-dynamics

2.1 ODEs for wild type and mutant cells

In order to introduce mutations in the system, we denote by yi the mutant
population of compartment Ci, by r(m)

i the mutant division rates, and by p(m)
i

the probabilities of self renewal for mutant cells in compartment Ci. Mutants
can be generated upon cell division. The four possible division processes for
wild type cells, in the presence of a per cell mutation rate ui, are shown
in figure S4. Mutants are assumed to divide into mutant daughter cells in
the absence of back-mutations or additional mutations. The following set of
ODEs describes the co-dynamics of wild type and mutant cells for n = 3:

ẋ0 = r0x0p0(1� u0)� r0x0(1� p0), (33)

ẋ1 = r0x0(1� p0)(2� u0) + r1x1p1(1� u1)� r1x1(1� p1),

ẋ2 = r1x1(1� p1)(2� u1) + r2x2p2(1� u2)� r2x2(1� p2),

ẋ3 = r2x2(1� p2)(2� u2)� d3x3,

ẏ0 = r0x0p0u0 + r(m)
0 y0(2p

(m)
0 � 1),

ẏ1 = r0x0(1� p0)u0 + 2r(m)
0 y0(1� p(m)

0 ) + r1x1p1u1 + r(m)
1 y1(2p

(m)
1 � 1),

ẏ2 = r1x1(1� p1)u1 + 2r(m)
1 y1(1� p(m)

1 ) + r2x2p2u2 + r(m)
2 y2(2p

(m)
2 � 1),

ẏ3 = r2x2(1� p2)u2 + 2r(m)
2 y2(1� p(m)

2 )� d3y3. (34)

In the absence of mutations (ui = 0), the general terms become:

ẋi = 2ri�1xi�1(1� pi�1) + rixi(2pi � 1),

ẏi = 2r(m)
i�1yi�1(1� p(m)

i�1) + r(m)
i yi(2p

(m)
i � 1).

In the above model we assume that the di↵erences between wild type and
mutant cells could be both in the division rate and in the self-renewal prob-
ability. Most generally, we write

pi = pi(x0, y0, . . . , xn, yn), p(m)
i = p(m)

i (x0, y0, . . . , xn, yn), 0  i  n� 1.

A particular formulation that can be used assumes that the mutants’ self-
renewal probability is a multiple of that of wild-type cells:

p(m)
i = (1 + s)pi,

9



where the constant s is the selection coe�cient. Alternatively, mutants may
be characterized by other di↵erences in their self-renewal function compared
to that of wild type cells, such as di↵erent control strength coe�cients, hi.

Figure S4: Four types of wild-type cell division: (a) faithful self-renewal, (b) faithful
di↵erentiation, (c) self-renewal with a mutation, (d) di↵erentiation with a mutation. The
compartments Ci and Ci+1 are represented by rectangles, wild type cells by blue circles,
mutants by red circles, and a position of a cell that has divided and di↵erentiated by dashed
circles. The per-cell probabilities of each cell division are indicated for each division type.

In what follows, we are interested in the invasion conditions for a mutant
that has been introduced into di↵erent compartments in the absence of de
novo mutant generation. Hence, we will assume ui = 0 for the remainder of
the analysis.

2.2 The mutant-free equilibrium and its stability

Consider the main system (33-34), under a general assumption on the control
functions:

pi = pi(x0 + y0, x1 + y1, x2 + y2, x3 + y3),

p(m)
i = p(m)

i (x0 + y0, x1 + y1, x2 + y2, x3 + y3), 0  i  2.

10



In the absence of de novo mutations (ui = 0, 0  i  2), a (positive) mutant-
free solution is given by

0

BBBBBBBBBB@

x0

x1

x2

x3

y0
y1
y2
y3

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

X0

X1

X2

X3

0
0
0
0

1

CCCCCCCCCCA

, Xi > 0, 0  i  3, (35)

where we used a horizontal bar to separate the wild type and mutant di-
rections in the solution. This steady state satisfies the algebraic system of
equations,

1

2
= p0(x0, . . . , x3), (36)

x1 =
r0x0

r1(1� 2p1(x0, . . . , x3))
, (37)

x2 =
2r0x0(1� p1(x0, . . . , x3))

r2(1� 2p1(x0, . . . , x3))(1� 2p2(x0, . . . , x3))
, (38)

x3 =
4r0x0(1� p1(x0, . . . , x3))(1� p2(x0, . . . , x3))

d3(1� 2p1(x0, . . . , x3))(1� 2p2(x0, . . . , x3))
, (39)

yi = 0, 0  i  3. (40)

This system simplifies for our three examples, pi = pi(xi), or pi = pi(xi+1),
or pi = p(x3). An explicit solution, if available, will depend on the form of
the control functions.

One can investigate stability properties of mutant-free solution (35) by
analyzing system (33-34) with ui = 0. Note that the analysis below is pre-
sented for n = 3 but is generalized easily to other numbers of compartments,
n.

Following the standard technique, we write out the Jacobian of the system
evaluated at the equilibrium, and determine its eight (2(n+ 1)) eigenvalues,
�i, 0  i  7. It turns out that there are two distinct groups of eigenvalues.
Eigenvalues �4, . . . ,�7 do not depend on the mutant parameters, and the
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corresponding eigenvectors have zero projections on the 4 mutant directions:

v
(i) =

0

BBBBBBBBBB@

⇤
⇤
⇤
⇤
0
0
0
0

1

CCCCCCCCCCA

, 4  i  7, (41)

where stars denote solution components that are not identically zero. The
top n + 1 components here correspond to the x0, . . . x3 directions and the
bottom n + 1 components to the y0, . . . , y3 directions, so the eigenvectors
in this group only have nontrivial components corresponding to wild-type
populations. While the functional shape of the eigenvalues �4, . . . ,�7 and
their eigenvectors depends on the control functions, generally they describe
the stability of the positive mutant-free equilibrium in the absence of mutants
and can be obtained from the Jacobian of system (16-18). Here we assume
that they have a negative real part, that is, a positive equilibrium is stable
in the absence of mutants.

The rest of the eigenvalues have a simple form:

�i = r(m)
i (2p(m)

i,eq � 1), 0  i  2, (42)

�3 = �d3, (43)

where p(m)
i,eq denotes the function p(m)

i (X0, X1, X2, X3) evaluated at the mutant-
free equilibrium. The corresponding eigenvectors have the following form:

v
(0) =

0

BBBBBBBBBB@

⇤
⇤
⇤
⇤
⇤
⇤
⇤
⇤

1

CCCCCCCCCCA

, v(1) =

0

BBBBBBBBBB@

⇤
⇤
⇤
⇤
0
⇤
⇤
⇤

1

CCCCCCCCCCA

, v(2) =

0

BBBBBBBBBB@

⇤
⇤
⇤
⇤
0
0
⇤
⇤

1

CCCCCCCCCCA

, v(3) =

0

BBBBBBBBBB@

⇤
⇤
⇤
⇤
0
0
0
⇤

1

CCCCCCCCCCA

, (44)

where again, the stars denote solution components that are not identically
zero. We can see that for the eigenvector corresponding to eigenvalue �i with
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0  i  3, the mutant populations in the compartments upstream from i (if
applicable) are zero.

From the expressions for the eigenvalues, (42-43), we can see that the
mutant division rates (as long as they are positive) do not influence stability.
Instead, conditions that guarantee stability of mutant-free solutions involve
mutant self-renewal probabilities:

p(m)
i,eq < 1/2, 0  i  2. (45)

In other words, mutant cells can invade if in at least one of the compartments,
they are capable of self-renewal, that is, their self-renewal probability at the
wild-type equilibrium exceeds their di↵erentiation probability.

This analysis can be used to examine the fate of mutants originating in
di↵erent compartments. Still keeping all the mutation rates at zero, assume
that mutant production in a given compartment is incorporated through the
initial condition:

yi(0) =

⇢
ŷ > 0, i = k,
0, i 6= k,

(46)

where k is the compartment where the mutation originates. Whether or not
this destabilizes the mutant-free solution and leads to a spread of mutants
can be determined by examining the relevant solutions of the linear system.

The solution of the linearized system (33-34) with ui = 0 describes the
dynamics of the perturbation and is written in the standard form,

7X

j=0

↵jv
(j)e�jt, (47)

where the coe�cients ↵j are obtained from the initial condition,

(0, 0, 0, 0, y0(0), y1(0), y2(0), y3(0))
T ,

given by (46). Since by our assumption, �j < 0 for 4  j  7, the fate of the
perturbation (that is, whether or not the mutant will grow) is defined by the
first four terms in this sum.

For mutants originating in C0 (that is, k = 0 in (46)), in general we
expect nontrivial values of ↵j for all 0  j  3. In particular, notice that the
only eigenvector (out of the eight of them) that has a nontrivial component
corresponding to y0 is v

(0), see expressions (41) and (44). Therefore, the

first coe�cient ↵0 is obtained from ↵0v
(0)
4 = ŷ (where v(i)j denotes the jth

13



component of eigenvector v
(i) with 0  j  7). The second coe�cient

satisfies ↵0v
(0)
5 + ↵1v

(1)
5 = 0, etc. Since all the terms in (47) come with

nonzero coe�cients, all the values in (42) must be negative for stability of
the mutant-free state. This means that as long as any of the three inequalities
in (45) are violated, the mutant can invade.

The situation is di↵erent for mutants placed in downstream compart-
ments. For mutants originating in C1 (k = 1 in (46)), we obtain ↵0v

(0)
4 = 0,

such that ↵0 = 0. Then we have ↵1v
(1)
5 = ŷ, and the rest of the coe�cients

↵j have nontrivial values. This means that the initial condition does not
have a nontrivial projection onto the eingenvector corresponding to �0 in
(42), therefore, only two out of the three conditions in (49) apply, namely,
the ones with i = 1 and i = 2. Consequently, to destabilize the mutant-
free solution, one must satisfy the weaker of the two conditions, p(m)

i,eq > 1/2,
i = 1, 2.

For mutants originating in C2, we have ↵0 = ↵1 = 0, and only the
i = 2 condition in (42) is relevant. Therefore, to destabilize the mutant-free

solution, one must have p(m)
2,eq > 1/2.

2.3 Fitness thresholds for mutant invasion

Let us consider the special case where the mutant self-renewal probability in
each compartment is given by

p(m)
i = (1 + s)pi, 0  i  2. (48)

The quantity s can be positive, zero, or negative, and it can be interpreted
as a selection coe�cient. Then, stability conditions (45) can be rewritten as

(1 + s)p̄i < 1/2, 0  i  2. (49)

If p̄0 = 1/2 and p̄i < 1/2 for i = 1 and i = 2, any positive value of s will
destabilize the mutant-free solution. Under the assumption in (48), mutant
invasion conditions can be formulated as a threshold result. Let us suppose
that, in the absence of further de-novo mutations, mutants are placed in
compartment k, equation (46). Then the mutant invasion conditions become:

s > sc = min

⇢
1

2p̄k
� 1, . . . ,

1

2p̄n�1
� 1

�
, (50)
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that is, the invasion threshold is determined by the equilibrium self-renewal
probability in compartment k and all the compartments downstream from
it. To summarize: if a mutant is generated in the least di↵erentiated com-
partment (C0) then any positive value of s is su�cient for the mutant to be
advantageous (and invade in the deterministic system). If however the mu-
tant originates in one of the downstream compartments, there is a nontrivial
threshold value that s must exceed to be able to invade. For a mutant that
originates in compartment Ck, the size of the threshold is defined by the
largest of the p̄l values with l � k, equation (50).

With n = 3, there are two cases depending on the relative magnitudes of
p̄1 and p̄2. If the equilibrium self-renewal probabilities satisfy

1/2 = p̄0 > p̄2 > p̄1, (51)

we have the following mutant invasion thresholds:

s > sc =

8
><

>:

0, k = 0,

min
n

1
2p̄1

� 1, 1
2p̄2

� 1
o
= 1

2p̄2
� 1, k = 1,

1
2p̄2

� 1, k = 2.

(52)

This means that for mutants originating in either of the compartments C1

or C2, the same invasion threshold exists, which is the lower of the two values.

If, consistent with Table 1 of the main text,

1/2 = p̄0 > p̄1 > p̄2, (53)

then

s > sc =

8
><

>:

0, k = 0,

min
n

1
2p̄1

� 1, 1
2p̄2

� 1
o
= 1

2p̄1
� 1, k = 1,

1
2p̄2

� 1, k = 2.

(54)

In other words, mutants that originate further downstream will face a higher
threshold compared to those that originate lower. It is reasonable to assume
that the likelihood of mutant generation in C2 is higher than that for C1,
because of the larger size of C2. It therefore appears that the architecture
with p̄2 < p̄1 presents a higher degree of protection against mutant invasion
compared to the case with p̄1 < p̄2.
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The value of the self-renewal probability at the equilibrium is responsible
for the compartment size: the closer this value is to 1/2, the larger the com-
partment size (see figure S5(a), where this is illustrated using compartment
C2). Therefore, from the point of view of cell amplification in tissue, it is
important to keep this quantity closer to 1/2. On the other hand, as this
analysis shows, values of p̄i close to 1/2 tend to lower the mutant invasion
threshold for mutants that originate in the given compartment (or even in
compartments upstream from that, see figure S5(b)). Therefore, there is a
certain trade-o↵ between the functionality and protection against mutations,
where the values of self-renewal probability play a pivotal role.

Figure S5: Compartment size (a) and mutant invasion threshold (b) as functions of the
equilibrium self-renewal probability p̄2. The rest of the parameters are given in table 1 of
the main text.

3 The fate of mutants originating in di↵erent

compartments

In what follows we study how mutants originating in di↵erent compartments,
may spread through the systems, and how the dynamics depend on the type
of control, the strength of the control and the amount of advantage enjoyed
by the mutant. We assume that the mutation rate is low, such that once a
mutant appears, no new mutations are considered.

3.1 Mutants originating in C0: pure mutant solutions

Since no de-di↵erentiation is assumed in the model, the only way a mutant
can occupy compartment C0 is to be generated there. From compartment C0,
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it can spread to all the downstream compartments. In addition, mutants that
originate in downstream compartments, also contribute to the dynamics. If
a mutant has an advantage in compartment C0 (p(m)

0,eq > 1/2) then a purely-
mutant solution is established, where the mutants displace the wild-type in
C0 and consequently, in all the compartments.

Figure S6: The dependence of the pure mutant equilibrium on the control type and the
control strength: (a) “self”, (b) “next”, and (c) “last” type of control. For each type of
control, the equilibrium quantities (y0 (blue), y1 (yellow), y2 (green), y3 (red)) are plotted
as functions of ln10 h, where hi = h for all i is control strength. Mutant selection coe�cient
is s = 0.01. The rest of the parameters are given in table 1 of the main text.

While the equilibrium values for the wild-type cells are identical in all
of our models of control, mutant behavior depends on both the type of the
control functions, and on the strength of control. Figure S6 demonstrates
how the pure mutant equilibrium values depend on the strength of control
(assuming for simplicity hi = h for 0  i  2) for the three types of control
system. Generally, the cell numbers for the mutants increase as control
decreases, and the solution diverges as h ! 0.

Figure S7 shows an example of wild-type (solid) and mutant (dashed)
co-dynamics, for di↵erent control types (rows) and strengths (columns). The
initial condition in each simulation is y0(0) = 1 with other mutant values
being zero at the beginning, and the wild-type values set at the mutant-free
equilibrium, xi(0) = Xi, 0  i  3. As time goes by, we observe that the
wild type cells are displaced by mutants. Even though the initial mutant
placement is in C0, the compartments turn mutant in the reverse order, from
C3 and then C2, followed by C1 and finally C0. This is the consequence of
the increasing division rates from least to most di↵erentiated compartments.
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Figure S7: The dynamics of advantageous mutants introduced in C0. The wild type
cells (solid lines) and the mutants (dashed lines) in compartments C0 (blue), C1 (yellow),
C2 (green), and C3 (red) are plotted as functions of t under the (a) “self”, (b) “next”, and
(c) “last” type of control. The di↵erent panels in each row correspond to di↵erent control
strengths, with the quantity ln10 h marked above each plot. s = 0.01, ui = 0 for all i, and
the rest of the parameters are given in table 1 of the main text.

3.2 Mutants originating in downstream compartments

As was mentioned previously, if a mutant originates in compartment C0,
under any positive value of s it will act as an advantageous mutant. The
situation is di↵erent if the mutant originates in one of the downstream com-
partments. In order to destabilize the mutant-free solution, that is, in order
to invade the WT population at equilibrium, the mutant must grow from
low numbers. For that to occur, the initial mutant self-renewal rate must
be greater than its di↵erentiation rate. Under model (48) this translates to
a threshold condition for the selection coe�cient s. For the parameters of
table 1 of the main text, we have

s(1)c ⌘ 1

2p̄1
� 1 ⇡ 0.058, s(2)c ⌘ 1

2p̄2
� 1 ⇡ 0.203.

Since the self-renewal rates satisfy inequality (53), the invasion thresholds
are given by (54). Simulations below demonstrate this result.

In figures S8 and S9, the mutant introduced in C1 and has selection
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Figure S8: The dynamics of advantageous mutants (s = 0.05) introduced in C1. Mutant

fitness is below the threshold: s < s(1)c ⇡ 0.058. The notations and the rest of the
parameters are as in figure S7.

coe�cient s = 0.05 and s = 0.06, respectively. In figure S8, we have s < s(1)c ,
that is, the selection coe�cient is below the threshold in C1. As a result,
the mutant dies out in its compartment of origin (C1, yellow dashed lines)

and is unable to spread. In contrast to this, in figure S9 we have s(2)c >
s > s(1)c , that is, the selection coe�cient exceeds the threshold in C1, and
a mutant population gets established in C1. Even though the threshold for
compartment C2 is not reached by these mutants, the existence of the input
from C1 makes the threshold in C2 irrelevant, and the mutants subsequently
spread to the downstream compartments.

As with mutants originating in C0, the steady state level of successfully
spreading mutants depends on the strength of the feedback, measured by h
here. For high h (strong feedback) the mutants’ equilibrium is lower than
the wild-type equilibrium in the respective compartments (see the rightmost
panels in figure S9). For weaker values of feedback, the equilibrium value of
the mutants grows (and diverges for h ! 0).

Figure S9 demonstrates another di↵erence compared to mutants originat-
ing in C0: in cases where the mutant is introduced in C1, the resident wild-
type population is not necessarily driven extinct by the expanding mutant,
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Figure S9: The dynamics of advantageous mutants (s = 0.06) introduced in C1. Mutant

fitness is above the threshold: s > s(1)c ⇡ 0.058. The notations and the rest of the
parameters are as in figure S7.

resulting in coexistence steady states. The fate of wild-type cells depends
on the model formulation for the control of self-renewal probabilities. In the
model where the control is “self” type (panel (a)), the wild type popula-
tions remain constant and the mutants grow to their equilibrium values. If
the feedback is of type “next” or “last” (panels (b) and (c)), the wild-type
populations may become decreased or go extinct in the presence of mutants.

The timing of mutant invasion depends on the amount of mutant advan-
tage. Figure S10 compares the dynamics of mutants with s = 0.2 (signifi-
cantly over the invasion threshold in C1) with those with s = 0.06 (just above
the threshold, depicted in figure S9). Apart from an enormous acceleration
in the mutant rise in all models, we also observe a higher level of the mutant
equilibrium.

If mutants originate in C2, under the parameter values of Table 1 of the
main text, they have a much higher threshold to overcome. If the value
s < s(2)c , the mutants will die out. Figure S11 shows mutants with s = 0.21,
just above the threshold. These mutants successfully spread. The patterns
of dependence on the feedback structure and strength are similar to what
was noted above.
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Figure S10: The dynamics of advantageous mutants with a larger fitness (s = 0.2,
compared to figure S9) introduced in C1. The mutant numbers under the assumption of
s = 0.06 (same as those in figure S9) are shown in dotted gray lines, for comparison. The
notations and the rest of the parameters are as in figure S7.

3.3 Control of “self” type, mutants originating in C1:

a case study

Here we examine a specific system with mutants originating in C1, and fo-
cus our attention on the equilibria in that compartment. In the absence of
mutations, we have for C1:

ẋ1 = r0x0 + r1x1(2p1 � 1), (55)

ẏ1 = r1y1(2(1 + s)p1 � 1); (56)

note that we took p0(x0) = 1/2, which remains constant in this model, where
pi = pi(xi + yi). It is useful to write down the Jacobian of the system:

J =

✓
r1(2p1 � 1) + 2r1x1p01 2r1x1p01
2r1y1(1 + s)p01 r1(2(1 + s)p1 � 1) + 2r1y1(1 + s)p01

◆
. (57)

If x0p0 > 0, there are two steady state solutions, discussed below.

The mutant-free solution: y1 = 0, and x1 is given by

x1 =
r0x0

r1(1� 2p̄1)
. (58)
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Figure S11: The dynamics of advantageous mutants (s = 0.21) introduced in C2. Mutant

fitness is above the threshold: s > s(2)c ⇡ 0.203. The notations and the rest of the
parameters are as in figure S7.

The eigenvalues of the corresponding Jacobian are r1(2p1 � 1) + 2rx1p01 and
r1(2(1+s)p1�1), evaluated at the steady state. This solution is stable when
(1 + s)p1 < 1/2, and becomes unstable if (1 + s)p̄1 > 1/2. As the value of s
grows, the system experiences a transcritical bifurcation at

s = sc =
1

2p̄1
� 1. (59)

As explained for the general case, for 0 < s < sc, mutants, although having a
positive selection coe�cient, e↵ectively behave as disadvantageous mutants.
The threshold value is higher if p̄i is further from 1/2.

Mutant solution: y1 > 0, x1 > 0, (1 + s)p1(x1, y1) = 1/2, and

x1 =
r0x0(1 + s)

r1s
. (60)

The number of wild type cells is independent of control, but the number
of mutants depends strongly on control, increasing as the control parameter
becomes weaker. This solution becomes stable when s is greater than critical
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(s > sc). This solution is characterized by mutants that are able to maintain
their numbers in the compartment, through a su�ciently high value of s. For
the particular shape of control defined in (22), the steady state is given by
equation (60) and

y1 =
(2p̄1(1 + s)� 1)(r1s(2p̄1 � 1)� h1r0x0(1 + s))

h1r1s(2p̄1 � 1)
. (61)

While x1 is independent of control, y1 depends strongly on h1. There are two
distinct regimes, separated by the value hc,

hc =
sr1(1� 2p̄1)

r0x0(1 + s)
.

• Weak control. If h1 ⌧ hc, we have

y1 ⇡
2p̄1(1 + s)� 1

h1
, (62)

that is, it is inversely proportional to control parameter h1, and tends
to infinity in the absence of control (h1 ! 0).

• Strong control. If h1 � hc, we have a constant (h1-independent) level
of mutants,

y1 ⇡
r0x0(1 + s)(2p̄1(1 + s)� 1)

r1s(2p̄1 � 1)
. (63)

Figure S12 shows the behavior of solution (61) and its approximations.

3.4 Threshold conditions and stochastic modeling

In this section we return to the scenario described by inequalities (51), that
is, to the situation where the threshold in compartment C1 is higher than that
in compartment C2. In the deterministic description of ODEs, a mutant that
appears in compartment C1 (that is, y1(0) > 0) will immediately give rise to
a nontrivial value of y2 by the process of di↵erentiation. This is why mutant
cells that are generated in C1 and do not satisfy the threshold condition in
the compartment of their origin, will still make it to the next compartment
(C2), and if they exceed the threshold there, they will rise and destabilize
the mutant -free solution, see threshold condition (52).
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Figure S12: The equilibrium number of mutants (originating in C1), equation (61),
green, as a function of the control strength, h1. Blue and orange lines represent approx-
imations (62) and (63), respectively. Here s = 0.06, and the rest of the parameters are
given in table 1 of the main text.

A di↵erent scenario can occur if (i) there is a nonzero probability of cell
death in C1, and (ii) the system is stochastic. In this case, it is possible that
mutants (that act as disadvantageous mutants in C1 because their selection
coe�cient is below the threshold), may die out before they make it to C2

(where they are advantageous) by di↵erentiation. A single one of the two
modifications, (i) or (ii), is not su�cient to observe this scenario, but the
combination may lead to this outcome. Specifically, in a stochastic system
without cell death, mutant cells in C0 will make it to C1 because they can
only self-renew or di↵erentiate, so they cannot disappear from C1 without
exiting to C2. In a deterministic system with death, a nontrivial term is still
present in the equation for y2, as long as y1 is positive. Therefore, both (i)
and (ii) have to be implemented to see a change in the behavior. Below we
investigate the resulting system, to calculate the probability that a mutant
in C1 di↵erentiates into C2 before dying out.

Consider the dynamics of mutant cells originating in compartment C1,
in the absence of further mutations (similar analysis can also be used for
mutants that originate in more di↵erentiated compartments, such as C2).
Denote the number of mutants by i and the total number of cells in C1 as N .
We will represent the dynamics as a Gillespie-type process, where we focus
on the changes in the variable i. We are interested in finding the probability
that mutant cells in compartment C1 di↵erentiate (that is, send mutants to
compartment C2), before they die o↵ in compartment C1. The state space
consists of the values i 2 {E, 0, 1, . . .}, where the additional state E stands
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for the event where a mutant cell di↵erentiated into C2. Both state i = 0 and
i = E are absorbing. Table S1 lists all the processes and their propensities.
In what follows we assume that i ⌧ N and ignore fluctuations in the number

Event Propensity

W.t. cell division (N � i)r1
W.t. cell di↵erentiation from C0 x0r0
W.t. death (N � i)d1
Mutant self-renewal, i ! i+ 1 ir1p

(m)
1

Mutant death, i ! i� 1 id1
Mutant di↵erentiation, i ! E ir1(1� p(m)

1 )

Total N ⌘ x0r0 +N(r1 + d1)

Table S1: Mutant and wild type processes and their propensities in compart-
ment C1.

of wild type cells. Therefore, p(m)
1 , which is a function of both the number

of wild type and mutant cells, can be approximated by its equilibrium value,
(1 + s)p̄1. Envisage the stochastic process where at each time-step of length
�t, the following events are possible:

P (i ! i+ 1) =
ir1p

(m)
1

N �t, (64)

P (i ! i� 1) =
id1
N �t, (65)

P (i ! E) =
ir1(1� p(m)

1 )

N �t, (66)

P (i ! i) = 1� (P (i ! i+ 1) + P (i ! i� 1) + P (i ! E)). (67)

For the usual Gillespie algorithm, for each step, one would choose the next
process according to the events’ propensities and then calculate the time in-
terval as a random exponentially distributed variable. Here we are interested
in the probability for the mutant cells to make it (by di↵erentiation) to the
next compartment, so we will not focus on the timing of events, only on their
sequence. Denote by gi the probability of absorbing in state E starting from
state i. We have

gi = P (i ! E)+P (i ! i+1)gi+1+P (i ! i�1)gi�1+P (i ! i)gi, i � 1, g0 = 0.
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This can be simplified to

c+ agi+1 + bgi�1 � (a+ b+ c)gi = 0, i � 1,

where
a = r1p

(m)
1 , b = d1, c = r1(1� p(m)

1 ).

Denoting qi = 1� gi, we obtain the system

cqi = a(qi+1 � qi) + b(qi�1 � qi), i � i, q0 = 1,

which can be solved by the substitution qi = ↵i. The values of ↵ are obtained
as the roots of a quadratic equation.

↵1,2 =
a+ b+ c±

p
(a+ b+ c)2 � 4ab

2a
.

The solution is qi = A↵i
1 + B↵i

2, and the constants A and B are found from
the conditions q0 = 1 and 0  qi  1 (because gi is a probability). It is easy
to show that ↵1 > 1 and 0 < ↵2 < 1. Therefore, we need to set A = 0 and
B = 1. Finally, we obtain the probability for mutants to di↵erentiate before
dying out in C1, starting from a single cell:

g1 = 1� 1�
p
1� ⌫µ

⌫
,

where

⌫ =
2a

a+ b+ c
=

2r1p
(m)
1

r1 + d1
, µ =

2b

a+ b+ c
=

2d1
r1 + d1

.

We have
@g1
@⌫

< 0,
@g1
@µ

< 0.

Using this information, we can see that g1 decreases with p(m)
1 , which is

expected: the more often the cells self-renew, the less often they di↵erentiate,
making it less likely for mutants to “escape” to the next compartment before
dying out. We also see that if d1 = 0, then g1 = 1, again, as expected.
Finally, we can calculate the derivatives:

@g1
@d1

=
d1 + r1(1� 2p(m)

1 )�
q

(d1 + r1(1� 2p(m)
1 ))2 + 4(1� p(m)

1 )r21

2p(m)
1 r1

q
(d1 + r1(1� 2p(m)

1 ))2 + 4(1� p(m)
1 )r21

< 0,

@g1
@r1

= �d1
r1

@g1
@d

> 0,
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where p(m)
1 = (1 + s)p̄1. We conclude that increasing the division rates or

decreasing the death rates will increase the probability of “escape”.

4 Including replication limits in the lineage

dynamics

4.1 The wild type system

Let us suppose that LT-SCs can divide indefinitely, but cells in the down-
stream compartments have a replication limit, which we call K. Accordingly,
for compartments Ci with i = 1 and i = 2, we will split all cells in division
classes, such that x1 =

PK
k=1 x1k, x2 =

PK
k=1 x2k; here the second index,

k, enumerates the division classes, while the first index stands for the com-
partment number. We will assume that cells di↵erentiate from compartment
C0 into compartment C1 by entering class x11. For divisions in class xik,
at each cell division, the progeny is placed in class xi,k+1 with probability
pi (a self-renewal division), and in class xi+1,k+1 with probability 1 � pi (a
di↵erentiation division). We assume that the progeny of cells in classes xiK is
removed from the system. The following of ODEs describes these processes:

C0 :

ẋ0 = r0x0(2p0 � 1), (68)

C1 :

ẋ11 = 2r0x0(1� p0)� r1x11,

ẋ1k = 2r1x1,k�1p1 � r1x1k, 2  k  K,

C2 :

ẋ21 = �r2x21,

ẋ22 = 2r1x11(1� p1)� r2x22,

ẋ2k = 2r1x1,k�1(1� p1) + 2r2x2,k�1p2 � r2x2k, 3  k  K.

C3 :

ẋ3 = 2r2

KX

k=1

x2k(1� p2)� d3x3. (69)

We will assume, as before, that the probabilities of self-renewal are functions
of the quantities xi, i 2 {0, 1, 2, 3}. At the equilibrium, we have pi = p̄i, with
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Figure S13: Equilibrium solutions for the system with replication limits. (a) Equilibrium
values in the individual replication classes, X1,k and X2,k, equations (71-72). (b) The
equilibrium values of the cell populations in the 4 compartments as functions of the total
number of replication classes, K. The horizontal dashed lines show the equilibrium values
for the basic system in the absence of replication limits, equations (20-21).

p̄0 = 1/2. The equilibrium solution is then given by:

X0 = x̄0, (70)

X1,k =
r0x̄0

r1
(2p̄1)

k�1, 1  k  K, (71)

X2,1 = 0,

X2,k =
r1
r2
X112

k�1(1� p̄1)
k�2X

m=0

p̄m1 p̄
k�2�m
2 =

r0x̄0

r2
2k�1(1� p̄1)

p̄k�1
1 � p̄k�1

2

p̄1 � p̄2
, (72)

X(K)
3 =

2r2(1� p̄2)

d3

KX

k=1

X2,k =

2r0x̄0(1� p̄1)(1� p̄2)

d3

2(p̄1 � p̄2) + (2p̄2)K(1� 2p̄1)� (2p̄1)K(1� 2p̄2)

(p̄1 � p̄2)(1� 2p̄1)(1� 2p̄2)
. (73)

For the total populations of the two middle compartments, we have

X(K)
1 =

KX

k=1

X1,k =
r0x̄0

r1

1� (2p̄1)K

1� 2p̄1
, (74)

X(K)
2 =

KX

k=1

X2,k =
r0x̄0(1� p̄1)

r2

2(p̄1 � p̄2) + (2p̄2)K(1� 2p̄1)� (2p̄1)K(1� 2p̄2)

(p̄1 � p̄2)(1� 2p̄1)(1� 2p̄2)
. (75)
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Since both 2p̄1 < 1 and 2p̄2 < 1, we have

lim
K!1

X(K)
1 = X1, lim

K!1
X(K)

2 = X2, lim
K!1

X(K)
3 = X3,

see equations (20-21). Figure S13(a) shows the equilibrium values in di↵er-
ent replication classes, X1,k and X2,k. The total equilibrium populations of
the four compartments (equations (74-75)) are shown in figure S13(b), as
functions of the total number of replication classes, K. We observe that they
converge to the values obtained previously for the system in the absence of
replication classes. The convergence for X(K)

1 is faster than that for X(K)
2 , as

the latter is defined by 2p̄2 > 2p̄1. The equilibrium values of the compart-
ment sizes increase with K, the total number of replication classes, see figure
S13(b). If the number of replication classes is greater than about 100, the
system can achieve amplification for the cell numbers of increasing degrees
of di↵erentiation.

To ensure the match of system (68-69) under a specific choice of feedback
on self-renewal probability, pi(x0, . . . , x3), we use equations (23), where X1 =PK

k=1 X1,k and X2 =
PK

k=1 X2,k. For the numerical examples below we used
the specific form of control, pi = ci/(1+hi(xi+ yi)) (the “self” type). In this
case, equations (23) yield:

ci = p̄i(1 + hiXi), 0  i  n� 1.

4.2 Co-dynamics of wild-type and mutant cells.

In order to include mutations, denote by y0, y1,k, y2,3 and y3 (with k enumer-
ating the replication classes as before) the populations of the di↵erent types
of mutants. We can write a cascade of equations for the mutants, which is
similar to that of the wild-types (equations (68-69)), coupled through both
the process of mutations and the self-renewal probabilities, which are func-
tions of both wild-type and mutant populations. If a mutation occurs in
compartment C0, we observe patterns similar to those described previously:
any advantageous mutant will displace wild-type cells in compartment C0

and consequently, in the whole lineage. It is more interesting to consider
mutant generation in the downstream compartments.

For this purpose, it is convenient to ignore de-novo mutations. The
equations for the wild-type cells remain the same as (68-69), except now
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pi = pi(x0, . . . , x3, y0, . . . , y3). The equations for the mutant cells look sim-
ilar, except they contain information about the di↵erence between mutant
and wild-type kinetics. We will consider several types of mutations.

Figure S14: Mutant and wild-type dynamics for the system with replication limits,
where mutations do not a↵ect replication limits: the role of fitness advantage. The initial
conditions are given by equations (70-73) for the wild-types, and all the mutant classes are
zero except y1,1(0) = 1. Total populations xi and yi, 0  i  3, are plotted as functions of
time. Wile-type (mutant) numbers are shown by solid (dashed) lines in compartment C0

(blue), C1 (yellow), C2 (green), and C3 (red). (a) s = 0.05, (b) s = 0.1, (c) s = 0.5. Under
the “self” feedback model, h = 10�9, u = 0, K = 50, and the rest of the parameters are
as in table 1 of the main text.

Mutations that do not a↵ect the replication capacity. Let us assume
that as before, mutations a↵ect only the self-renewal probabilities of the
cells, which is reflected in the factor 1 + s. From studying the system in
the absence of replication limits, we learned that mutants cannot rise if their
fitness advantage, s, is below a threshold, specific to the compartment of
origin. We also know that once s is above the threshold, the rise of the
mutant population occurs faster for larger values of s.

These patterns remain in the system with replication limits, but there
is in additional factor that plays a role in mutant dynamics. Mutants that
originate in any upstream compartment, have a finite life-span during which
they can rise, and once their replication capacity is exhausted, they are re-
moved from the system. Therefore, any rise/domination of mutants can only
occur for a limited amount of time. There is no steady state where mutants
prevail, in the absence of mutant cells residing in C0.

As a result, the mutants’ ability to make an impact on the system depends
on their ability to rise to significant numbers, before they are wiped out due
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to reaching the replication capacity. Figure S14 demonstrates this by plotting
the numbers of both wild-type (solid lines) and mutant (dashed lines) cells in
a system with replication capacity K = 50, where initially, a single mutant
cell is introduced in compartment C1 (type y1,1). All the parameters are
the same for the three panels except for the mutant fitness parameter, s.
In panel (a), the mutant fitness advantage s is below the invasion threshold

(s < s(1)c ⇡ 0.058), resulting in the number of mutants in C1 declining.
Note that before all mutants die out, they give rise to a certain number
of cells in the downstream compartments, but being below the threshold
prevents the mutant from expansion. In panel (b), the mutant fitness is
above the threshold, but the time before the replication capacity of mutants
is exhausted is too short for the mutants to make a significant impact. In
panel (c), the mutant fitness is significantly higher and they rise much faster,
such that they reach large numbers before they are wiped out.

Figure S15: Mutant and wild-type dynamics for the system with replication limits,
where mutations do not a↵ect replication limits: the role of the replication limits. (a)
K = 20, (b) K = 100, (c) K = 200. In all panels, s = 0.2. Notations and the rest of the
parameters are as in figure S14.

In contrast to figure S14, in figure S15 the mutant fitness parameter,
s, is kept constant, but the replication capacity of all cells is varied. The
larger the replicative capacity, the longer is the time period during which the
mutants can expand. In all panels of figure S15, we have s > s(1)c , and the
replication capacity takes values K = 20, K = 100, and K = 200 in panels
(a)-(c), respectively. The mutant’s impact is the highest in panel (c), where
it has a chance to rise to significant levels before crashing to zero.

Mutations that do a↵ect the replication capacity. If the mutations
are assumed to increase the replication capacity of the cells, the time during
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Figure S16: Mutant and wild-type dynamics for the system, where mutations a↵ect
both self-renewal probability and the replication limits. (a) Km = 20, (b) Km = 600, (c)
Km = 1. In all panels, s = 0.06 and K = 20. Notations and the rest of the parameters
are as in figure S14.

which they can expand increases, and therefore the maximum level achieved
by the mutants also increases. In figure S16, the carrying capacity of the
wild-type cells is kept at K = 20, and mutants are just above the invasion
threshold (s = 0.06). In panel (a), the mutants do not have an increased
replication limit, and disappear before having a chance to expand. In panel
(b), the replication capacity of mutants is increased with respect to that
of the wild-types, resulting in a longer mutant presence. In panel (c) we
assume that mutants can divide indefinitely, and observe the establishment
of a mutant steady state.

Figure S17: Similar to figures S14,S15, and S16, but the mutant originates in compart-
ment C2. Initially, all the mutant classes are zero except y2,2(0) = 1. (a) s = 0.21,K =
Km = 20, (b) s = 0.21,K = 20,Km = 1, (c) s = 0.3,K = 20,Km = 200. Notations and
the rest of the parameters are as in figure S14.

The same trends are observed if the mutant is introduced in compartment
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C2 instead of C1. In figure S17, a mutant generated in C2 with the fitness
advantage just above the threshold (s = 0.21 > s(2)c ⇡ 0.203) does not have a
chance to rise if the replication capacity is low (panel (a)), but increasing the
mutants’ carrying capacity (Km = 1 in panel (b)) leads to the establishment
of a mutant equilibrium. In panel (c), the mutant’s fitness advantage, s, is
higher, such that it rises to significant levels even under a finite replicative
capacity (Km = 200), before being flushed out of the system.
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Säwén, David Bryder, Thomas Höfer, et al. Reconciling flux experi-
ments for quantitative modeling of normal and malignant hematopoietic
stem/progenitor dynamics. Stem cell reports, 16(4):741–753, 2021.

33


